SOME BASIC SEQUENCES AND THEIR MOMENT OPERATORS

Rodney Nillsen*

1. INTRODUCTION

A well known result in Fourier analysis (see [3, p.107], for example) says that if the Fourier series of a continuous function on the circle group is lacunary, then the series converges uniformly to the function. Equivalently, if $(\alpha(n))$ is a lacunary sequence of positive integers (that is, $\alpha(n+1)\alpha(n)^{-1} \ge \gamma > 1$, for all n and some γ), then the sequence $1, e^{i\alpha(1)t}, e^{-i\alpha(1)t}, e^{i\alpha(2)t}, e^{-i\alpha(2)t}, \dots$ is basic in $C(0, 2\pi)$.

On the other hand, Gurarii and Macaev ([5]) proved some analogues of this result for power sequences in C([0,1]) and $L^p(0,1)$. Letting $1 \le p < \infty$ and letting $(\alpha(n))$ be a given increasing sequence of positive numbers, they proved that $(\alpha(n))$ is lacunary if and only if $(\alpha(n)^{1/p}t^{\alpha(n)-1/p})$ is basic in $L^p(0,1)$, in which case this basic sequence is equivalent to the standard basis in ℓ^p . They also proved that $(\alpha(n))$ is lacunary if and only if $(t^{\alpha(n)})$ is basic in C([0,1]).

In [4], Edwards has considered, in a dual form, a related problem concerning sequences of measures on a compact Hausdorff space K. If (μ_n) is a weak* convergent sequence of measures on K which satisfies a one term recurrence relation, he gives conditions which ensure that $\{(\int_K f d\mu_n) : f \in C(K)\} = c$. This result is closely related to the problem of finding conditions for (μ_n) to be a basic sequence of measures on K.

The present paper presents some analogues of the preceding results which are derived by considering a general problem in Banach spaces. Throughout, X will denote a given Banach space with dual X^* , (b_n) will denote a given sequence of scalars, $\sigma = (v_n)$ will denote a given sequence of vectors in X and $\tau = (x_n)$ will denote the sequence in X

246

^{*} This work is dedicated to Professor Igor Kluvánek, for whose encouragement and intellectual stimulation the author has been greatly indebted.

given by the recurrence relation

(1.1)
$$x_n - b_n x_{n-1} = v_n$$
, for $n \ge 1$, where $x_0 = 0$.

The general problem considered is to find conditions which ensure that if σ is basic then τ is basic, and also to find when σ and τ are equivalent bases. If (z_n) is a sequence in X, the moment operator A of (z_n) is defined on X^* by $(Ax^*)(n) = x^*(z_n)$, for $n \in \mathbb{N}$ and $x^* \in X^*$. Whether (z_n) is basic can often be expressed in terms of the range of A ([2,7]). These results are discussed in section 2.

In section 3, basic sequences in a space $L^p(S, S, \mu)$ are constructed which are of the form $(f|K_n)$, where (K_n) is an increasing sequence of sets in S, f is a given S-measurable function, and $f|K_n$ is the function equal to f on K_n and 0 elsewhere. In section 4, some bases are constructed for some subspaces of $L^p(\mathbb{R})$ consisting of piecewise linear functions. By taking Fourier transforms in some of these results with p = 2, conditions are found for weighted sequences of Dirichlet and Fejér kernels in $L^2(\mathbb{R})$ to be basic. The dual versions of these results give statements about the ranges of the various moment operators. For example, the following conditions are equivalent, where $1 \le p < \infty$, $p^{-1} + q^{-1} = 1$, and $(\alpha(n))$ is an increasing sequence of positive numbers:

 $(\alpha(n))$ is lacunary,

$$\left\{ \left(\alpha(n)^{-(1+1/p)} \int_{-\alpha(n)}^{\alpha(n)} (\alpha(n) - |t|) f(t) dt \right) : f \in L^q(\mathbb{R}) \right\} = \ell^q, \quad \text{and} \\ \left\{ \left(\alpha(n)^{-3/2} \int_{-\infty}^{\infty} \left(\frac{\sin \alpha(n)t}{t} \right)^2 f(t) dt \right) : f \in L^2(\mathbb{R}) \right\} = \ell^2.$$

Some definitions and notation used throughout the paper now follow. All sequences (z_n) in X or elsewhere are understood to be of the form $(z_n)_{n=1}^{\infty}$, unless indicated otherwise. If (z_n) is a sequence in X, $[z_n : n \in \mathbb{N}]$ denotes the Banach subspace of X generated by $\{z_n : n \in \mathbb{N}\}$. If $\lambda = (z_n)$ is a sequence in X we define

$$A_{\lambda} = \left\{ d: d \text{ is a scalar sequence and } \sum_{n=1}^{\infty} d_n z_n \quad \text{converges in } X \right\}.$$

Let $S_{\lambda} : A_{\lambda} \to X$ be given by $S_{\lambda}(d) = \sum_{n=1}^{\infty} d_n z_n$. If S_{λ} is a bijection from A_{λ} onto $[z_n : n \in \mathbb{N}]$, λ is said to be basic in X and to be a basis for $[z_n : n \in \mathbb{N}]$. If σ and τ are two basic sequences in X, they are said to be equivalent if $A_{\sigma} = A_{\tau}$.

A sequence $\lambda = (z_n)$ in X is basic in X and $A_{\lambda} = \ell^p$ (for some $1 \le p < \infty$) if and only if there are A, B > 0 such that

(1.2)
$$A||d||_p \le \left\|\sum_{n=1}^{\infty} d_n z_n\right\| \le B||d||_p, \quad \text{for all} \quad d \in A_{\lambda}.$$

Also, λ is basic and $A_{\lambda} = c_0$ if and only if an equality of type (1.2) holds with $p = \infty$ (see [11, p.354-355] or [12, p.30] for these facts). In the case where λ is basic in a Hilbert space, λ is said to be Riesz basic if $A_{\lambda} = \ell^2$. Standard results on bases may be found in [11] and [12] and used without explicit reference. For convenience rather than necessity, spaces such as $L^p(\mathbb{R})$, ℓ^p will be taken to consist of real valued functions and sequences. The bounded continuous real valued functions on \mathbb{R} are denoted by $C(\mathbb{R})$, and $C_0(\mathbb{R})$ denotes those functions in $C(\mathbb{R})$ vanishing at infinity. The characteristic function of a set A is denoted by $\chi(A)$.

2. GENERAL RESULTS

If the given sequence $\sigma = (v_n)$ in X is basic, there is a sequence (f_n) in X^{*} which is biorthogonal to σ . That is, $f_n(v_m) = 0$ if $m \neq n$ and $f_n(v_n) = 1$, for all m, n. If (b_n) is a given sequence of scalars we let $x_n - b_n x_{n-1} = v_n$, as in (1.1), and let $h_n = f_n - b_{n+1} f_{n+1}$, for all n.

LEMMA 2.1. If $\sigma = (v_n)$ is basic in X, then (h_n) is a sequence in X^{*} which is biorthogonal to (x_n) . Also,

$$\sum_{i=1}^{n} h_i(x) x_i = \sum_{i=1}^{n+1} f_i(x) v_i - f_{n+1}(x) x_{n+1}, \quad \text{for} \quad x \in X, \quad n \in \mathbb{N}.$$

Proof. It is straightforward to prove this from (1.1) and the definition of h_n (see also [4,p.11] and [11,p.29]).

THEOREM 2.2. Let $\sigma = (v_n)$ be a basis for X, let (b_n) be a sequence of scalars with $b_1 = 0$, let $\tau = (x_n)$ be given by (1.1), and let $1 \le p < \infty$. Then the following hold.

(2.1) If σ is bounded away from 0 and τ is bounded, then τ is a basis for X. If σ is bounded and τ is a basis for X, then τ is bounded.

(2.2) If τ is a basis for X which is bounded away from 0, then σ is bounded away from 0.

(2.3) If A_{σ} is ℓ^{p} or c_{0} , τ is bounded if and only if τ is a basis for X.

(2.4) If $||b||_{\infty} < 1$ and σ is bounded, then $A_{\sigma} = \ell^p$ (respectively c_0) if and only if τ is a basis for X and $A_{\tau} = \ell^p$ (respectively c_0).

(2.5) Let $||b||_{\infty} < 1$, let A_{σ} be either ℓ^{p} or c_{0} and let A, B > 0 be chosen so that (1.2) holds for σ . Then for all $d \in A_{\tau}$,

$$A(1+\|b\|_{\infty})^{-1}\|d\|_{p} \le \left\|\sum_{1}^{\infty} d_{n}x_{n}\right\| \le B\left(1-\|b\|_{\infty}\right)^{-1}\|d\|_{p},$$

where, if $A_{\sigma} = c_0$, $||d||_{\infty}$ is taken in place of $||d||_p$.

Proof. As σ is a basis for X, $x = \sum_{n=1}^{\infty} f_n(x)v_n$, for all $x \in X$. Assume that σ is bounded away from 0. Then $\lim_{n \to \infty} f_n(x) = 0$, for $x \in X$. Hence, if τ is bounded, we deduce from Lemma 2.1 that $x = \sum_{n=1}^{\infty} h_n(x)x_n$, for all $x \in X$, and it follows that τ is a basis for X. This proves half of (2.1).

Now let σ be bounded and τ be a basis for X. Because (h_n) is biorthogonal to τ , there is K > 0 so that $||x_n|| \cdot ||h_n|| \le K$ for all n. Thus,

$$||x_n|| \le K ||h_n||^{-1} \le K ||v_n|| \cdot |h_n(v_n)|^{-1} \le K ||v_n||,$$

so that τ is bounded. This proves the rest of (2.1).

If τ is a basis for X bounded away from 0, choose K as above and observe that, using Lemma 2.1,

$$||v_n|| = ||x_n - b_n x_{n-1}|| \ge |h_n (x_n - b_n x_{n-1})| \cdot ||h_n||^{-1} \ge ||h_n||^{-1} \ge K^{-1} ||x_n||.$$

Hence σ is bounded away from 0. This proves (2.2).

If A_{σ} is ℓ^{p} or c_{0} , an inequality of type (1.2) holds, so σ is bounded and also bounded away from 0. Hence (2.3) is a consequence of (2.1).

If $||b||_{\infty} < 1$ and σ is bounded, use (1.1) to obtain

$$\begin{aligned} \|x_n\| &\leq \|v_n\| + \sum_{j=1}^{n-1} \|b\|_{\infty}^{n-j} \|v_j\|, \\ &\leq (1 - \|b\|_{\infty})^{-1} \sup\{\|v_n\| : n \in \mathbb{N}\}. \end{aligned}$$

Hence τ is bounded. Now let A_{σ} be ℓ^{p} (respectively, c_{0}). It follows from (2.3) that τ is a basis for X so that

(2.6)
$$x = \sum_{n=1}^{\infty} \left(f_n(x) - b_{n+1} f_{n+1}(x) \right) x_n = \sum_{n=1}^{\infty} f_n(x) v_n, \quad \text{for } x \in X.$$

Hence, $(S_{\tau}^{-1} \circ S_{\sigma})(d) = (I - SM)(d)$, for $d \in A_{\sigma}$, where S, M are the operators given by $Sd = (d_{n+1}), Md = (b_n d_n)$ and I is the identity. SM maps ℓ^p into ℓ^p (respectively c_0 into c_0) and $||SM|| \leq ||b||_{\infty} < 1$. Hence I - SM is a bounded invertible operator on ℓ^p (respectively c_0) and $A_{\tau} = (I - SM)A_{\sigma} = \ell^p$. This proves half of (2.4). For the other half, let τ be a basis with $A_{\tau} = \ell^p$ (respectively c_0). Then τ is bounded away from 0. By (2.3), σ is bounded away from 0, so $A_{\sigma} \subseteq c_0$. It is easy to see that I - SM is injective on c_0 . Thus, as $\ell^p = A_{\tau} = (I - SM)A_{\sigma}$, we deduce that $A_{\sigma} = \ell^p$ (respectively, c_0). This proves (2.4).

To prove (2.5), observe that $||I - SM|| \le 1 + ||b||_{\infty}$ and $||(I - SM)^{-1}|| \le (1 - ||b||_{\infty})^{-1}$. Then (1.2) and (2.6) give

$$A||d||_{p} \leq \left\|\sum_{n=1}^{\infty} \left((I-SM)d\right)_{n} x_{n}\right\| \leq B||d||_{p}, \quad \text{for} \quad d \in A_{\sigma}.$$

Replacing d by $(I - SM)^{-1}(d)$ now gives (2.5).

COROLLARY 2.3. Let $\sigma = (v_n)$ be a bounded basis for X which is also bounded away from 0. Let (d_n) be a sequence of non-zero scalars, let $y_n = \sum_{j=1}^n d_j v_j$ and let $\lambda = (d_n^{-1} y_n)$. Then the following conditions are equivalent: (i) λ is basic in X, (ii) λ is bounded, and (iii) $(d_{n+1}^{-1}y_n)$ is bounded. If there is $\theta < 1$ so that $|d_{j-1}d_j^{-1}| \le \theta$ for all $j \ge 2$, then conditions (i) to (iii) do hold, and $A_{\sigma} = \ell^p$ (respectively c_0) if and only if $A_{\lambda} = \ell^p$ (respectively c_0). Proof. If $x_n = d_n^{-1}y_n$, $b_n = d_{n-1}d_n^{-1}$, $b_1 = 0$ then $x_n - b_nx_{n-1} = v_n$, all *n*. The equivalence of (i), (ii) now follows from (2.1). As $d_n^{-1}y_n - d_n^{-1}y_{n-1} = v_n$ and σ is bounded, (ii) and (iii) are equivalent. If $||b||_{\infty} < 1$, (x_n) is bounded and the remaining statements follow from (2.3) and (2.4).

REMARK. The equivalence of (i), (ii) and (iii) is known ([11, p.29]) and may be regarded as the special case of (2.1) which arises when it is assumed that in the recurrence relation (1.1), $b_n \neq 0$ for all n.

THEOREM 2.4. Let X be reflexive, let $\sigma = (v_n)$ be a basis for X with $||v_1|| = 1$ and $||v_n|| \le 1$ for $n \ge 2$. Let $\sigma' = (||v_n||^{-1}v_n)$ and assume that $A'_{\sigma} = \ell^p$, for some $1 . For <math>n \ge 1$ let $b_n = (1 - ||v_n||^p)^{1/p}$ and let $\tau = (x_n)$ be the sequence in X given by (1.1). Let (f_n) , (h_n) be the sequences in X* which are biorthogonal to σ , τ respectively, as described in Lemma 2.1. Then the following conditions are equivalent.

$$(2.7) [h_n : n \in \mathbb{N}] = X^*,$$

(2.8)
$$\prod_{j=r}^{\infty} b_j = 0, \quad for \ all \quad r \in \mathbb{N}, \quad and$$

(2.9)
$$\sum_{j=1}^{\infty} ||v_j||^p = \infty.$$

Proof. By reflexivity, (2.7) holds if and only if $x \in X$ and $h_n(x) = 0$ for all *n* implies x = 0. Let $x = \sum_{n=1}^{\infty} d_n ||v_n||^{-1} v_n$, where $d \in \ell^p$, be such that $h_n(x) = 0$ for all *n*. Then $||v_n||^{-1} d_n = b_{n+1} ||v_{n+1}||^{-1} d_{n+1}$ for all *n*.

If $b_n = 0$ for an infinite number of *n*, we deduce that d = 0. In this case (2.7) to (2.9) hold.

On the other hand suppose that there is q so that $b_q = 0$ and $b_n \neq 0$ for n > q. Then $d_j = 0$ for $1 \le j \le q - 1$ and $d_n = ||v_n|| \cdot ||v_q||^{-1} (b_n b_{n-1} \dots b_{q+1})^{-1} d_q$ for n > q. Hence

$$\sum_{n=q+1}^{\infty} |d_n|^p = |d_q|^p ||v_q||^{-p} \lim_{n \to \infty} (b_n b_{n-1} \dots b_{q+1})^{-p}.$$

As $d \in \ell^p$, either d = 0 or $\prod_{n=q+1}^{\infty} b_n \neq 0$. Hence (2.8) implies (2.7). The converse argument may be used to show that if (2.8) fails, there is $x \in X$, $x \neq 0$ so that $h_n(x) = 0$ for all n. Hence (2.7) implies (2.8).

Thus, (2.7) and (2.8) are equivalent, and the latter is equivalent to (2.9) by a standard result on infinite products ([9, p.292]).

COROLLARY 2.5. Let *H* be a Hilbert space, let (x_n) be a normalized sequence in *H*, and let (b_n) be a scalar sequence such that $b_1 = 0$ and the projection of x_n into $[x_j: 1 \le j \le n-1]$ is equal to $b_n x_{n-1}$ for all $n \ge 2$. Let $v_1 = x_1$ and $v_n = x_n - b_n x_{n-1}$ for $n \ge 2$. Then (x_n) is basic in *H* if and only if (v_n) is bounded away from 0, in which case (x_n) is Riesz basic. The subspaces $[x_n: n \in \mathbb{N}]$ and $[||v_n||^{-2}v_n - \overline{b_{n+1}}||v_{n+1}||^{-2}v_{n+1}: n \in \mathbb{N}]$ of *H* are equal if and only if $\sum_{n=1}^{\infty} ||v_n||^2 = \infty$.

Proof. Let $X = [x_n : n \in \mathbb{N}]$. Then (v_n) is an orthogonal basis for H, and

 $1 = ||x_n||^2 = |b_n|^2 + ||v_n||^2$. Hence (v_n) is bounded away from 0 if and only if $||b||_{\infty} < 1$. The first statement now follows from Theorem 2.2. The rest follows from Theorem 2.4 with p = 2.

The following result concerns the relationship between a sequence in X and its associated moment operator. The result is essentially known (see [2], [7, Theorem 1] and [12, p.169], for similar results) and is included for completeness.

THEOREM 2.6. Let $\sigma = (z_n)$ be a sequence in X, let $M = [z_n : n \in \mathbb{N}]$ and for $x^* \in X^*$ let $Sx^* = (x^*(z_n))$. Then the following hold.

(2.10) If $S(X^*)$ is equal to ℓ^r for some $1 \le r \le \infty$ (respectively c_0), then S is bounded from X^* onto ℓ^r (respectively, c_0).

(2.11) If $1 and <math>p^{-1} + q^{-1} = 1$, then $S(X^*) = \ell^q$ (respectively ℓ^1) if and only if σ is a basic sequence in X which is equivalent to the standard basis in ℓ^p (respectively c_0). (2.12) If σ is a basic sequence in X which is equivalent to the standard basis in ℓ^1 , then $S(X^*) = \ell^{\infty}$.

(2.13) If M is complemented in X and π is a projection from X onto M, the restriction of S to $\pi^*(M^*)$ is a bijection onto $S(X^*)$.

Proof. (2.10) follows from the closed graph theorem.

Now let $1 and <math>S(X^*) = \ell^q$. Define T on M^* by $T\mu = (\mu(z_n))$. Then $T(M^*) = \ell^q$ and T is a bounded bijection from M^* to ℓ^q . Hence T^* is a bounded bijection from ℓ^p to M^{**} . If $d \in \ell^p$ and $\mu \in M^*$ we have $(T^*d)(\mu) = \sum_{n=1}^{\infty} d_n\mu(z_n)$, and it is easy to see that this series converges uniformly on the unit ball in M^* . It follows that $\sum_{n=1}^{\infty} d_n z_n$ converges in M and that $T^*d = \sum_{n=1}^{\infty} d_n z_n$, for $d \in \ell^p$. As T^* is a bounded bijection onto M^{**} , it follows that $M = M^{**}$ and that σ is a basic sequence with $A_{\sigma} = \ell^p$. When $p = \infty$ and q = 1, apply a similar argument to prove that T^* is a bounded bijection from c_0 onto M and that $T^*d = \sum_{n=1}^{\infty} d_n z_n$ for $d \in c_0$ – then σ is basic with $A_{\sigma} = c_0$. This proves part of (2.11).

Conversely, if σ is basic and $A_{\sigma} = \ell^p$ for some $1 \le p < \infty$, let $S_{\sigma}d = \sum_{n=1}^{\infty} d_n z_n$, for $d \in \ell^p$. Then $S^*_{\sigma}(X^*) = \ell^q$. As $S = S^*_{\sigma}$, this proves (2.12) and the rest of (2.11). The proof of (2.13) is straightforward.

3. BASES AND RESTRICTIONS

In this section, (S, S, μ) will denote a given measure space, $K = (K_n)$ will denote an increasing sequence of sets in S such that $\mu(K_{n+1} - K_n) > 0$ for all n, and f will denote a given S-measurable scalar valued function on S. It will be assumed that $1 \le p \le \infty$ is given and that, for all n, $f\chi(K_n - K_{n-1})$ is a non-zero element of $L^p(S, S, \mu)$, where $K_0 = \emptyset$ when n = 1. We let R(f, p, K) denote all functions g in $L^p(S, S, \mu)$ such that g = 0 on $S - \bigcup_{n=1}^{\infty} K_n$ and on each set $K_n - K_{n-1}$, the restriction of g is a multiple of the restriction of f. Then R(f, p, K) is a Banach subspace of $L^p(S, S, \mu)$ and it is clear that $(f\chi(K_n - K_{n-1}))$ is a basis for R(f, p, K). This section is concerned with when $(f\chi(K_n))$ is also a basis for

R(f, p, K). Let, for $n \in \mathbb{N}$,

(3.1)
$$f_n = \|f\chi(K_n)\|_p^{-1} f\chi(K_n), \qquad f_0 = 0,$$
$$b_n = \|f\chi(K_n)\|_p^{-1} \|f\chi(K_{n-1})\|_p, \qquad \text{and}$$
$$v_n = \|f\chi(K_n)\|_p^{-1} f\chi(K_n - K_{n-1}).$$

It is immediate from (3.1) that

$$(3.2) f_n - b_n f_{n-1} = v_n, for n \in \mathbb{N}.$$

THEOREM 3.1. Let $\tau = (f_n)$ and consider the following conditions.

There is $\delta > 0$ such that for all $n \in \mathbb{N}$,

(3.3) $\|f\chi(K_n - K_{n-1})\|_p \ge \delta \|f\chi(K_n)\|_p$,

(3.4) τ is a basis for R(f, p, K), and

(3.5) there is $\gamma > 1$ such that for all $n \in \mathbb{N}$, $\|f\chi(K_n)\|_p \ge \gamma \|f\chi(K_{n-1})\|_p$.

Then if $1 \le p \le \infty$, (3.3) and (3.4) are equivalent. If $1 \le p < \infty$, (3.3), (3.4) and (3.5) are equivalent and imply that $A_{\tau} = \ell^p$. If $p = \infty$ and (3.5) holds, (3.3) and (3.4) also hold and $A_{\tau} = c_0$.

Proof. (3.1) shows that $b_1 = 0$ and it follows from (3.2) that Theorem 2.2 applies. Also τ is bounded, by (3.1). Now if (3.3) holds, (v_n) is bounded away from 0 and (3.4) follows from (2.1). Conversely, if (3.4) holds, (3.3) is a consequence of (2.2).

When $1 \le p < \infty$, it is easy to prove that (3.3) and (3.5) are equivalent. As (3.5) means that $||b||_{\infty} < 1$, it follows from (2.4) that $A_{\tau} = \ell^{p}$.

When $p = \infty$, (3.5) implies that $||f\chi(K_n)||_{\infty} = ||f\chi(K_n - K_{n-1})||_{\infty}$ so that (3.3) holds. (3.5) also implies that $||v_n||_{\infty} = 1$ and that $||b||_{\infty} < 1$, so that $A_{\sigma} = c_0$ (where $\sigma = (v_n)$) and $A_{\tau} = c_0$ by (2.4). This completes the proof.

If $(\alpha(n))$ is a strictly increasing sequence of positive numbers let

(3.6)
$$\gamma(\alpha) = \inf\{\alpha(n+1)\alpha(n)^{-1} : n \in \mathbb{N}\}$$
 and $\psi(\alpha) = \sup\{\alpha(n+1)\alpha(n)^{-1} : n \in \mathbb{N}\}.$

We allow the possibility that $\psi(\alpha) = \infty$, in which case $\psi(\alpha)^{-1} = 0$. Clearly, $\gamma(\alpha) \ge 1$.

COROLLARY 3.2. Let $(\alpha(n))$ be a strictly increasing sequence of positive real numbers and let $1 \le p < \infty$. Then $\gamma(\alpha) > 1$ if and only if there are C, D > 0 such that

$$C\left(\sum_{n=1}^{r} |d_n|^p\right)^{1/p} \le \left(\sum_{j=1}^{r} \left(\alpha(j) - \alpha(j-1)\right) \left|\sum_{n=j}^{r} \frac{d_n}{\alpha(n)^{1/p}}\right|^p\right)^{1/p} \le D\left(\sum_{n=1}^{r} |d_n|^p\right)^{1/p}$$

for all scalars d_1, d_2, \ldots, d_r and $r \in \mathbb{N}$. In this case we may take

$$C = \frac{(\gamma(\alpha) - 1)^{1/p}}{\gamma(\alpha)^{1/p} + 1} \quad and \quad D = \frac{\gamma(\alpha)^{1/p}}{\gamma(\alpha)^{1/p} - 1} \left(1 - \psi(\alpha)^{-1}\right)^{1/p}.$$

Proof. Apply Theorem 3.1 to $L^p(\mathbb{R})$ with f = 1 and $K_n = (0, \alpha(n))$. Then $f_n = \alpha(n)^{-1/p} \chi(0, \alpha(n))$ and (3.5) holds if and only if $\gamma(\alpha) > 1$. Now observe that

$$\left\|\sum_{n=1}^{r} d_n f_n\right\|_p = \left(\sum_{j=1}^{r} (\alpha(j) - \alpha(j-1)) \left|\sum_{n=j}^{r} \frac{d_n}{\alpha(n)^{1/p}}\right|^p\right)^{1/p}.$$

Thus, an inequality of the above type is equivalent to saying that $\tau = (f_n)$ is basic in $L^p(\mathbb{R})$ with $A_{\tau} = \ell^p$ (see (1.2)). The estimates for C, D are consequences of applying (2.5) with $\sigma = (\alpha(n)^{-1/p}\chi((\alpha(n-1),\alpha(n)))), \tau$ as above and $b_n = \alpha(n-1)^{1/p}\alpha(n)^{-1/p}$. This completes the proof.

PROPOSITION 3.3. Let (H, <, >) be a Hilbert space, let (e_n) be a Riesz basis for H, let (c_n) be a sequence of scalars and let $(\alpha(n))$ be a strictly increasing sequence of positive integers. Then the following conditions are equivalent.

(3.7) There is $\eta > 0$ such that for all $n \in \mathbb{N}$,

$$\left(\sum_{j=1}^{\alpha(n)} |c_j|^2\right)^{-1} \left(\sum_{j=\alpha(n-1)+1}^{\alpha(n)} |c_j|^2\right) \ge \eta.$$

(3.8) The sequence $\left(\sum_{j=1}^{\alpha(n)} c_j e_j\right)$ is basic in H. (3.9) If we let

$$a_{j,k} = \frac{\sum_{r=1}^{\alpha(j)} \sum_{s=1}^{\alpha(k)} c_r \overline{c}_s < e_r, e_s >}{\left(\sum_{r=1}^{\alpha(j)} |c_r|^2\right)^{1/2} \left(\sum_{s=1}^{\alpha(k)} |c_s|^2\right)^{1/2}},$$

then there are A, B > 0 such that for all scalar sequences (d_n) of finite support,

$$A||d||_2^2 \le \left|\sum_{j,k=1}^{\infty} a_{j,k} d_j \overline{d}_k\right| \le B||d||_2^2.$$

When the above conditions hold,

$$\left(\left(\sum_{j=1}^{\alpha(n)} |c_j|^2\right)^{-1/2} \sum_{j=1}^{\alpha(n)} c_j e_j\right)$$

is Riesz basic in H.

Proof. Apply Theorem 3.1 to $\ell^2(\mathbb{N})$, with $f = (c_n)$ and $K_n = \{1, 2, ..., \alpha(n)\}$. Then (3.7) is equivalent to (3.3) with p = 2. Let $Jd = \left(\sum_{j=1}^{\infty} |d_j|^2\right)^{-1/2} \left(\sum_{j=1}^{\infty} d_j e_j\right)$, for $d \in \ell^2$. Then J is an isomorphism from $\ell^2(\mathbb{N})$ onto H such that $J(f\chi(K_n)) = \left(\sum_{j=1}^{\alpha(n)} |c_j|^2\right)^{-1/2} \left(\sum_{j=1}^{\alpha(n)} c_j e_j\right)$. Hence the equivalence of (3.7) and (3.8) is a consequence of the equivalence of (3.3) and (3.4). Condition (3.9) is equivalent to saying that $(J(f\chi(K_n)))$ is Riesz basic in H. This observation and Theorem 3.1 give the remaining conclusions.

REMARKS. 1. An alternative proof of Proposition 3.3 may be based upon Corollary 2.5.

2. If (e_n) is an orthonormal basis for H and $c_n = 1$ for all n, then

$$a_{j,k} = \min \left(\alpha(j)^{1/2} \alpha(k)^{-1/2}, \quad \alpha(k)^{1/2} \alpha(j)^{-1/2} \right)$$

In this case the inequality (3.9) is the same as the one in Corollary 3.2 with p = 2.

COROLLARY 3.4. Let $(\alpha(n))$ be an increasing sequence of positive integers. For $n \in \mathbb{N}$, let $D_n(t) = \sin(n + \frac{1}{2})t/\sin\frac{1}{2}t$, for $t \in (0, 2\pi)$. Then $\gamma(\alpha) > 1$ if and only if $(D_{\alpha(n)})$ is basic in $L^2(0, 2\pi)$, in which case $(\alpha(n)^{-1/2}D_{\alpha(n)})$ is Riesz basic. If $f \in L^2(0, 2\pi)$, then $(D_{\alpha(n)} * f)$ is not basic in $L^2(0, 2\pi)$. If $\gamma(\alpha) > 1$, a function $f \in L^2(0, 2\pi)$ has a unique expression in $L^2(0, 2\pi)$ of the form $\sum_{n=1}^{\infty} d_n \alpha(n)^{-1/2} D_{\alpha(n)}$, $d \in \ell^2$, if and only if the Fourier transform of f is constant on the set $\{-\alpha(1), \ldots, \alpha(n)\}$, for $n \ge 2$.

Proof. Apply Proposition 3.3 with $H = L^2(0, 2\pi)$, $c_n = 1$ for all $n, e_1 = 1$ and

 $e_n(t) = e^{i(n-1)t} + e^{-i(n-1)t}$, for $n \ge 2$. Then (3.7), (3.8) imply that $\gamma(\alpha) > 1$ if and only if $(D_{\alpha(n)})$ is basic in $L^2(\mathbb{R})$. $D_{\alpha(n)} * f$ is the *n*th partial sum of the Fourier series of f, and $(D_{\alpha(n)} * f)$ is thus not basic by Corollary 2.3. Finally, observe that the Fourier transform of f is constant on $\{-\alpha(1), \ldots, \alpha(1)\}$ and upon each set

$$\{-\alpha(n),\ldots,-\alpha(n-1)-1\}\cup\{\alpha(n-1)+1,\ldots,\alpha(n)\}$$

if and only if $f \in [D_{\alpha(n)} : n \in \mathbb{N}]$. This completes the proof.

REMARKS. A consequence of Corollary 3.6 is that there exist basic sequences $(D_{\alpha(n)})$ in $L^2(0, 2\pi)$ such that for no $f \in L^2(0, 2\pi)$ is $(D_{\alpha(n)} * f)$ basic in $L^2(0, 2\pi)$.

COROLLARY 3.5. Let $(\alpha(n))$ be an increasing sequence of positive real numbers. For $\beta \in \mathbb{R}$, let $D_{\beta}^{\mathbb{R}}(t) = \sin \beta t/t$, for $t \in \mathbb{R}$. Then $\gamma(\alpha) > 1$ if and only if $(D_{\alpha(n)}^{\mathbb{R}})$ is basic in $L^2(\mathbb{R})$, in which case $(\alpha(n)^{-1/2}D_{\alpha(n)}^{\mathbb{R}})$ is Riesz basic. If $\gamma(\alpha) > 1$, a function $f \in L^2(\mathbb{R})$ has a unique expansion in $L^2(\mathbb{R})$ of the form $\sum_{n=1}^{\infty} d_n \alpha(n)^{-1/2} D_{\alpha(n)}^{\mathbb{R}}$, $d \in \ell^2$, if and only if the Fourier transform of f is constant on each subset of \mathbb{R} of the form $(-\alpha(n), -\alpha(n-1)] \cup [\alpha(n-1), \alpha(n))$.

Proof. This is similar to Corollary 3.4.

PROPOSITION 3.6. Let $1 \le p < \infty$, let $(\alpha(n))$ be a strictly increasing sequence of positive integers, let $a_{ij} = \alpha(i)^{-1/p}$ for $1 \le j \le \alpha(i)$, and let $a_{ij} = 0$ if $j > \alpha(i)$. Let A denote the operator obtained by multiplying by (a_{ij}) . Then A is a bounded operator from ℓ^q onto ℓ^q (where $p^{-1} + q^{-1} = 1$) if and only if $\gamma(\alpha) > 1$. In this case, the restriction of A to the subspace of ℓ^q consisting of those sequences which are constant on each interval $\{\alpha(n-1)+1,\ldots,\alpha(n)\}$ in \mathbb{N} is a bounded invertible operator on ℓ^q .

Proof. Let a_n denote the *n*th row of A. Then by Theorem 3.1, $\sigma = (a_n)$ is basic in ℓ^p if and only if $\gamma(\alpha) > 1$, in which case $A_{\sigma} = \ell^p$. By (2.10), (2.11) and (2.12), A is bounded from ℓ^q onto ℓ^q . If $1 and <math>A(\ell^q) = \ell^q$, then (2.11) implies σ is basic and thus $\gamma(\alpha) > 1$. If p = 1 and $A(\ell^{\infty}) = \ell^{\infty}$, we have for $d \in \ell^{\infty}$,

$$(Ad)(n) - (Ad)(n+1) = \alpha(n+1)^{-1} \left(\alpha(n+1)\alpha(n)^{-1} - 1 \right) \left(\sum_{i=1}^{\alpha(n)} d_i \right) - \alpha(n+1)^{-1} \left(\sum_{i=\alpha(n)+1}^{\alpha(n+1)} d_i \right),$$

so that

$$|(Ad)(n) - (Ad)(n+1)| \le ||d||_{\infty} 2(1 - \alpha(n)\alpha(n+1)^{-1}).$$

Hence, if $A(\ell^{\infty}) = \ell^{\infty}$, $\gamma(\alpha) > 1$.

Now let M_p denote the subspace of ℓ^p consisting of those sequences which are constant on each interval $[\alpha(n-1)+1, \alpha(n)]$. Then if

$$(\pi d)_n = (\alpha(k) - \alpha(k-1))^{-1} \left(\sum_{i=\alpha(k-1)+1}^{\alpha(k)} d_i\right),$$

for $d \in \ell^p$ and $n \in [\alpha(k-1)+1, \alpha(k)]$, then π is a projection from ℓ^p onto M_p and $\pi^*(M_p^*) = M_q$. By (2.13) the restriction of A to M_q is a bounded invertible operator onto ℓ^q , as required.

REMARK. Proposition 3.6 should perhaps be compared with the result ([1] and [6, p.239]) that if p > 1, the Cesàro operator is bounded on ℓ^p , and with a recent result ([8]) on the partial invertibility of the Cesàro operator.

PROPOSITION 3.7. Let $1 \le p < \infty$, let $(\alpha(n))$ be a strictly increasing sequence of positive integers and let

$$(Af)(n) = \alpha(n)^{-1/p} \int_{-\alpha(n)}^{\alpha(n)} f(t)dt, \quad for \quad n \in \mathbb{N} \quad and \quad f \in L^q(\mathbb{R}),$$

where $p^{-1} + q^{-1} = 1$. Then $\gamma(\alpha) > 1$ if and only if A is a bounded operator from $L^q(\mathbb{R})$ onto ℓ^q . In this case the restriction of A to the subspace of $L^q(\mathbb{R})$ consisting of those functions which are constant on each set $[-\alpha(n), -\alpha(n-1)] \cup [\alpha(n-1), \alpha(n)]$ is a bounded invertible operator onto ℓ^q .

Proof. This is similar to Proposition 3.6.

THEOREM 3.8. Let $1 , <math>p^{-1} + q^{-1} = 1$ and for $n \in \mathbb{N}$ let

$$w_n = \left(\int_{K_n - K_{n-1}} |f|^p d\mu\right)^{-1/q} \chi(K_n - K_{n-1})(\operatorname{sign} f)|f|^{p-1}, \quad and$$
$$h_n = \left(\int_{K_n - K_{n-1}} |f|^p d\mu\right)^{-1} \chi(K_n - K_{n-1})(\operatorname{sign} f)|f|^{p-1} - \left(\int_{K_{n+1} - K_n} |f|^p d\mu\right)^{-1} \chi(K_{n+1} - K_n)(\operatorname{sign} f)|f|^{p-1}.$$

Then $[w_n : n \in \mathbb{N}] = [h_n : n \in \mathbb{N}]$ in $L^q(S, S, \mu)$ if and only if $\lim_{n \to \infty} ||f\chi(K_n)||_p = \infty$.

Proof. Let $X = [v_n : n \in \mathbb{N}]$ in $L^p(S, S, \mu)$. As the v_n have disjoint supports,

 $\sigma' = (||v_n||_p^{-1}v_n)$ is a basis for X and $A_{\sigma'} = \ell^p$. It is easy to check that $w_n \in L^q(S, S, \mu)$, that $||w_n||_q = 1$ and that $\int_S v_n w_n d\mu = ||v_n||_p$. It follows that $(||v_n||_p^{-1}w_n)$ is a sequence in $L^q(S, S, \mu)$ which is biorthogonal to (v_n) . Also, X^* is isometrically isomorphic to $[w_n : n \in \mathbb{N}]$ in $L^q(S, S, \mu)$ under T, where $T\lambda = \sum_{n=1}^{\infty} \lambda(v_n) ||v_n||_p^{-1} w_n$, for $\lambda \in X^*$. From (3.1) it follows that $b_n = (1 - ||v_n||_p^p)^{1/p}$, and, as X is reflexive and (3.2) holds, we may apply Theorem 2.4. The result now follows from the equivalence of (2.7) and (2.8) by observing that, in the present context, (2.7) means that $[w_n : n \in \mathbb{N}]$ equals $[h_n : n \in \mathbb{N}]$ and (2.8) means that $\lim_{n \to \infty} ||f_X(K_n)||_p = \infty$. This completes the proof.

4. BASES IN SPACES OF PIECEWISE LINEAR FUNCTIONS

Let $\alpha = (\alpha(n))$ denote a given strictly increasing sequence of positive numbers and let $\gamma(\alpha)$ be defined as in (3.6). If $1 \le p \le \infty$, $PLC(p, \alpha)$ will denote the piecewise linear, even functions in $L^p(\mathbb{R})$ which are linear on each interval $[\alpha(n-1), \alpha(n))$, continuous on $\bigcup_{n=1}^{\infty} (-\alpha(n), \alpha(n))$, and zero off this union. Let $PLC_0(\infty, \alpha) = PLC(\infty, \alpha) \cap C_0(\mathbb{R})$. Then for $1 \le p \le \infty$, $PLC(p, \alpha)$ is a Banach subspace of $L^p(\mathbb{R})$. Also, $PLC_0(\infty, \alpha)$ is a Banach subspace of $C_0(\mathbb{R})$. Let

$$f(t) = \max(0, 1 - |t|), \quad \text{for } t \in \mathbb{R},$$

and for $n \in \mathbb{N}$ and $t \in \mathbb{R}$ let

(4.1)
$$g_n(t) = 2^{-1/p} (p+1)^{1/p} \alpha(n)^{-1/p} f(\alpha(n)^{-1}(t)), \quad \text{if} \quad 1 \le p < \infty, \quad \text{and}$$

$$g_n(t) = f(\alpha(n)^{-1}t), \qquad if \quad p = \infty.$$

Then, for $1 \le p \le \infty$, $g_n \in PLC(p, \alpha)$ and $||g_n||_p = 1$. We also let, for $n \in \mathbb{N}$ and $t \in \mathbb{R}$,

(4.2)
$$\phi_n(t) = \frac{\alpha(n) - |t|}{\alpha(n) - \alpha(n-1)}, \quad \text{for} \quad \alpha(n-1) \le |t| \le \alpha(n),$$

$$\phi_n(t) = 0, \quad \text{if} \quad |t| < \alpha(n-1) \quad \text{or} \quad |t| > \alpha(n),$$

$$\phi'_n(t) = \frac{|t| - \alpha(n-1)}{\alpha(n) - \alpha(n-1)}, \quad \text{for} \quad \alpha(n-1) \le |t| \le \alpha(n),$$

$$\phi'_n(t) = 0, \quad \text{if} \quad |t| < \alpha(n-1) \quad \text{or} \quad |t| > \alpha(n), \quad \text{and}$$

$$z_n = 2^{-1/p} (p+1)^{1/p} \alpha(n)^{-1/p} (\phi'_{n-1} + \phi_n).$$

Let $\phi'_0 = 0$ and $\alpha(0) = \alpha(-1) = 0$. Note that g_n, z_n depend upon p. The function z_n is a type of Schauder hat function used in discussing bases of C([0,1]) (see [10, section 2.3]). Expressions of the from $a^{1/p}$, $(p+1)^{1/p}$, etc., will be taken to be 1 when $p = \infty$. The main result in this section is the following.

THEOREM 4.1. Let $1 \le p < \infty$, let (g_n) be given by (4.1) and $\nu = (z_n)$ be given by (4.2). Then ν is a basis for $PLC(p, \alpha)$ and $\ell^p \subseteq A_{\nu}$. Also, if we consider the conditions

- $(4.3) \qquad A_{\nu} = \ell^{p},$
- $(4.4) \qquad \gamma(\alpha) > 1,$
- (4.5) (g_n) is a basis for $PLC(p, \alpha)$, and

(4.6) $(\alpha(n)^{-3/2}t^{-2}\sin^2 2^{-1}\alpha(n)t)$ is basic in $L^2(\mathbb{R})$,

then (4.4), (4.5) and (4.6) are equivalent, (4.4) implies (4.3), and if $(\alpha(n) - \alpha(n-1))$ is increasing then (4.3) and (4.4) are equivalent. When conditions (4.4) to (4.6) hold, (g_n) is equivalent to the standard basis in ℓ^p , and the sequence in (4.6) (which is a sequence of weighted Fejér kernels in $L^2(\mathbb{R})$) is Riesz basic in $L^2(\mathbb{R})$.

The case $p = \infty$ is covered by

THEOREM 4.2. Let $p = \infty$, let (g_n) be given by (4.1) and let $\nu = (z_n)$ be given by (4.2). Then ν is a basis for $PLC_0(\infty, \alpha)$ and $A_{\nu} = c_0$. Also, $\gamma(\alpha) > 1$ if and only if (g_n) is a basis for $PLC_0(\infty, \alpha)$. A function $f \in PLC(\infty, \alpha)$ if and only if there exists a (necessarily unique) $d \in \ell^{\infty}$ so that the series $\sum_{n=1}^{\infty} d_n z_n$ converges uniformly to f on each compact subset of \mathbb{R} .

The proofs of Theorems 4.1 and 4.2 require some preliminary results and observations. Let $1 \le p \le \infty$ be given. We define

$$r_n(t) = \alpha(n) - \alpha(n-1), \quad \text{for} \quad |t| \le \alpha(n-1),$$
$$r_n(t) = \alpha(n) - |t|, \quad \text{for} \quad \alpha(n-1) \le |t| \le \alpha(n), \quad \text{and}$$
$$r_n(t) = 0, \quad \text{for} \quad |t| > \alpha(n).$$

Also, let

(4.7)
$$w_n = 2^{-1/p} (p+1)^{1/p} \alpha(n)^{-1/p} (\alpha(n) - \alpha(n-1))^{-1} r_n$$

From (4.2) and (4.7) we now have

(4.8)
$$\|\phi_n\|_p = \|\phi_n'\|_p = 2^{1/p}(p+1)^{-1/p}(\alpha(n) - \alpha(n-1))^{1/p},$$

(4.9)
$$||z_n||_p = (1 - \alpha(n-2)\alpha(n)^{-1})^{1/p}$$
, and

(4.10) $||w_n||_p = (1 + p\alpha(n-1)\alpha(n)^{-1})^{1/p}.$

The sequences (g_n) and (w_n) also satisfy the following recurrence relations.

(4.11)
$$g_n - \alpha (n-1)^{1+1/p} \alpha (n)^{-(1+1/p)} g_{n-1} = (1 - \alpha (n-1)\alpha (n)^{-1}) w_n$$
, and

(4.12) $w_n - \alpha (n-1)^{1/p} \alpha (n)^{-1/p} w_{n-1} = z_n$, for all $n \in \mathbb{N}$.

LEMMA 4.3. Let $1 \le p < \infty$ and let $C_p = \inf\{(1+t)^{-1}(1+t^{p+1}) : 0 \le t \le 1\}$. Then for all $a, b \in \mathbb{R}$,

$$C_p^{1/p} 2^{1/p} (p+1)^{-1/p} (\alpha(n) - \alpha(n-1))^{1/p} \ maximum \ (|a|, |b|)$$

$$\leq ||a\phi'_n + b\phi_n||_p \leq 2^{1+1/p} (p+1)^{-1/p} (\alpha(n) - \alpha(n-1))^{1/p} \ maximum \ (|a|, |b|).$$

Proof. The right hand inequality follows easily from (4.8). For the left hand inequality, note that $||a\phi'_n + b\phi_n||_p$ is symmetric in a, b. If $ab \ge 0$ and |a| > |b|,

$$\begin{aligned} ||a\phi'_n + b\phi_n||_p &= 2^{1/p} (p+1)^{-1/p} (\alpha(n) - \alpha(n-1))^{1/p} |a| \left(\frac{1 - |b/a|^{p+1}}{1 - |b/a|}\right)^{1/p}, \\ &\geq 2^{1/p} (p+1)^{-1/p} (\alpha(n) - \alpha(n-1))^{1/p} |a|. \end{aligned}$$

If a = b, then

$$||a\phi'_n + b\phi_n||_p = 2^{1/p} (\alpha(n) - \alpha(n-1)^{1/p} |a|.$$

If ab < 0 and $|a| \ge |b|$, then

$$\begin{aligned} \|a\phi'_n + b\phi_n\|_p &= 2^{1/p}(p+1)^{-1/p}(\alpha(n) - \alpha(n-1))^{1/p}|a| \left(\frac{1+|b/a|^{p+1}}{1+|b/a|}\right)^{1/p},\\ &\geq C_p^{1/p}2^{1/p}(p+1)^{-1/p}(\alpha(n) - \alpha(n-1))^{1/p}|a|. \end{aligned}$$

Lemma 4.3 now follows from these observations.

LEMMA 4.4. Let $1 \le p < \infty$ and let (d_n) be a sequence of scalars. Then the following conditions are equivalent.

(4.13)
$$\sum_{n=1}^{\infty} d_n z_n \quad converges \ in \quad PLC(p,\alpha),$$

(4.14)

$$2^{-1/p}(p+1)^{1/p}\left(\sum_{n=1}^{\infty} \left(d_{n+1}\alpha(n+1)^{-1/p}\phi'_n + d_n\alpha(n)^{-1/p}\phi_n \right) \right) \quad converges \ in \quad L^p(\mathbb{R}), \quad and$$

(4.15)
$$\sum_{n=1}^{\infty} (\alpha(n) - \alpha(n-1)) maximum \left(\frac{|d_n|^p}{\alpha(n)}, \frac{|d_{n+1}|^p}{\alpha(n+1)}\right) < \infty.$$

When these conditions hold, the sums of the series in (4.13), (4.14) are equal. If $d \in \ell^p$, then $\sum_{n=1}^{\infty} d_n z_n$ converges in $PLC(p, \alpha)$. If $\gamma(\alpha) > 1$, $\sum_{n=1}^{\infty} d_n z_n$ converges in $PLC(p, \alpha)$ if and only if $d \in \ell^p$, and in this case,

(4.16)
$$C_p^{1/p} (1 - \gamma(\alpha)^{-1})^{1/p} ||d||_p \le \left\| \sum_{n=1}^{\infty} d_n z_n \right\|_p \le 2||d||_p.$$

Proof. First observe that

$$\sum_{j=1}^{n} d_j z_j = 2^{-1/p} (p+1)^{1/p} \left\{ \left(\sum_{j=1}^{n-1} \left(d_{j+1} \alpha (j+1)^{-1/p} \phi_j' + d_j \alpha (j)^{-1/p} \phi_j \right) \right) + d_n \alpha (n)^{-1/p} \phi_n \right\}$$

Now let (4.15) hold. Then by (4.8), $\lim_{n\to\infty} d_n \alpha(n)^{-1/p} \phi_n = 0$. Also, by Lemma 4.3,

$$\sum_{j=1}^{\infty} \left\| d_{j+1} \alpha(j+1)^{-1/p} \phi_j' + d_j \alpha(j)^{-1/p} \phi_j \right\|_p^p \le 2^{p+1} (p+1)^{-1} \left(\sum_{j=1}^{\infty} (\alpha(n) - \alpha(n-1)) \max\left(\frac{|d_n|^p}{\alpha(n)}, \frac{|d_{n+1}|^p}{\alpha(n+1)} \right) \right),$$

and we deduce that the series in (4.13) and (4.14) converge and have equal sums.

Now let (4.13) hold. Then $\lim_{n\to\infty} d_n z_n = 0$ and it follows from (4.2) that $\lim_{n\to\infty} d_n \alpha(n)^{-1/p} \phi_n = 0$. From the initial observation in the proof, we now see that (4.14) holds and that the series in (4.13), (4.14) have equal sums.

Let (4.14) hold. Then

$$\sum_{n=1}^{\infty} \left\| \left(d_{n+1} \alpha (n+1)^{-1/p} \phi'_n + d_n \alpha (n)^{-1/p} \phi_n \right) \right\|_p^p < \infty.$$

Applying Lemma 4.3 shows that (4.15) then holds. This proves the equivalence of (4.13) to (4.15).

If $d \in \ell^p$, (4.15) holds and hence (4.13) holds.

Now let $\gamma(\alpha) > 1$. Then if $\sum_{n=1}^{\infty} d_n z_n$ converges, we deduce from Lemma 4.3 and (4.14) that

$$\begin{split} C_p 2(p+1)^{-1} \left(1 - \gamma(\alpha)^{-1}\right) \|d\|_p^p &\leq C_p 2(p+1)^{-1} \left(\sum_{n=1}^{\infty} \left(1 - \alpha(n-1)\alpha(n)^{-1}\right) |d_n|^p\right), \\ &\leq C_p 2(p+1)^{-1} \left(\sum_{n=1}^{\infty} \left(\alpha(n) - \alpha(n-1)\right) \max\left(\frac{|d_n|^p}{\alpha(n)}, \frac{|d_{n+1}|^p}{\alpha(n+1)}\right)\right), \\ &\leq \left\|\sum_{n=1}^{\infty} \left(d_{n+1}\alpha(n+1)^{-1/p} \phi'_n + d_n\alpha(n)^{-1/p} \phi_n\right)\right\|_p^p, \\ &= 2(p+1)^{-1} \left\|\sum_{n=1}^{\infty} d_n z_n\right\|_p^p. \end{split}$$

Hence $d \in \ell^p$ and the left hand side of (4.16) holds.

If $d \in \ell^p$, $\left\|\sum_{n=1}^{\infty} d_n z_n\right\|_p \le \left\|\sum_{n=1}^{\infty} d_{2n} z_{2n}\right\|_p + \left\|\sum_{n=1}^{\infty} d_{2n-1} z_{2n-1}\right\|_p$ $\le 2||d||_p$,

as $||z_n||_p \le 1$ by (4.9), and the z_{2n} have disjoint supports, as do the z_{2n-1} . This proves the right hand side of (4.16).

LEMMA 4.5. Let $1 \le p < \infty$. Then a function is in $PLC(p, \alpha)$ if and only if it is the sum of a convergent series in $L^p(\mathbb{R})$ which is of the form $\sum_{n=1}^{\infty} (a_n \phi_n + a_{n+1} \phi'_n)$.

Proof. The condition is clearly sufficient. For necessity, observe that if $f \in PLC(p, \alpha)$, there are a_n, b_n so that $f = a_n \phi_n + b_n \phi'_n$ on $[\alpha(n-1), \alpha(n)]$. As f is continuous, we must have $b_n = a_{n+1}$. This completes the proof.

Proof of Theorem 4.1. Let $1 \le p < \infty$ and let $f \in PLC(p, \alpha)$. By Lemma 4.5 choose a sequence (a_n) so that $f = \sum_{n=1}^{\infty} (a_n \phi_n + a_{n+1} \phi'_n)$ in $L^p(\mathbb{R})$. Let $d_n = 2^{1/p} (p+1)^{-1/p} \alpha(n)^{1/p} a_n$. Then by Lemma 4.4, $f = \sum_{n=1}^{\infty} d_n z_n$, where this series converges in $L^p(\mathbb{R})$. Also, if $\sum_{n=1}^{\infty} d_n z_n = 0$, then $d_n z_n + d_{n+1} z_{n+1} = 0$ on $[\alpha(n-1), \alpha(n)]$. As z_n, z_{n+1} are independent on $[\alpha(n-1), \alpha(n)]$ we deduce that $d_n = d_{n+1} = 0$, hence d = 0. This proves that $\nu = (z_n)$ is a basis for $PLC(p, \alpha)$. Lemma 4.4 implies that $\ell^p \subseteq A_{\nu}$.

If $\gamma(\alpha) > 1$, Lemma 4.4 shows that $A_{\nu} = \ell^{p}$. If $(\alpha(n) - \alpha(n-1))$ is increasing, then (4.15) is equivalent to having $\sum_{n=1}^{\infty} (1 - \alpha(n-1)\alpha(n)^{-1})|d_{n}|^{p} < \infty$. Together with Lemma 4.4, this implies that if $(\alpha(n) - \alpha(n-1))$ is increasing, then $\gamma(\alpha) > 1$ if and only if $A_{\nu} = \ell^{p}$.

Let $\gamma(\alpha) > 1$. The recurrence relation (4.12) shows that we may apply Theorem 2.2 with $\sigma = (z_n)$, $\tau = (w_n)$ and $b_n = (\alpha(n-1)\alpha(n)^{-1})^{1/p}$. We see from (4.9) that σ is bounded away from 0, and from (4.10) that τ is bounded, so we deduce from (2.1) that $\tau = (w_n)$ is a basis for $PLC(p, \alpha)$. As $||b||_{\infty} = \gamma(\alpha)^{-1/p} < 1$, (2.4) implies that $A_{\tau} = \ell^p$.

Now as $\gamma(\alpha) > 1$, $((1 - \alpha(n-1)\alpha(n)^{-1})w_n)$ is also a basis for $PLC(p,\alpha)$ which is equivalent to the standard basis for ℓ^p . The recurrence relation (4.11) shows that Theorem 2.2 may be applied again, with $\sigma = ((1 - \alpha(n-1)\alpha(n)^{-1})w_n)$, $\tau = (g_n)$ and $b_n = (\alpha(n-1)\alpha(n)^{-1})^{1+1/p}$. Then τ is bounded, σ is bounded away from 0 and $||b||_{\infty} = \gamma(\alpha)^{-(1+1/p)} < 1$. It follows from (2.1) and (2.4) that (g_n) is a basis for $PLC(p,\alpha)$ which is equivalent to the standard basis in ℓ^p . This proves that (4.4) implies (4.5).

Conversely, let (g_n) be a basis for $PLC(p, \alpha)$. As $||g_n||_p = 1$, (2.2) and (4.11) imply that $((1 - \alpha(n-1)\alpha(n)^{-1})w_n)$ is bounded away from 0. As (4.10) shows that (w_n) is bounded, we deduce that $\gamma(\alpha) > 1$. Thus, (4.5) implies (4.4).

If p = 2, observe that the Fourier transform of g_n in $L^2(\mathbb{R})$ is a multiple, independent

of n, of $\alpha(n)^{-3/2} ((\sin \alpha(n)t/2)/t)^2$. The equivalence of (4.5) and (4.6) is thus a consequence of Plancherel's theorem. If (g_n) is basic in $L^2(\mathbb{R})$, we have seen that it is Riesz basic, so in this case Plancherel's theorem also implies that the sequence in (4.6) is Riesz basic in $L^2(\mathbb{R})$. This completes the proof of Theorem 4.1.

REMARK. If we let $\alpha(2n) = 2^n$ and $\alpha(2n+1) = 2^n + 1$, it can be shown that (4.15) holds if and only if $d \in \ell^p$. By Lemma 4.4, $A_{\nu} = \ell^p$. Thus $\gamma(\alpha) = 1$ but $A_{\nu} = \ell^p$, so (4.3) does not, in general, imply (4.4).

COROLLARY 4.6. If $m, n \in \mathbb{N}$ let

$$a_{m,n}(\alpha) = \left(\frac{\alpha(m)}{\alpha(n)}\right)^{1/2} \left(3 - \frac{\alpha(m)}{\alpha(n)}\right), \quad \text{if} \quad m \le n, \quad \text{and}$$
$$a_{m,n}(\alpha) = \left(\frac{\alpha(n)}{\alpha(m)}\right)^{1/2} \left(3 - \frac{\alpha(n)}{\alpha(m)}\right), \quad \text{if} \quad n \le m.$$

Then $\gamma(\alpha) > 1$ if and only if there are A, B > 0 such that for all scalar sequences (d_n) of finite support,

$$A||d||_{2}^{2} \leq \sum_{m,n=1}^{\infty} d_{m}d_{n}a_{m,n}(\alpha) \leq B||d||_{2}^{2}.$$

Proof. Let p = 2. Then $(a_{m,n}(\alpha))_{m,n=1}^{\infty}$ is the Gram matrix of (g_n) , except for a constant factor. The inequality is thus equivalent to saying that (g_n) is Riesz basic in $L^2(\mathbb{R})$ (see [12, p.32]). The result now follows from Theorem 4.1.

COROLLARY 4.7. Let $\gamma(\alpha) > 1$. Then a function $h \in L^2(\mathbb{R})$ has an expansion as a convergent series in $L^2(\mathbb{R})$ of the form $\sum_{n=1}^{\infty} \alpha(n)^{-3/2} d_n t^{-2} \sin^2 2^{-1} \alpha(n) t$, for $d \in \ell^2$, if and only if the Fourier transform of h is in $PLC(2, \alpha)$.

Proof. Observe that the Fourier transform \hat{h} of h is in $PLC(2, \alpha)$ if and only if $h \in [\hat{g}_n : n \in \mathbb{N}]$, where g_n is given by (4.1) with p = 2. Now apply Theorem 4.1.

Proof of Theorem 4.2. Let $p = \infty$. Note that $||z_n||_{\infty} = 1$ and that z_n is supported by $[\alpha(n-2), \alpha(n)]$. Hence $\sum_{n=1}^{\infty} d_n z_n$ converges in $PLC_0(\infty, \alpha)$ if and only if $d \in c_0$. It also

follows that $f \in PLC(\infty, \alpha)$ if and only if there is $d \in \ell^{\infty}$ so that $\sum_{n=1}^{\infty} d_n z_n$ converges uniformly to f on compact subsets of \mathbb{R} . It is easy to prove that $\nu = (z_n)$ is a basis for $PLC_0(\infty, \alpha)$ by analogy with the case $1 \le p < \infty$ in Theorem 4.1.

If $\gamma(\alpha) > 1$, we apply (2.1) of Theorem 2.2 twice, using the recurrence relations (4.11) and (4.12) with $p = \infty$. This is similar to the case $1 \le p < \infty$ in Theorem 4.1, and we deduce in a similar way that (g_n) is a basis for $PLC_0(\infty, \alpha)$.

Conversely, if (g_n) is a basis for $PLC_0(\infty, \alpha)$, then $(||g_{n+1} - g_n||_{\infty})$ is bounded away from 0. As

$$||g_{n+1} - g_n||_{\infty} = |g_{n+1}(\alpha(n))| = (1 - \alpha(n)\alpha(n+1)^{-1}),$$

we deduce that $\gamma(\alpha) > 1$. This proves Theorem 4.2.

PROPOSITION 4.8. If $\gamma(\alpha) > 1$, there is a projection π_1 from $C_0(\mathbb{R})$ onto $PLC_0(\infty, \alpha)$ such that $\pi_1^*(PLC_0(\infty, \alpha)^*) = PLC(1, \alpha)$.

If $1 \le p < \infty$, $p^{-1} + q^{-1} = 1$ and $\gamma(\alpha) > 1$, there is a projection π_2 from $L^p(\mathbb{R})$ onto $PLC(p, \alpha)$ such that $\pi_2^*(PLC(p, \alpha)^*) = PLC(q, \alpha)$.

Proof. Let $1 , <math>p^{-1} + q^{-1} = 1$ and $\gamma(\alpha) > 1$. We let

$$z'_{n} = 2^{-1/q} (q+1)^{1/q} \alpha(n)^{-1/q} (\phi'_{n-1} + \phi_{n}).$$

By (4.9), $||z'_n||_q \leq 1$. Also, z'_n is supported by $F_n \cup -F_n$, where $F_n = [\alpha(n-2), \alpha(n)]$. Hence, for $f \in L^p(R)$,

(4.17)
$$\left| \int_{\mathbb{R}} f(t) z'_n(t) dt \right| \le \left\| f\chi(F_n \cup -F_n) \right\|_p, \quad \text{for} \quad n \in \mathbb{N}.$$

Now let $A_1 = 0$,

$$A_{n} = \int_{\mathbb{R}} z_{n}(t) z_{n-1}'(t) dt = \frac{(p+1)^{1/p} (q+1)^{1/q}}{6} \left(\frac{\alpha(n-1)}{\alpha(n)}\right)^{1/p} \left(1 - \frac{\alpha(n-2)}{\alpha(n-1)}\right), \quad \text{for} \quad n \ge 2,$$

$$B_{n} = \int_{\mathbb{R}} z_{n}(t) z_{n}'(t) dt = \frac{(p+1)^{1/p} (q+1)^{1/q}}{3} \left(1 - \frac{\alpha(n-2)}{\alpha(n)}\right), \quad \text{for} \quad n \ge 1, \quad \text{and}$$

$$C_{n} = \int_{\mathbb{R}} z_{n}(t) z_{n+1}'(t) dt = \frac{(p+1)^{1/p} (q+1)^{1/q}}{6} \left(\frac{\alpha(n)}{\alpha(n+1)}\right)^{1/q} \left(1 - \frac{\alpha(n-1)}{\alpha(n)}\right), \quad \text{for} \quad n \ge 1.$$

As $\gamma(\alpha) > 1$, (B_n^{-1}) is bounded. If $f \in L^p(\mathbb{R})$, we now let

$$\pi(f) = \sum_{n=1}^{\infty} B_n^{-1} \left(\int_{\mathbb{R}} f(t) z'_n(t) dt \right) z_n.$$

From (4.16) and (4.17) we see that the series of πf converges in $L^p(\mathbb{R})$ and that

$$\|\pi(f)\|_{p} \leq 2^{1+1/p} \|(B_{n}^{-1})\|_{\infty} \|f\|_{p}$$

Hence π is bounded from $L^p(\mathbb{R})$ into $PLC(p,\alpha)$. We will now show that π is invertible on $PLC(p,\alpha)$. If $f \in PLC(p,\alpha)$, as (z_n) is a basis for $PLC(p,\alpha)$ by Theorem 4.1, there is $d \in \ell^p$ so that $f = \sum_{n=1}^{\infty} d_n z_n$. Then

(4.18)
$$\pi(f) = \sum_{n=1}^{\infty} \left(A_{n+1} B_n^{-1} d_{n+1} + d_n + B_n^{-1} C_{n-1} d_{n-1} \right) z_n, \quad \text{where,} \quad d_0 = 0,$$
$$= \sum_{n=1}^{\infty} \left((I+S) d \right)_n z_n,$$

where I is the identity operator on ℓ^p , and

$$(Sd)_n = A_{n+1}B_n^{-1}d_{n+1} + B_n^{-1}C_{n-1}d_{n-1}, \text{ for } d \in \ell^p.$$

Now,

$$\begin{aligned} A_{n+1}B_n^{-1} &= 2^{-1}\alpha(n)^{1/p}\alpha(n+1)^{-1/p}\left(\alpha(n) - \alpha(n-1)\right)\left(\alpha(n) - \alpha(n-2)\right)^{-1}, \\ &\leq 2^{-1}\gamma(\alpha)^{-1/p}, \quad \text{and} \\ B_n^{-1}C_{n-1} &= 2^{-1}\alpha(n-1)^{1/q}\alpha(n)^{-1/q}\left(1 - \alpha(n-2)\alpha(n-1)^{-1}\right)\left(1 - \alpha(n-2)\alpha(n)^{-1}\right)^{-1}, \\ &\leq 2^{-1}\gamma(\alpha)^{-1/q}. \end{aligned}$$

Hence S is bounded on ℓ^p and $||S|| \le 2^{-1} (\gamma(\alpha)^{-1/p} + \gamma(\alpha)^{-1/q}) < 1$, so I + S is invertible on ℓ^p . By (4.16), $PLC(p, \alpha)$ is isomorphic to ℓ^p , and we deduce from (4.18) that π is invertible on $PLC(p, \alpha)$. Denote this inverse by λ and let $\pi_2 = \lambda \circ \pi$. Then π_2 is a projection from $L^p(\mathbb{R})$ onto $PLC(p, \alpha)$.

Now by Theorem 4.1, $\nu = (z_n)$ is a basis for $PLC(p, \alpha)$ and $A_{\nu} = \ell^p$. Then (2.11) shows that $\{(\mu(z_n) : \mu \in PLC(p, \alpha)^*\} = \ell^q$. Hence if $\mu \in PLC(p, \alpha)^*$, $(B_n^{-1}\mu(z_n)) \in \ell^q$ and the series $\sum_{n=1}^{\infty} B_n^{-1} \mu(z_n) z'_n$ converges in $PLC(q, \alpha)$. It is easy to prove that $\pi^*(\mu) = \sum_{n=1}^{\infty} B_n^{-1} \mu(z_n) z'_{n\eta}$ for $\mu \in PLC(p, \alpha)^*$, and it follows that $\pi^*(PLC(p, \alpha)^*) = PLC(q, \alpha)$ (here we have used the fact that (B_n) is bounded above and below and that (z'_n) is a basis for $PLC(q, \alpha)$ equivalent to the standard basis in ℓ^q). Finally, as λ is invertible on $PLC(p, \alpha)$,

 $\pi_2^*\left(PLC(p,\alpha)^*\right) = \pi^*\left(\lambda^*\left(PLC(p,\alpha)^*\right)\right),$

$$= \pi^* \left(PLC(p, \alpha)^* \right),$$

= $PLC(q, \alpha)$, from above.

This proves the proposition for 1 .

When p = 1 and $q = \infty$, the proof proceeds on the lines above, except that when we have $\pi^*(\mu) = \sum_{n=1}^{\infty} B_n^{-1} \mu(z_n) z'_n$, this series is taken as converging uniformly on compact sets, rather than in the $L^{\infty}(\mathbb{R})$ norm.

When $p = \infty$ and q = 1, the proof is again similar to the preceding. Instead, π is defined on $C_0(\mathbb{R})$, ℓ^p is replaced by c_0 , and Theorem 4.2 is used in place of Theorem 4.1.

REMARKS. 1. If one only wishes to show that $PLC_0(\infty, \alpha)$ is complemented in $C_0(\mathbb{R})$ a simpler proof than the one above may be found in [10, p.27] – this proof does not require $\gamma(\alpha) > 1$, but it does not give the identity $\pi_1^*(PLC_0(\infty, \alpha)^*) = PLC(1, \alpha)$.

2. Let $PL(p,\alpha)$ denote those (not necessarily continuous) functions in $L^p(\mathbb{R})$ which are even and linear on each interval $[\alpha(n-1), \alpha(n)]$. Then it can be proved that for $1 \le p < \infty$, $PL(p,\alpha)$ is complemented in $L^p(\mathbb{R})$ under a projection π such that $\pi^*(PL(p,\alpha)^*) = PL(q,\alpha)$. This is true without restriction on $\gamma(\alpha)$. Thus, it is not clear whether the role played in Proposition 4.8 by the condition $\gamma(\alpha) > 1$ is essential, although $\gamma(\alpha) > 1$ is essential for the next result.

PROPOSITION 4.9. Let
$$1 \le p < \infty$$
 and $p^{-1} + q^{-1} = 1$. For $g \in L^q(\mathbb{R})$ and $n \in \mathbb{N}$ let
 $(Ag)(n) = \alpha(n)^{-(1+1/p)} \int_{-\alpha(n)}^{\alpha(n)} (\alpha(n) - |t|) g(t) dt.$

Then $\gamma(\alpha) > 1$ if and only if $A(L^q(\mathbb{R})) = \ell^q$. In this case, the restriction of A to the subspace $PLC(q, \alpha)$ of $L^q(\mathbb{R})$ is a bounded invertible operator onto ℓ^q .

Proof. By Theorem 4.1, $\gamma(\alpha) > 1$ is equivalent to saying that (g_n) is a basis for $PLC(p, \alpha)$ which is equivalent to the standard basis for ℓ^p . When 1 , we deduce from $(2.11) that this is equivalent to <math>A(L^q(\mathbb{R})) = \ell^q$. When p = 1 and $q = \infty$, $\gamma(\alpha) > 1$ implies that $A(L^{\infty}(\mathbb{R})) = \ell^{\infty}$ is a consequence of (2.12). Conversely, if $\gamma(\alpha) = 1$ and $g \in L^{\infty}(\mathbb{R})$ let $a_n = \alpha(n)^{-2} \int_{-\alpha(n)}^{\alpha(n)} (\alpha(n) - |t|) g(t) dt$. Then it can be shown that $\liminf_{n \to \infty} |a_{n+1} - a_n| = 0$ (compare with the corresponding part of the proof of Proposition 3.6). Hence, if $\gamma(\alpha) = 1$, $A(L^{\infty}(\mathbb{R})) \subset \ell^{\infty}$ and $A(L^{\infty}(\mathbb{R})) \neq \ell^{\infty}$. The final statement in the proposition comes from (2.13) and Proposition 4.8.

There are also discrete versions of the preceding results, some of which are presented.

THEOREM 4.10. Let $1 \le p \le \infty$ be given, and let $(\alpha(n))$ be an increasing sequence of positive integers. Let $h_n \in \ell^p(\mathbb{Z})$ be given by

$$h_n(j) = \alpha(n)^{-(1+1/p)}(\alpha(n) - |j|), \text{ for } |j| \le \alpha(n), \text{ and}$$

 $h_n(j) = 0, \text{ for } |j| > \alpha(n).$

Then $\gamma(\alpha) > 1$ if and only if (h_n) is basic in $\ell^p(\mathbb{Z})$. If $\gamma(\alpha) > 1$ and $1 \le p < \infty$, (h_n) is equivalent to the standard basis in ℓ^p . Also, $\gamma(\alpha) > 1$ if and only if the sequence $(\alpha(n)^{-3/2} \sin^2(\alpha(n)t/2) \sin^{-2}t/2)$ is basic in $L^2([0, 2\pi])$, in which case it is Riesz basic.

Proof. Let PLC(p) denote the closed subspace of $L^{p}(\mathbb{R})$ consisting of the even, continuous functions which are linear on [n-1,n] for $n \in \mathbb{N}$. If $f \in PLC(p)$, let (Tf)(n) = f(n), for $n \in \mathbb{Z}$. It follows from Lemma 4.3 that T is an isomorphism from PLC(p) into $\ell^{p}(\mathbb{Z})$. Also, $T(g_{n}) = 2^{-1/p}(p+1)^{1/p}h_{n}$, for all n. The statements concerning (h_{n}) are thus a consequence of the equivalence of (4.4) and (4.5), and Theorems 4.1 and 4.2. When p = 2 the Fourier transform of $\alpha(n)^{3/2}h_{n}$ is the Fejer kernel $\sin^{2}(\alpha(n)t/2)\sin^{-2}t/2$. The remainder of Theorem 4.10 now follows from Plancherel's theorem. COROLLARY 4.11. Let $\gamma(\alpha) > 1$. Then a function $h \in L^2([0, 2\pi])$ has an expansion as a convergent series in $L^2([0, 2\pi])$ of the form

$$\sum_{n=1}^{\infty} \alpha(n)^{-3/2} d_n \sin^2(\alpha(n)t/2) \sin^{-2}t/2, \qquad for \quad d \in \ell^2,$$

if and only if the Fourier transform of h is the restriction to Z of some function in $PLC(2, \alpha)$.

Proof. This is analogous to the proof of Corollary 4.7.

COROLLARY 4.12. Let $1 \le p < \infty$ and $p^{-1} + q^{-1} = 1$. Let $a_{ij} = \alpha(i)^{-(1+1/p)} (\alpha(i) - j + 1)$, for $1 \le j \le \alpha(i)$, and $a_{ij} = 0$, for $j > \alpha(i)$. Let A denote the operator obtained by multiplying by the matrix (a_{ij}) . Then A is a bounded operator from ℓ^q onto ℓ^q if and only if $\gamma(\alpha) > 1$.

Proof. This is similar to the proof of Proposition 4.9.

Acknowledgement. Conversations with Dr. G. Doherty and Dr. T.S. Horner have been very helpful during the preparation of this paper.

REFERENCES

- A. Brown, P.R. Halmos and A.L. Shields, *Cesdro Operators*, Acta Sci. Math. XXVI (1965), 125-137.
- [2] M.M. Dragilev, V.P. Zaharjuta and Ju.F. Korobeinik, A dual relationship between some questions of basis theory and interpolation theory, Dokl. Akad. Nauk SSR (1974) (Russian), Soviet Math. Dokl. 15 (1974), 533-537 (English).
- [3] R.E. Edwards, Fourier Series, A Modern Introduction, Vol. I, Second edition, Springer-Verlag, New York, 1979.

- [4] R.E. Edwards, Approximate integration formulas and "Sidonicity", Australian National University Mathematics Research Report No.14 (1982).
- [5] V.I. Gurarii and V.I. Macaev, Lacunary power sequences in the spaces C and L_p, Izv. Akad. Nauk SSR. Ser. Math. 30 (1966), 3-14 (Russian), Amer. Math. Soc. Trans. 72 (1968), 9-21 (English).
- [6] G.H. Hardy, J.E. Littlewood and G. Pólya, *Inequalities*, Cambridge University Press, London, New York, 1964.
- [7] Ju.F. Korobeinik, On a dual problem I. General results. Applications to Fréchet Spaces, Cep. Math. 42 (1978) (Russian), Math. U.S.S.R. Isvestija 13 (1979), 277-306 (English).
- [8] P.F. Renaud, A reversed Hardy inequality, Bull. Aust. Math. Soc. 34 (1986), 225-232.
- [9] W. Rudin, Real and Complex Analysis, McGraw-Hill, New York, 1966.
- [10] Z. Semadeni, Schauder Bases in Banach Spaces of Continuous Functions, Lecture Notes in Mathematics 918, Springer-Verlag, New York, 1982.
- [11] I. Singer, Bases in Banach Spaces, Vol. I, Springer-Verlag, New York, 1970.
- [12] R.M. Young, An Introduction to Non Harmonic Fourier Series, Academic Press, New York, 1980.

The University of Wollongong, Wollongong, New South Wales, 2500 Australia.