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INVARIANT DIFFERENTIAL OPERATORS ON SOME LIE GROUPS 

F.D. Battesti( 1 ) (2 ) and A.H. Doo1ey( 1 ) 

1. INTRODUCTION 

A differential operator P on a Lie group G is said to be left 

(or right) invariant by G if it commutes with the action of G by 

left (or right) translations. We shall only consider linear 

differential operators. The algebra of left invariant linear 

differential operators on G is identified with the complexified 

universal enveloping algebra U(g) of the Lie algebra g of G. Bi

invariant operators (i.e. operators which are both left and right 

invariant) then correspond to the elements of the centre Z(g) of 

U(g). 

We study the problem of the existence of fundamental solutions for 

left invariant differential operators on Lie groups. We recall that if 

P is a differential operator on G, a fundamental solution for P is 

a distribution E e ~,(G) on G satisfying the equation PE aG, 

where aG is the Dirac distribution at the origin eG of G. 

Left invariant operators on a Lie group in general do not possess a 

global fundamental solution, but under additional conditions either on 

the operator or on the group, one can prove the existence of such 

solutions. For a review of the results we refer the reader for example 

to [1] . The present paper is a continuation of [1] and [2] and reports 

on some recent developments. 
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We first consider the case of a semidirect product H ~ K, where 

H and K are two Lie groups, K is compact connected and acts on H. 

In the next section we define the partial Fourier coefficients of a 

differential operator on G = H ~ K and describe the action of K on 

the elements of the universal enveloping algebra U(~~ of H ~ K. In 

the following section we use this partial Fourier transform to study the 

existence of fundamental solutions for left G-invariant, right K

invariant differential operators and to prove a necessary condition for 

the existence of a solution. In particular, we apply these results to 

the operator D = AH - ~wk on the n-dimensional Euclidean motion group 

M(n) Rn >f SO (n), where AH denotes the Laplacian on and 

the Casimir operator on SO(n). In this case we give explicitly a 

fundamental solution for D on M(n) . 

In the last section we consider the Casimir operator on the group 

SO(n, 1). The Cartan motion group associated to SO(n,l) is the n-

dimensional Euclidean motion group M(n). Using the method of [2] and 

the results of the previous section we are able to construct a 

fundamental solution for the Casimir operator on SO(n,l). 

2. FOURIER TRANSFORM ON A SEMIDIRECT PRODUCT 

Let H and K be two Lie groups, K compact connected. Assume 

that K acts on H by 

cr Hx K-+H 

(h, k) 1-+ crk (h) 

and that this action is such that the map 

K -+ Aut (H) 

k H crk 

is 



8 

is a group homomorphism. 

We consider the semidirect product G = H ~ K associated with this 

action. The multiplication law is given by 

(h,k)(h',k') = (hak(h'),kk') 

for all h,h' e H and k,k' e K. 

EXAMPLE: CART AN MOTION GROUPS 

Let G be a noncompact semisimple Lie group, connected, with 

finite centre and let K be a maximal compact subgroup of G. 

Let q and t be the Lie algebras of G and K respectively, Ad 

the adjoint representation of K on G and V a vector complement of 

t in q such that Ad(K)V c V. 

The semidirect product V ~ K relative to this action is called 

the Cartan motion group associated to the pair (G,K). 

The multiplication law in V ~ K is given by 

(v,k) (v' ,k') = (v+k.v' ,kk') 

where v,v' e V, k,k' e K, k.v' = Ad(k) (v') and exp(k.v') 

-1 
k(expv')k . 

In particular if G = PSL(2,R) and K = S0(2), then V 

the corresponding Cartan motion group is the Euclidean motion group 

M(2). 

Since the group K is compact, we have a partial Fourier transform 

on G. We use this Fourier transform to translate the problem on G to 

an equivalent problem on the group H. 

Let us first define the partial Fourier coefficients of a 

differential operator. 
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Let K denote the dual of K. 

Let P be a left invariant differential operator on the semidirect 

G. The partial Fourier coefficients 

defined by 

p ' A E K, 
A 

of P are 

for every f E 2J(H) and A E K, where is the unit element of 

They are left invariant differential operators on H >lith 

coefficients in End(H ) 
A 

(HA is the representation space of A). 

In order to describe them more precisely, let us express them in 

terms of vector fields. 

Let fi. and /(_ be the Lie algebras of H and K and let 

and be bases of li and /(_ respectively. 

Then (X1 , ••• , X , T 1 , ••• , T ) 
~ n ~ p 

is a basis of the Lie algebra li 1:!: /(_ of 

H XI K. 

K. 

Let denote the 

corresponding left invariant vector fields on H,K and G 

set 

and 

T(1 
K 

Tj3 
G 

For each k E K, let sk be the derivative of the map crk 

We have the following commutative diagram 

H -> H. 
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i.e. for every k e K and X e fi., 

LEMMA 1 (i) For all X e fi., T e k.. f e 1>(H) and g e C00 (K) we 

have 

[sk (X) Hf] (h) g (k) 

and 

TG (f ® g) (h, k) = f (h) (TKg) (k) 

(ii) For all X e fi., f e 1>(H), :K e K and ex e N, we have 

PROOF (i) For X e fi we have 

d 
XG(f ®g) (h,k) = -d I (f ®g) ((h,k) (exptX,eK)) 

t t=O 

=g_ 
dt I t=O (f ® g) (hak (exp (tX)), k) 

g_ 
dt I t=O (f ® g) (h exp [tsk (X) ] , k) 

=g_ 
d I {f(h exp[t sk(X)])g(k)) 

t t=O 

and, for T e fi 

TG (f ® g) (h, k) = ~t I t=O (f ® g) ( (h, k) (eH, exp (tT))) 
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!L dt 1 (f ® g) (h, kexp (tT)) 
t=O 

d 
dtl {f(h)g(kexp(tT))} 

t=O 

f(h)g_ g(kexp(tT)) 
dt!t=O 

f (h) (T g) (k) 
K 

(ii) For X E k, we have 

and since the map k H crk is a homomorphism, 

hcrk(exp(tX)) = cr _ 1 (h)ak(exptX) 
- kk -

crk (cr _ 1 (h) exp (tX)) . 
k 

So 

Thus we have 

and, by induction, for ~ E N 

d 
dt I f (hexp [tsk (X) ] ) 

t=O 

£_ 
d~ I f (crk (cr _ 1 (h) exp (tX))) 

'- t=O . k 

!L dt I (f o crk) (cr _1 (h) exp (tX)) 
t=O k 

[XH(f o crk)] (cr _ 1 (h)). 

k 

D 
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Let P e U(g). We can now calculate explicitly the partial Fourier 

coefficients PA of P. 

According to the Poincare-Birkhoff-Witt theorem, P can be written 

where the a 's 
a.(3 

are complex numbers. 

For f e 'D(H) and A e K, we have 

P (f ®A) (h,k) 

and applying lemma 1 

P(f®A)(h,k) 

[ ~ aa.(3 X~T~(f ®A)] (h,k) 
a.,(3 

where TA 
d 
dtA(exp(tT)) 1 is an endomorphism of HA. 

t=O 

So 

P (f ® A) (h, k) 

and applying once again lemma 1 

P (f ® A) (h,k) 

Now 

(PAf) (h) 

hence 

p 
A 

[~ aa.(3X~(f®A)](h,k)T! 
a.,(3 

we get 

~ a (3 (sk(X)a.f) (h)A(k)T(3. 
a.,(3 

a. H A 

P(f ® A) (h,eK) 

[ ~ a (3 (sk (X) a. f) (h) A (k) T(3] I 
a.,(3 a. H A k=e 

~ a (3 (Xa.f) (h) T(3 
a.,(3 

a. H A 

~ aa.(3 x: T(3 

a.,(3 
A" 

K 
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We define as well the partial Fourier coefficients of a 

distribution on G. 

Let U be an open subset in H and E be a distribution on 

U ~ K. The partial Fourier coefficients E(h,A) of E are defined as 

follows: 

<E(h,A),f(h)> <E(h,k),f(h)A(k)> 

for all A e K and f e 1l(U). 

They are distributions on U with values in End(HA). Let 

1l' (U,End(~)) denote the space of distributions on U with values in 

3. A NECESSARY CONDITION 

Applying this partial Fourier transform to the differential 

equation PE = SG, we get the following theorem: 

'rHEOREM 2 Let P be a left G-invariant, right K-invariant linear 

differential operator on G, and let U be an open subset in H. 'l'hen 

P has a fundamental solution on U XI K if and only if, for each A E K, 

there exists a distribution E A E 1l' (U, End (HA) ) on U such that 

(1) 

and 

for every compact subset C c U, there exists a constant 

(2) A > 0 and positive integers a and b such that 

a 
5 AN(A) llfllb 
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for all A e K and f e ~(U) with supp f c C. 

Here aH is the Dirac distribution on H at eH, N is a positive 

function on K, the semi-norms 11-llb' be N, define the topology of 

~(H) and, if u is an endomorphism of a vector space, denotes 

the Hilbert-Schmidt norm of u, i.e. IIUIIHS = -./tr(uu*), where u* is 

the adjoint of u and tr(uu*) is the trace of uu*. 

This result has been proved in detail in [1], in the case of Cartan 

motion groups. The same proof based, on one hand, on the calculation of 

the Fourier transform of the distribution PE, for some E e ~'(G), 

and, on the other hand, on a characterization of distributions on G, 

works for the semidirect product G = H ~ K. 

We can then use this theorem to give a necessary condition for the 

existence of a fundamental solution for left G-invariant, right K-

invar~ant differential operators on the semidirect product G = H ~ K. 

~ canonical coordinate neighbourhood u of eH in H is an open 

neighbourhood of eH such that there exists an open neighbourhood W 

of 0 in n such that the exponential map is an analytic 

diffeomorphism of W onto U. Such neighbourhoods exist (cf. [4], 

proposition 1.6, p.104). 

In that case, let (X1 , ... ,Xn) be a basis of n and (x 1, ... ,xn) 

the corresponding system of coordinates. 

Then, for any left invariant linear differential operator P on 

G, the operators t t 
[( P)A], A e K, can be written on U 

t [ < tP >A l = Q A( a ~1' ... 'a~ J 
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where QA is a polynomial of n variables, with coefficients in 

If M is a matrix in End(HA), coM denotes the comatrix of M, 

that is the transpose of the matrix of the cofactors of M. We have 

Let M(~) be a matrix in End(HA) such that its coefficients with 

respect to an orthonormal basis of HA are polynomials mij(~), then 

M(~) denotes the matrix whose coefficients with respect to this basis 

are where 

~iJ' (~) = ( :r. lm~~) (0 12) 1/2 
11eN J 

(this definition does not depend on the choice of the orthonormal basis 

THEOREM 3 Let H and K be two Lie groups, K compact connected, G 

= H ~ K and U be a canonical coordinate neighbourhood of eH in H. 

Let P be a right K-invariant left G-invariant linear differential 

operator on G. The following condition: 

3A > 0, 3a e N, ';/A e K 

det QA (~) • 0 and 

(COQ (0))-

11 A II s AN (A) a 
(detQ (0))- HS 

A 

is a necessary condition for the existence of a fundamental solution for 

P on U ~ K. 

PROOF Let P be as in the theorem, and assume that P has a 

fundamental solution on U ~ K. Then applying theorem 2, for each A e K, 
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there exists a distribution EA e ~, (U,End(HA)) on U satisfying (1) 

and (2). 

Since U is a canonical coordinate neighbourhood of eH in H, 

there exists an open neighbourhood of 0 in fi such that the 

exponential map is an analytic diffeomorphism of W onto U. Use of 

this diffeomorphism and the same arguments as in [1] give ·the necessity 

of the condition. 

This condition generalizes the necessary and sufficient condition 

of Cerezo and Rouvi~re [3] for solvability of left invariant 

differential operators on a direct product Rn x K. 

EXAMPLE Let H = Rn and K = SO (n) . It is in·teresting to apply the 

previous theorems to the differential operator on M(n) H ~ K given 

by D = &H - fLOOK' where 11 is a positive constant, L\,H denotes the 

Laplace operator in the H-variables and denotes the Casimir on K. 

This operator is K-bi-invariant on H '~ IC 

Letting A be a highest weight for SO(n), the partial Fourier 

coefficient DA of D is the operator on H given by 

where ~(A) = (A+S,A+S)-(8,8) and 2S is the sum of positive roots 

We shall prove 

PROPOSITION 4 A K-bi-invariant fundamental solution for D is given 

by 

(3) Tui3iA) n-2 ~ !. d(A)(J!~(A)) F(>J!f3(A)r)XA(k) 

AeK 
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where r denotes I vi. The function F is given by 

F(t) t 

_(n-2) 
2 

where Nn is the Neumann function, and XA is the character of A, 

that is xA(k) .= tr[A(k)] and d(A) =dim HA. 

PROOF The operator AH + ~P(A), considered as a differential operator 

on has a classical rotation-invariant fundamental solution E~ 
A 

given, for example by Tr~ves [5], p.259. Setting r = lvl, one has 

E~ (v) r 

_n-2 
2 

Nn_2 (..J~p (A) r) 

2 

(..J'iL'in'A} )n-2 F(..J~p (A) r). 

(Notice that supiF(t) I < oo, cf [7], p.375). 

Thus, the operator has as fundamental solution E~ (v) 
-A 

E~(v)IdHA In order to show that (3) defines a K-bi-invariant 

distribution (on H ~ K), it is necessary to show that condition (2) of 

theorem 2 holds. In order to do this, let f e ~(C) where C c Rn 

is a symmetric compact set and let A e SO(n) . Then 

U<§_~,f>UHS = (-.J'iiT{Aj)n-2 1 f F(..J~p(A)r)f(v)dviUidH IIHS 
C A 

s d(A) l/2 (..J~p (A)) n-2volCUfll O sup IF (t) I. 

By the Weyl dimension formula d(A) 112 grows polynomially in A, so we 

have finished. D 
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4. TRANSFERRING FUNDAMENTAL SOLUTIONS 

In a previous paper [2] it was shown how to "transfer" fundamental 

solutions of a family of differential operators on a Cartan motion group 

to obtain a fundamental solution on a semisimple group G. We shall 

consider here the case where G = SO(n,l) for which the associated 

Cartan motion group is Rn ~ SO(n), the semidirect product of the 

preceding example. 

The Casimir operator for SO(n,l) is given by [6], p.l69, by D 

- ro 
K 

where is the Laplacian on the part of SO (n, 1) 

is the Casimir operator on the SO(n) part. We are going to use 

and 

proposition 6 of [2] to find a K-bi-invarian·t fundamental solution for 

D on G. 

The differen-tial operators on M(n) are 

D~, ~c 2tJ.V- roK, almost exactly those considered in the preceding 

example. As seen in the proposition 4, this operator has a K-bi-

invariant fundamental solution FA, (v,k) given by 

-2 A, -2 
A. F (v,k) 

AeK 

One calculates an expression for the distribution E 
1c 

by using 

d (A) (..,fj3(Aj) n-2 f f F (VTfAj A. X A (k) f (exp~. k) dvdk. 
K V 

AeK 
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Pu·tting u in the v-integration, one obtains 

AeK 

n-2 f f d(A) (,II'> (A)) F (Vi'> (A) I u I )X A (k) f (expu. k) dudk. 
K V 

Since this expression is independen·t of 'k, we see that EA. does 

indeed converge to a distribution E, given by the right hand side of 

the above expression. It is clear that E is K-bi-invariant. 

We ha,.re shown, by an application of proposition 6 of [2]: 

'rHEOREM 5 The distribution E defined by 

AeSO(n) 

d(A) (V~(A)) f r F(..Ji)(A) lul)f(expu.k)dux (k)dk 
~v A 

<E,f> 

defines a K--bi-invariant fundamental solution of the Casimir: operator 

on SO(n,l). 

These methods also ceTOrk for the o'cher rank 1 semi simple groups. 
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