JACKSON'S THEOREM FOR
COMPACT CONNECTED LIE GROUPS

Donald I. Cartwright and Krzysztof Kucharski

This is an announcement of results which will appear in detail in the J. Approx. Theory.

Let \(E \) be a Banach space of periodic functions on \(\mathbb{R} \), let \(f \in E \) and let \(n \geq 1 \) be an integer. A basic problem in approximation theory is to estimate the quantity

\[
\mathcal{E}_n(f) = \inf \{ \| f - t \|_E \},
\]

the infimum being taken over all trigonometric polynomials \(t \) of degree at most \(n \). Jackson's Theorem is the fundamental "direct theorem" here; it asserts that if the \(r \)-th derivative \(f^{(r)} \) exists in \(E \) (in the appropriate sense) and if \(E \) is suitable, then \(\mathcal{E}_n(f) \leq C_r n^{-r} \omega_1(n^{-1}, f^{(r)}) = o(n^{-r}) \) (see [6]). More precise versions of Jackson's Theorem provide estimates \(\mathcal{E}_n(f) \leq C_r \omega_r(n^{-1}, f) \) for any \(f \in E \), where \(\omega_r(t, f) \) is the \(r \)-th modulus of continuity of \(f \).

Jackson's Theorem extends in a straightforward way to periodic functions of \(k \) variables (i.e., functions on the group \(\mathbb{T}^k \)), and it is natural to ask whether it also applies to functions on nonabelian groups. We can prove that Jackson's Theorem is true for any compact connected Lie group:

THEOREM Let \(G \neq \{1\} \) be any compact connected Lie group. Let \(E \) denote one of the spaces \(C(G) \) or \(L^p(G) \), \(1 \leq p < \infty \), and let \(r \geq 1 \) be an integer. Then there is a constant \(C_r \) and for each integer \(n \geq 1 \) there is a central trigonometric polynomial \(K_n \) of degree \(\leq n \) such that

\[
\| f - K_n \ast f \|_E \leq C_r \omega_r(\frac{1}{n}, f)
\]

for each \(f \in E \).

Here a central trigonometric polynomial of degree \(\leq n \) is a linear combination of the characters \(\chi_\gamma \), where \(\gamma \in \hat{K} \cap I^* \) and \(||\gamma|| \leq n \) (The dual object \(\hat{G} \) of \(G \) may be identified with a semilattice \(\hat{K} \cap I^* \) as in [1, p. 242], and \(||.|| \) is a norm
obtained from an inner product on \(g \) which is invariant under the adjoint action of \(G \) on \(g \).) Let \(f \in E \), where \(E = C(G) \) or \(L^p(G) \), \(1 \leq p < \infty \). The \(r \)-th modulus of continuity \(\omega_r(t, f) \) of \(f \) is defined as follows: For any integer \(r \geq 1 \) and for \(t > 0 \), let

\[
\omega_r(t, f) = \sup \{ \| \Delta_{\exp X} f \|_E : X \in g \text{ and } \| X \| \leq t \}.
\]

Here

\[
(\Delta_h^r f)(x) = \sum_{j=0}^{r} (-1)^{r-j} \binom{r}{j} f(h^{-j} x)
\]

for \(x, h \in G \).

Johnen [5] proved this theorem in the special case \(r = 2 \), but our method is quite different from his. The kernels \(K_n \) are related to the \(\Phi_n \) of [3], but even more to those used in [6] and [7] in proving the \(T^k \) case.

As an application of our theorem, we use the sharp estimates for the Lebesgue constants recently obtained by Giulini and Travaglini [4] to give "best possible" criteria for the norm convergence of Fourier series of functions on \(G \). Let \(E = C(G) \) or \(L^1(G) \). For \(f \in E \) and \(n \geq 1 \), \(s_n f = \sum_{\gamma \in C_n} d_{\gamma} \chi_{\gamma} \ast f \) is called the \(n \)-th spherical [resp. polyhedral] partial sum of the Fourier series \(\sum_{\gamma \in \hat{K} \cap I^*} d_{\gamma} \chi_{\gamma} \ast f \) of \(f \) if \(C_n = \{ \gamma \in \hat{K} \cap I^* : \| \gamma + q \| \leq n \} \) [resp. \(C_n = \{ \gamma \in \hat{K} \cap I^* : \gamma \leq n \omega \} \), where \(\omega \in K \cap I^* \) is fixed]. Giulini and Travaglini [4] showed that the Lebesgue constants

\[
\sup \{ \| s_n f \|_E : \| f \|_E \leq 1 \} = \| \sum_{\gamma \in C_n} d_{\gamma} \chi_{\gamma} \|_1
\]

for spherical partial sums satisfy

\[
c_1 n^{(d-1)/2} \leq \| \sum_{\gamma \in C_n} d_{\gamma} \chi_{\gamma} \|_1 \leq c_2 n^{(d-1)/2}
\]

for \(d = \dim G \) and for suitable constants \(c_1, c_2 > 0 \), while for polyhedral sums similar inequalities hold, but with \((d - 1)/2 \) replaced by \(|R_+| \). We can now state a refinement of the Proposition in [4].

PROPOSITION Let \(G \) be a semisimple compact connected Lie group and let \(E = C(G) \) or \(L^1(G) \).

1. If \(f \in E \) and \(\omega_r(t, f) = o(t^{(d-1)/2}) \) as \(t \to 0 \) for some integer \(r \geq (d-1)/2 \), then the spherical partial sums \(s_n f \) converge to \(f \) in \(E \).

2. There exists \(F \in E \) such that \(\omega_r(t, F) = O(t^{(d-1)/2}) \) as \(t \to 0 \) but for which \(s_n F \) does not converge to \(F \) in \(E \). In fact, if \(0 \leq s < (d - 1)/2 \) is an integer, we may choose \(F \in E^{(s)} \) with \(\omega_{r-s}(t, F^{(s)}) = O(t^{(d-1)/2-s}) \) for all \(r \geq (d-1)/2 \).
The corresponding result holds for polyhedral partial sums with \((d - 1)/2\) replaced by \(|R_+|\) throughout.

REFERENCES

