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OSCILLA~ORY INTEGRALS 

Michael Cowling and Shaun Disney 

We are interested in the behaviour at infinity of the Fourier 

transform ~ of the surface measure ~ living on a smooth compact 

~n Rn+l, hypersurface S • and in the transform (f~) of the product 

of certain functions f on S and ~· The aim of this work is to see 

how the decay of ~ and (f~) reflect the geometry of S. To 

simplify the statements of results, we assume that S is analytic. 

The earliest and most important result on the decay of (f~) at 

infinity comes from the principle of stationary phase: in almost every 

direction G in Sn, 

(f~) (pa) = 0 (p -n/2) as p -+ + ... 

More precisely, if a is a generic direction, which means that the 

(finitely many) points of s to which a is normal are 

points of non-zero Gaussian curvature ~ then for smooth enough f 

(C1 will do), 

(1) (f~) (pa) 
-ipa.sk -n/2 

e P 

+ o (p -n/2) as p -+ +oo. 

The constants c(k) depend on the dimension n of S, and on whether 

is an inward or outward normal at relative to the principal 

curvatures. If a is a non-generic direction, so that there is a point 



with normal vector a 

slower that 
-n/2 

p as 

where 
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0, then 

at least if 

presence of an asymptotic term of the form 

(2) 
-ipo.sk -o: 13 

c(k) f(skl e p log (p) 

(f!l) (pcr) decays 

due to the 

the indices o: (a positive rational) and ~ (a non-negative integer) 

depend on the nature of S near sk. Amongst the important papers on 

this problem, we mention the work of B. Malgrange [5] and A.N. 

Varchenko [7], where the existence of an asymptotic expansion is proved, 

and a and 13 computed for many examples. 

It can be shown that, if f is smooth enough and if S is convex 

and has no points of Gaussian curvature 0, then there exists a 

constant C so that 

(3) I I f!i l 
-n/2 

(pcr)! :;; C(l+p) 

(see C.S. Herz [3] and W. Littman [4]); it would appear from (1) that, 

in the general case, if f = 19(1 112 , then the inequality (3) should 

still hold, as then in each generic direction the asymptotic decay is 

uniformly controlled. However, this is false, for at least two reasons 

(see Cowling and G. Mauceri [2], for one of these). 

We now summarise several problems about the decay of (f~) at 

infinity which we consider important: 

(a) Describe ·the decay of (f!ll (pcr) as p -> +oo in terms of the 

geometry of the points on S having normal vector cr, as in (2) aboveo 

(b) Find uniform estimates (as cr varies) for the decay of 

(f!J.) (pcr) as p --> +=, as in (3) above. 
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(c) What is the relation, if any, between the slowest decay (as a 

varies) in the asymptotic expansions for (f~) (pcr), and the decay of 

(f~) (pcr) in a uniform estimate? Are these the same? 

(d) If we take f to be a power of the Gaussian curvature, 1~1 9 

say, find estimates for (f~l , and find the smallest value of e for 

which (fJ.t) (pcr) decay uniformly as 
-n/2 

p as as in (3). 

There has been some progress on these questions recently: C.D. 

Sogge and E.M. Stein [6] showed that, if s = 2n, then there is a 

constant C so that 

e A -n/2 
I (lXI ~l (pal I :::; Cp 

n + 
\:fa E S , itp E R, 

while M. Cowling and G. Mauceri [2] obtained this inequality when 

a= [n/2] + 2 ([ ] denotes the integer part function), under the 

additional hypothesis of the convexity of S. We believe, however, that 

e = 1 suffices for convex S, and perhaps e = 2 suffices in general. 

J. Bruna, A. Nagel, and S. Wainger [1] considered the surface 

measure ~ on a convex hypersurface S, and established the existence 

of a constant C so that 

ltJ. (pcr) I 
+ -1 - -1 

:::; C[ I Cap (p ,cr)l + !Cap (p ,cr) I J itcr e 
n s , + 

'<lp E R , 

where ITI indicates the surface area of a subset T of S, and 

+ Cap (A.,cr) (respectively Cap (A.,cr)) denote the caps of S at the 

points + s (respectively s ) of S where cr 

(respectively inward) normal, of height A.:-

+ Cap (A.,a) { S E S: + cr.s - cr.s e 

Cap (A.,cr) {s E S: cr.s - cr.s E [O,A.]}, 

is an outward 
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where of course + s (respectively s ) are the points on S where cr.s 

is maximised (respectively minimised) . 

Diagram 1: and Cap (A.,cr). 

Since the leading terms of the asymptotic expansion for ~(pcr) are 

+ -1 
I Cap (p ,cr) I and 

- -1 
!Cap (p ,a) I 

(see Varchenko [7]), it follows that the slowest rate of decay in an 

asymptotic expansion will control II! (pcr) I, uniformly in a. 

The contribution which we offer here may or may not be significant 

in the long run. We believe that a modification of the arguments of 

Bruna, Nagel and Wainger should shOt~ that 

(4) l!~l (p u l I 
+ -1 - -1 

:;;; C [ ICap1 (p ,cr) I + ICap1 (p ,cr) I J, 

t,rhere + 
1Cap1 (fo.,cr) I denotes the area of + Cap (lc,cr) relative to the ne•~ 

surface measure ~~ and ICap1 (A.,cr) I is defined analogously. If (4) 

does hold, then, for some possibly different C, 

I(~) 
-n/2 

(p cr l I :;;; c p 

as a consequence of the following theorem. 
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THEOREM. Let S be a compact convex analytic hypersurface in ·an+l. 

Then there is a constant C so that 

+ n/2 
ICap1 (A,a) I s C A 

We shall sketch the main features of the proof. Let g: S ~ gn 

denote the Gauss map : for s in S with outward unit normal a, 

g(s) =a. Gauss showed that 

+ 
ICap1 (A,a) I 

+ lg(Cap (A,a)) I. 

We choose coordinates in Rn+1 so that 

the tangent plane T +(S) 
s 

to S at s+, so that 

are coordinates for 

+ s lies at the 

origin, and so that a = (0, .. ·.,0,-1). Then the part of the surface 

+ near s is the graph of a convex analytic function f f +' defined 
s 

on T +(S), of radius of convergence at least one, say, and satisfying 
s 

f (0) 

Now 

where 

For A 

0 and Vf (0) 0, i.e. 

{-X e Rn+1 : X 
n+1 

+ n 
lg(Cap (A,a))l s l{'t e S: 'tn+1 s M(A)}I, 

M(A) max{gn+1 (s) 
+ s e Cap (A, a) } . 

small enough, any element s of 
+ Cap (A,a) which satisfies 

gn+l (s) M(A) 

can be written in the form (~,f(~)), for some ~ in T +(S) of 
s 

length at most 1/2, and then 

M(A) 
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Choose 9 (1) in (O,n/21 so that cos(B (l)) = (l+IVflil 121-l/2 , then 

- 2 -1/2 n 
c~ [arccos((l+IVf(~) I I ll 

5 c 
n 

- n 
IVf (~) I . 

In summary, then, 

(5) 

for 

the 

on 

+ Cap (ll.,cr) 
+ g (Cap (ll., cr) ) 'n+l s; M(A,)} 

Diagram 2: The geometry of Theorem 1 

Thus it suffices to prove that, for some constant C, 

all f in 
s 

part of the 

Ts (S), as 

I Vf (x) I 5 c 
s -

(~)1/2 ' 

the family of functions :r which 

surface near s as the graph of 

s varies in s, and for all ~ 

arise by considering 

a function f defined 
s 

in T (S) with 
s 
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11,2£11 < L For each unit vector ~ in T (S), 
s 

'ille may write 

f (tel 
s --

1ft E ( -1 , 1) i 

vJhere, for some (S-dependent) constants K > 0, li > 0, and P in N, 

(i) ao (~) = 0 It~ E T (S), 
s 

(ii) (~) 0 'v'~ E T (S), 
s 

(iii) Ia (e.) I m- ~ K 'v'~ E T (S), 
s 

and (iv) max{! a (e) I 2 $ m s P} <: s \t~ E T (S). 
m- s 

[This last condition is established by compactness: if it were false, 

then for all P in Nl there \•lould be elements of 1' (S), ~P say, so 

that 

rn 

and then there would be some ~ in T(S) with 

a (e) = 0 'v'm e N\.] m-

We may make a further simplification: by restricting attention to two-

dimensional subspaces of T (S) 
s 

it 

suffices to consider a compact family ~ of convex analytic functions 

of two real variables, centred at the origin, with radius of convergence 

at least one 1 satisfying the tvm dimensional analogues of the above 

conditions (i) - (iv); again, we must prove that 

2 
lllf (.?£) I :::;; Cf (.?£) 

for all .2£ in the unit ball in R2 centred at the origin. 

The first step in proving this is choosing a suitable coordinate system. 

For each 2-plane in we choose unit vectors and so 

that is orthogonal to ~1' and ~1 is the "direction of slowest 



growth" of f 0 

s 
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This direction is obtained as follows: 

any unit vector ~ in ~, 

f (te) 
s -

we write, for 

then either there are positive integers p and q, ~lith p > q ;;, 2, 

and a direction so that 

if e = ±e r min{m a (e) 0) 
- -1 .. m-

otherwise q 

or min{m a (e) .. 0) p 

for all ~ in ~. 

shortest growth"; 

m~ 

In the former case, 

in the latter we choose 

a (e) p-

is the "direction of 

~1 so that 

and being unit vectors. 

Now for f in 

where a 0 if 
rnn 

and 

and 

"#', we may write 

00 mn 
f(x~1 + y~2l = Lm,n=O a X y , 

mn 

m/p + n/q < 1, by convexity, 

I a I ,s K 
rnn 

and 

max{ I amO I 2 s m s Pl e: i5 

Let p = min{m : lamO I ;;, a l and q = min{n 

We now apply induction on p + q. One possibility is that 

and (by convexity) a 
rnn 

0 

0 

0 

if m < P 

if n < q 

if m/p + n/q < 1. 
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The difficul·ty in proving· (5) lies when 111!:11 is small; here we estimate 

[by majorising the geometric mean by the arithmetic mean, for small m 

and n]. To estimate f, we let 

:z: mn 
m/p+n/q=l amnx y ; 

we show that by observing that the 

quotient function must be bounded away from 0 by convexity and 

homogeneity arguments; and then it follows that 

for small x and y. 

'rhe other possibility is that some a 
mn 

are non-zero for some m 

and n with m/p + n/q < 1. Now a dilation argument, like that 

employed by Cowling and Mauceri [2], (bu'c in 2-variables), enables us to 

reduce to a case with smaller p+q. 0 
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