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A Heat Equation Approach to Boutet de Monvel's 

Index Theorem for Toeplitz Operators 

Ezra Getzler 

§1. THE INDEX THEOREM ON THE CIRCLE 

In this talk, we will show how heat-kernel methods can be used to prove 
Boutet de Monvel's index theorem for Toeplitz operators on a compact 
strictly pseudo-convex CR manifold. Since this theorem implies the Atiyah­
Singer index theorem for an arbitrary elliptic pseudodifferential operator (the 
proof of this fact makes use of an explicit Fourier integral operator, see the 
appendix to [4]), this shows how to give a purely analytic proof ofthe Atiyah­
Singer index theorem, without any use of K-theory. In fact, we will only give 
the first step in the argument, the proof of a McKean-Singer formula for 
Toeplitz operators; the actual calculation of the index will be found in [6]. 

Some of the ideas of the proof are already apparent on the simplest of 
CR manifolds, the circle (where Toeplitz operator and pseudodifferential 
operators are essentially the same), so in this section, we will give an outline 
of the calculation in this case. 

Let p(x,e) E Sk(S1 ) ® MN, k > 0, be the symbol of anN x N ellip­
tic pseudodifferential system on the circle (we will need to assume that 
(p(x,e),p*(x,e)] = 0 for all x E Sl, e E R), and let P~;, = p(x,iDfn) be its 
quantization. By the McKean-Singer formula, the index of the pseudodiff­
erential operator P~;, (which is of course independent of 1i > 0, by homotopy 
in variance) is equal to the trace 

We can calculate this trace in the limit in which 1i -+ 0, by calculating the 
symbol of the operator e_p,.• P,. - e-P,.p,.*. The details are a bit different 
from the calculation of the index of a Dirac operator in (5], since there, we 
needed the leading order of the symbol of the heat kernel to calculate the 
index, whereas here, we will need the subleading order, that is, the coefficient 
of 1i in the asymptotic expansion in powers of n. 

The author would like to thank the Centre for Mathematical Analysis for its 
hospitality during the writing of this paper. 
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Let {f, g} denote the Poisson bracket of two functions on T* S1 , given by 
the formula 

{f } = 8f8g- 8f8f. 
,g ae ax 8x ae 

The symbol ofthe composition f(x,iD (n) g(x, iD /li) is given by the asymp­
totic formula 

It follows easily that the symbol of the operator e-tP" * P"- e-tPr,P;;_" is equal 

to 

We now use the following formula for the trace of a pseudodifferential oper­
ator: if p(x,e) is a symbol in s~<(S1 ) ® MN, where k < -1, so that Pn is 
trace class, then 

TrPn = 1 
i1= { Trp(x,e)dxde. 

2?Tn lr•sl 

Using this formula, we obtain the following result: 

THEOREM 1.1. The index of the pseudodifferential operator p(x, iD /h) 1s 
equal to 

1 

21ri 

It would be nice to be able to imitate this calculation to obtain the index of 
an elliptic operator on a higher dimensional manifold. The difficulty is that 
there, we would have to calculate the coefficient of fidim M in the asymptotic 
expansion of the symbols of the operators e.-Pr," P"n and e·-P;;P;;•. However, 
the index of a Toeplitz operator on a compact strictly pseudo-convex CR 
manifold can be calculated using the symbol calculus for pseudodifferential 
operators on Clifford modules [5]; it then suffices to calculate the O(h)-term 
in the asymptotic expansion for the symbol of the heat kernel. In the rest 
of this talk, we will present the first step in this proof, a McKean-Singer 
formula for the index of a Toeplitz operator. 

§2. THE SZEGO PROJECTOR 

Let M be a compact 2n + 1-dimensional strictly pseudo-convex CR ma­
nifold, and let E be a holomorphic vector bundle on M, with a Hermitian 
inner product. The subelliptic Dirac operator of the bundle E is the self­
adjoint first-order differential operator Db = ab + a;, which acts on sections 
ofthe bundle of anti-holomorphic forms A0 ,* M ®E, In this section, following 
Boutet de Monvel and Guillemin [4], we will define the Szego projector of 
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E; roughly speaking, it is the projection onto the kernel of Vb. Our pre­
sentation differs from that of Boutet de Monvel and Guillemin in that for 
us, the Szego projector acts on the bundle of antiholomorphic differential 
forms A0 ,*M ® E, which turns out to simplify the formulation of a number 
of results. 

We will denote Hormander's class of symbols Sf;2 ,112 by Sf12 , and the 

corresponding space of pseudodifferential operators by Op Sf;2 . We will 

make frequent use of the fact that [Op Sf;2 , Op 5 1] C Op s::zl-l/Z. If E is a 
vector bundle on M, Sk(E) will be the space of kth order symbols acting on 
E, whereas Sk is the space of scalar pseudodifferential symbols on M. 

DEFINITION 2.L Let L C T* M be the line bundle of one-forms which vanish 
on T 1 ,0 M EB T 0 ,1 M. A Szego projector for the bundle E is a projection in 

Sf12 (A o,* M ®E) satisfying the following condition: 

If tlle symbol p E .';/"(A0 ,* M ®E) vanishes along L, then the operators 

Sp(x, D) and p(x, D)S are in Op s:-;:}12 (A0 ,* M Q9 E). (An example of such 

an operator is the Dirac operator TJb.) I 

In this section, we will construct such a Szego projector for a Hermitian 
vector bundle E. The proof makes use of the following idea: just as on a Rie­
mannian manifold, the pseudodifferential symbol calculus is modeled on the 
algebra of Fourier multipliers on Rn, there is a calculus of pseudodifferential 
operators on an 1\1 modeled on the algebra of left-invariant pseudodifferential 
operators on the Heisenberg group Hn ~ R2n X R. We start by discussing this 
algebra. For a more complete discussion of the Heisenberg pseudodifferential 
calculus, the reader should refer to the books of Beals and Greiner (1], and 
its bibliography. 

Let X; (1:::; i:::; 2n) and Xo = T be the left-invariant vector fields on Hn, 
so that a typical point in hn may be denoted by :z::;,:o v;X;; here ( v1 , ..• , V2n) 

is in the symplectic vector space ff:ln and v0 EA. We will denote an element 
of h: by (e,T), where e E (R2n)* and T E R. Let fiE TJ'(h;.) be the Fourier 
transform of the symbol p. A left-invariant pseudodifferential operator on 
the Heisenberg group may be written in the form 

Opp=(2?r)-n-l { fi(v)exp(v.X)dv. 
lhn 

An example of this quantization rule is that if p is a polynomial function, 
the corresponding operator is a differential operator; all elements of the en­
veloping algebra of hn are describable in this way. 

We will now describe a class of symbols suitably generalizing the polyno­
mials, such that the corresponding operators form an algebra. 
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DEFINITION 2.2. The symbol class Nk is defined as the space of smooth 
functions on h~ satisfying the following estimates: each N ;::: 0, 

l8"'p(e,r)l:::; caRk-llall, 

where R(e,r) = (1 + lel4 + lrl2 ) 114; llall is the positive integer obtained by 
adding 1 for each X in the expression for aa, and 2 for each power ofT. 

For example, the symbol of a left-invariant differential operator 8"' on hn 
lies in Nll<>ll. Note that ifm;::: 0, then the space of symbols Nm is contained 
within the space Sfj2 (h~), while if m < 0, Nm c s;f';'2 (h~). 

The space N 00 = Ukez Nk is an algebra under the following product: 

Op(p*q) = OppOpq. 

The composition P*q thus defined is bounded from Nk x N 1 to Nk+ 1• 

It is not so hard to demonstrate the following formula for this composition 
law (here, Wij is the standard symplectic form on R2n, obtained by identifying 
R2n with en and taking the imaginary part of its standard Hermitian form): 

In particular, if p is a polynomial symbol, then there is the more explicit 
formula: 

This should be interpreted as follows: for each T ¥= 0, the symbol p(e,r) is 
to be thought of as the Weyl symbol of a pseudodifferential operator on Rn, 
with Planck's constant r-I, and the symbol p * q is just the composition of 
these Weyl symbols at fixed T. As an example, the symbollel2 corresponds 
for each T to a harmonic oscillator, and the symbol 

corresponds to the heat kernel of this oscillator. It follows that 

is the symbol of the projection onto the kernel of the operator with symbol 

lel2 • 

An almost-Heisenberg manifold M is a 2n+1-dimensional contact manifold 
with a reduction of its structure group from Sp(2n) to the maximal compact 
subgroup U(n). Thus, an almost-Heisenberg manifold is quite analogous to 
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a Hermitian almost-complex manifold, which is determined by the reduction 
of the structure group GL(n, C) to its maximal compact subgroup U(n). 
Observe that the complex tangent bundle TcM of an almost-Heisenberg 
manifold splits canonically into three sub-bundles: 

TcM = T 1 •0 M EB T 0 •1 M EB CT. 

Since the quotient Sp(2n)/U(n) is contractible (indeed, diffeomorphic to 
Rn 2+"), it follows that contact manifolds always have almost-Heisenberg 
structures. Indeed, one obtains such a reduction by giving a metric on 
the 2n-dimensional sub-bundle of T M on which the contact form vanishes. 
This automatically defines a complex structure on this sub-bundle, since 
U(n) = Sp(2n) n 0(2n). 

Webster has shown [7] that an almost-Heisenberg manifold has a canon­
ical connection on its tangent bundle compatible with its U( n )-structure, 
analogous to the Levi-Civita connection on a Riemannian manifold. This 
connection may be described in terms of the commutation relations between 
the canonical horizontal vector fields on the principal bundle U(l'\4), which 
are X; (1 ::s; i ::s; 2n ), corresponding to the directions in which the contact 
form vanishes, and T, which satisfies i(T)fJ = 1 and t(T)d(J = 0. The formu­
las for the commutators of these fields are of the following form (here, X;j 
form a basis for the vertical vector fields on U(M)): 

[X;, Xj] = W;jT + O(X;j) 

[X;, T] = O(Xij) + O(Xj) 

We also need the commutation relations for the vector fields X; and T acting 
on a vector bundle E with connection '\1 over M, or rather, the corresponding 
covariant derivatives acting on the vector bundle n*(E): 

['V;, 'Vj] = W;j'VT + O(X;j) + 0(1); 
['V;, 'Vr] = O(X;i) + O('Vj) + 0(1). 

We will now define the pseudodifferential operator algebra of an almost­
Heisenberg manifold, keeping things as similar to the case of the Heisenberg 
group as possible. It is easiest to do this by working on the principal frame 
bundle U(M); there, we have the horizontal vector fields X; and T which 
behave as a kind of ersatz Heisenberg algebra, in the sense that their com­
mutation relations are the same as the corresponding vector fields on the 
Heisenberg group up to lower order corrections involving the curvature of 
the Webster connection. 

We say that p(x, e, r) is a symbol, and write p E N"(M), if it is a U(n)­
equivariant map from P toN". We can now imitate the definition we gave for 
quantization of a symbol on the Heisenberg group: acting on the pullback 
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to U(M) of a function on M, the quantization of p(x, e, r) (x E U(M), 
(e, r) E h~) is given by 

Opp= (21r)-zn-l A v)exp(v.X)*dv 
hn 

Here, p is the Fourier transform along h., of the symbol p; thus, it is a 
U(n)-equivariant map from U(M) to the space of distributions on hn· This 
definition is explicitly invariant under the action of U ( n ), so that the operator 
Op p descends to an operator on M, which we denote in the same way. 

It follows directly from this definition that the operator Opp, p E N"(M) 
is trace class if k < - 2( n + 1 ), in which case its trace is given the following 
formula: 

Tr0pp=(2n)-2n-l [ p(x,e,r)dxdedr. 
jT*M 

The collection of all operators on V 1 ( M) of the form Op p+ K where ]( is an 
infinitely smoothing operator, is denoted by Op Jllk(M). We let Op N- 00 (1\1) 
denote the algebra of smoothing operators on M, while N-00(M) denotes 
nkEZ N"(M). The following theorem summarizes the main properties ofthis 
class of operators (a proof may be found in [1 ]). 

THEOREM 2.3. 
1) The map which sends a symbol p( X' e' to its quantization Op p induces 

an isomorphism between the spaces Nk JN-00 (M) and OpN" / OpN-=(M). 
2) The composition of operators defines a bounded map from Op N k ( M) X 

OpN1(M) to OpNk+1(M). TJ:ms, it induces a product 

Nk(M)j!r=(JY.l) x N 1(M)jN·-oo(M) _, 

which is denoted by p o q. 
3) The leading order part of the symbol p o q is equal to p * q. 
4)Ifm?: 0, thenOpN"'(M) c OpSf12 (2VI), wbileifm < 0, OpNm(M) c 

OpS:/,2(.M). In particular, operators in OpN°(M) are bounded on (M), 

wi1ile operators in Op N-mpvl) are compact. I 

This theorem has an obvious generalization to pseudodifferential operat­
ors acting on a bundle E on .i\1!-the symbol is now taken to be a U(n)­
equivariant map from U(M) to Nk ® End(-~r* E), and the quantization of a 
symbol is defined by the formula 

Opp.f(x) = (21r)-:.!n-l) [ p(x,v)exp(v.\l)*f dv. 
lhn 

The most important example of a pseudodifferential operator in the Heisen­
berg calculus is the subelliptic Dirac operator vb = ab + a;;' which is in 
N 1 (A 0 •* M ®E). By the calculation of Folland and Stein, the leading symbol 
of vb on A O,k lV! ® E equals be . 

1~1 2 + (2k- n}r. 
The operator Vb is not hypoelliptic. 
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THEOREM 2.4. Let Pt(e, r) be as the leading symbol of the heat kernel e-t'Dt, 
which by IVIebler's formula equals 

(cosh tr )-ne- tanh tr.lel 2 /r-tr(2k-n). 

There is a projectionS E OplV0 (A0 •* M 0 E) with leading symbol equal to 

Pco(e, r) = lim Pt(e, r) 
t-->oo 

= { ~ne-1€1 2 /lrl k = 0 and r > 0 or k = n and r < 0 

otherwise, 

and an operator Q E OplV-2 (A0 •* M 0 E) witl1leading symbol 

q(e,r) = 100
(Pt(e,r)- Poo(e,r))dt, 

such that ( Q o 'D~ + S) -1 and (D~ o Q + S)- 1 are in 

PROOF: Let S0 be the self-adjoint operator Op p00 • By the symbol calculus, 
we see that sg- S0 is in OplV-1(A0 •* M 0 E). It follows that the spectrum 
of So has as its only two limit points the values 0 and 1, so that by removing 
two disjoint discs from around 0 and 1 inC, we are left with a domain U 
on which S0 - z is invertible. The resolvent (So - z)-1 can be shown by 
standard methods to be a smooth map from U to OplV0 (A0•*M 0 E), so 
that by taking 'Y to be a contour in U around z = 1 that doesn't circle z = 0, 
we obtain a projectionS with leading symbol Poo(E, r): 

s = _1_ 1 _ _!:_:___ 
21ri J~ So - z · 

To finish the proof, we use the symbol calculus to show that any operator 
Q with symbol q( e, T) satisfies 

Q o D~ + S E I+ OplV-1 (A0,*M ®E) and 

'D~ o Q + S E I+ OpN-1 (A0,*M ®E) 

this follows from the corresponding equality at the symbol level, namely that 
a(D~) o Poo(e, r) = Poo(e, r) o a(Vn = 0. I 

The operator S constructed in this theorem is a Szego operator for the 
bundle E. It is clear that any two Szego operators constructed in this way 
will differ by an element of N-1 (A0 •* M 0 E). 

§3. McKEAN-SINGER FORMULA FOR TOEPLITZ OPERATORS 

In this section, we will prove our McKean-Singer formula for Toeplitz oper­
ators, which is an adaptation of Boutet de Manvel's idea [2], of converting the 
index of a Toeplitz operator into the index of a pseudodifferential operator. 
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Let S be a Szego projector for the bundle E. An mth-order Toeplitz 
operator Tp on the bundle E is the compression to S(r(A0 •* M) ® E] of a 
pseudodifferential operator P E OpSm(E) with scalar symbol, that is, 

Tp = SPS. 

For studying the properties of the algebra of Toeplitz operators (for example, 
to show that they form an algebra) we would need to make more assumptions 
on the operatorS. However, for calculating the index of a Toeplitz operator, 
all that we need to know is the above definition. 

If Tp is an mth-order Toeplitz operator, we define its leading symbol to 
be the restriction to the line bundle L of the leading symbol of P. We say 
that the Toeplitz operator Tp is elliptic if its leading symbol is invertible. 

PROPOSITION 3.1. An elliptic Toeplitz operator Tp is Fredholm on the lo­
cally convex space S[C00 (A0•*M ®E)]. 

PROOF: Since the Toeplitz operator Tp is elliptic, it follows that the operator 
P E OpSm(E) is elliptic along the line bundle L. Let Q E OpS-m(E) be a 
parametrix for P along this set; that is, the symbol of Q on Lis the inverse 
of the symbol of P. Then we see that 

TpTQ = SPSQS = S + S(PQ- I)S + SP[S, Q]S. 

The operators S(PQ-I)S and SP[S,Q]S are in Ops;/J\A0•*M®E), the 
first because the symbol of PQ- I vanishes along L, the second because the 
operator (S, Q] is in Op s;;V\A0•* M ®E). 1 

From now on, we will assume that the bundle E has a Z2-grading, that is, 
it is a . :s:upabundle; it follows that the bundle A 0•* M ® E is supabundle with 
respect to the total Z2-grading. If T is an odd self-adjoint elliptic Toeplitz 
operator (in other words, maps r(A0•kM ® E±) to r(A0•kM ® E'f) ), we 
define its index as follows: 

ind(T) = Str(PkerT), 

where PkerT is the projection onto the kernel ofT. This definition is related 
to the ordinary definition of index: if we write T± for the piece ofT that 
maps r((A0 •* M ®E)±) to r((A0•* M ® E)'f), then we see that T- = (T+)*, 
so that 

ind( T) = dim ker T+ - dim ker T-

= dim ker T+ - dim coker T+. 

Thus, the index ofT is the same thing as the Fredholm index of the operator 
T+. It follows that ind(T) is a homotopy invariant function of the leading 
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symbol ofT, such that ind(ToT1) = ind(To)+ind(T!). In this way, we obtain 
a homomorphism 

ind: rr0 (GL(r(E))) EB rr0 (GL(r(E))) -t Z, 

defined by choosing a non-vanishing section fJ of the line bundle L, and 
considering the map 

a(T)(x, fJ) EB a(T)(x,fJ) f-+ ind(T). 

This map does not depend on the degree k of the operator T used to define 
it, by the same argiunent as for pseudodifferential operators. 

This index r.nap was evaluated by Boutet de Monvel [2], who observed that 
the index of the Toeplitz operator Tp is equal to the index of the pseudo­
differential operator 'Db+ P. In this way, the calculation of ind(Tp) is reduced 
to an application of the Atiyah-Singer index theorem. He and Malgrange 
later gave a proof, using D-modules, that is very close to Grothendieck's 
proof of the Riemann-Roch theorem [3]. 

Let Tp = SPS be an odd, self-adjoint elliptic first-order Toeplitz operator 
on A 0 •* M ® E, where P is an odd, self-adjoint elliptic first-order pseudo­
differential operator on E. We now present a McKean-Singer formula for 
the index of Tp which will be used in [6] to give a purely analytic proof of 
Boutet de Manvel's index theorem. 

THEOREM 3.2. The index ofTp is given by the following formula: 

t > 0. 

PROOF: We start by introducing a family of operators 1'8 , parametrized by 
s E [0, 1], such that 'Ps=l ='Db+ P (here, S.l.. = 1- S): 

'Ps = s'Db + (1 - s )S.l..'DbS.l.. + sP + (1 - s )SP* S. 

For 0 ~ s ~ 1, we will show that the quantity Str(e-t'P:) equals ind(Tp ). 

LEMMA. For each sufficiently small positive c, there is a constant c(c) such 
that uniformly in s, 

1'; + c(e) ~ cb., 

where b. is the Laplacian on the bundle A 0 •* M ®E. 

PROOF: Let us denote equality up to an element of Op s:g(A 0 •* M ®E) by 
A .--- B. By the calculus for pseudodifferential operators and the fact that 

'DbS and S'Db lie in s:f~ (A 0 •* M ® E), we obtain the equation 
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Similarly, we can decompose the Laplacian into blocks corresponding to the 
projections s and s.L: 

It follows that 

P;- c:.6.""' (1- c:)S.LL!.S.L + S(P2 - c:.6.)S, 

since by Weitzenbock's formula, 

s.LTJ~ s.L ,...., s.L LJ.s.L. 

Let Q E Op S 1 (A 0 •* M ® E) be a positive pseudodi:fferential operator such 
that the leading symbol of 

Qz _ (P2 _ c:.6.) 

vanishes on L; this is possible since the leading symbol of P 2 - c:i3. is positive 
on L for small enough e. It follows that 

P; "'c:.6. + (1- c-)(S.LJ3.112 s.ty<l + (SQS?. 

Since the last two terms of the right-hand side of this equation are positive, 
the lemma follows from Garding's inequality. 1 

In particular, as operators on L 2 (A 0 •* M ®E), we have the inequality 

e-'P; ::::; etc( e) e-etLi.. 

This shows that the heat kernel e-t'P; is trace class for all t > 0, uniformly 
in 0 < s < s. 
T~ n;xt step is to show that StJ:(e-t'P;) is independent of s. This is 

shown in the conventional way, by taking a derivative with respect to s and 
:rewriting the resulting quantity as the supertrace of a supercommutator, 
which we know to vanish: 

-- = -t tr --e • 8a(s) S (dP; -t'P2) 
as ds 

= -t Str [ (CDv- SJ..DbSJ..) + (P- SPS))e-t'P; 12 , Pse-t'P,? 12 ] • 

Since Str( e-t'P;) is a constant, we may set s equal to 0. In other words, 
we must calculate 

Strexp ( -t(SJ..D0SJ..) 2 - tT'j,). 

This may be separated into the sum of the supertrace over the image of S, 
namely 

Str(Se-tr; S), 

and the supertrace over the image of s.L, which equals zero. Finally, we 
are left with calculating Str(Se-tTfoS). But by the same method as we used 
above, we see that it is independent of t. As t ---t oo, it converges to the 
index of Tp, since se-tT], S converges to the projection onto the kernel of 
Tp. I 
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