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DISINI'EGRATION OF MEASIJRES Ao:.oRDING TO THE DIMENSION 

MID ITS REI'.ATION Willi~ CDVERINGS AND :MULTIPLICATIVE aiAOO 

Suppose we are given a locally compact metric or pseudometric space 

(T,dist) (here pseudometric means 

dist(x,y) ~ K(dist(x,z)+dist(z,y)) 

and metric is the case K = 1). A good example is ffid with the 

euclidean distance. We write J~t(T) for the set of all positive and 

bounded Radon measures on T, .r.t (T) for the subset of }.f+ (T) which 
a 

consists of a-Lipschitz measures, that is, measures a which satisfy 

a(B) :::; 

for all balls B. 

C (diam 
a 

Given a Borel set B in T we consider the measures a E M+ 

carried by B {that is, a(B) = a(T)) and we write + 
a € M (B). We 

define M+ (B) in the same way. The capacitary (or Polya-Szego) 
a 

dimension of B is the supremum of the a>O such that M+ (B)# {0}. 
a 

If T is IRd with the usual metric the capacitarian dimension is the 
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same as the Hausdorff dimension (theorem of Frostman). In any case we 

denote it by dim B. 

Given a E M+(T) we say that a is unidimensional and has 

dimension a (O<a<"'} when a "is carried by a Borel set. of dimension 

a (dimension capacit.ary dimension) and the a-measure of any Borel set 

of dimension ( a vanishes. Unidimensional with dimension 0 or 

dimension 00 are defined in the obvious way. 

THEOREM Given A E M+(T) one can write 

( l. 1) r 1-f. dv(a) 
J[O,<»] a 

I' 

with J dv 
[O,ro] 

wher-e dv bel.ongs to A(T} and the 

probabi.L ity measures such that the mapping a ~ pa is vagueLy 

measurabLe with respect to dv (so that ( 1.1) has a meaning as a vague 

integraL), and for dv-al.most each a the measure is 

unidi1nensional. with dimension a. Moreover the disintegration (1. 1) i. s 

unique i.f we identify two mappings which coincide dv-atmost 

everywhere. (We use vague as in Bourbaki. When T is compact, it 

means weak*.) 

Here is a sketch of the proof, where we shall introduce a few 

notions of potential theory needed in the sequel. For simplicity we 
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restrict ourselves to the case T compact. Given A € M+(T) and 

a > 0, the a-potential of A is the function 

and the a-energy of A is 

We say that A is a-singular if its a-potential is infinite A-a.e. 

and that h is a-regular if it is a countable sum of measures with 

finite a-energies. We say that a Borel set has vanishing a-capacity 

and we write Cap B = 0 if A(B) = 0 for all a-regular measures A. a 

Here are the main steps. 

LEMMA 1 If A is carried by a Borel set S 

sup V (t) ~ (2K)a sup V (s) 
t€T a sES a 

J.HmA 2 For 

S(a,h)= {t 

we have Cap S(a,h) 0. 
a 

LEBA 3 For 

v (t) = 00} 
a 
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A is a-singul.ar and A-A is a-regul.ar. a a 

LEIUlA 4 Let us define v(O) = 0, v(a) =A (T) (O<a<oo), u(oo) = A{T}. a 

The derivatives with respect to dv 

lim Aa+h-Aa 
h~ u{a+h)-u(a) = Ma 

exist dv-a.e. as weak limits in M+{T) (in dual.ity with C{T)) and 

define a v-weakl.y measurable function of a. 

LEIUlA 5 is unidimensional. witih dimension a. 

2. RANIXlll CDVERING 

Random coverings of the circle 11 or the torus Tid are considered 

in my book Some Random Series of Functions {Health 1968, CUP 1985}. 

Between the 1968 and the 1985 edition the main result was the complete 

solution by L. Shepp of the Dvoretzky covering problem for the circle. 

Since 1985 the most important contribution is due to Svante Janson (Acta 

Mathematica, 1986). Using S. Janson's ideas it is possible to give a 

new proof of Shepp's result, and to get a complete solution for the 

covering problem of a subset of the circle. 
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Here is the problem. We are given a sequence 1>2 1 le 1 ~ ... >O and 

we consider random intervals 

on the circle rr 

I = (0,2 ) + w n n n 

(w are independent random variables with uniform 
n 

distribution on IT). Given a closed (or Borel) subset F of IT the 

covering problem is to decide whether or not 

(2.1) 
00 

P(F C U 
1 

I ) = 1 n 

When (2.1) holds we say that covering holds. We consider the kernel 

(2.2) k(t} 

and we say that F has vanishing k-capacity and write CapkF = 0 if 

F carries no measure of finite energy with respect to k, that is 

II k(t-s)d~(t)d~(s) = oo 
FxF 

for all non-zero measures ~ carried on F. 

THEOREM Covering holds if and only if 

(2.3) 
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In parttcutar when the Lebesgue measure of F is positive, (2.3) reads 

(2.4) 

Actually (2.4) is one of the forms of Shepp's necessary and 

sufficient condition. Another particular case is i = ~ (O<a<1). 
n n 

Then 

(2.3) reads, CapaF = 0 (same notation as in part 1). 

Though I shall not try to give the proof, let me point out the 

connection with the decomposition of measures. Let us write ~(t-wn} 

for the indicator function of I and 

(2.5) 

Then 

n 

N 
~(t) = 0 ~ t € U In. 

1 

Given a measure A € M+(F} the random measures QNA converge weakly 

with probability one to a random measure which I denote by QA. If QA 

¢ 0, F is not covered a.s. : it is the easy part of the proof. In any 

case it is possible to write 

(2.6) A = E(QA) + A-E(QA) 
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and it is a decomposition of A into a Q-regular part and a 

Q-singular part. The operator EQ is a projection, whose image 

consists of Q-regular measures while the kernel consists of Q-singular 

In the £ 
a Q-regular means exactly a-regular (in measures. case =-n n 

the sense of part 1) and Q-singular means a-singular (O<a<l). 

The analogue for rrd (d>l) is still not known. 

(2.5) is an example of a more general situation. Suppose that T 

is as in part 1 and that we are given independent random weights 

P (t,w)(n = 1,2, ... ; w € 0 the probability space; t E T), that is 
n 

1) 

2) 

3) 

(3.1) 

for almost all w and all n P (•,w) is ~0 and Borel 
n 

for all t and n P (t,•) is a positive random variable with 
n 

expectation 1 

the a-fields generated by the random functions 

independent. 

We consider the products 

N 
11 

n=l 
P (t,w) 

n 

t~ (t,•) are 
n 

and how they operate on a given measure A E M+(T). 

~ With probability 1 the random measures QNA converge vaguely 

to a random measure which we denote by QA. The operator EQ from 
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(3.2) EQA(B) = E((QX)(B}) (B:Borel) 

is a projection. If X is in the kernel of EQ (we say that X is 

Q-singuLarJ then QX = 0 a.o .. If X is in the image of EQ (we say 

that X is Q-regutar) we have EQX = X, in the sense that both 

members of (3.2) equaL X(B). 

The first part of the theorem (the definition of QX) depends only 

on the fact that t,w) is a positive rrartingale for each t, 

therefore 

is a positive martingale for each f € ~(T) (continuous, compact 

support, positive). The second part (the projection property of EQ) 

depends strongly on the definition of QN(t,w) as (3.1); it is not true 

for general martingales. For the proofs see [2], [3] .. 

EQ is a regularizing operator and (2.6} has the same meaning as 

before; it is a decomposition of X into a Q-regular part and a 

Q-singular part. In the example above we had a complete description of 

a Q-singular measure (carried by a Borel set of vanishing k-capacity) 

and a Q-regular measure (countable sum of measures of k-finite 

energy). Here is another example. 

This originated as a random model of turbulence, proposed by B. 

Mandelbrot in 1972 as an improvement of a very sketchy model by A. 

Kolmogorov (1961). For the history of the question see [1] or [5]. 
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Now we assume that the random weights P (t,w) 
n 

that is, 

(4.1) P (t,w) 
n 

1 2 exp((X (t,w)~2~ (t,•)) 
n n 

are log-normal, 

where the X are independent gaussian (we mean centered 
n 

gaussian} processes. The laws of the X (t,w) (that is, all joint laws 
n 

of random variables of the form X (t1,•), X ( 
n n 

well defined by the covariance functions 

(4.2) p (t,s) = E(X (t)X (s)) n n n (t,s E T) 

which are kernels of positive type (=positive definite kernels). The 

same holds for the laws of the Pn(t,w). The law of QN(t,w) (the 

normalised exponential of x1(t,w)+X2 (t, .. +~(t ) depends only on 

(4. 

This makes the following theorem plausible. 

THEOREM Suppose pn(t,w) ~ 0 for all n,t,w, and write 

00 

(4.4) q(t,s) =I p (t,w). 
n=l n 

Then the taw of the random operator Q depends only on the function 

q(t,s) (t,s E T). 

For the proof see [1],[2]. 
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Here the law of Q means the collection of all joint laws of 

questions can be considered and sometimes solved about the operator Q. 

When is Q completely degenerate, that is, QA. = 0 almost surely, for 

all A.'s? If this is not the case, when is it true that QA. = 0 almost 

surely, (A. is Q-singular) or EQA. =A (A. is Q-regular)? When A is 

Q-regular, what can we say about the random measure QA, in particular, 

its dimensions (in the sense of part 1), and the boundedness of the 

moments E(QA(B)}h, (h>l)? 

and 

(4.5) 

To have an idea let us consider the case when T = ffid euclidean 

q(t,s) 1 
~(t,s) = u log llt-sll 

It can be seen easily that q(t,s) can be written in the form (4.4) (in 

many ways, of course: the theorem above says that the decomposition does 

not matter}. The situation depends on the parameter u (u>O). 

1lJEOREI. When u l 2d Q is completely degenerate. Suppose now 

O<u<2d, A € llt(T) and wl'ite A in the form (1.1), that is 

Then 

A = l p. dv(a). 
[O,d] a 

I p. dv(a) ~ EQA ~ r p. dv(a} 
]~,d] a J[~,d] a 
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that is, EQ kiLLs aLL components of dimension > ~ and keeps aiL 

components of dimension Given a non-zero unidimensional component 

is a.s. unidimensional with dimension a-'!. and 
2 

the moments E(~ (B) 
a 

(where B is any ball, and h>1} are finite 

when uh<2a and infinite when uh)2a. 

For the proof see [1]. 
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