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DERIVATIVES OF INVARIANT POLYNOMIALS
ON A SEMISIMPLE LIE ALGEBRA

R. W. Richardson

0. INTRODUCTION.

Let g be a complex semisimple Lie algebra and let G be the adjoint group of g. It is
knov;n that the algebra I(g) = C[Q]G of G-invariant polynomial functions on g_is gen-
erated by n = rank(g) alge.:ina.icall;f independent homogeneous polynomials Py, ..., P,.
Let 7 : g — C” be the polynomial map given by 7(z) = (Pi(),..., Pa(z)); = is the
quotient‘morphism of g. The geometry of the quotient morphism has been studied in
detail by Kostant [9] a;d his results have played an important role in many problems
in representation theory. Among other results, he shows that the differential dz, at a
point z € g is of maximal rank n if and only if z is a regular element of g. Our goal
is to comp;te rank(dw,) for every # € L(G). We have succeeded except for the case of
one nilpotent conjugacy class in type Es.

It clearly suffices to handle the case in which g is simple. By using the Luna slice
theorem, we can reduce to the case when z is a nilp—otent element of g. For the classical
simple Lie algebras, we can give a reasonably straightforward compui?a,tion of the ranks.
For the exceptional Lie algebras, we need to use the classification of nilpotent conjugacy
classes and detailed information on the closures of nilpotent classes.

It is convenient to reinterpret our results in terms of G-invariant (polynomial)
vector fields on g. A G-invariant vector field on g is just a G-morphism ¢ : g — g. For
each j =1,... ,71, let ¢; = grad(P;). It is known that ©1,...,n are a basis for the
I(g)-module of G-invariant vector fields. Using this result, it is easy to show that the
foﬁowing three numbers are equal for every « € g : (i) rank(dn;) ; (ii) the dimension
of the vector subspace of g spanned by {¢1(z),.. _:tp,,(x)} ; and (iil) the multiplicity of
the adjoint representatior-l_ of G in the G-module C[G - x] of regular functions on G - z,
the closure of the orbit G - 2.

By using the result above and a theorem of Borho and Kraft [3], we obtain a
number of new examples of non-normal nilpotent orbit closures in the exceptional Lie
algebras of types Eg, E7 and Es. For example, we show that (at least) seven of the
twenty-one nilpotent orbits in type Eg have closures which are not normal varieties.

This paper contains only a statement of results, with outlines of the proofs. A

detailed exposition of these results will appear elsewhere.



229

1. PRELIMINARIES.

Let g be a complex reductive Lie algebra of rank » and let G be the adjoint group of g.
Let }(_g) = C[g]® be the algebra of G-invariant polynomial functions on g. Then T (g_)
is gen;ated b; n algebraically independent homogeneous polynomials Pl—:. ey Py L;t
7 : g — C” denote the morphism (Py, ..., P,). Let d; = degreeP; and let m; = d; — 1.
The— d;’s are the fundamental degrees of g and the m;’s are the ezponents of g. The

generators Py,..., P, are not uniquely determined by g, but the fundamental degrees
and the exponents are independent of the choice of Pi,...,P,. We always assume
d; < . (I g is semisimple, dy = 2 and, if g is simple, d3 > 2.) Let { be a

Cartan suba.lgebra, of g and let W = W(g,t) be the corresponding Weyl group. Let
It) = C[__JW be the invariant algebra of W. Then the restriction homomorphism
p : Clg] — C[f] maps I(g) isomorphically onto I(t). For all of this material, see [4],
Chap._& -

Let B be a G-invariant, non-degenerate, symmetric bilinear form on g ; if g is
semisimple, we may take 8 to be the Cartan-Killing form. Let o : g+ — ¢ b—e the Tso—
morphism corresponding to 8. Then o determines an isomorphism b—etwee; differential
one-forms on g and vector fields on g. If f belongs to C[g], the algebra of polynomial
functions on ;, we define the vector field grad(f) on g__i)y grad(f)(z) = o(dfz). If
f e I(yg), then_grad( f) is a G-invariant vector field. -

1.1.  Le p; = grad(P;), j = 1,...,n. Then ¢1,...,0, are a basis for the
I(g)-module of G-invariant vector fields on g.

" See [12], Example 7.8, for the proof. -

The G-invariant vector field ¢; : g — g is a homogeneous polynomial map of degree

For z € g let g denote the centralizer of z in g and let G, denote the isotropy sub-
group of in—G. (Flzea,rly g is equal to L(G.), the_Lie algebra of the isotropy subgroup
G.. We let d(z) denote tzwe centre of the centralizer g ; d(x) is the double centralizer
of z ; d(x) is an abelian subalgebra of g. We set -

a(z) = g% ={y€glGy DG} .
Then g(z) C d(z), with equality if G; is connected.
The following result is an easy consequence of the Luna slice theorem [11] :
PROPOSITION 1.2. Letz € g have Jordan decomposition = h+v, with h

semisimple and v nilpotent. Let g = [gh ) gh], let r = rank(s) and let m; : 5 — C" be
the quotient morphism of s. Then

rank(dr;) = dim d(h) + rank((dm1),)
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Proposition 1.2 reduces our problem to the case when « is nilpotent. It is also

clear that we may reduce to the case when g is a simple Lie algebra.

2. REINTERPRETATION IN TERMS OF G-INVARIANT VECTOR FIELDS

We continue with the notation of Section 1. From now on we assume that g is a simple
Lie algebra. Let ¥ denote the I(g) module of the G-invariant (polynomial) vector fields.
For z € g, let ¢g(x) denote the linear span of {¢1(%),...,¢n(x)} in g. It follows
from 1.1 that - ’.
g(z) = {p(2)lp € ¥}

LEMMA 2.1. Ifze€ 9 then
() C g(=) C d(=)

Moreover e(z)* is the kernel of dm,. Hence dim g(z) = rank(dn).

Here g(z)! denotes the subspace of g orthogonal to g(z). We note that it is not
necessarily true that e(z) Ne(z)* = {0}. -

Let z € g be nilpotent and let {2, h,y} be an g £ (C)-triple in g containing z. It
is known that the eigenvalues of ad h on g are integers. For each m € Z, let g(h,m)
denote the m-eigenspace of ad h on g (Se; [4], Chap. 8, for s £ (C)-triples.) -

PROPOSITION 2.2. Let the notation be as above. Then p;(z) € g(h,2m;),
i=1,...,n. -

COROLLARY 2.3. Assume that the ezponents my,..., m, are pairwise dis-
tinct. Then

rank(dr;) = #{j = 1,...,n|p;(z) # 0}

We note that if g is not of type Dy, then the exponents of g are pairwise distinct.
Ifzisa nil;otent element of g, then we define the ezpt;;zents of (g,z) as follows :
if m € N, then the multiplicity of m as an exponent of (g, z) is the dimension of the
linear span of {¢;(z)|m; = m}. We arrange the exponents_of (g, ) in a non-decreasing
sequence, with multiple exponents repeated accordingly to th-;ir multiplicity. Clearly
the number of exponents (counted according to their multiplicity) is equal to rank(dng).
If z is a regular nilpotent element of g, then it follows from the results of Kostant [9]
that the exponents of (g, z) are just tﬁe usual exponents of g. For a general nilpotent
z € g, the sequence of e;ponents of (g, z) is a subsequence of—t.he sequence of exponents
of g._ If g is not of type Ds,, then ea;h exponent of (g, z) is of multiplicity one.
LEMMA 2.4. Let z € g be nilpotent, z # 0. _Th.en 1 is an exponent of (g,x).
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Proof. We may take Pi(y) = 8(y,y). Hence ¢1(y) = 2y.

Let # € g. Then C[G - 2], the algebra of regular functions on the orbit closure

G -z is a rational G-module.

PROPOSITION 2.5. Let x €g. Then rank(dm;) is equal o the multiplicity
of the adjoint representation g in the C—J—module C[_G—z_]

In Proposition 2.5, we do—not require that z be nilpotent.

COROLLARY 2.6. Let z € g be nilpotent and let C[G - 2] = ®m>0C[C - ]m

denote the graded structure on C[G -z). Then the multiplicity of g in C[G - z]n is

equal to the multiplicity of m as an exponent of (g,%).

3. REDUCTIVE SUBALGEBRAS OF MAXIMAL RANK

In this section r will denote a reductive subalgebra of g of mazimal rank and s = [r,r]
is the commutator subalgebra of r. The subalgebra; is a semisimple subalgebra of
g. A semisimple subalgebra of g which can be obtained in this manner is said to be a
;egular semasimple subalgebra c?fg.

PROPOSITION 3.1. Lel € s be nilpotent. If @;(z) # 0, then m; is an
ezponent of (s,z), and hence an exponent of s. The sequence of exponents of (g,x)
is a subsequence of the sequence of exponents of s. -

Let R be the connected algebraic subgroup of G such that L(R), the Lie algebra of
R, is equal to r. The algebra of invariants I(r) = C[r]¥ is a graded polynomial algebra.
Let Q1,...,Qn be a minimal set of homogeneous generators of I(z) and let mp :  — C”
denote the polynomial map (Q1,...,Qr). Then there exists a unique polynomial map
v : C" — C" such that the diagram

z —

ks

— I

7o
n v cn

C
is commutative. More concretely, there exist polynomials F; € C[X,,...,X,], j =
1,...,n, where Xi,...,X, are indeterminates, such that P; = F;(@1,...,@n), j =

1,...,2. The map v is given by

v(z) = (Fi(),...,F,(2))

PROPOSITION 3.2. Let z be a regular nilpotent element of s. Then
rank(dm,) = rank(dvy).
Now let ¢ be a Cartan subalgebra of r, hence a Cartan subalgebra of g. Let

W = W(g,1) and Wy = W(z,t) be the corresponding Weyl groups. The restriction



homomorphisms Clg] — C[f] and C[z] — C[t] map I(g) isomorphically onto C[g]W

and I(z) isomorphically onto C[f]”°. Therefore we obtain a commutative diagram

(3.3) T
L
cr L oCn

where the vertical maps are the restrictions to ¢ of 7o and #. Thus we see from Propo-
sition 3.1 that, if z is a regular nilpotent element of s, then rank(dm;) = rank(dvg)

can be computed by a computation involving Weyl group invarianis.

4, COMPUTATIONS FOR THE CLASSICAL LIE ALGEBRAS
4.1 Nilpotent classes in the classical Lie algebras. (See [5] and [6]).

(a) Type An. Let g = s,..(C)

To each nilpotent element # € g, we can canonically assign a partition A(z) =
(A1,...,Ar) of n+1; the A;’s are the s_izes of the Jordan blocks in the Jordan canonical
form of z. We always assume A\; > Az > ... > A, > 0. We set r = £(A(z)); r is the
length of the partition A(z). The map ¢ — A(x) determines a bijective correspondence
between nilpotent classes in g and partitions of n + 1.

(b) Types B, and Dn.—Here g is the Lie algebra g | (C) of all skew symmetric
complex m X m maitrices; for type By, (resp. type D) m = 2n + 1 (resp. m = 2n).
We consider g as a subalgebra of 5 gm(C) and, fz € g is nilpotent, we let A(z) be
the corresponding partition of m. A partition A = (A1,...,A,) of m corresponds to a

nilpotent element z € g if and only if A satisfies the following condition :
(%) each even part of X occurs an even number of times.

Two nilpotent elements of g are conjugate under SL,,(C) if and only if they are conju-
gate under the full orthog(;lal group O, (C). Thus there is a bijective correspondence
between partitions A of m satisfying (*) and Op,(C)-classes of nilpotent elements in
2, (C). Ifall A; are even, then the O,,(C)-class corresponding to A splits into two
SO, (C)-classes. Otherwise the O, (C)-class corresponding to A is a single SO, (C)-
class. In particular, if m is odd, there is a bijective correspondence between partitions
of n satisfying () and nilpotent conjugacy classes (under SO, (C)) in g_(C).

(c) Type C,. Here g= _f_gn(C), which is a subalgebra of s §2n(C). The map
z — A(z) determines a bijective correspondence between nilpotent classes in g and

partitions A of 2n which satisfy the following condition :

(x%) every odd part of X occurs an even number of times.
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4.2. Computations for type A,. Section 3 gives a method by which, for certain
nilpotent elements « € g, rank(dn;) can be computed by a calculation involving Weyl
group invariants. For t;'pe A, this method works for every nilpotent element. The
Weyl group invariants are easy to describe in this case and one can compute explicitly.
We obtain the following result :

THEOREM 4.2.1. (Type 4,) Lelz €g = ___n+1(C) be nilpotent and let
Az) = (A1, ..., Ay) be the corresponding partition of n+1. Then rank(dr:) =X —1
and the exponents of (g,x) are 1,2,...,2; — 1.

4.3. Types B, a;d Cp. Let N = 2n + 1 for type B, and N = 2n for type C,.
We consider gasa suba.lgebra of g = =st (C) In both cases there exists an involution
# of g such that g= gl is the ﬁxed point subalgebra of g Let {, be a f-stable
Cartan subalgebra of g which includes a Cartan subalgebra { of g; then t= gle. Let
W = W(g,g) and W, = W(gl,gl) be the corresponding Weyl groups. Then one can
identify W with the normalizer of { in W;. Moreover, the restriction homomorphism
Clt,] — C[¢] maps Cl[t1]": surjectively onto C[t]". (This is just a lucky coincidence.)
Thus the inclusion { < ¢ induces a morphism of orbit spaces /W — ¢ /Wi, which
identifies /W with a closed subvariety of ¢, /W;. We obtain a commutative diagram

(4.3.1)

t/w ~ ¢ L. oV o~ 4w

The action of # on ¢, induces an actionof f on { /W1 = ~ CN. If we identify ¢ with C" in
the appropriate manner, then C[g]w is freely generated by PJ(y1 v ¥, i=1,..,n,
where y1,...,y, are coordinates on C" and the P;’s are the elementary symmetric
functions. This allows us to give an explicit description of the morphism v in 4.3.1.
Using this description we can prove :

PROPOSITION 4.3.2. Let z € g be nilpotent.
Then dyo(dmz(g)) = ((dm)s (gl))o. Moreover dyg is an injection.

Proposition 4.3.2 allows us to use the explicit description of (d71), to give precise
results on image (dw,) for every nilpotent element £ € g. We obtain the following
result : -

THEOREM 4.3.3. (Types B, and C;). Let z € g be nilpotent and let
A=) = (A1,...,Ap) be the corresponding partition of N. Then _rank(dﬂ'x) is equal to
[A1/2], the integral part of A1/2, and the exponents of (g,z) are 1,3,...,2[A;/2] - L.



234

4.4. Type D,. Here g =, (C). We consider g as a subalgebra of 9= s£, (C).
We have 4= g‘;, where @ is an involution of g We argue as in 4.3. In this case, however,
there is an “extra” polynomial invariant, the Pfaffian, which is not the restriction to g
of an element of I (g_l ). We need the following result : -

LEMMA 4.4.1. Let z € g be nilpotent. Then z is a critical point of the Pfaffian
if and only if (M) >2.

This result, and computations similar to those of 4.3, gives the following :

THEOREM 4.4.2. (Type D,). Let z € g and let A(z) = (A1,..., ). (a) If
2A(z)) > 2, then rank(dm,) = [A1/2] and the ezpt;wnts of (g,x) are 1,3,...,2[A:/2]-
1. (b) Assume A(z) = (2n—1,i) with i odd. Then rank(dw;) =(2n—i+1)/2 and the
exponents of x are 1,3,...,2n—i—2 and n—1. (c) Assume n = 2m is even and

A(z) = (n,n). Then rank(dn;) = m and the ezponents of (g ,z) are 1,3,...,2m — 1.

5. TWO SPECIAL RESULTS

We continue with the notation of Section 2. We recall that a nilpotent element = € g is
subregular if dim Gy = n + 2. (Here n = rank(G).) The subregular nilpotent elements

of g form a single conjugacy class which is dense in the set of non-regular nilpotent

elements.
LEMMA 5.1. Let z be a subregular nilpotent element of g. Then rank(dw;) =
n —1 and the exponents of (g,x) are my,...,My_y.

The proof that rank(dr;) = n — 1 is given in [13]. Using this, an easy argument
involving Proposition 2.2 shows that the exponents of (g, ) are mi,...,my_1.

PROPOSITION 5.2. Let s be a regular semz’si;zple subalgebra of g and let =
be a regular nilpotent element of s. Assume that m; is an exponent of s a_nd that d;
does not divide d; for i# j. Then m; is an exponent of (g,%).

It follows from Section 3 that Proposition 5.3 is equivglent to a result on Weyl
group invariants. Our proof of the corresponding result on Weyl group invariants was

suggested by T. A. Springer and uses his results [15] on regular eigenvectors of Weyl
groups.

6. EXPLICIT RESULTS FOR THE EXCEPTIONAL LIE ALGEBRAS

PROPOSITION 6.1. Let g be an exceptional simple Lie algebra and let s
be a regular semisimple subalgebra 0} g. If m is an exponent of g which is also an
ezponent of s, then m is an exponent —z;f g, %). -

Ezample 6.2. Let g be of type Eg, le_t— s be a regular semisimple subalgebré, of g
of type F7 and let « be; regular nilpotent element of s. The exponents of Eg whicE
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are also expouents of F; are 1, 7, 11, 13 and 17. It follows from Proposition 6.1 that
the exponents of (g, z) are 1, 7, 11, 13 and 17 and that rank(dr,) = 5.

Discussion of—proof of Proposition 6.1. If £ # 0, then 1 is an exponent of (g, z)
by Lemma 2.3. For most other exponents, the proof follows from Proposition 5.2. 7I‘he
exponents which cause trouble are as follows : (a) Types F4, Eg and E7, m = 6; (b)
Type Es, m = 8,12. For all cases except type E7, m = 6, one can get the result by
a refinement of the proof of Proposition 5.2, using the detailed information on regular
eigenvectors of Weyl groups which is contained in Springer’s paper [15]. The case of
type E%, m = 6, requires a special argument.

If g is an exceptional simple Lie algebra and if # € g is a regular nilpotent element
of a reg_;llar semisimple subalgebra s of g, then Propositi_c;n 6.1 gives precise information
on the exponents of (g,«). In order t; obtain the exponents for the other nilpotent
elements, we need to_use the order relation on nilpotent orbits given by the orbit
closures. If C; and C; are nilpotent orbits in g, then we say that C; < C3 if C; C C,.
One has exact information on this order rela-,—tion between nilpotent orbits. See, for
example the tables in Carter’s book [5], pp. 433 - 446.

The following results are elementary :

6.2. If # € Cy,y€ Cz and C1 < Cy, then the exponents of (g,x) are a
subsequence of the exponents of (g,y). -

6.3. Let r be the number o}nodes with non-zero weight tn the weighted Dynkin
diagram associated to a nilpotent element x € g. Then rank(dr,) <r.

6.4. Let s be a regular semisimple subalg_ebm of g, let z be a nilpolent element
of s and let m be an ezponent of s,x). [We assume g is not of type Doy. If s has a
direct factor of type Do, then we assume that m # 21«:—— 1]. If m is also an ezponent
of g, then m is an exponent of (g,z).

—Let g be an exceptional Lie a_lgebra. By using the results 5.1 and 6.1 - 6.4, one
can get l;recise information on the exponents for every nilpotent orbit in g with the
following exception : g of type Es, C is the class Es(as) (notation as in [5]) and m = 19.
In this case we expect_ that 19 is an exponent of C, but have not been able to prove it.

A list of the exponents of the nilpotent orbits in the exceptional simple Lie algebras

is given in the Appendix to this paper.

7. NON-NORMAL ORBIT CLOSURES IN EXCEPTIONAL LIE ALGE-
BRAS.
The problem of whether the closure of a nilpotent orbit in g is a normal variety is of

interest in representation theory (see, e.g. [2], Thm. 5.6). For the classical Lie algebras,
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Kraft and Procesi [10] have obtained detailed, although not quite complete, information
on this problem. For the exceptional Lie algebras, some results can be obtained from
the (very difficult) calculations of Benyon and Spaltenstein [1] on “Green’s functions”
for the corresponding finite Chevalley groups, but the general problem is still open. We
indicate below how the calculations of the previous sections lead to a number of new
examples in the exceptional algebras of nilpotent orbits whose closures are not normal
varieties.

For each integer j > 0, let ¢U) = {z € g | dim G- & = j}. Each g9 is a locally
closed subvariety of g. A sheet i_n g is an irr-;ducible component of soge g(j ); a sheet
S is a Dizmaer sheet_if S contains ; semisimple orbit. It is known that eac_h sheet of g
contains a unique nilpotent orbit. -

The following two results are due to Borho and Kraft [3] :

7.1. If S is a sheet in g, then there exists a parabolic subgroup P of G and a
solvable ideal 1 of p= Lie(P)_such that S=G-r"*9.

See [3] for the definition of rres.

7.2. Let S, P, g.be as in 7.1 and let G-z denote the unique nilpotent orbit in

S. Assume that Gy = P, and that the orbit closure G - is a normal variety. Then
for each simple G-module V| the function y — multy(C[G -y]) is constant on the
sheet S. Moreover, for every y € S, the orbit closure G -y is @ normal variety.

Here multy (C[G - y]) is the multiplicity of V in the G-module C[G - y].

As an immediate consequence of 7.2, we have :

7.3. Let p be a parabolic subalgebra of g, let h be a Levi subalgebra of p, let
s=1[h,b] and IZt z denote the centre of h. Le—t S be the unique connected alge-zraic
subgroup of G such that Lie(S) = s and let C =S -u be a nilpotent orbit in s. Let

g
C, = IndZC be the induced nilpotent orbit in g and let v € Cy. Let m : 8 — C”

denote the quotient morphism for s. Assume that the stabilizer G, is connected. (1)
If

(7.3.1) dimgz + rank(dm; ), > rank(dm,),
then G -v is not a normal variety. (2) If S-u is not a normal variety, then G- v is

not ¢ normal variety.
Proof. (1) Let h € 2"%9. Then the left hand side of (7.3.1) is equal to

rank(dm)p 4y = multy(G - (b + u))

and the right hand side equals multg(G - v). Thus (1) follows from 7.2. (2) It is known

that G - (h + u) is a normal variety if and only if S - u is normal. Thus (2) follows from
7.2.
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Ezample. Let C denote the class in (the Lie algebra of type) Bz corresponding
to the partition (3,2,2). By the results of Kraft-Procesi [10], the orbit closure C is not
normal. Let C' = Indg‘3 (C). Then C’ is the class in Fy denoted by Cz. If v € C’, then
the stabilizer of v in G (the adjoint group of type Fy) is connected. Thus, by 7.3.(2),

C’ is not a normal variety.

There is a recipe which assigns to each nilpotent element v of g a weighted Dynkin
diagram (abbreviated W.D.D.); this is a function which assigns to each node a of the
Dynkin diagram of g an integer n(a), the weight of a; the weights n(a) are either 0, 1,
or 2. The conjugac; class G - v is uniquely determined by the W.D.D. If all weights
of the W.D.D. of v are even, then v is an even nilpotent element and G- v is an even

nilpotent class.

Let C' = G-v be an even nilpotent class of g. Let P denote the “standard parabolic
subgroup” associated to the set of nodes of th_e W.D.D. of C which have weight zero
and let p = Lie(P). Let r resp u be the solvable (resp nilpotent) radical of p. Then
S§=G -2’39 is a sheet of g (a Dixmier sheet) and C = G - p"* is the unique n_ilpotent

orbit of §. In particular we may assume that v € p.

7.4. Let C=G-v,p, P and p be as above and assume that v € p. Then
P, =G,. -

This follows from results of Hesselink and Kraft (see [7], Thm. 11.3 and [8], Thm.
4.7).

7.5. Let C = G-v be an even nilpotent class in g and let d denote the number of
2's in the weighted Dynkin diagram of C. Then rank(dm,) = d and, if rank(dmr,) < d,
then the orbit closure C is not a normal variety.

Proof. Let S, r, pbeasin 7.3. If h € "% is semisimple, then rank(dm) = d.
Thus 7.4 follows from 772.

Remark 7.5. In 7.4, if G, is connected, then the result follows from 7.2.(1).

Example 7.6. Let g be of type Eg and let C = G - v be the nilpotent orbit in
g denoted by Dr(ay). 'IThen C is an even nilpotent class and we see from Carter’s
Ea,bles, [5], p. 407, that the W.D.D. has three 2's. From the Appendix, we see that
rank(dm,) = 2. Thus C is not normal. We note from the tables in [5] that G, is not
connected.

Using the results 7.2 and 7.4, one can obtain a number of examples of nilpotent
orbit closures which are not normal in the exceptional Lie algebras of types Es, E7, Es.
It is a matter of checking our tables in the Appendix against the tables of Carter [5],
pp. 402 - 407, and also the tables of Spaltenstein [14], pp. 174 - 175 on induced orbits.
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In the appendix we have indicated the non-normal nilpotent orbit closures which we

have detected in this way.

8. CONCLUDING REMARKS
The two results below can be checked case by case from our calculations :

8.1. Let g be a simple Lie algebra, let b be a reductive subalgebra of g of mazimal
rank and let g——:: &, b]. Let v be a regular nilpotent element of s. For_each integer
m > 0, let ap, (resp. by) be the multiplicity of m as an exponent of the semisimple
Lie algebra g (resp. s). Then the multiplicity of m as an exponent of (g,v) is equal
to min(am,l;—m). -

8.2. Let v be a distinguished nilpotent element of the simple Lie algebra g and
let d denote the number of 2's in the W.D.D. of g. Assume G-v is not the_class
Es(a,). Then rank(dw,)=d. -

See [3] for the definition of distinguished nilpotent elements.

We have not been able to give direct proofs of either 8.1 or 8.2. If one could
strengthen 8.2 by giving a procedure for getting the exponents of a distinguished nilpo-
tent element, then 8.1 and 8.2 together would give an easy algorithm for reading off
the exponents of an arbitrary nilpotent element of g in terms of the Carter-Bala clas-
sification of nilpotent elements. -

Our computations also give the following result :

8.3. Let g be a simple Lic algebra of type Ay, By, or C, and let § be a Dizmier
sheet in g. The_n the function

z > rank(dr;)

s constant on S. -~

Let g be a simple Lie algebra and let C be a nilpotent orbit in g. Let 7 : C—C
denote the normalization of C. Then one can detect those orbits G “ain C for which
#n71(a) > 1 by means of results on Green’s functions (See [1], p. 595). This allows
one to detect all nilpotent orbits C such that 7 is not a bijection (assuming one can
calculate the appropriate Green’s functions!); in these cases, the non-normality of Cis
due to “branching”. For g of type Fg, it is shown in [1] that there are precisely three
such orbits. However our results give seven nilpotent orbits with non-normal orbit
closures. For the four new non-normal orbit closures in type E§, the normalization
map 7 is a bijection. For the classical groups this does not happen (except perhaps for

a few special cases which Kraft-Procesi cannot handle). See [10], p. 543, Thm. 1.
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APPENDIX. Ezponenis and non-normal orbit closures for nilpotent orbits in
exceptional simple Lie algebras.

We list below the exponents for each nilpotent orbit in the exceptional simple Lie
algebras. We follow the notation of Carter’s book [5] for the nilpotent classes. An entry
of the form As-1,4,5; under type Es means that if g is of type Es and z € g is
nilpotent, with the orbit of « denoted by As, then the expo-;lents of (g, z) are 1, 4,—5.

We also list those nilpotent orbits, for which we can prove by our—methods that the
orbit closures are not normal. Presumably, there are other non-normal nilpotent orbit
closures.

1. Type Eg. FEzponentis.

Eg-1,4,5,7,8,11 ; FEe(a1)-1,4,5,7,8 ; Ds-1,4,57 ; Eg(as)- 1,4, 5;

Ds(a1)-1,4,5 ; As-1,4,5, ; Aa+A1-1,4; Ds-1,5 5 Ag-1,4 ;

all other (non-zero) nilpotent orbits - 1.

Non-normal nilpotent orbit closures: As+ Ay, As, As + A1, Az, As +24;, 24,4,

Ay + Ay

2. Type F7. FEzponents.

E;-1,5,7,9,11,13,17 ; E7(a;)-1,5,7,9,11,13 ; E7(a2)-1,5,7,9,11 ;

F7(a3)-1,5,7,9 ; Es-1,5,7,11 ; Dg-1,5,7,9 ; Ev(as)-1,5,7 ;

Dg(a1)-1,5,7 ; Es(a1)-1,5,7 ; Ds+A;1-1,5,7 ; As-1,5 ; Er(as)-1,

5

Ds-1,5,7 ; FEs(ag)-1,5 ; Dg(az)-1,5 ; Ds(a;)+A1-1,5 ; As+A4A;1-1,

5 ;

(A5 -1,5 ; Ds(a1)-1,5 5 Da+A1-1,5 ; (A5)"-1,5 ; Ds-1,5 5

all other nilpotent orbits - 1.

Non-normal nilpotent orbit closures: Dg(ay), Dg(az), (As5)”, As, Az+24:, As+A4A;,

Aj.

Type Es. Ezponents

Es-1,7,11,13,17, 19, 23, 27 ; Es(e;)-1,7,9, 11,13, 17,19, 23 ;

Es(as)-1,7,11,13,17,(197) ; Es(as)-1,7,11,13,17 ; Es(as)-1,7,11,13 ;

E;-1,7,11,13,17 ; Eg(bs)-1,7,11,13 ; Es(as)-1,7, 11 ;

F7(a1)-1,7,11,13 ; Es(bs)-1,7,11 ; D7-1,7,11 ; Eg(as)-1,7 ;

Er(ag)-1,7,11 ; Eg+ A1 -1,7,11

the following classes have exponents 1 and 7 : Es(ag), D7(a1), Es(bs), E7(as3),

Es(a1) + A1, A7, D7(as), Ds, Ds + Az, Ee(a1), F7(as), De(a1), Ds + A1, Ds

all other nilpotent orbits - 1.
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Non-normal nilpotent orbit closures : E7(a1), E7(asz), D7(a1), Fs, Ds, Es(a1),
Ag, Ds + A1, Ds, Eg(az), Da+ Aa, Ds(a1) + A1, As, Dy + Ay, Asg, Dy, As.

4. Type F,. Ezponenis

Fy-1,5,7,11 ; Fy4(a1)-1,5,7 ; Fa(az)-1,5 ; Bz-1,5; C3-1,5 ;
all other nilpotent orbits - 1.

Non-normal nilpotent orbit closures : Cs.

5. Type G3. FEzponents

Gs - 1,5 ; all other nilpotent orbits - 1.
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