NORMAL SUBRELATIONS OF ERGODIC EQUIVALENCE RELATIONS

J. Feldman(1), C.E. Sutherland(2) and R.J. Zimmer(3)

§0 INTRODUCTION

In this paper we introduce the notion of a "normal" subrelation of an ergodic equivalence relation, and study some of its consequences. Details will appear elsewhere [2].

Throughout, we deal with a countable non-singular equivalence relation S on a standard non-atomic probability space (X, B, μ), as in [1] or [4]. Thus $S \subseteq X \times X$ is a Borel set, for each $x \in X$, $S(x) = \{y \in X : (y, x) \in S\}$ is countable, and for each $E \in B$ with $\mu(E) = 0$, $\mu(S(E)) = 0$ where $S(E) = \cup\{S(x) : x \in E\}$. For our purposes, there is no loss of generality in assuming that μ is a probability measure, and that S is ergodic i.e. for $E \in B$, $\mu(S(E)) \in \{0, 1\}$; we will hence forth make these assumptions. In addition, we assume for simplicity that the measure μ is finite and invariant, as in [1] i.e. that S is of type II_1.

In recent years, much has been learned about the structure of such relations, up to isomorphism; here S_1 on (X_1, B_1, μ_1) is isomorphic to S_2 on (X_2, B_2, μ_2) if there is a bimeasurable map $\phi : X_1 \to X_2$ between conull subsets of X_1 and X_2 for which $\mu_2 \circ \phi$ has the same null sets as μ_1, and for which $(x, y) \in S_1$ if and only if $(\phi(x), \phi(y)) \in S_2$. The reader is referred to [1,3,7] for a glimpse of what is known. Our interest however is not so much in the relations themselves, but in the possible subrelations R of a given ergodic equivalence relation S.
on \((X,B,\mu)\); alternatively, if \(R\) and \(S\) are given equivalence relations, we are interested in the various embeddings of \(R\) in \(S\).

\section{The Index Cocycle}

Let \(S\) be an ergodic, countable, non-singular II\(_1\)-equivalence relation on \((X,B,\mu)\) as above, and let \(R \subseteq S\) be a (Borel) subrelation; we do not assume \(R\) is ergodic. A modification of the selection argument of [1] guarantees there is a set \(J = \{1, 2, \ldots, N\} \subseteq \mathbb{N}\) (where we allow \(N = \infty\)), and a Borel map \(\Psi = (y,x) \in S \to (\psi_x(y), x) \in J \times X\) such that \(\psi(y,x) = \psi(y', x)\) if and only if \((y,y') \in R\); effectively, \(\{\psi_x(y) : y \in S(x)\}\) are a set of labels for the \(R\)-equivalence classes within \(S(x)\) – the number of such classes \((N)\) is essentially independent of \(x\) by the ergodicity of \(S\). \(N\) is called the \textit{index} of \(R\) in \(S\). We now define a map \(\sigma_{\psi} : S \to \Sigma(J)\), the group of all permutations on the set \(J\), by

\[
\sigma_{\psi}(x,y)(\psi_y(z)) = \psi_x(z)
\]

for \((x,y) \in S\), \((y,z) \in S\).

\textbf{Theorem 1.1} [(2)] In the situation described above

\begin{enumerate}[(a)]
 \item \(\sigma_{\psi}\) is a 1-cocycle, or \(\sigma_{\psi} \in \mathbb{Z}^1(S, \Sigma(J))\) i.e. for \((x,y) \in S\), \((y,z) \in S\) we have

 \[
 \sigma_{\psi}(x,y)\sigma_{\psi}(y,z) = \sigma_{\psi}(x,z);
 \]

 \item If \(\Phi : S \to J \times X\) is another "labelling map", then there is a Borel map \(x \in X \to \nu_x \in \Sigma(J)\) such that for \((x,y) \in S\),

 \[
 \sigma_{\Phi}(x,y) = \nu_x \sigma_{\psi}(x,y)\nu_y^{-1};
 \]

 thus the cohomology class \(\sigma\) of \(\sigma_{\psi}\) depends only on the pair \(R \subseteq S\).
\end{enumerate}
c) If $R, R' \subseteq S$ are ergodic and define cohomology classes $\sigma, \sigma' \in H^1(S, \Sigma(J))$, then there is an automorphism α of S such that $\alpha^{(2)}(R) = R'$ if and only if there is an automorphism β of S such that $\sigma \circ \beta^{(2)} = \sigma'$. (As in [4], $\alpha^{(2)}$ is the restriction of $\alpha \times \alpha$ to S).

Thus the isomorphism classes of ergodic subrelations R of S are controlled completely by (a subset of) the cohomology $H^1(S, \Sigma(J))$. We will refer to the cocycle σ (or its class) corresponding to a subrelation R of S as the index cocycle of the pair; where appropriate it will be denoted σ_R.

We may recover $R \subseteq S$ (up to a transitive relation) from σ_R as follows. Given $\kappa \in Z^1(S, \Sigma(J))$, we define the skew product $\hat{R} = S \times J$ as the equivalence relation on $X \times J$ given by

$$((x, i), (y, j)) \in \hat{R} \text{ if and only if } (x, y) \in S \text{ and } \kappa(x, y)(j) = i.$$

We also define \hat{S} on $X \times J$ by

$$((x, i), (y, j)) \in \hat{S} \text{ if and only if } (x, y) \in S.$$

Theorem 1.2 ([2]) If $R \subseteq S$ is an ergodic subrelation and $\kappa = \sigma_R$, then there is an isomorphism of \hat{S} with $S \times T(J)$ which carries \hat{R} to $R \times T(J)$, where $T(J)$ denotes the transitive relation $J \times J$ on J.

Conversely, if $\kappa \in Z^1(S, \Sigma(J))$ is arbitrary, then the index cocycle $\hat{\sigma}$ for $\hat{R} \subseteq \hat{S}$ can be taken to be given by $\hat{\sigma}((x, i), (y, j)) = \kappa(x, y)$.

Finally, if $\kappa \in Z^1(S, \Sigma(J))$ is ergodic (i.e. $S \times J$ is ergodic), the index cocycle for $R = \{(x, y) \in S : \kappa(x, y)(1) = 1\}$ is cohomologous to κ.

Thus there is a complete correspondence between ergodic subrelations $R \subset S$ (up to automorphisms of S) and the ergodic cocycle in $L^1(S, \Sigma(J))$.

§2 NORMALITY OF SUBRELATIONS

Definition 2.1 A subrelation $R \subset S$ on (X, μ) is said to be normal if the restriction of σ_R to R cobounds i.e. if there is a measurable map $x \in X \rightarrow v \in \Sigma(J)$ such that $\sigma_R(x, y) = v_{xy}^{-1}$ a.e. for $(x, y) \in R$.

Theorem 2.2 [2] Let $R \subset S$ be equivalence relations on (X, μ), and suppose R is ergodic. Then the following are equivalent:

i) R is normal in S.

ii) there are endomorphisms $\phi_j \in \text{End}(R), j \in J$, such that $S(x) = \cup_{j \in J} R(\phi_j(x))$ and $R(\phi_j(x)) \cap R(\phi_k(x)) = \emptyset$ for $j \neq k$;

iii) there is a discrete group G and a homomorphism $\theta : S \rightarrow G$ such that

a) $\ker \theta = \{(x, y) \in S : \theta(x, y) = e\} = R$;

b) if $g \in G$ and $x \in X$ are given, there exists $y \in X$ with $(y, x) \in S$ and $\theta(y, x) = g$;

c) for any other discrete group H and homomorphism $\kappa : S \rightarrow H$ with $\ker \kappa \subset R$, there is a homomorphism $\kappa' : G \rightarrow H$ with $\kappa = \kappa' \circ \theta$.

iv) The extension $S \times J$ of S by the index cocycle of R is normal in the sense of [6].

The theorem may be generalized to nonergodic subrelations R of S at the expense of replacing the group G of iii) by a discrete measured ergodic groupoid \mathcal{G}. The group G or groupoid \mathcal{G} is termed the quotient of S by R, and it is routine to see that any discrete
group or groupoid can occur as a quotient; we should also note that the "quotient relations" of [4] are a special case of our construction.

It is easy to see where the group G of 2.2.iii) comes from: for $j, k \in J$ and $x \in X$, define $j^x k = l$ to mean $R(\phi_j (\phi_k (x))) = R(\phi_l (x))$ where $\{\phi_j\}$ are "choice functions as in 2.2.ii). Since $j^x k = y^x k$ for $(x, y) \in R$ (as $\phi_j \in \text{End}(R)$ for all j) and since R is ergodic $j^x k$ is (essentially) independent of x, and provides a group law on J.

The group G is of course the same as that provided by Zimmer's theory of normal extensions.

Theorem 2.2 has some surprising consequences for group actions.

COROLLARY 2.3 Let H_j be discrete groups with normal subgroups N_j, and suppose H_j acts freely on (X_j, μ_j) with μ_j finite and invariant, and with N_j acting ergodically (j=1,2). Then, if there is a measure space isomorphism of (X_1, μ_1) with (X_2, μ_2) carrying H_1-orbits to H_2-orbits and N_1-orbits to N_2 orbits, we have H_1/N_1 isomorphic with H_2/N_2.

Note that if R is normal in S and ergodic the quotient group G "acts" as endomorphisms of R; in the notation of Theorem 2.2. we may choose $\phi_g \in \text{End}(R)$, $g \in G$ such that $\theta(\phi_g x, x) = g$ for all $x \in X$ and $g \in G$, and we have $(\phi_g \phi_h(x), \phi_{gh}(x)) \in R$ for all $x \in X$. It is routine to show that we may assume ϕ_g is invertible for each g (although this may fail if R is not ergodic - see [4]). Furthermore, we have
THEOREM 2.4 [2] Suppose R is normal in S and ergodic with the quotient group G being amenable. Then there is a homomorphism $g \in G \rightarrow \phi_g \in \text{Aut}(R)$ such that $\theta(\phi_g x, x) = g$ for all $g \in G$.

§3 CLASSIFICATION RESULTS

In this section, S on (X, μ) denotes the hyperfinite relation of type III_1 (c.f. [4]); Our objective is to classify (some of) the subrelations R of S.

THEOREM 3.1 [2] Let S on (X, μ) be as above.

a) There is a bijective correspondence between ergodic (not necessarily normal) subrelations of S (up to automorphisms of S) of finite index N and conjugacy classes of transitive subgroups of the symmetric group Σ_N on N symbols.

b) There is a bijective correspondence between ergodic normal subrelations R of S (up to automorphisms of S) and (isomorphism classes of) countable amenable groups.

§4 RIGIDITY RESULTS

Throughout this section H will denote a connected, non-compact simple Lie group with finite centre, and $\Gamma \subset H$ will denote a lattice (see [7] for definitions and discussion).

THEOREM 4.1 ([2]) For $j = 1, 2$, Let S_j on (X_j, μ_j) be a II_1 ergodic relation with normal ergodic subrelation R_j. Suppose that the quotient groups S_j/R_j are amenable, that R_j is generated by a free action of a lattice Γ_j in H_j, and that R-rank $H_j \geq 2$. Then if S_1 is isomorphic to S_2, H_1 is locally isomorphic with H_2.
THEOREM 4.2 [2] Let $\Gamma \subset H$ be a lattice and let S be the equivalence relation generated by a free II_1 ergodic action of Γ and suppose R-rank $H \geq 2$. Then if $R \subset S$ is normal and ergodic, R has finite index in S.

THEOREM 4.3 [2] Let $\Gamma \subset H$ be a lattice (with no rank assumption on H) and let S be the equivalence relation generated by a free ergodic II_1-action of Γ. Then, if $R \subset S$ is amenable and strongly normal, R is finite (i.e. $R(x)$ is finite for each x).

The same conclusion as in Theorem 4.3 holds if Γ is the fundamental group of a complete Riemannian manifold with sectional curvature k satisfying $k \leq c < 0$ for some constant c. In particular, it holds for free groups.

In Theorem 4.3, R being strongly normal means that $(g \in [S] : g$ normalizes $R)$ generates S. Strong normality implies normality in general; the converse is true for ergodic subrelations, but not in general (c.f. [4]).

§5 COMMENTS

Many ergodic equivalence relations (but not all) admit normal, ergodic, amenable subrelations, and hence maximal such ones. While these maximal, normal, ergodic, amenable subrelations are not unique, we know of no example of an equivalence relation ξ with maximal, normal, ergodic, amenable subrelations which are not conjugate via automorphisms of S.

Finally, we should note there is a strong connection between subrelations and pairs of von Neumann algebras (M,N) with $M \subset N$. This aspect will be discussed in [5].
REFERENCES

[4] K. Schmidt, Strong ergodicity and quotients of equivalence relations; *this volume*.

J. Feldman
Mathematics Department
University of California at Berkeley
Berkeley, California 94720
U.S.A.

C. Sutherland
Department of Mathematics
University of New South Wales
P.O. Box 1
Kensington 2033 NSW
Australia

R.J. Zimmer
Mathematics Department
University of Chicago
Chicago, Illinois, 60637
U.S.A.