IRREDUCIBLE REPRESENTATIONS THAT CANNOT BE SEPARATED FROM THE TRIVIAL REPRESENTATION

E. Kaniuth

Let G be a locally compact group and G the dual space of G, i.e. the set of equivalence classes of irreducible unitary representations of G equipped with the usual topology. In general, G is far away from being a Hausdorff space. In fact, a connected group G has a Hausdorff dual iff G is an extension of a compact group by a vector group [2], and if G is discrete, then G is Hausdorff iff the centre of G has finite index in G. Therefore, it is reasonable to study the set of all those $\pi \in G$ that cannot be separated from the trivial 1-dimensional representation 1_{C} , the so-called cortex cor(G) of G.

Interest in this closed subset of the dual also arose from the fact that the topology in the neighbourhood of 1_G is related to the group structur of G and to the cohomology of G in unitary representation spaces. It is well known (see [1]) that G has the Kazhdan property (T), i.e. $\{1_G\}$ is open in \hat{G} , iff $\mathbb{H}^1(G,\pi) = 0$ for every unitary representation π of G. The following remarkable result has independently been obtained by Vershik and Karpushev [8] and by Larsen [7]: If G is second countable and $\pi \in \hat{G}$, then $\mathbb{H}^1(G,\pi) \neq 0$ implies $\pi \in \operatorname{cor}(G)$.

Clearly, for $n \ge 3$, SL(n,¢), SL(n, R) and SL(n, Z) have a trivial cortex since they are groups with property (T). The cortex of SL(2,¢) consists of $l_{\rm G}$ and the principal series representation which is usually denoted by $\pi_{2,0}$. cor(SL(2, R)) contains, except $l_{\rm G}$, two discrete series representations. It turns out that for every connected semi-simple Lie group G, cor(G) is finite [3]. To show this one observes that, for

any connected Lie group G and $\pi \in cor(G)$, the infinitesimal character χ_{π} is trivial, i.e. $\chi_{\pi} = \chi_{1_{G}}$, and then uses the fact that if G is semi-simple and has a finite centre, then $\chi_{\rho} = \chi_{1_{G}}$ for at most finitely many $\rho \in \hat{G}$.

In [3] Bekka and Kaniuth investigate the structure of amenable Lie groups having a compact, in particular a finite, cortex. One of the main tools is the following explicit description of the cortex for amenable discrete G.

THEOREM 1 [3]. Let G be an amenable discrete group, and denote by G_F the normal subgroup of G consisting of all elements with finite conjugacy classes. Then $cor(G) = G/G_F$.

A locally compact group G is called [FC] group if every element of G has a relatively compact conjugacy class. For the structure of these groups compare [5]. Every [FC] group G has a Hausdorff primitive ideal space [6], so that $cor(G) = \{1_G\}$. It turns out that, conversely, G having a finite cortex amounts to that G is almost [FC]. Let us mention two of the results obtained in [3]:

Theorem 2 [3]. For an almost connected amenable group G the following conditions are equivalent:

(i) cor(G) is finite;

(ii) cor(G) is compact;

(iii) G contains a compact normal subgroup C such that G/C is a finite extension of a vector group.

THEOREM 3 [3]. Let G be an amenable Lie group. Then

157

(i) cor(G) = {1_G} if and only if G is an [FC] group.
(ii) If G is σ-compact, then cor(G) is finite iff G is a finite extension of an [FC] group.

One of the typical arguments used to prove Theorems 2 and 3 is the following. Let G be an amenable group, and suppose that V is a normal vector subgroup of G. Let $\lambda \in \bigvee^{O}$, and denote by H the stability subgroup of λ in G. Then the support $\operatorname{supp}(\operatorname{ind}_{H}^{G} 1_{H})$ of the induced representation $\operatorname{ind}_{H}^{G} 1_{H}$ is contained in $\operatorname{cor}(G)$. This can be seen as follows. Define $\lambda_n \in \bigvee^{O}$ by $\lambda_n(V) = \lambda(\frac{1}{n} v)$, $n \in \mathbb{N}$. Then $G_{\lambda_n} = H$, and by the amenability of H, 1_H is weakly contained in the set of all $\tau \in \overset{A}{H}$ such that $\tau | V$ is a multiple of λ_n for some n. We conclude that there exists a ret $\pi_{\iota} = \operatorname{ind}_{H}^{G} \tau_{\iota}, \tau_{\iota} \in \overset{A}{H}, \iota \in I$, such that $\tau_{\iota} \to 1_H$. Hence $\pi_{\iota} \to \operatorname{ind}_{H}^{G} 1_H$, and since G is amenable this shows that, for any $\rho \in \operatorname{supp}(\operatorname{ind}_{H}^{G} 1_H)$, ρ and 1_G cannot be separated in $\overset{O}{G}$.

Let now G be a simply connected nilpotent Lie group and g its Lie algebra. Denote by g^{*} the dual vector space of g and by Ad^{*} the coadjoint representation of G on g^{*}. Then, by Kirillov's theory, every $f \in g^*$ defines an irreducible representation π_f of G, and this gives rise to a bijection between the orbit space g^*_f/Ad^* and \hat{G} . Moreover, this correspondence is known to be a homeomorphism. It is clear that $\pi_f \in cor(G)$ iff there exist $f_n \in g^*$ and $x_n \in G$, $n \in \mathbb{N}$, such that $f_n \to 0$ and $Ad^*(x_n)f_n \to f$ in g^*_f . There was some hope that this theory should enable to clarify the structure of cor(G) up to a certain extent.

Looking at all the simply connected nilpotent Lie groups G of dimension ≤ 6 , one observes that

(I) cor(G) coincides with the set of irreducible representations of G

158

having a trivial infinitesimal character;

(II) cor(G) is a subdual of \hat{G} , i.e. cor(G) = $\widehat{G/N}$ for some closed normal subgroup N of G.

The expectation that (I) and (II) may hold in general was also supported by the following

THEOREM 4. Suppose that G is a nilpotent group of the form $G = \mathbb{R} \bowtie \mathbb{R}^n$. Then (I) holds for G[4]. Furthermore, $\operatorname{cor}(G) = \widehat{G/N}$ for some N, and N can be described explicitly [3,4]. In particular, let \mathbf{q} be the threadlike algebra of dimension n, i.e. \mathbf{q} has a basis X_1, \ldots, X_n with non-trivial products $[X_n, X_{j+1}] = X_j$, $1 \le j \le n - 2$. If $G = \exp \mathbf{q}$ and N = $\exp(\mathbb{R}X_1 + \ldots + \mathbb{R}X_{\lfloor n/2 \rfloor})$, then $\operatorname{cor}(G) = \widehat{G/N}$.

Surprisingly, it turned out that (I) as well as (II) may fail even for 2-step nilpotent simply connected nilpotent Lie groups. In [3] an 8-dimensional example G is given that neither satisfies (I) nor (II). The Lie algebra of G has a basis $X_1, \ldots, X_6, Z_1, Z_2$ with non-trivial commutators $[X_1, X_5] = [X_2, X_3] = Z_1$ and $[X_1, X_6] = [X_2, X_4] = Z_2$. It is possible to calculate the algebra $I(q_1^*)$ of all Ad*(G)-invariant complex valued polynomial functions on q_1^* . Since π_f has a trivial infinitesimal character iff P(f) = 0 for all $P \in I(q_2^*)$ with P(0) = 0, this gives the set of all $\pi \in \widehat{G}$ with $\chi_{\pi} = \chi_{1_G}$. On the other hand, cor(G) can be computed by using the fact hat if G is 2-step nilpotent and G = exp q_1, then $\pi_f \in cor(G)$ iff f belongs to the closure in q_1^* of the set of all $ad^*(X)g, g \in q_f^*, X \in q_1$.

Finally we consider motion groups, i.e. semi-direct products $G = K \bowtie V$, where K is a compact connected Lie group and V a vector group.

159

Then there exists a unique conjugacy class \mathcal{K} of subgroups of K with the following property: the set D of all $\lambda \in \bigvee^{\wedge}$ for which the stability subgroup belongs to \mathcal{K} is open and dense in \bigvee^{\wedge} . It is not hard to show

THEOREM 5 [3]. Let G and K be as above, and fix $H \in K$. Then cor(G) consists exactly of all irreducible subrepresentations of $ind_{u}^{K} l_{u}$.

REFERENCES

- C.A. Akemann and M.E. Walter, Unbounded negative definite functions, Canad. J. Math. 33 (1981), 862-871.
- [2] L. Baggett and T. Sund, The Hausdorff dual problem for connected groups, J. Funct. Anal. 43 (1981), 60-68.
- [3] M. Bekka and E. Kaniuth, Irreducible representations of locally compact groups that cannot be Hausdorff separated from the identity representation, J. Reine Angew. Math. to appear.
- [4] J. Boidol, J. Ludwig and D. Müller, On infinitely small orbits (preprint).
- [5] S. Grosser and M. Moskowitz, Compactness conditions in topological groups, J. Reine Angew. Math. 246 (1971), 1-40.
- [6] E. Kaniuch, Primitive ideal spaces of groups with relatively compact conjugacy classes, Arch. Math. 32 (1979), 16-24.
- [7] E.R. Larsen, Negative definite functions on locally compact groups,
 Ph.D. thesis, University of Colorado, 1982.
- [8] A.M. Vershik and S.I. Karpushev, Cohomology of groups in unitary representations, the neighbourhood of the identity, and conditionally positive definite functions, Math. USSR Sbornik 47 (1984), 513-526.

Fachbereich Mathematik / Informatik

der Universität - GH Paderborn

Warburgerstr. 100

D - 4790 Paderborn

Federal Republic of Germany