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SINGULAR INTEGRALS ON BMO
Douglas S. Kurtz

Let f be a locally integrable function on R™. We say f has bounded mean

oscillation, f e BMO , if

(1) B e TBT | H)lay <+,

where the supremum is taken over all balls B ¢ R™. Identifying functions which differ
by an additive constant a.e. makes BMO a Banach space with norm /|| lgpo edual to
the left hand side of (1). Note that L® is a proper subset of BMO,
since log|x| € BMO.

Let K be a locally integrable function on R™\{0}  such that

Ti(x) = lim K(y)f(x—y)dy is a bounded operator on 12, We say K
L0 M 1y1>

satisfies condition Hr ,1<r < w, if there is a non—decreasing function s on (0,1)

o0 .
such that 23‘:1 $(279) < +  and

1/t 1
l | lK(x—~y)-—K(x)|rdx] / <sly R, for [y|<r/2.
{x:R<|x|<2R}

Define H00 by the obvious modification.

If feL® is supported on a set of finite measure and K € Hy, then Tf exists
a.e. (i.e., the limit exists and is finite), Tfe€ BMO , and | Tfllgpo < Clitligpo (21
On the other hand, if f is merely bounded, then without a suitable rhodiﬁcation Tf
may fail to exist on a set of positive measure. For example, if f(x) = XE(x) is the

characteristic function of E = {x € R™: x>0, i=1,...,n}, then the Riesz transforms of

X.
f, defined by the kernels Kj(x) = I—l—]-h_—r , j=1,...,n, are infinite a.e.
: X
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Let I(x) be a constant function on R™. Wesay K¢ H': ,1<r<w, if

KeH ,TI=0, and }5_; 5279 < +w.

THEOREM: Suppose K € H ,1<r¢ o, and fe BMO. Either Tf fails to exist
almost everywhere or Tf € BMO and

"Tf"BMO < C"f"BMO'

The constant C is independent of f.

Given x € R® and § >0, set B(x,0) = {y € R™: |x-y| < 6. For
B =B(x,0), let f, = T]13T J f(y)dy. The proof of the theorem is based on the
B

following lemma. (See [4].)

LEMMA: Let 1<p <« Thereis a constant C depending on n and p so that for
fe BMO,B =B(x,0), and k21,

1/p
UB g tr)4g/Pay] < o(Fo "iflgyo

We now sketch a proof of the theorem. (See [6,4].) Suppose
E = {x € R™ Tf(x) exists} has positive measure. Let x, be a point of density of E
and §> 0. Set B =B(x,8) and B = B(x 40). Write f(x)=fp + [f(x)—fB] x5 (x)
+ [f(x)—fB] X[Rn\ﬁ(x) = fp+gp(x)+hp(x). Since fp is constant, Tfg = 0. By the

lemma, gp € L® and
2
@ [ 1Tplay < [B1/2 ITgglly < ©; 181" legll < C31B I lnior

It follows that Tgp exists a.e. so that Tf exists at almost every point such that
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Since X is a point of density of E and TgB exists a.e., there is a point
Yo € B(x,,0) such that Thp(y,) = T(y,) — Teg(y,) exists. Suppose x € B. Set

Aj = {z e R™: 2j6<|x0—z|$2j+15}. By the lemma, since K € Hr and [x—y,[<26,
(3) |Thg()-Thy(y,)l SJ |K(x—2)-K(y,2)| |hg(z)|dz

—ZLJ K(-2)K(y,) | 1{—E s

’

U |K(x—2)-K(y,2) rdz] U |f(z)—fB|f’dz]1/
J B( x 2J

® x¥oly 5 /e e ,
<o) s[] @/ it M gy

<o Yo s illflgyo = Cllpyo

As a consequence of (3), Thy exists ae. in B, which implies Tf exists a.e. in B.
By considering only B(x0,§) with § a positive integer, it follows that Tf exists a.e.
in R™

To show ||Tfligyi0 € Clflgpo » fix B = B(x,6) and choose y, as before.
By (2) and (3), |

b7 | 1TH) ~ Thp(rg) v < 7y [ 1Tap) 14y + 1) [ 1 Thp()-Tp(v) ey

<Clligpo

Since B was arbitrary, we see that Tf € BMO and ||Tf||BMO < C”f”BMO'
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Let En—l = {x €R™ |x|=1} and p be arotation of 211—1 with

lp| = 5uP |x—px|. Suppose K(x) = 0(x) , where € is homogeneous of degree 0
XEXR n—1 I X | n )

and JZ Qx)do(x) = 0. Let w. be the L' modulus of continuity of € on
n—1

1/r
En——l » wi( |P|<5U |Q(x 0 (px) | da(x)] . (For r=w, use the L

r(&)!fn&
J

norm). Then K € at P | —F—di<t o (This is a slightly stronger condition
0

than the L'-Dini - condition, which implies K € Hr') In particular, if

Qelip(a), a>0,
|9(x)-9@)] < C |x—y|¥,

then € H: . Thus, the Riesz transforms satisfy the theorem.
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