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SPECTRAL SYNTHESIS OF ORBITS OF 

COMPACT GROUPS 

Detlev Poquntke 

This talk is a contribution to the spectral synthesis in L 1 oonvolu

tion algebras of nonccmnutative groups. Let· us begin by recalling Sate ideas 

and results fran the much better understood case of cx:mtDltative groups. One 

way to consider spectral synthesis is as the attempt to classify the closed 

ideals in L 1 (G) for a locally ocmpaot abelian group G (or even in rrore 

general cx:mtDltati ve Banach algebras) • 

With each closed ideal I in L 1 (G) there is associated a closed sub-

1 A~A . A 
set of the structure space L (G) = G , namely the hull h (I) := {X E G I 

Kern 1 X ~ I} • '!his is clearly an invariant of the ideal. On the other 
L (G) A 

hand, to each closed subset A of G one may fonn the kernel k (A) := 

r'\ 1 A A 
lEA \ Kern 1 X = {fEL (G); f = 0 on A} where f denotes the Fourier 

X L (G) 
transfonn of f. It is easy to see that k (A) is the largest ideal I in 

L 1 (G) with h (I) = A • '!here is also a less obvious way to associate an 

ideal with A, namely 

1 I A A -j (A) := {f E L (G) supp(f) is a ocmpact subset of G ...... A} • 

It tums out that j (A) is the smallest closed ideal I with h (I) = A • 

The classification problem reduces to: Describe (the ideal structure of) 

the algebra k (A) /j (A) for closed subsets A of a. The best possible 

situation is, of course, that k(A)/j (A) is zero. In this case A is called 

a set of synthesis or a Wiener set. The next better situation is that 
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k(A)/j (A) is of finite degree of nilpotency. 

'lbe following is a sample of "classical results": 

i) The empty set is a set of synthesis. 

'!his is one way to fonnulate Wiener's approximation theorem, proved by him 

is the case G =:R • 

ii) All sets A with "scattered" boundary are sets of s-ynthesis. 

iii) 'lbe 1-sphere S 1 in JR2 is a set of synthesis (C. Herz). 

iv) '!he 2-sphere S2 in lR3 is not a set of synthesis (L. Schwartz). 

N. Va:ropoulos sho\..red, more generally, that the n-sphere Sn in ~+1 has 

the property that k (Sn) Ij (Sn) is of finite degree of nilpotency, and the 

deg-ree is [¥l + 1 • 

1\ 
v) For each non cc.uq:xtct G the dual G contains at least one closed 

subset which is not a set of synthesis (P. Malliavin). 

Later, Y. Damar and other Sw"'edes as well as D. M!.iller frem Bielefeld 

considered various sul::manifolds of :If . 

'!he investigations of spectral synthesis in the case of nilpotent Lie 

groups were started. by :my colleagues H. Leptin and J. Ludwig. '!he "hull h"' 

(of a closed two sided ideal) and the "kernel k" can be defined for the 

convolution algebra L 1 (N) of a nonCC1!mlUtati ve group N as soon as one 

agrees "Hlil1t the structure space of L 1 (N) should be. In the case of a s:ilrply 

connected nilpotent Lie group (and this is the only case in Which we will 

present SCffIEl results) there is crilly one reasonable candida'ce: The space 

Max L 1 (N) of IllElY..:irnal closed two sided ideals coincides with the space 

P1::iv (N) of primitive ideals, and Max (N) is in bijective correspond-
A A 

e:nce to the unitary dual N via the map N:3 [TI] -+ ker 1 1'1 IE Max (N). 
L (N) 

For a closed two sided ideal I in L 1 (N) one defines 

A 
h(l) :={ EN I Ic.::ker 1 TI}, 

L (N) 
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A 
and for a closed subset A of N one defines 

k(A) n ker 1T 
:= [ 1T] E A L 1 (N) 

The first reSult is due to Leptin, [4], who shcMed that L 1 (N) is the 

only closed two sided ideal I such that h(l) is errpt.y. In other WJrds, 

the enpty set is a set of synthesis. While it is trivial that k(A) is the 

largest ideal I with h (I) = A it is muc:h less obvious that for each 

A 
closed subset A of N the set of closed two sided ideals I with 

h(l) = A contains a smallest elarent. The existence was established by 

Ludwig, [5], using Dixmier I s symbolic calculus, see below. '!his smallest 

elarent is again denoted by j (A) • Ludwig also proved, [7], that k(A)/j (A) 

A 
is of finite degree of nilpotency for each one point subset A of N. 

Examples showed that the degree can be larger than one. In other WJrds, it 

is not even true that points are always sets of synthesis; finite degree 

of nilpotency seems to be the best result one may hope for. 

My interest in questions of spectral syntheSis cares fran atte!lpts to 

classify the algebraically irreducilile representations of L 1 (G) for a 

solvable connected Lie group G or, rrore general, to classify the so-called 

topologically carpletely irreducilile representations, TCI for short. One 

can attack this problem by doing a "Mackey type analysis" using the :restric-

tion of the representation to the nilradical N of G. To be rrore specific, 

one tries to describe the kernels of such representations in L 1 (N) • Qrigi

nally, I planned to apply the follOWing :result of Dixmier, [2], which is 

true, by the way, in much larger generality: 

If 1T is a Tel representation of G in E then the annihilator 

p of the C~ vectors of E in the universal enveloping algebra Un of 

N is a prime ideal and the hull hCp) of p in the primitive ideal space 
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of Un is the closure of a r-orbit where r denotes the (complex) Zariski 

olosure of the adjoint group of G. 

If in addition TI is uniformly rounded and hence a representation of 

L 1 (G) then clearly P:I< V (N) is contained in ker 1 TI where V (N) 
L (N) 

denotes as usual the crnpactly supported C"'" functions on N. I wanted to 

show that P'" V(N) is a "substantial part" of ker 1 TI ~ whatever that 
(N) 

means. The weakest useful information in this direction, as far as I can 

see, would be that h(p) is the closure of a r-orbit through a point in 
A 1\ 
N • (l)serve that N can be canonically embedded into the primitive ideal 

space Priv Un of Un, the image consists of the self-adjoint primitive 

ideals. I was unable to p:rove even ·this weak assertion directly. In full 

generality, it is still an ~ problem, see also below. Therefore, I was 

looking for other methods. I discovered that by same other considerations 

I could prove what I first wanted namely that for each algebraically irreduc-

ible represent.ation IT of L 1 (G) the annihilator ker 1 TI in L 1 (N) 
A L (N) 

is the kernel of the closure of a G-orbit i.11 N provided I would know the 

follOWing resulb 

THEOREM Let N be a simply conneoted nilpotent Lie group, let T be a 

compaot abelian group of automorphisms of N. and let U be a oonnected 

group of unipotent automorphisms (i.e. unipotent as transformations on n) 

1'1 • tna-t -T Ito:1"mali<~es U ~ Thel~e eX'£,'31;8 a, na,tuP(JZ- 11,u,mber 

In depending only on N with {k(Al/j (A)}In '" 0 for each T IX U-orbU A 

1\ 
in N. 

A detailed of the Theorem can be found in [8]. 

Conoe:rning the above stated "open problem" it is final.ly ~ that 
A 

hIt!) is the closure of a r-orbit through a point in N in the case of an 

algebraically irreducible representation. But the proof is anything else but 

"direct.". MJreover, it doesn"t 'WOrk in the case of general unifonnly rounded 
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'lCI representations. 

In the following I will try to explain the strategy of the proof of the 

'!heoren. '!his strategy leads to certain properties, later called (I) - (IV), 
A 

of closed subsets of N which can be studied separately. I will formulate 

these properties and I will give sate oc:mrents to them. A always denotes 
A 

a closed subset of N . 

PROPERTY (1) k(A) n V(N) is L1-dense in k(A). 

'!he main reason to introduce (I) is the following 

OBSERVATION For every cormected nilp::>tent Lie group N there exists a 

m A 
mmber m such that {k(A)/j (A)} = 0 for all closed subsets A of N 

satisfying (I). 

Let us recall the basic facts of Dixmier' s syrrbolic calculus, [1], which 

is crucial for the proof of the observation. There exists a number d depend-

ing only on N such that for every ccnpact neighborhood V of the identity 

in N the Haar neasure of vn is 0 (n d) as n -+ CIO (the Haar measure is 

of p::>lynanial. growth). Each r-times, r:= d + 4 , continoously differentiable 

function ql ::R -+ ¢ with c:x::npact support and with ql(O) = 0 operates on 

selfadjoint functions f = f* in V (N) in the follOWing sense: '!here exists 

1 A 
a unique elenent ql{f} E L (N) with 1: (ql{f}) = ql(1: (f» for all 1: E N 

vfuere ql( • ) is the usual functional calculus in C* algebras. ~reover, 

it was shown in [1] that for each f= f* EV(N) there exists a family F 

of co:npactly supported r-times continoously differentiable fmctions 

ql : lR -+ ¢ vanishing in a neighborhood of 0 such that the r th convolution 

pc:YNer r can be approxlinated by ql{ f}, ql E F • 

NCM, suppose in i!lddition that f = f* E V (N) is contained in k (A) 

The construction of j (A) , see [5], shows that ql{f} is in j (A) for 

ql E F • It follows that r E j (A) for all f = f* E V (N) n k (A). '!hen a 

little algebra gives that the same is true for all f E V(N) n k(A) • Since 

• 
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v (N) n k (A) is dense.in k (Ai by assurrptian one gets r E j (A) for all 

f € k(A) • Finally, a purely algebraic theorem of Nagata-Higman :i..!lplies that 

{k(A)/j(A)}m=O with m=2r-1 =2d+4 _1. 

It is very easy to establish property (I) in the case that N is can

mutative, Le. iSCllIDrphic to JRn , and that A is the orbit of any ccmpact 

group, say K. Since this fact is not contained .in the literature as far 

as I know I include the short trivial proof although at present I see no 

way to generalize it to the nonccmnutative case. The method doesn't work 

already in the case of K I>< U - orbits where U is, in the spirit of the 

Theorem, a connected group consisting of unipotent autcm::>rphisrns normalized 

by K. Evidently, the assurrption in the 'Iheorem that T is abelian is very 

unnatural. 

Tb prove the above claim it .is sufficient to establish that 

k(A) (0) n v(Jil) is dense in k(A) (a) for all a E~ where E(a) demotes 

the a-isotypic ccmponent for each K-space E. We fix a 

crete realization of a by matrices, a(k) (a .. (k» r 
1J 

dim a • let X = X : K -> (j; be the character of a, i.e. 
a 

and let p := Ox . For f E mf) (0) one has 

A r A-1 
f (xl = j p (k) f (k x) dk for 

K 

1\ -n 1\ 
'SIll x E N = UK) • If A = Kxo this gives 1,.'1 particular 

A 
f(mxo ) 

r A-1 
JP(k)f(k mxo ) for TIl E K . 

K 

o 
Since X (rrik) L: a .. (m) a .. 

i,j=1 1J J1 
it follows that 

and choose a con-

i,j = 1, ••. ,0 := 
o 

X (k) =2: a .. (k) 
i=1 11 
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A 0 r A-1 
f(mx ) = 0 i: a, ,(m) Ja" (k)f(k x) elk 

o "-1 ~J 1J 0 1,J- K 

This equation shoWs that for f E L 1 (!!ill (a) the finitely many conditions 

J '\-1 
a ji (k)f(k xo ) Ok = 0 for i,j "" 1, •.• ,0 are equivalent to f E k(A) • 

K 
Hence k (A) (a) is of fir>.i te codimension in L 1 (JR) (a) Since V (!!ill (a) is 

dense in L 1 Off) (a) one concludes that k(A) (a) n v(!!il) is dense in 

k(A) (a) • 

How can we establish (I) in the case of non-ocmnutative groups? Even 

in the case of points it is not evident from the definitions that 

kerL 1 T! n V (N) contains any non-zero function. Here the original idea to 

use the universal enveloping algebra enters the scene again. By its help 
i\ 

one can construct elements in k (A) n V (N). As I rrentioned above N can be 

considered as part of the primitive ideal space Priv Un If 1T is all 

i:ereducible unitary representation of N in R then the annihilator 

. ker IT of the associated representation IT of Un in the space of coo _ 
00 00 

A 
vectors in it is a primitive ideal.. For A in N the ideal k",,(A) in 

Un is defined by k <XI (Al = [IT)1 A ker 1100 • We consider 

PROPERTY (II) k (Al * V(N) is L1-dense in k(A) . 
00 

Clearly, k ,,,,(A) * V (N) is contained in k (A) n V (N), hence A satisfies 

(I) if it satisfies (II). One should take note of the fact that (II) is a 

very strong property. In general the hull h(k",,(A» in Priv Un will be 

-L' (N) A 
much larger than A, even the hull of {k (Al * V (N) } in N which 

00 

A 
is the intersection of h (k"" (A) ) with N \"lill often be larger than A. 

A 
But the equation A = h(k",,(A» n N is a necessary condition for (II). This 

A 
equation rreans that A is an "algebraic subset" of N, :rrore precisely, via 

the I<irillov picture A corresponds to a Zariski closed N-invariant subset 

of 1'1*. 
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To verify (II) in SCl!rE cases we introduce the properties (III) and 

(IV) where S (N) denotes the space of Schwartz functions on N. 

PROPERTY (III) koo(A) * S(N) is S-dense in k(A) n S(N) 

PROPERTY (IV) k(A) n S(N) is L'-dense in k(A) 0 

It is evident that if A satisfies (III) and (IV) then it satisfies (II) 

and hence (I). To summarize we have reduced (I) to property (IV) which is 

weaker because there we are dealing with Schwartz functions instead of test 

functions. But the prize to pay is that in addition we have to verify the 

"smooth-harnonic-analysis-property" (III) 0 

COMMENTS TO (III) 

'Ihecase of an abelian N (=:lEi'll was studied by one of my students. He 

proved that (III) is true for all regular algebraic varieties A. If in 

addition A is ccmpact one even has that k"" (A) * S (N) is equal to 

k(A) n S(N) 

For arbitrary nilpotent Lie groups N the best result I k.n.c.w is that 

(III) is true for A being an orbit of an abelian compact group, see [8] 

':file proof goes as usual by induction and is somewhat lengthy and tedious, 

hence it is not repeated. '!he ocmnutativi'ty of the transformation g-.coup was 

used at several points. It seems to me that the IlOst crucial use was made 

in the proof of the follOWing 

PROPOSITION Lei, :'1 be a 1'cat L··ie (Z &~re.or.;a Z.ei; K be a eorrrpac-{; 

group acting fT'om the left homomorphicaUy and continuously on :II by Lie algebra 

au tomor'phisms, and let l!! be a non-zero K-invariant subspace of the center 

of n . Suppose there is given a self-adjoint maximal ideal n in the complex 

universal enveloping aZgebra Un. Let H be the stabilizer' in K of the 

maximaZideal A:= Q n lli in Ul!! (of codimension 1). 

Then 



n hQ 
hEH 

n xQ + AUn 
xEK 
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In [8], I proved this proposition only for abelian K because I 

applied a result of Borho on the structure of certain qwotients of universal 

enveloping algebras of solvable Lie algebras. IvI.eanwhile f I found that the 

proposition is a more or less immediate consequp;nce of a simple lemma. I 

include the proofs of the lemna and of the proposition. 

LEMMA Let K be a compact group, let H be a closed SUbgloOUp of K, and 

let E be any complex vector space. Suppose that there is given a complex 

subspace B of the space M(K,E) of all functions from K into E satisfy-

ing the following conditions: 

(i) B is invariant under left translations with elements x E K , i.e. 

if fEB then also xf 
-1 defined by (xf) (y) = f (x y) belongs to B. 

{iiJ B is the union (or sum) of finite dimensional K-invariant subspaces 

on which K acts continuously. 

(iii) B is invariant under multiplication with elements in the ring 

R(K/H) consisting of aU representative functions on K which are constant 

on cosets modulo H. 

Then the subspace ~ Of aU functions in B vanishing on H is equal to 

Ro(K/H)B where Ro(K/H) denotes the ideal of all elements in R(K!H) 

vanishing at e H 

PROOF Clearly, Ro(K/H)B is contained in ~ . So, let f E BH be given, 

and we may assume f * 0 • By (ii), there exists a finite d.imensional K~ 

invariant subspace W of B containing f. f lies in the subspace 

V := ~ n W of. W . On W, there exists a Hilbert space structure <,> 

such that K acts by unitary operators, and we may suppose in addition that 

<f,f> = 1. Hence there exists an orthononnal basis f 1,··· ,fr' fr+1"" ,fn 

of W such that f = f1 ; f 1 , ... ,fr is a basis of V, and f r +1 , .•. ,fn 
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is a basis of If c: W • Let's write ooNn the action of K on W in the 

chosen basis: 

Tnere is a h.om::mJ:;:phism a from. K into the unitary group D(n) , 

a(x) (a .. (x) 
1J 

, such that 

n 
"" r. a .. (xl f . for all x E K , 

j=1 J1 J 
or 

-1 n 
f. (x y) := :E a .. (x) f. (y) for all x,y E K • 

1. . "Jl ~ 

Putting y e and i we get in particular 

-1 n 
f(x ) = L a'1(x}f~(e) 

j=1 J 

.As f. (e) "" 0 for j < r one even bas 

-1 
f(x ) = L a'1(x)f~(e) 

j>r J 

For t 1, .•. ,n let 

n -1 
(xl := L a. 1 (x 

k=r+1 .K 
(xl , x E I< 

is contained in R (K) . In fact, it is one of the matrix 

coefficients of iCV.l IE H~" (7,7) considered as a of the K~ 

Ill:.-x'lule Hom.q: (vI, W) which proves that \IJ " 8i ts in R 

course, also be verified by a direct computation: 

1jJ (xh) "":£ a£k 
,( k>r 

~1 -1 
(h x ) 

This can, of 
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= r r I (" f -1 _" 
k>r i j ali xJ ajJ<; \h) akj (h ) a j 1 (x ') 

But L aik(h)~;(h-l) is for i j > r and. zero otherwise. Since 
k>r J 

~1(e) = 0 for all k> r , l); £ is even contained in 

But 

The proof is concluded by showing that 

n 
f = f1 = r l);pfo • 

£=1 ~ "-

R (K/H) • o 

n -1-1 
I (1Jl£) (xl = L L L ~ 1 (x )a£k(x)a,£(x )f, (e) 

£=1 £ lor j ( . ] ] 

-1 
Since L ao,_(x)a,£(x ) 

£.{..J<" ] 0jk ' one obtains 

n -1 
L (l);£f£) (xl = L ~1 (x )fk(e) = f(x) • 

£=1 lor 

PROOF OF HiE PROPOSITION To apply the lemma. let E := Un/n be the glloUent 

algebra and denote by \l the gl.lDtient hanaroqilism Un -4 E Define 
-"1 

]l : Un .... M (K,E) by ]l (u) (xl := v (x 1.1) • The i.mage B of ]l clearly satis-

fies (i) and {til. Concerning (iii) one observes that ]l (U:o;) IDJJ.ltiplies B 

Since n and hence 1\ is self-adjoint it turns out tl.,at ]l (U!.\) is equal 

to R (G/H) • Pedantically, one has ]l (11:.) = R (G/H) @ e ,where e denotes 

tl.1e unit elements in the algebra E. 

The lerrroa gives 

BH = 1<0 (G/H)B = ]l (A)]l (Un) = ]l (1\ Un) 

because Ro (G/H) equals to ]l (Al • Taking preirnages one gets AUn + ker]l 

-1 x 
= jJ (l1-I) = {u E Un I u E ker \l for all x E H} = n xn • As ker]l = n xn 

xEH xEK 
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the desired equality follows 0 

COMMENTS TO (IV) 

As I pointed out in the discussion of (I), in the case of an abelian N 

property (IV) is satisfied by orbits of compact groupS. For arbitrary nil

potent Lie groups, again the best result I know is that (IV) holds true for 

orbits of CClIIpact abelian groups, [8]. 'Ib give some flavour let 100 briefly 

discuss the case of a one element set A "" {[ TI]} 0 The following considera-

tiona are due to Ludwig, [6]. A basic teol is Howe's description of the 

quotient space S (N) /ker TI n S (N) , [3]. There exists a realization of TI 

in L2(JIil) such that for f E S(N) the operator 11(£) is given by a 

2n r ke:mel Kf E S (JR ) , (IT (f) l;) (xl "" J Kf (x,y)l;: (y)dy for t;, E L 2 (JIil) • The 

if 
map f <+ Kf is a surjection fOnT! S (N) onto S (lR2n) , it is continuous 

W. r • to the Frechet space structure and it allows a con"tinuQUs inverse. Clear-

ly, the map is multiplicative if S (lR~U) is endowed with the multiplication 

(p '" Q)(x,y) = f P(x,z)Q(z,y)dz • 

JJi1 
To prove that ker 'iT n S (N) is dense in ker r! we take a bounded linear 

1 
functional IP onL I (N) with \Il. "" 0 on ker Tl n S (N) , and we claim that IP 

is zero on ker 11 • First, we regularize \Il using arbitrary functions 

p,g: E S (N) , Le. we consider the linear functional f .... lP(p*f*q) • We claim 

that this functional is even C*-continuous. By Howe' s theorem there exists 

a tempered oistribution IP' E S aifrl), with 

l.jJ(f) = lP' 

for all f E S (N) 0 From the known struc"ture of ter~ed distributions, see 

e. g. Ih Schwartz, Theorie des dLst:!:ibutions , it follON's that there exist a 

continuous flll"1ction IP E L ~ (iR2n) and a differential operator D on ]R2n 
o 
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with polyna:nial coefficients such that 

f./l' (g) = J Dg(x,y)f./lo (x,y)dxdy 
]R2n 

for all g E S OJ1n) 

In particular, one gets 

f./l(p*f*q) = f./l' (K *f* ) = f./l' (K *Kf*K ) P q P q 

= Jf [D(K *K£,,'K )](x,y)f./lo(x,y)dxdy = 
2n p q 

]R 

= ~ J (P.*Kf*Q.) (x,y)f./l (x,y)dxdy 
j=1 2n J J 0 

]R 

\'Jith scroe functions P., Q. E S (JR2n) 
J J 

depending on K, K and D. Now 
P q 

it is elementary to deduce that 

If./l(p*f*q) I < E 111i(f) II 

where E is a constant dependiIlg on p,q,f./lo and D. Clearly, this inequal

ity holds true for all f E L 1 (N) , in particular for f Ekern. It follows 

that f./l(p*ker n*q) == 0 for all p,g E S (N) and hence f./l(ker Ii) == 0 as 

desired. 

Anapplication of this rrethod to lIDre general A depends heavily on a 

description of the quotient S (N) /k (A) n S (N) . This can be done in a satisfac-

tory way for A being an orbit of a ccrr;pact abelian group, [8], axid lXlssib1y 

for orbits of arbitrary ~ct groups. 

The reader may wonder why I cla.llred the theorem for T D< U - orbits mile 

I only said that (III) and (IV) are true for T-orbits. In fact, I can prove 
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(III) and (IV) only for T-orbits which gives that (II) is true for T-orbits. 
1\ 

But (II) is also true for Tt< U orbits in N. To prove this one applies 

(II) to T orbits in the dual of a certain semidirect product U t< (NxN) 

and does sana caTq?Utations in universal enveloping algebra, details can be 

found in [8]. 

let Ire sUllillarize and conclude with SCtle remarks. First of all, very 

little is known on spectral synthesis in L 1 algebras of nilpotent Lie groups, 

not to speak about rrore general groups. What v.e have seen is just the peak 

of a possible iCeberg. We have discussed a certain strategy to attack the 

spectral synthesis problem leading to four properties (I) - (IV) which can 

be investigated separately. This strategy is very close to algebraic varie-

ties. By analytic continuation the next step might be the study of orbits 

of arbitrary c::aIpact groups or of rrore general algebraic groups. Also the 
1\ 

COL"l"plem:mt in N of the points in "general position" is a reasonable candi-

date for further investigations. 

Since the original problem has nothing to do with algebraic varieties 

it is also possible that - as in the case of abelian spectral synthesis -

ccmpletely different mathematical v.eapons give better results. 

At the end I would like to n:ention a related 

PROBLEM Let N be a connected nilpotent Lie group on which a connected 

solvable Lie group G acts .. A closed two sided G-invariant ideal P in 

L 1 (N) is called G-prime if for all G-invariant two sided ideals I and J 

in L1(N) the inclusion IJ C P implies that I or J is contained in 

P . It is true that each such P is of the form P = K(Grr) for a certain 
1\ 

rr EN? 

The answer is affirmative if G is a unipotent group. A positive solu-

tion TNOuld have consequences for the classification of unifonnly bounded 

Tel representations of solvable Lie groups. 
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