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IDEAL STRUCTURE OF GROUPOID CROSSED PRODUCT C* ALGEBRAS

Jean Renault and Bill Moran

We generalise to groupoid crossed products a theorem of E.Gootman and J.
Rosenberg [GR], which asserts that every primitive ideal of the crossed product
C*~algebra is contained in an induced primitive ideal.

More precisely, if G is a second countable locally compact groupoid acting
continually on a separable continuous field A of C*——algebra,s over the unit space
G(O) of G , then every representative L  of the (full) crossed product
C*——algebra. C*(G,A) weakly contains the représentation induced from the restriction
of L to the isotropy group bundle of the action of G on Prim A. The reverse
inclusion holds if the action of G on Prim A is amenable.

Just as in [GR], the key ingredient of the proof is a "local cross—section
theorem" which is better phrased in the following topological setting. If G is a
topological groupoid, x a point of continuity of the isotropy and K a neighbourhood
of x in G, which is symmetric and conditionally compact (c.c. for short)— that is,
KL is compact for each compact subset L of G(O), then there exists a neighbourhood
V of x in G(®) guch that the relation y Xz if y K z is non—void becomes on V
an open and Hausdorff equivalence relation. This result is applied to the semi—direct
product of the action of G on Prim A endowed with the regularized topology.
Another tool is a G—equivariant version of a decomposition theorem for representations
of | c'- algebras of E. Effros [E]. If L is a representation of C*(G,A), then there
exist a transverse measure class A on Prim A and a covariant representation of
(G,A) on a measurable field H of Hilbert spaces over Prim A, such that for almost
every x the representation of A on HX is homogeneous with kernel x , which
provide by integration a representation unitarily equivalent to L.

This theorem, which compares a given representation with the representation

induced from its restriction to the isotropy, does not give enough information on the
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regular representations when the isotropy is not trivial. It is completed by the
following result which was given in [R] in the case of a discrete groupoid and in [FS] in
the case of the holonomy groupoid of a foliation. If G is a second countable locally
compact and Hausdorff groupoid which is minimal and has discrete isotropy with at
least one isotropy group being trivial, then the reduced C*——algebra C*r o d(G) is
simple. This is no longer true when the groupoid is not Hausdorff. G. Skandalis
provides the following example. Let G be the group of transformations of the circle
st generated by an irrational rotation S0 and two homeomorphisms S1 and 82
having respectively as set of fixed points the intervals. [0,7] and [7,27] andlet G be
the groupoid of its germs. Since S0 acts minimally, G is minimal. The isotropy at
d¢ S1 ig trivial unless @ is in the orbit of 0 or x, where it is Z. The function of f
taking the values 1 at the germs (0,1) and (m,1) and O elsewhere is in C_(G) since
it can be written as f= X]._X81_XSQ+ X3,S, ’ where Xg is the characteristic function
of the germs of S. It is in the kernel of the regular representations R, when ¢ is not
in the orbit of 0 or 7 but not in the kernal of the regular representation RO. Hence

*
C re d(G) is not simple.
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