
ABSTRACT: 

32 
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In this paper we present results for the inverse problem where the data is 

nodal positions. In the specific results to be stated here the solutions are 

spacially varying parameters, i.e., coefficients in differential operators of 

second order. We will also discuss future research goals for this type of 

inverse problem. 
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Introduction 

In the following Sections we present uniqueness results algorithms, and 

numerical calculations for inverse problems using nodal position and antinodal 

position data. We consider three second order eigenvalue problems 

(l) 

( 2) 

(3) 

(4) 

( 5) 

(6) 

(PYx)x + ~P Y = 0 , 

Yx(D) = Yx(L) 

Uss + (tJ - q)u 0 

0 < X < L 

0 

0 < s < 1 

u5 (0 h u(O) = 0 u5 (l) + H u(l) 

(P ur)r + ) (9,-l) P(Rv2 )u = 0 
' Rc 

ur(Rcl = ur(Re) = 0 

0 

< r < Re 

We will seek unknown coefficients p > 0, p > 0, P > 0 and q. The positive 

coefficients R and Q will be assumed known. 

The inverse spectral problem which is often considered for these problems 

see, e.g •• [1]- [9] has as data the eigenvalues plus possibly norning constants 

for the mode shapes. The norming constants are ratios of values of the mode 

shapes at the end points or are L2 norms of the mode shapes. In this paper we 

make different measurements of the mode shapes. The measurements are the posi­

tions of zeros or position of extreme points (maxima or minima) of the mode 

shapes. We show that even for a small number of measurements we obtain quite 

accurate values of the unknown parameters. 

In the first two problems the data will be nodal position data. Problem 

(l) - (2) is the eigenvalue problem obtained for longitudinal vibrations of a 

beam. see [10]. It is also the eigenvalue problem for torsional vibrations of 

a beam of circular cross section, see [11], or it is the eigenvalue problem for 

a string. Problem (1) - (2) has eigenvalues 0 = \ 0 < A1 < x2 < ••• with 
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eigenfunctions Ynlx), n = 0,1,2 .... The nth eigenfunction, Yn(x), has n 

zeros, n = 0,1,2 •... The zeros of the eigenfunctions are the nodal 

positions; a subset of these nodal positions are the data for the inverse 

problem considered here. 

In Sections 1 and 2 we present uniqueness theorems which show that any 

dense set of nodal positions on the interval [O,L] will determine the unknown 

coefficients uniquely. These results are an extension of the uniqueness 

result for a second order Dirichlet problem p1·esented by Mclaughlin [12]. In 

Sections 3 and 4 we present algorithms, bounds and numerical calculations. 

In these sections we consider nodal position data which comes from a particu-

lar experiment. In this experiment the vibrating system is excited at the 

nth natural frequency. Then nodal positions xn, j "'l, ..• ,n, are then 
J 

measured for the corresponding mode shape. This data is the data used for 

the reconstruction algorithms. We show that even for n = 10 the results are 

singly) good. 

The specific problems of the form (1) - (~) for which calculations are 

made are p ~ 1 with variable p and p ~ 1 with variable p. Problem (3) (4) 

is primarily of interest because it is obtained from Problem (1) - (2) by 

Liouville transformation. All of the essential asymptotics that are required 

need only be obtained for Problem (3) -(4). We note that an exact solution 

method is presented for problem (3) - (4) when q is a piecewise constant 

function. 

In Section 5 we consider problem (5) - (6). Here the eigenvalue pro-

blem is that for each integer 1 > 2 we seek values of v2 for which we have a 

nontrivial solution. An example of where this problem occurs is for the 

toroidal vibrations for a spherically symmetric earth, see [6], [8], [13]. 

In this paper it is assumed that and Q are known, and that the ratio /Q is 
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strictly increasing. We seek the coefficient P as a solution of the inverse 

problem. This problem is different from problems (l) ~ (2) and (3) - (4) in 

that for low order eigenvalues the function R v2 - 0 has a simple zero, i.e., 

the differential equation has a simple turning point. It is precisely the 

mode shapes for which the turning point exists that are of interest to us. 

The data will be antinodal positions. In the case that is considered in 

Section 5 the antinodal position of interest is the position of the zero of 

the derivative, (ru)r, v<hich is closest to the turning point. We show these 

antinodal positions are dense in Rc < r < Re and this property elds the 

uniqueness result. 

This is the beginning of a large study of inverse problems where the 

data is nodal position or antinodal position data. In the future we will 

determine algorithms for em (1) - (2) for finding (simultaneously) both 

coefficients p and p. We will seek results for second order systems of 

ordinary differential equations and for second order partial differential 

equations. 
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Section 1 

(1) 

( 2) 

and 

( 3) 

(4) 

We begin rlith the following two eigenvalue problems: 

p > 0 ' p > 0 0 < X < L , 

Yx(O) = Yx(L) = 0 , 

Uss + ("A - q) u = 0 , 0 < s < 1 ' 

u5 (0) - h u(O) = 0 , u5 (1) + H u(l) 0 • 

The real coefficients p and p depend on x and q depends on s; h and H are 

constants. For both problems there exists a sequence of simple eigenvalues 

with 1 im m. The nth eigenfunction has n zeros, n = 0, 

1,2, ••• The position of a zero of an eigenfunction will be called a node or 

nodal position. In the inverse problems discussed here the data will be a 

subset of these nodal positions. What is sought are the spacial 

parameters p, p, and q. We present uniqueness theorems, algorithms, and where 

possible bounds for the al thms. The proofs are based on asymptotic 

forms for the eigenvalues and the nodal positions. 

To obtain these asymptotic forms we 11Jil1 assume that p and p have abso-

continuous first derivatives i.e., p", " p r: ( 0, L) while q E L 1 ( 0, 1) • 

Under these assumptions problem (1) - (2) can be transformed, using the Liou­

ville transformation 
X s =! j Jfdx 

K o p 

l 

where K 
L --

J j£ dx 
0 p 

and u = fy, where f = (pp)4, to a problem of the form (3) - (4). In this 

transformed problem q = f 55/f, h = f 5 (0)/f(O), and H =- f 5/f evaluated at 

s = l. Explicitly we have 

(3') 

( 4 I ) 

Uss + (~- fss/f)u = 0 , 0 < s < 1 

[us- {fs/f}ujj = 0 , 
ls=O 

[u 5 - ifs/f}u] I 0 , 
I s=l 
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Letting the eigenvalues of (1) - (2) be lArd"' and the eigenvalues of (j') -
n=O 

(4') be lll-n}co , \~e have the relationship An= 1-1n/K 2 , n = 0,1,2,... The 
n=O 

nodal posit·ions of (1) - (2) and (3') - (4') are also simply related, Using 

the notation that xn , s" are the jth nodal positions of the nth mode, 
j j 

j = 1.2, ... ,n, for (1) (2) and (3')- (4') respect·ive1y, we have the for·mula 

(7) 

The fundamental asymptotic forms can then be obtained for the problem (3) - (4) 

and the asymptotics for· (1)- (2) fo"llow as a corollary. 

We state the fundamental lemma: 

Lemma Let q £ L 1 (0 ,l) and set w( 6) 
l 

that I hI , I HI , J I q I dt ,;; A/3, Set 
0 

(the proof will be presented elsewhere) 

s+o 
sup J Jq(tl ldt. Assume A> 1 and 
s s 

l 

(8) n a = h + H + (1/2) J [1 + cos(2nnt)]q(t)dt 

( 9) b~ 
J 

h + ( 
(j-l_) 

J 2 

0 

0 

[1 + cos(2nnt)]q(t)dt- a"[j - (!)j/n 
2 

for j = 1,2, ..• ,n. If n >SA then there exists a constant e, which depends on 

n, and a constant y, which depends on nand j, such that lrl < 0.7 and Jej < 1 

and 

(10) 

( 11) 
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Section 2 

Before we state the uniqueness theorems, there are several relevant 

remarks to make. First of all formula (10) has a simpler form when we assume 

that q r L 2 (0,1). In this case we can show that when 11q11 2 ;; ~ • 

where again 1e1 < 1 and e depends on n and J. More important is that we have 

shown that when q is in LP(O,ll for any p ;. 1, then for large n the set of 

nodes for a single eigenfunction are roughly evenly spaced on [0,1]. This says 

that the set of all nodes for all of the eigenfunctions forms a dense set on 

[0,1]. Dense subsets of the fun set of nodes can be determined by choosing, 

e.g., the first node in [0,1/2], the second in [1/2,1]. The third, fourth, 

fifth and sixth nodes are chosen in the intervals ,1/4], [1 ,1/2], [1/2,3/4] 

and ,1] and so on. A c approach in which one determines a dense 

subset selecting one bed node from each ei on has been given 

by McLaughlin [12]. The selection of a set of nodes i~hich is dense on [0,1] is 

an hypothesis in the uniqueness theorems. 

Having established the fundamental lemma we can now state the uniqueness 

theorems: 

Theorem 1: Let p = 1 and p"£L 1(0,L) in (1)- (2). Then pis uniquely dete1·-

mined (up to a multiplicative constant) 

ix~}, n ~ 1, j = 1,2, ... ,n. 
J 

Analogue 1: Let p :: 1, I 1(U- I ) . f ~ ,~ 1 n 

any dense subset of the nodes, 

(1) - (2). Then p is uniquely determined 

(up to a multiplicative constant) a dense subset of the nodes, { x~} n ;. 1, 
J 

j = 1,2, ... ,n. 

Analogue 2: Let qEL 1 (0,l), and hand Hare real constants in (3)- (4). Then 



39 

l 
h, H and q - f q dt are uni 

0 

determined by a dense subset of the nodes, 

{sr:t, n ;;,O:l, j = l,""''n. 
J 

rem 2: Let p", p"f L'(O,l) in (1) .. (2)" Then the pair· p, pare uniquely 

determined up to two constants by a dense subset of nodal positions, fx~}, 
J 

Remark: The constant in Theorem 1 and Analogue 1 is the 

K 

0 

L --Jp(x) dx 
p(;Z) 

The two constants in Theorem 2 are the constant K above and the 

c = 

It is important to observe that the constant K can be given directly or can 

be determined 
l 

knowing the value of p and p at a si 
L 

e point or knovl/i ng, 

eog.,' f p (x) dx 
0 

and 1 dx. For a vibrating string or vibrating beam 
0 

problem where p is density per unit length the first integral corresponds to 

knowing the total wei The constant, K, can never be determined by the 

nodal positions. To see this we observe that we can always scale D by multi-

pl ng it by any positive constant p 0 or scale p multiplying it by a posi-

tive constant p , giving the eigenvalue em 
0 

( P PY ) + v P PY 
0 X X 0 

0 ' 

Yx(D) = Yx(L) = 0 • 

This scaling changes the eigenvalues but not the eigenfunctions, and hence 
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the nodal positions are unchanged by this scaling. 

This argument suggests that an alternative method of calculating K, 

namely by evaluating the limit lim n2~2 = K2 if the eigenvalues are also known. 
n+oo~ 

The statement of Analogue 2 also contains an arbitrary constant, the 
1 

value of the integral ( q dt. This too can be determined from the eigenvalues 
0 

if they are known by observing that the limit lim f~n - n2~2l = h 
n+oo 

1 1 
+ H +2 f q dt. 

0 
Since the constants h and H are determined by the nodal positions the above 

limit yields the required integral. Finally in Theorem 2 the constants are the 
1 

value of K and the constant c which is the analog of the integral J q dt written 
0 

in the dependent variables p and p and the independent variable x. The two 

unknown constants in Theorem 2 can then be determined, when the eigenvalues are 

known, from the limits lim n2~2 = K2 and lim [).n K2 - n2~2l = c • 
n+oo ).n n+~ 

These uniqueness theorems show that a dense subset of nodal positions 

contain enough information to determine (up to two arbitrary constants) two 

spacially varying parameters in a second order problem. It can be shown that 

there is a dense set where only one nodal position is chosen from each mode 

shape, see [12]. This is in contrast to the fact that the set of all the 

eigenvalues is not enough to determine even one coefficient, unless an addi-

tional constraint is added, e.g., that the coefficient is assumed to be 

symmetric about the midpoint. 

We present only the proof of Theorem 1. Analogue 1 is proved similarly. 

The proof of Analogue 2 is similar to that in [12]. The proof of Theorem 2 

combines the ideas of both proofs and will be presented elsewhere. Note that 

the proof presented below does not require the full detail of the bounds in the 

Lemma. We need only that sn 
j 

[j-(1/2)]/n + o(1) as n+oo. 
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Proof of Theorem 1: Suppose that p ~ 1 and that (pi) are the nodal positions 

for (1) ~ (2) when p is l'eplaced by P;, i = 1,2, Suppose that for a dense sub-

set of nodal positions Select a fixed but arbitrary x ( [O,L] 

and let be a subsequence of the dense set of nodal positions such that 

xm + x. Then from the asymptotic forms for the corresponding sm we have 

xm xm 
.!_ r 1;-dx - 1 r 1;-dx = o(l) 
K · 1 r 2 

1 0 2 0 

as m-;.oo, Taking the limit as m+oo v1e have 

0 = 1 i m [ 

xiTI 

~ J 1-;;dx 
1 0 

xm J - 1. r ~-p dx r J 2 
2 0 

/ fl"r>T - /E_2] ctx 
l r K 

0 l 2 

Since x was arbitrary and p 1 and p 2 are continuous, we have 

and the ratio Pl = constant. 
p2 

/PT _ IP2 _ o 
r 1< 

1 2 
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Section 3 

In this section the algorithms will be given for three inverse nodal 

problems. It will be assumed that only a finite number of measurements can be 

made. The previous uniqueness theorems sugyest that data which is uniformly 

distributed on the interval [O,L] for problem (1) - (2) or on the interval 

[0,1] for problem (3) - (4) will give the best approximation for the true un­

known parameter. The particular choice that is made here is motivated by a 

particular physical experiment. In this experiment the system is excited at a 

natural frequency. Measurements are then made of all of the nodal positions of 

the mode shape corresponding to that frequency; usually measurements are made of 

the eigenfrequency as well. The data is then the length of the interval between 

nodal positions plus the eigenfrequency itself. The algorithms will give the 

unknown coefficient at a point between consecutive nodes as a function of the 

distance between the nodal position and the eigenfrequency. 

Heuristic arguments can be given for the algorithm even in the absence of 

smoothness of the coefficients. This is done for the algorithm for problem 

(3) - (4). When the coefficient, q, in (3) - (4) is in, say H2(0,1), bounds can 

be determined for the error. This requires more detailed asymptotics than are 

given in the Lemma and will be presented elsewhere. The asymptotics given in 

the Lemma are sufficient to both motivate our algorithm and to establish good 

bounds for problem (1) - (2). These bounds will be given here although proofs 

will not be given. 

We begin with two special cases of problem (1) - (2). These are the two 

special cases given in Theorem 1 and Analogue 1, i.e., i) find p(x) when p = 1 

and, (ii) find p(x) when p = 1. We motivate the algorithms as follows. First, 

since n is fixed we will simplify the notation and let xn x and sn s , 
j j j j 
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j = 1,2,,..n. In problem (1) ·· (2) formulas (7) and (11) can be combined so 

that when p" ( Ll (O,L) and p" ( Ll (O,L) we have 

X '+l 
l f J J1P (x L dx = l + o(.l_) , 
K x. PTXJ n 11 2 

J 

j l,.,,n-1 

and formula (10) yields 

II;;" = ll'iT + 0( ) ' 

01~ 

= II;;" /rr + l/n) • 

We rewrite the above formula by dividing by the length of the interval between 

the nodes to obtain 

1 

(xJ.+l ~ x .) 
J 

Xj + 1 
f Jp[X'} dJ( 
X. PTxT 

J 

rr + error 
f\1 ( XJ. +l - X • ) 

J 

j 1,2, •.• ,n-1 • 

Approximating the term on the left by the value of the integrand at the 

midpoint Xj+l + Xj we have 
2 

Hence if p _ 1 then the algorithm for p will be 

(12) 

and if p 1 the algorithm for p is 

(13) 

j l,, •. ,n-1 

j 

These algorithms can be shovm to give very accurate results at the 
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midpoint x., j ~ 1,2, ••• ,n-l. We give, below, bounds which display this 
J 

accuracy, and in the next section we display specific numerical The 

bounds are given in terms of the modulus of continuity for p" and for p". We 

present the following theorems. 

Theorem 3: Suppose that p ~ 1. Let p be twice differentiable and assume that 
L 

L-2 m.;; p < L-2M for 0 <;X< Land that IP'I, r IP"I < L-3M. Set 
0 

where w{o) =sup fx+oiP"I is the modulus of continuity for rxiP"I· Let 
X X 0 

\ , •.• ,)<n be the nodes for the nth eigenfunction with eigenvalue :\n· If 

n > 9( !'i) 5 / 2 then 
m 

< E 

for j l,2,.,,,n. 

Analogue 3: Suppose that p ~ 1. Let p be twice differentiable. Assume that 
L 

L2 m .;;; p .;; L2 M, for 0 .;;; x .;; L and I p' I , J I p" I .; L M. Set 
0 

E "~~ ~~- l~.3 k *; [~] + 0,4 [*J'l 
where w(o) =sup Jx+slp"Jdx is the modulus of continuity for f)(IP"Idx. Let 

X X 0 

x1 , ••• ,xn be the nodes for the nth eigenfunction with eigenvalue ~n· If 

n ;;. 5( !'i) 2 
·m 



for j = l, ... ,n-1. 

I j'o(l(x. + 
I"~. '2 J+l 
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)) _ /1\i1( Xj+ 1 -
n; 

In the next section we exhibit the numerical results. We note that we 

have given algorithms for determining the parameters p and p at the mi dpo·i nts 

between tlr~o nodes. \~e have not presented an algorithm for finding p or p in 

the nodc:1l doma·lns [O,x,] and [x 11 ,Lj. A first guess for an ai 
L 

thm might be, 

x1 ) with a similar algorithm for IP (~(L+x 11 )). 

We have shown that this is not the best choice. We win sho·w in a future 

paper an algorithm which g1ves an approximation to /p at a point other 

than the midpoint of [O,x 1 j and ,Lj· The bounds will be consistent with 

those ven in this paper. 

We now present an a1got'iUun for· finding q in problem (3) - ( 4) at the 

points s = j j = 1,2, ••• ,n-l. The algorithm is the one suggested by the - ' n 
Lemma. We give only a heuristic argument since the asymptotics of the Lemma 

are not detailed enough to present bounds. As in the previous algorithms the 

data will be the noda"l positions , j = l, ... ,n for only one eigenfunction, 

that is, the nth eigenfunction. For s1mp11f1catfon, since n is fixed we will 

write s. for s~· 
J J 
We observe that 

(j+~) 
2 

~ 1 = 1 f-n---2J n 2( nn) 
q(t)dt + er·ror. 

(j-~) 
2 

11 

Multiplying by 2n 3n2 we obtain 
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( j +.!..) 
. 2 

2n3w2 fs. - s.- ll 
· J+l J n "' n J-n q(t)dt +error. 

(j-l.) 
2 

n 

If we replace the integral on the right hand side by the value of the integrand 

at the midpoint we obtain the algorithm 

(14) q(.J..) • j 
n 

It is not at all clear from the asymptotics given in the Lemma that this 

algorithm will give a good approximation to q. We have shown by numerical cal-

culations that this does give very good results when q" is integrable. Calcu-

lations will not be given here. 

We also present an exact solution in the case where q is not smooth but 

can be represented by a piecewise constant function. To be specific, in the 

case where h = H = 0, an exact function q which yields nodal positions 

0 < s1 < s2 < •• , < sn < 1 can be given by the piecewise constant function 

q(s) A ~ w2 
n rs -sF 

' j +1 j 

O<s<s, 

s.<s<s. 1,j J J+ 
1, ••. , n-1 

< s < 1 
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Section Ll,: 

In this section we display es of the numerical output for the 

reconstruction of p(x) in 

(15) (ptix )x + A.U 0 0 < X < L 

0) L)=(J, 

and the reconstruction of p( in 

(16) Uxx + 0 0 < X < L 

ux(Ol = L) 0 

~le win in each of our es, choose L L The data is a si e fr·equency 

and an the nodal positions of the mode shape for that frequency. Our aim ·is 

to display hm11 \~en p(x) and p(x) are calcu"lated the formulas (12) and (13) 

given in the previous section, The formulas are for p( and p(x) at the mid-

nt between b1o nodes. Our c!1oice of problems to consider here is fortunate. 

We lfriU sho111 that the nodal positions change a great dea·l v~hen p or p changes 

so that the information we seek is, in some sense, accessible. In a later 

paper we will examine similar output for the potential q in (3)-(4) and see 

that the changes 1n the nodal positions are much smaller as q changes. While 

in th'i s ·1 a tter· case vJe get ver-y good recovery of q with accurate synthetic 

numerical data, it wouid be more difficult to recover q accurately from, say, 

experimental data, 

Our calculations of both the eigenvalues and the nodal positions for both 

problems (15) and (16) were done using the modified Prufer transformation, see 

Paine [14], p. 16. In this calculation we use the fact that p' and p' are con-
1 

tinuous and make the following change of variables. Let (A.pp)2 u = r sine 

and pu' = r cose. Then 

dEl' 
dt 
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with initial condition s(O) ~ w/2. We determine the eigenvalues by satisfying 

the boundary condition at the right end point. We must have e ( 1) = n /2 + nw 

for the nth eigenfunction. The jth node occurs when e(x.) 
J 

We will 

illustrate how the nodal positions are changed by a change in the coefficient. 

We recall that if p = 1, p = l then the nodal positions for the nth mode shape 

are at (j - .L)l, j = l, ••.• n. We show first the change in nodal position when 
2 n 

either p or p is replaced by the same function. That is we choose p or p {but 

not both) to be the function 1 + (1.5x) 2 (1-x) and present the numerical output 

for the nodes for n = 10 and for w = '~o • 10 ~ 

p = 1, p 1 + (L5x)2 (1-x) p - 1, p 1 + (1.5x)2 (1-x) 

57.731119 34.121966 
0 

X .054382 .046091 
1 

x2 .161905 .139045 

.266536 .234046 

X .367797 .331887 
4 

X 
5 

.465991 .432845 

x6 .561848 .536632 

.656348 .642345 

xs • 750717 .748434 

X 
9 

.846591 .852707 

\o .946502 .952392 

Table 1: Tv10 problems with 10 nodes. 

In the next example the coefficients p and p are chosen so that both 
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problems (15) and (16) have the same e1 ues. Our choices are p _ 1, 

p = (e-1)/[l+(e-l)x] and p ~ 1, p = (e-l)e-x. The nodal positions are dis-

played for n = 10. In each case we have ,;---:;- = w = 31.739122. l-ie point 
10 10 

out that even though all the eigenvalues are the same for both problems, the 

nodal positions are signifi different. 

" "l 

)( 
2 

X 
3 

X 
5 

X 
6 

9 

-x p(x) = (e- )e 

31.739122 

.063441 

.185363 

.300276 

.408942 

.512007 

.610018 

.703449 

.792709 

.878154 

.960097 

p(x) (e-1)/[l + )x] 

31.739122 

.038117 

.118523 

.203827 

.294029 

.389131 

.489131 

.594029 

.703827 

.818523 

.938117 

Table 2: TltO (isospectral) problems 
111i th 10 nodes. 

To exhibit the results of the algorithm we begin with the function 

r .00 < X < .45 

f +.Lsin ( lOn( X - l.)) .45 < X < .55 
2 2 

l 2 .55 < X < 1.00 

which has a continuous first derivative but discontinuous second derivative. 
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We do our calculations with the function 

p(x) "' f(x) + (l-x2) 

The bounds given in Theorems 3 and Analogue 3 show that the error is of order *2 

when p" or p"E L0
• To estimate our error we will use the discrete L1 and the 

discrete L2 norm as 

II ell = L: [
n-1 

q J=l 
x.)je(x )lql i 
J J J 

for q = 1,2. For p _ 1, e(iJ.) = p(iJ.) n2 , and for p ~ 1 we 
An(Xj+l - Xj )2 

norm use 

(Xj+l - Xj )2 
n2 

11e11 = 
"' 

Tables 3 and 4 give the wn = the mi 

j = 1,2, .• , For the discrete Loo 

nts between the nodal positions, 

and the calculated and exact solutions for n = 5 and n = 10 for the function 

p( = f(x) + (1 ), Note n that for p ~ 1 and p ~ 1 the mi nts have 

the value ij = i. j = l, ••. ,n-1. 

p(x) f(x) + (1-x 2 ) 

w5 12.301853 exact calculated 

-
xl .210184 p(x1J 1.4558 1.4544 

)(2 .425244 p(i2) 1.3191 1.3677 . 

- .622289 p(x3 l x3 2.1127 2.1120 

-
X<; '948877 p(x<+) 1.8536 1.8530 

Table 3: Calculation for n = 5. 
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p(x) f(x) + (l-x 2 ) 

w1o= 24.403179 exact calculated 

xl .105321 p(xl) 1.4889 1.4885 

- .211444 p(x2) 1.4553 1.4549 x2 
- .319254 p(x3 l 1.3981 1.3977 x3 

- .429707 p(x~.;) 1.3154 1.3209 X~.; 

- • 5 30336 Xs p(x5) 2.1263 2.0809 

- .619206 p(x6) 2.1166 2.1164 X6 

- .709000 p(x?) 1.9973 1. 9971 X? 
-Xs .801783 p(xs) 1.9973 1.8570 

-x9 .898495 p(x9) 1.8571 1.6926 

Table 4: Calculation for n = 10. 

We expect the largest errors to occur near the midpoint of the interval since 

the function f(x) increases rapidly there. ~le observe, however, that even for 

n = 10 the calculations are (surprisingly) good even near x = ~· 
2 

We now disp1ay the L1 , L2 and L00 errors. The quadratic convergence is 

observable only for a large number of nodes. Table 5 presents the results 

where again we choose p(x) = f(x) + (l-x2). 

n = 5 n = 10 n = 20 
- . I 
n • 401 

Ll error .0112 .0049 .0013 .0004 

IL2 error .0227 .0136 .0040 .0013 I 
I 

!L"" error .0485 .0456 0135 .0061 I I 
Table 5: Error in reconstruction of p(xl = f( x) + (l-x2), 
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For completeness, we now display the values of the midpoints and the 

calculated and exact solutions for the first two examples of this section 

for n = 10. For each example we also give wn =IAn· 

In the Table 6 we let p = 1 + (1.5x) 2 (1~x) in em (16) and display 

w10 = 0 the midpoints, x. and the exact and calculated (using formula 
' J ' 

(13)) values for p(x.), j = 1, •.. , 9. 
J 

p(x) 1 + (1.5x)2(1-x) 

w1o ::: 57' 731119 exact cu1ated 

xl .1081 r- ) 
p~Xl 1.0235 L0241 

)(2 .2142 p(x2) 1.0811 1.0815 

)(3 .3172 p(x3) 1.1546 Ll546 

X~t .4169 p(x4) 1.2280 1.2279 

- .5139 p(xs) Xs 1..2889 1.2885 

- .6091 p(x6) 1.3263 ){6 1. 3258 

Xt ,7035 p(x7) 1.3302 1.3294 

.7987 p(xs) 1. 2890 1.2881 

Xg .8965 p(x9) 1.1871 1.1860 

Table 6: Calculation of p when n 10. 

In the Table 7 we let p(x) ~ 1 + (1.5x) 2(1-xl in problem (15} and 

display Wlo ~ fAlO• the midpoints, Xj' and the exact and calculated (using 

formula (12).) values for p(xj), j = 1, ••• , 9. 
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p(x) = 1 + (1.5x)2(1-x) 

w1o = 34.121966 I exact calculated 

Xi .0926 p(xl) 1.0175 1.0193 

- p(x2) 1.0637 1.0647 x2 .1865 

1·:3 
.2830 p(x3) 1.1292 1.1293 

p(xLt) 1.2032 1.2024 X It .3824 

Xs .4847 p(xs) 1.2724 1.2707 

x6 .5895 p(xG) 1.3210 1.3183 

Xy .6954 p(xy) 1.3314 1.3277 

xa .8006 p(xa) 1.2876 1.2827 

Xg .9026 p(xg) 1.1786 1.1723 

Table 7: Calculation of p when n = 10. 

It should be noted again that we have not given a calculation or a 

formula for p(x) or p(x) at the midpoints in the first interval [O,x 1J or 

in the very last interval [xn• 1J. The above analysis suggest formulas of 

the form, say, p(x1\= 4n2 • We have shown this is not the best choice. 
2} A.n(x 1 )2' 

In a future paper we will present a formula, plus bounds, for p or p at a 

point other than the midpoint. 
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Section 5 

In this section we present a uniqueness result where the data is anti­

nodal positions. The mathematical model considered is the eigenvalue problem. 

( 5) 

( 6) 

(P urlr + (Jl.+2)(.ll.-l)P ( Rv 2 - Q)u = 0, 

ur(Rc) = 0 = ur(Rel 

where p = P(r), R = R(r), and Q = Q(r) are all positive smooth functions, and 

the ratio R/Q is strictly increasing. For each integer 1 > 2, the eigenvalue 

problem is to seek values of (v1 ,n) 2 , n = 1,2, ... for which (5) - (6) has a 

nontrivial solution. The new feature for this set of ei 

that for each 1 the equation (5) has a simple turning 

ue ems is 

nt, r. , for eigen­
""•n 

values of 'low enough' order. The inverse 

P when R and. Q are knm~m. 

em is to determine the function 

The data considered here for the inverse em is antinodal data for 

the eigenfunction in the presence of a turning point. To explain this more 

careful 111e recall the>.t when equation (5) has a tun1ing nt r the 
' 1, n' 

ei on ·is strictly increasing for Rc < r " n' and osci 11 ,l , 

for r.t,n' < r < Re. There is a first r1,n' to the right of r.Q.,n where 

~( 1) 0. For the inverse problem considered here it is a subset of the 
dr ' 
antinodal positions, rr. } , which are to be the data. 

-~,n Q..;n<co 

2<2<"' 

A specific geophysical example where the eigenvalue em ( 5) - ( 6) 

occurs is for the toroidal modes for a cal c earth, see [6], 

[8] [13]. In this case we begin with the eigenvalue problem 

(JJ.r2y ) + JJ.[w2r2 £- 2(1 + 1) - l•rr] y = 0 
r r J.i J.i 

(y - l)(R ) = 
r r c - .t) (R ) = 0 

r e 
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I'Vhere ll = 11 (r) is the rigidity of the earth, p = p(r) is the density and 

~ = s(r) is the shear wave velocity. The radius R is the radius of the core 
·c 

and Reis the radius of the earth. When we make the change of dependent vari­

ables u = :L we obtain the boundary value problem 
r 

(17) 

(18) 0 

The boundary value problem (17),(18) is now of the form (5),(6) when ~ > 1 and 

P = , R = .e_ "' _!_, Q = _!_. and v2 = w2 We observe that ( ru) 0 
ll 62 r2 (t-l)(u2) r 

when y = 0 It should also be noted that in general at the antinodal position r • 

the eigenfunction Yn,t( ,n) has its maximum displacement. 

The uniqueness theorem as well as a preliminary lemma \~i 11 be presented 

without proof. It should be noted in advance that detailed asymptotics for the 

eigenvalues (v1 ,n)2 is not required for the uniqueness proof. We state a pre-

1 i mi nary 1 emma v1h i ch gives the needed denseness result. 

Lemma: Consider the eigenvalue problem (5), (6). Suppose that P, R, Q are all 

'positive funtions on Rc ( r ( Re with integrable second derivatives. Suppose 

that the ratio R/Q is strictly increasing on Rc ~ r .;; Re. Then the set of 

turning points {rt.nl is dense on Rc < r < Re. The set of anti nodal positions 

P\ ,n} is a 1 so dense on Rc .:; r < Re. 

The uniqueness theorem now follows. 

Theorem 4: Consider the eigenvalue problem (5), (6). Suppose that P and Rand 

Q are all positive functions on Rc ( r < Re with integrable second derivatives. 

Suppose that the ratio R/Q is strictly increasing on Rc < r < Re and that R and 
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Q are known functions. Suppose that a dense subset of the antinodes {r~,n} 

are given as well as the corresponding eigenvalues fvt,n2}. Then Pis 

uniquely determined up to one arbitrary constant. 

Remark: If ~ and P2 are two coefficients for two eigenvalue problems of the 

form (5), (6), then the hypothesis of the theorem is that for a dense subset 

of the antinodes r1 , 11 (P1 ) = r1 , 11 (P2 ) and that the corresponding eigenvalues 

satisfy [v,, 11 (P1 )] 2 = [ ,n(P2 )]2. Then the shows that P1 and 

sat i the same second order ordinary differential equation. The arbitrary 

constant corresponds to assigning the ratios P1 .r/P 1 and P2 , at r = 
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