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PROJECTION-REGULARIZATION METHODS FOR LINEAR OPERATOR 

EQUATIONS OF THE FIRST KIND* 

Heinz W. Engl and Charles W. Groetsch 

1. Introduction 

We review some basic facts about linear operator equations of the 

first kind. For details and references see e.g. [8]. 

Many inverse problems of mathematical physics, as well as problems 

of indirect measurement or remote sensing, are modeled by Fredholm 

integral equations of the first kind, that is, equations of the form 
b 

fa k(s,t)x(t)dt = y(s), (1) 

where k(., .) is a given kernel andy is a given function called 

the "data". A Fredholm integral equation of the first kind can be 

phrased abstractly as 

Kx = y (2) 

* 
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where K:H 1+ H2 isbounded linear operator from a real Hilbert 

space H1 into a real Hilbert space (the symbols (ov.) and 11.11 

will be used to denote the inner product and norm, respectively, 

in each of the spaces H1 and H2 and also in ~n ; whenever there is 

a danger of confusion we specifically indicate which norm is meant 

by writing e.g. [I.JI JRn). 

It is well known that equations of the type (2) are generally ill-

posed that is, a solution does not always exist, when solutions 

exist they are not generally unique P ;;md, when a unique solution 

exists it does not necessarily depend continuously on the data y. 

When a solution in the traditional sense does not exi.st one can seek 

a least squares solution, that is a vector x satisfying 

II Kx- Y!l = inf{j!Ku- Yl[: uEH1 }. 

This is equivalent to 

* 

* K Kx * K y (3) 

where K is the adjoint of the operator K. Least squares solutions 

are generally not unique ... however, the set of least squares solutions 

is closed and convex and hence contains a unique vector of smallest 

norm. The unique minimal norm least squares solution of (2) is deno­

ted J:Jy K t y, where the operator K t: D (K t) + H1 is called the Moore­

Penrose generalized inverse of the opera'cor K. It is not difficult 

to show that Kt is closed linear operator with dense domain 

t ' .l D(K )=R(K)+R(K) , where R(K) is the range of K. The major difficulty 

in the practical solution of (3) arises from the fact that the ge­

neralized solution operator Kt is discontinuous if (2) is ill-posed. 
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In many applications .g., if {2) is ~nduced by (1) with an 

L2 ~kernel k) the operator K is compact and in this case Kt is 

continuous if and onlyif R(K) is finite dimensional, that is, if 

and only if the kernel kin (1) is degenerate, Thet:afore the gene-

ralized exdstence and uniqueness formalism provided by the genera-

lized inverse operator does not, except in trivial instances, impose 

continuity on the solution process. 

The essential discontinuity of ·the generalized solution operator has 

dire consequences when solving practical Fredholm equations of the 

first kind. In such problems the data function y is not known pre-

cisely, but rather is the result of measurements, The function y is 

therefore an idealization and the actual data is a function y 0 that 

approximates y in the sense that IIY - y 0 II :::a, where o is a known 

error level that depends upon the quality of the measuremen·t process. 

Instead of this bound on the norm of the error, one might also have 

statistical information on the error. 

Since the equation (3) is ill-posedc any attempt to solve it using 

erroneous data y 0 instead of the exact data y can lead to large de-

viations in the computed solution due to the discontinuous nature of 

t 
the generalized solution operator K . The instability inherent in 

solving (3) can be mitigated by replacing (3) with a nearby well-posed 

problem. We describe a very general way of doing this, 

* If the operator K K is invertible, then the solution of (3) may be 

* -1 * t written as x = (K K) K y. However, whenever K is unbounded (and no'c 

* only t:hen) K K has no bounded inverse, The idea is to approximate x by 

* * xa = Ua:(K K)K y (4) 

where Ua: (A) is a continuous function on [o,ll Kil 2 ] which approximates 

-1 
A in an appropriate sense. 
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Specifically we assume that for some constant C 

jAU (A) 1~ C and U (A)+ A~ 1 as a+ 0 
a a 

for each A E]O,J~I~1. The essential points are that x defined by (4) a 

depends continuously on y for each fixed a> 0 and that X -+ 
a 

as a-+ 0 if (and only if) y E D(Kt). The approximations (4) therefore 

provide well-posed estimates of the minimal norm least squares so-

lution of (2). Moreover, it is not difficult to derive order of con-

vergence estimates for Jlx - xa II based on properties of the func·tion 

U (A) and generalized smoothness or regularity conditions on the a 

minimal norm least squares solution x. 

As pointed out above, a significant practical difficulty arises from 

the fact that the exact data y is unknown and only an approximation 

y 0 to the data satisfying Jjy - /J II :S,o is available. One mus'c then 

work with the approximations 

X~ * U (K K) 
a 

which use the available approximate data 

Yo 
6 y . 

( 5) 

This scheme is said to 

constitute a regularization method if there is a choice a=a(o) of the 

0 t regularization paramete;:;:_ such that xa(o)-+ K y as o-+ 0 (see [8], [10], 

[13] for surveys of ill~posed problems and regularization methods). 

It is not difficult to show that 

where g(a)= max{! U (/..) l: ). 
01. 

- x~ II s;c5 kg{af 
E[o,JIKII2JL and hence o fcJ(a) -+ 0 is a 

general sufficient condi·tion for the regularity of (4). 

Note that this estimate could be replaced by 

llxa -0 X~ II :;a oh (a:) 

with h(a:l 2 := max {jAUa\Al 2 !:A E[O,IJKjj2]} (cf. [1]), which is a sharper 

* estimate if the spectrum of K K decays faster than exponentially 

(cf. [ 6] ) . We work with tb.e first estimate here, although in the 
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case mentioned one could obtain slightly better results using the 

second estimate in an analogous way. 

It must be kept in mind, that the asymptotic theory of regularization 

briefly outlined above involves approximations x 0 which are not a 
* * effectively computable since the operators K K and K act on infinite 

dimensional spaces. Effectively computable approximations are ob-

tained by working in a finite dimensional subspace and would involve 

the introduction of a new regularization parameter, the dimension of 

the subspace. 

A number of authors ([5],(9],(14],(17]) have studied finite dimensional 

approximations obtained by projecting regularized approximations into 

finite dimensional subspaces. Such methods may be called regularization-

projection methods. 

Also, a number of papers (e.g. (3],(4],(16]) deal with regularization 

by projection, where the projection into finite dimensional subspaces 

acts as regularization without additional regularization in the 

infinite dimensional setting. 

In this note we will consider projection-regularization methods, 

that is, methods obtained by projecting the operator first and then 

applying a regularization method. 

We will illustrate the difference between regularization-projection 

methods and projection-regularization methods in Section 3. 

2. Projection-Regularization Methods 

Suppose that {v1,v2 , .•• ,v~} are linearly independent vectors in 
00 

R(K) such that n~ 1 span{v1,v2 , .•. vn} is dense in R(K}. Define an 
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opera tor r n: 
.n 

-+ JR by 

and let K = r K and y == rny, Then a finite dimensional version of n n n 

(2) may be written as 

(6) 

where X = Kt 
Yn and the finite dimensional versions of the regula~ n n 

rized approximations (4) and ( 5) are 

* * 0 * 0 
X = U (K K )K y and X = u K nYn ( 7) a,n a n n n n a,n a 

We assume ·that o= o (n) is such that 

lly ~ y 0 II < o • Note that for the interpretation of this information 
n n :JRn - -

in the infinite dimensional context, also the basis functions 

play a role: If 
o" ol l 

y,y E H2 are such that !!Pny - Pny IJ ;;;o and if 
0! 

: = rny E IRn (where P n deno·tes the orthogonal projector 

'\-There Rn is the matrix wi t.h entries 

an orthonormal basis, the error in p y in n 'che 

= (y 
n 

ol T o' - v ) R (y - y ) , 
~n n n n 

Thus, if the {v.} are 
l 

norm of is the same 

as the error in yn in the norm of JRn. However, if the basis is not 

orthogonal, an error of 0 in Yn can result in a larger error in p ny, 

since 

eigenvalue of For this point, cf. also [4, Remark 11]. 

Note that the adjoint K: :JRn +H 1 of the operator Kn is given by 

It is known that i!x - KtyJJ + 0 as n 
n-+oo (see [4],[8]). We now derive 

a condition for the convergence of JJx - x II to zero as n -+ oo n a,n 
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The condition depends upon the quantity 

* w (a , n ) = max { I 1 ~ AU ( )\ ) I : A E o ( K K ) } a n n 

* * where o(K K) is the spectrum of the operator K K . 
n n n n 

* Note that K K is a finite rank operator given by 
n n 

* K K u = n n 
n 
z 

i=1 

* * * * Since R(KnKn)~span{K v 1 , ••• K vn}' it follows that Kn Knu 

and only if 

* * (K K u,K v.) 
n n J 

1, •.• ,n, 

or equivalently 

j 1 , ••• , n 

* That is, K K u n n AU if and only if 

* 

( 8) 

J\u if 

where Qn is the self~adjoint matrix with entries (K'vi, v,). There­
J 

* * fore the spectrtw, o(K K ), of K K consists of the eigenvalues n n n n 

of Qn. Thus, 

w (a , n ) = max { I 'I - AU ( A ) I : A E o ( Q ) } • a n ( 9) 

We now show that if the parameter a is related to n in an appropriate 

fashion then the approximations xa,n converge to Kty as n-+ oo 

Proposition 1. If a=a(n)+ 0 as n-+ oo in such a way that w(a,n)-+ 0, 

where w is defined by (9) r then [[xn - xa,nll -+ 0 as n -+ 00 • 

* * * * Proof: Since y =K x and U (K K ) K K = K K U (K K ), we have n n n a n n n n n n a n n 

by ( 7) and the functional calculus of self-adjoint operators that 

llxn X I[= II X * * Ynll - - U (K K ) K a,n' n a n n n 

!!(I * * K ) ) X II - K K U (K 
n n a n n .n 
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thus, the result follows since (as mentioned above) llxn - Ktyjj + 0 

and hence llxn II is bounded. c 

The perturbation error arising from inexact data can be controlled 

in a similar way by choosing the regularization parameter as a 

function of nand o. The choice depends upon the quantity 

* g(a,n)= max{IUa(A) I:AE o(KnKn)}. 

* 

( 1 0) 

Note that the operator KnKn is represented by the matrix Qn in the 

usual coordinate system for ~n 

* Hence o(K K) also consists of the eigenvalues of Qn' so that n n 

( 11 ) 

Proposi·tion 2, If a=a -+ 0 and o=o (n)+ 0 as n -+ oo in such a way 

that olg(a,n)'-+ o, where g(a,n) is defined by (11)' then 

llx - x0 II +Q as n + oo a,n a,n 

Proof: Note that. by (7) and the functional calculus of self-adjoint 

operators, 

* * !: * * !: (U (K K ) K ( 0 ) U (K K ) K ( 0 ) ) a n n n yn-yn ' a n n n yn-yn 

* * 0 * 0 (KnKn Ua: (KnKn) (yn-yn) ,Ua (KnKn) (yn-yn)) 

~ c/52 g (a, n) 

where C is a constant. 

It follows from the proof that as in the infinite dimensional situatior 

mentioned in the introduction, Vg(a ,n)' could be replaced by 

h(a,n):= sup0.Ua(A) 2 :AE a(Qnn 112 
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In most cases of interest the f~nctions IUa(\) I and 11 - \Ua(\) I 
are decreasing functions of A for each a > 0, It then follows that 

(if also iAUa(A) I ~ 1) under the assumptions of Proposition 1, 

o2 g(a,n) = o2u (A ) = a n 
02 
.,-(1-(1~7\U(A))) 
1\ n a n 

n 
2 

.§__ (1 - w (ayn)) 
A 

2 {-(1- o(1)) 
n n 

where \n is the smallest eigenvalue of Qn. Therefore in such cases 

the condition o~ + 0 as n + oo is ea.uivalent to o=o(A 112 ) as 
n 

n~ oo, which is a condition that is necessary and sufficient also for 

certain methods of regularization by projection (cf. [4, Theorem 9]). 

The results above, taken together, give sufficient conditions for 

the convergence of general projection-regularization methods. In the 

next section we illustrate these conditions for some specific methods. 

3. Some Exam_ples 

In the examples presented here , U (A) and 1 - 7\U (:A.) (~0) are decreasing 
a a 

as functions of A and hence each of the conditions w(a,n)+ 0 and 

o~(a,n)+ 0 can be interpretted in terms of the smallest eigenvalue 

7\n of the matrix Qn as outlined at the end of Section 2. In essence 

the conditions say that An may not go to zero too rapidly (i.e., n may 

not be increased too quickly} relative to a and o. 
Consider first the case of Tikhonov regularization, that is, 

U (\) = (A+a)- 1 . In this case 
a 

w(a,n) = max{A~a :A E cr(K~ Kn)}= A ~a 
n 

Hence a sufficient condition for convergence is 

a= o(\) and 8 = o(A 1/ 2 ). 
n n 
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In the case of Tikhonov regularization, it is especially easy to 

illustrate the difference between regularization-projection and 

projection~regularization methods: 

First, consider the projection-regulariza·tion method defined by (7) 

with Ua (A) = (A+ a)- 1 , i.e., for a> 0, 

* * (ai + K K )x = Kn Yn· n n a ,n 

* Using the representation of K given in Section 2 and the fact 
n 

( 12) 

(following from (12)) that * * xa:,n E span{K v 1 , ••• ,K vn}' we can write 

where s ( S 1 , ••• , S n) is defined by the linear system 

(a I + Qn) 6 = v • -n 

(13) 

( 1 4) 

Since Qn is regular, we can define zn:= Q~ 1 / 2yn With this definition, 

we obtain from (14) that S minimizes the functional 

( 1 5) 

over JRn, while x minimizes the functional 
ct 1 n 

( 1 6) 

over H 1 • 

A regularization~projection method would be defined as follows 

(cf. [8,p.73], [5]: Let{u1 ,u2 , ••. } be linearly independent vectors 

in H.1 (w.Lo.g. in N(K)..I..) such that n~ 1 span{u 1 , •.• ,un} is dense in H1 • 

Let xN be determined by u.,n 

A 

where K := 
n 

A* A A 

(a I + K K ) X n n a,n ( 17) 

Knl . Then 
span{ u 1 , ••• ,un} 
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5. = (~ 1 , ... ;X ) is defined by the linear system 
n 

(o:Mn + B ) ~ = w n n 

( 1 8) 

( 1 9 ) 

Where Mn and Bn are the matrices with entries (ui,uj) and 

respectively, and wn = ((Ku 1,yl, ... , (Kun,y))T. Again, one 

(Ku. , Ku.) , 
l J 

can 

- A -
characterize A and x in a variational way: A minimizes the functional a,n 

(with r ·= n" 

( 2o) 

over JRn, while ~ minimizes the functional a,n 

( 21 ) 

A comparison between (16) and (21) and (15) and (2o) shows the 

* difference between the two methods. If we choose ui:= K vi, we can 

directly compare these methods. (In this case, M = Q .) We carry out 
n n 

this comparison for two different choices of basis functions: 

First, let K be compact with singular system (0 ;l.O ,W ) and let - n n n 

* vi:= 1/! 1 , ui:= K 1/Ji = 0i\Pi. Then Qn = Mn is diagonal with entries 

2 = Qn. Thus, the functional in (14) has the form 

0 _,yi) 2 +aS. 2), while the functional in (2o) 
i n l 

has 

Although these functionals are different, their minimizers coincide: 

A. 
l 

xa,n 

s . = 
i 

Yn 
l 

------=2 . Thus, in this case, both methods coincide and 
a+ o. 

f\ 

xa, n 

1 n 0. 
l: __ J._ 

i=1 a+0~ 
l 

( y ,l/1 i) \Pi, which can be interpret ted as a 

regularized and truncated singular value expansion. 
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The other case we want to study is the case that K is induced by 

an integral operator like in (1) with a continuous kernel k and that 

the v. are defined as point evaluation functionals as follows (cf. 
]_ 

[15]. [2], [3]). 

Let Q be the reproducing kernel for the RKHS HQ:= R(KT, i.e., 
b 

Q(s,t) := ~ k(s,T)k(t,T)dT and let s 1 ,s2 , ... be distinct points in 

[a,b] such that lim sup{inf{ J s - siJ :1::; i::; n} :sE [a,b)} = 0 holds. 
n-+co 

Let v. := Q := Q(s. ,.)E HQ=: H2 . The inner product in HQ will be 
l s. ]_ 

]_ 

denote by ( , )Q. Then for any f E HQ, (f,vi)Q = f(si). If we denote by 

Ki the adjoint of K: H1-+ HQ' we have that for any z E HQ' wE H1 , 

(K*z,w)= (z,Kw)Q= (Ktz, KtKw)= (Ktz,w), so that K* = Kt. Hence, 

have the entries Q(s1 ,sj). Thus, (14) becomes 

- T (ai + Qn)S = (y(s 1 ), .. .,y(sn)) , (22) 

while (19) becomes 

( 2 3) 

A comparison of (22) and (23) shows that the projection-regularization 

method (leading to (22)) and the regularization-projection method 

(leading to (23)) are different here: The latter method is nothing but 

least-squares collocation with the right-hand side divided by (1 + a) 

(cf. [2)). 

Of course also iterated Tikhonov regularization (cf. [11]) fits into 

the framework of the setting developed in Section 2, as do iterative 

methods, In this case the regularization parameter is a positive integeJ 

1 m =[ ;-] which represents an iteration number. The simplest iterative 
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method is Landweber~Fridman iteration (see [7] ,[11]) 

= 0 

(we assume here that equation (2) has been scaled so that IlK II < 1). 

This can be expressed as 

where 

In this case w(m,n) = (1 ~ An)m and hence a sufficient condition for 

convergence of the induced projec·tion-regularization method is that 

m -+- co as n + oo in such a wav that (1- A )m+ 0 and o= o(A 112). - n m 
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