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PREFACE

The term "structure" in the title is used in the Bourbakist sense. Chapter 0 is
devoted to the exposition of a certain notorious failure, or inadequacy, of currently
used integration structures, including those presented in Book 5 of the Bourbaki
treatise and in the well-known text of P.R. Halmos. In Section G of that chapter, the
nature of the integration structures presented here is briefly described.  This
description is amplified somewhat in the pre-ambles to Chapters 2, 3 and 4.

To indicate the issue involved, I would first repeat what was already said by
people learned in these matters and was even recorded, for example by my
distinguished friends in their book which is listed among the references as item [9].
Namely, the problem of integration with respect to a vector valued measure which has
finite (and oc-additive) variation is trivial. For, we do not in fact integrate with
respect to such a vector measure; we integrate with respect to its variation which is a
true (positive) measure. The integral with respect to the given vector measure is then
a uniquely determined (vector valued) continuous linear functional in the space of
functions integrable with respect to the variation.

In contrast, the problem of integration with respect to a vector valued measure
having infinite variation seems to be nontrivial even when the range-space is
one-dimensional. For, such a vector measure does not generate a continuous linear
functional in the space of integrable functions with respect to any positive measure. I
should note here, perhaps, that, since the appearance of the work of R.G. Bartle,
N. Dunford and J.T. Schwartz, listed among the references as item [2], integration with
respect to certain vector measures of possibly infinite variation can be reduced, using
duality, to integration with respect to families of scalar valued measures of finite
variation. However, this device is surely not available for all measures of infinite
variation; for example, it is not available for measures with values in a
finite-dimensional space.

From a sufficiently abstract point of view, the integration structures presented
here can be seen as instances of & single general structure. That structure is intended
to make trivial also the problem of integration 'with respect to measures of infinite
variation'. It represents a construction of a complete normed function space - which of
course cannot be an Ll-space in general - such that a given vector measure generates a
continuous linear functional in it. Indeed, if we do not succeed in making this problem
trivial, then, in my view, we do not have a chance to tackle successfully those problems
whose solutions for measures of finite variation are so brilliantly exposed by my
distinguished friends in the mentioned book.

These remarks indicate, I hope, that I opted for an approach to this problem
which is different from the approaches found in the literature. That explains, to some
extent, the list of references or, rather, the obvious omissions from it. So, for example,
the works of R.H. Cameron and his collaborators are not mentioned although a
considerable proportion of my motivation derives from the problems arising in
connection with the Feynman integral. Or, the names of R. Henstock and J. Kurzweil
do not appear here even though my theme concerns non-absolutely convergent
integrals. Similarly, in Chapter 5, I introduce bilinear integrals, but the works of
R.G. Bartle and of I. Dobrakov are not referred to. This presents for me a certain
difficulty, even embarrassment. It is true that I have not discovered nontrivial
relationship, at the technical level, between the results presented here and those results
reported in the literature that concern similar themes but were obtained from different
perspectives. On the other hand, I am also aware of the fact that I reached the point of
view presented here only because I was influenced - possibly and admittedly only
indirectly - by the works of the mentioned and of many other authors.

f"’"\



(vii)

1 have still greater difficulties with giving due credit and expressing my
gratitude to friends and colleagues who assisted me by their thoughts not available
publicly. It is simply impossible for me to trace all such influences, not to speak of
their explicit articulation. What is more, in some cases in which I would be able to do
80, I do not know the names of the persons who assisted me in this manner. They are,
for example, the referees of my journal articles, even, or especially, those which
(happily) were not accepted for publication.

However, I am too conscious of the generous help rendered to me by Brian
Jefferies, Susumu Okada and Werner Ricker not to mention them by name. I wish I
were able to express better my gratitude for their criticism of my numerous attempts
at the realization of this project and for helping me to maintain the confidence in its
viability.

I am delighted that I am able to put on record my gratitude to Neil Trudinger
who created the possibility for me to work on this project at the Centre for
Mathematical Analysis and to make the results of my effort available to the public in
this form. '

In my endeavour to facilitate the reading of the text I was greatly assisted by
Dorothy Nash. I would like to thank her for the expert advice about lay-out, for the
understanding, even anticipation, of my intentions, for the initiative with which she
explored the possibilities of the available equipment for their realization and, generally,
for her pleasant cooperation.

Canberra, November 1988. LK.
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0. BY WAY OF INTRODUCTION

Amounts (the extensive quantities), modelled by set functions, are in general
the primary quantities and states (densities or the intensive quantities), modelled by
point functions, the derived ones. Therefore, mathematical models constructed in
terms of integrals have conceptual and often also technical priority with respect to ones
constructed in terms of derivatives.

A relatively detailed description - with references but without proofs - of a
mathematical model of homogeneous isotropic diffusion and of its superposition with a
process of creation and/or destruction, illustrates this point. It also gives us an
opportunity to introduce problems for which the classical (Lebesgue) integration
structure is inadequate and to make a suggestion about the nature of this inadequacy.

So, this chapter represents what is commonly, but inaccurately, called the
motivation for the material presented in the subsequent chapters. Also, in Section G,
the nature of that material is briefly described and so, the way of approaching the
problems introduced in this chapter is indicated. This chapter does not form a part of
the systematic exposition though; no reference to it is made in the subsequent

chapters.

A. In this section, a mathematical model of homogeneous isotropic diffusion
is described.

Let E be the Banach space of all real or complex Borel measures in R® , that
is, real or complex valued o-additive set functions whose domain is the o-algebra, B,
of all Borel sets in R®. The norm, ||, of an element ¢ of E is the total variation
of ¢. By BL(E) is denoted the algebra of all bounded linear operators on E. By [
is denoted the identity operator on FE.

Now, assume that the space, represented as R® , is filled with a solvent into
which some soluble substance was added. The distribution of that substance is
represented by a (real) positive element of E . Its value on the whole space, which is

equal to its norm, is the total amount of the substance added.
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For every t>0, z€ R® and BeB , let the number kt(z,B) have the
following interpretation: If, at the time 0, a unit amount of the diffusing substance
is placed at the point z, then, at the time ¢, the amount of that substance found in

the set B is precisely kt(x,B) . Consistently with this interpretation we assume that

(i) ko(z,B) = §z(B) , for every ze€ R} and BeB , that is, ko(:c,B) =1, if

r€ B, and ko(x,B)zo, if ¢ B;

(ii) for every ¢ >0 and every z€ IR3, the set function Bw kt(x,B) ,
Be€ B, represents a probability measure on B, that is, a non-negative element of E

such that kt(:v,[R3) =1;

(iii) for every ¢ >0 and every Be€ B, the function zw kt(x,B) , TE R3 , 18

B-measurable.

The set function Bw ki(x,B) , BeB, of the requirement (ii) is the
distribution of the diffusing substance at the time ¢ provided that a unit amount of
the substance is situated at the point z at the time 0. So, the requirement (ii)
respects the principle of the conservation of mass. By (i), the requirement (iii) is
automatically satisfied for ¢=0. Without imposing some condition, such as (iii), on
the studied kernel not even the most basic analytic techniques would be applicable to
it and it would be difficult to interpret it as describing any physical process. On the
other hand, the condition (iii) suffices for drawing useful conclusions from the
principles of the conservation of mass and of the superposition.

So, assume that at time 0 the distribution of the diffusing substance is
represented by the measure @€ E, ¢ >0. For a fixed BeB and ¢>0, let
w(X) = By : B(X) be the amount of the substance which, at the time 0, was in a set
X e B and at the time ¢, is found in the set B. Then the principles of superposition
and conservation of mass applied to the given situation imply that p is an additive set

function such that

go(X)inf{kt(z,B) tze X} < wX) < go(X)sup{kt(x,B) cr€ X},



for every X € B. It then follows, from (ii) and (iii), that
W0 = klaBeld),
X

for every X € B. In particular, u(lR?’) is the total amount of the diffusing substance

found in the set B at the time ¢. Hence,

(iv) if the distribution of the diffusing substance at the time 0 is represented
by a measure @€ E, then the distribution of this substance at a time ¢ >0 is

represented by the measure 1 € E given by
(A1) Y(B) = LR?, E(o,B)pldz) ,
for every BeB.

For every t >0, let S(¢): E~ E be the map such that, for every ¢ € E, the
element ¢ = S5(t)p of F is given by (A.1). Then, by (i), S(0) = I. Furthermore, by
(ii), S(¢) is a continuous linear map of F into EF of norm equal to 1 .

Now we restrict our attention to a time-homogeneous, space-homogeneous and
isotropic diffusion. The time-homogeneity is expressed by the condition that S(¢+s) =
S(t)S(s) , forevery s >0 and ¢ >0, thatis, themap ¢t~ S(¢), ¢ >0, from [0,w)
into BL(E), is a semigroup of operators. It means that the conditions of diffusion,

that is, the properties of the environment and the diffusing substance influencing the

diffusion, do not change in time. By (A.1), it can be stated explicitly by requiring that
o3 b mBYOAAD) = | B(0B) | B (wda)eldy)
R R R
for every ¢ € E. This requirement is of course equivalent to the statement that
(v) the equality

(A.2) k, (5,B) = ng k(9. B)k (2,dy)

holds for every s >0, ¢ >0 and BeB.
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The requirement of the space-homogeneity means that the properties of

diffusion are the same around every point of the space RS . Expressed formally,

(vi) for every ¢ >0, there is a measure K, € E such that kt(z,B) =

K t( B-1), for every z€ R® and every BeB.

Recall that B-z={y-z:y€ B} forany BC R® and zeR®. By (ii), K, i3
a probability measure in [R3, that is a non-negative element of £ such that
nt([R3) =1, for every ¢ >0. If the requirement (vi) is in force, then the equality

(A.2) takes the form

(A.3)

for every s >0, t >0 and BeB.
The isotropy means that the diffusion is the same in every direction. In formal

terms, it reduces to the requirement that

(vii) for every ¢ >0, the measure K, is invariant with respect to the

rotations of the space R® about the origin.

If we add to all these requirements also a certain requirement of continuity,
then the maps S(¢) : F~FE, t>0, describing the process of diffusion, are
determined up to a positive parameter - the diffusion constant - which characterizes

the speed of this process. In fact, the following theorem, due to G.A. Hunt, holds.

THEOREM 0.1. Let Ky, 20, be rotationally invariant probability measures on R®
such that the equality (A.1) holds for every s >0, t>0 and BeB. Assume that,
for every € >0,

lim %nt({z: |z| > €})=0.
=0+



Then, either k,= 60 for every t >0, or there exists a constant D >0 such that

Ky = 50 and

2
exp [— i%%—} dz

1
(A.4) % (B) = J
T (4 g
for every t >0 and every BeB.

This theorem appeared in greater generality in [25]. It is also presented in
Section 2 of Chapter IV of H. Heyer's book [22]. A convenient proof, of such degree of
generality that corresponds to the formulation given here, can be found in the notes,
[53], on Brownian motion by E. Nelson.

Givena D >0, let
|

(A.5) o(t,z) = 1 exp[- | 2]
’ (4rDt)3/2 4Dt

for every ¢ >0 and ze€ R®. The formula (A.4) says that the function z~ p(i,z),
zeR® , i8 the density of the measure Ky for every ¢ > 0. The function p itself is
the solution of the Cauchy problem

w(t,z) = DAu(t,z) ,t >0, 7€ R3 ; lim J uw(t,z)dz = 50(B) ,BeB.
t=0+ B

It is useful to note, for the indicated physical interpretation, that the dimension
(unit of measurement) of the constant D is the reciprocal of the unit of time. The
values of the measures & o 2 0, are dimensionless numbers. In fact, if a measure
@ € I represents the distribution of the diffusing substance at time 0, then its values

are given in a unit of mass. Further, at any time ¢ >0, the distribution of the

substance is represented by the measure 1 = S(t)¢, where
¥(B) jB ( B-2)p(da)

for every Be€ B, and the values of ¢ are of course too given in that unit of mass.

Consequently, the values of p are given in the reciprocal of a unit of volume.
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Using the notation (A.5), the semigroup S:[0,0) - BL(E), describing the
considered physical process of diffusion, can be expressed in the following concise form:

S(0) =1 and

(A6 (st0(8) = [ [ [ ateamptan)]az,

forevery t >0, ope E and BeB.

B. Now we describe a mathematical model of a chemical reaction.

We have in mind the following (idealized) situation. The space, R3 , 1s filled
with a medium (solvent) in which another substance is distributed. The distribution of
this substance is represented by a non-negative or sometimes an arbitrary real valued
element of E. The substance reacts with the environment or is in an unstable state so
that it changes and thereby increases or decreases in amount. At the same time, we
assume that the concentration is so small that the reaction does not alter the
environment. On the other hand, we assume that the reaction-rate is proportional to
the concentration of the reacting substance and admit that the coefficient of the
proportion varies with place and possibly also with time.

To arrive at a formal description of such a process, we assume that, for every
t >0, an operator T(¢) € BL(E) is given which has the following meaning. If a
measure ¢ € E represents the distribution of the reacting substance at the time 0,
then T(%)¢ represents the distribution of the reacting substance at the time ¢ >0 .

Consistently with this interpretation, we assume that 7(0) =1, the identity
operator.

The assumption that the reaction-rate is proportional to the concentration of
the reacting substance is then expressed by assuming that a function V on [0,0] x R®

is given such that

(B.1) (7(2)¢)(B) [B V(4,2)( T(2)0)(d2)



forevery ¢t >0, every w€ E and every B€B.

Besides (B.1) we assume that

(B.2) lim T(t)e=¢

=0+

for every p€ E.
The conditions (B.1) and (B.2) strongly suggest the presence of the exponential
function about. It actually enters formally in the following way.

For every Be€ B, let P(B) € BL(E) be the operator defined by
(P(B)¢)(X) = o BX) = jX x (@)l da)

for every p€ F and every X€eB.
Then, clearly,
0 P®)=1;
(ii) P(BnC) = P(B)P(C) forevery BeB and CeB;
(iii) if pe E and Bj €B, j=1,2,.., are pair-wise disjoint sets whose union

is the set B, then

Given a B-measurable function W on R® , we denote by

P(W) = " W(z)P(dz)

the operator, whose domain is the set of all measures @€ E such that W is

p-integrable, such that
(P(W)e)(X) =J W(z)p(ds) = | o W(z)(P(dz)p)(X)
X R

for every X€B.
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In plain Slovak, P(W)y is the indefinite integral of the function W with
respect to  interpreted of course as an element of the space FE. For this reason,
some authors, in their depravity, denote P(W) simply as W, i.e. W= P(W). So,
Wy then stands for the indefinite integral of W with respect to . If ¢ is
absolutely continuous, then so is P(W)y and the density of P(W)yp is equal to the
(point-wise) product of W and the density of ¢.

Note that the domain of the operator P(W) is a vector subspaceof E. If W
is bounded then the domain of P(W) is the whole of E and | P(W)|| = sup{||W(z)]| :
TE [R3} .

It is immediate that

(i) P(cW) = ¢P(W) for any number ¢ and a measurable function W;
(ii) B( W, + W2) 2 P Wl) + P( W2) for any measurable functions W, and
W2 ; and
(i) P( W1 WQ) o P Wl)P( W2) for any measurable functions W, and W, .

Using this machinery, we deduce from (B.1) and (B.2) that

t

(B.3) () = p(exp” V(s,-)ds] ,

0

for every -t > 0, which means just that

(T(H))(X) = JX exp j; Ms,2)ds Ado)

for every ¢ belonging to the domain of the operator (0.9) and every X € B.

More generally, let

T(t,8) = P[exp[f V(T,')dﬂ”

for any 0 < o < ¢. The interpretation of the operators 7(¢,s) is clear.
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C. In this section we describe a mathematical hlodel of evolution of the
distribution of a substance which simultaneously undergoes the processes of diffusion
and a chemical reaction. _

What we are set up to do is to produce a family of operators U{¢) € BL(E) ,
? >0, which have the following meaning: If ¢ € E is the distribution, at the time
0, of a substance which diffuses in R® and also is subject to a reaction which causes
its creation or destruction, then U(t)¢ is the distribution of this substance at any
time ¢t > 0.

For the sake of simplicity, we will assume the diffusion to be
time-homogeneous, space-homogeneous and isotropic, as in Section A, so that there is
a constant D > 0 such that the semigroup of operators S: [0,0) - BL(E) describing
it is given by (A.6), for every ¢ >0, p€ E and BeB. Further, we will assume
that the reaction-rate does not change in time so that the process of reaction is
described by the semigroup T': [0,0) » BL(E), where T(¢) =exp(tP(V)), for every
t>0, and V is' a function on R® . This is a special case of the situation discussed in
Section B, in particular the formula (B.9), when the function V does not depend on
time.

Then, of course, U(0)=1. For ¢ >0, we can expect that U(¢) will be well

approximated by the operators of the form

(C.1) U (t) = S(t-¢ )T(tn—t

4 n

n—-l)S(t
o Tyt ) Sty t,) Tty ) Syt T()S(E)

o).

n ‘n-1

where « 1is a sufficiently fine partition of the interval [0,f] given by the points
0=t <t <ly<..<t , <t <t.

Let us introduce a mathematical structure in which this suggestion can be
conveniently explored.

For a given ¢20, let T, be the set of all continuous maps v: [0,4] - R3.

The elements of T, are usually referred to as paths in R® based on the interval [0,4 .

Let 7 ’ be the family of all sets
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(C.2) - Y={ve T,: v(tj) € B],, j=12,..,n}

such that n» is a natural number, 0< ¢ <f, <..<t <1t <t and B,' €B for
every j=1,2,...n.

Then 7, is a semiring of setsin T . Let

M Y) = S(t-t )P(B)S(¢ -t

n n n-1

YJP(B__.) ... P(Bz)S(tQ—tl)P(Bl)S(tl)

for every set Y€ 7lt given in the form (C.2). Then M . ’Et - L(E) is an additive set
function.

Before returning to our problem, let us note a point about integration with
respect to Mt' Namely, if 0 < tl <t and W1 is a function on R® and if
hl(v) = Wl(v(tl)) , for every ve Tt , then

| mdnt = [ W) = St PRSI,
T T

? 1
provided the function h1 is M t—integrable. Similarly, if 0 < b<ty<t and VV1
and W, are functions on R® and if h2(v) = Wl(v(tl))WQ(v(tQ)) , for every UETt,
then

JT hdM, = JT W, (0(1))) Wy( ) M(dv) = S(t-4,) P(W,)S(t,~t, ) (W,)S(t,) ,
i 14

provided the function f is M -integrable. And so on.

You may note that we have not yet specified what we mean by integrability
with respect to M i The presented statements and their obvious inductive extensions
simply mean that if the integral with respect to M , s introduced with the slightest
regard to reasonableness, then these formulas must be true. Moreover, the function
h2 , say, should be M t—integrable on T ; if the function (a:l,z2) b W1($1)W2($2) ,
(:vl,z2) € R3 x R3 , is integrable on R3 x R® with respect to the additive set function

B x B,» S(t—t2)P(Bz)S(t2—t1)P(B1)S(t1) , BjeB, B,€ B.
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So, the operator (C.1) can be written as

Uyt = jTt [ eVttt )] e -

=J [exp[i V(v(t'))(tj_tj—l)”Mt(dv)'

oy J
t =1

Accordingly, we define
L

(C.3) et(v) = exp[J V(v(s))ds] ,
0

for every veT . Then we would expect that

(C4) o) = JT e (V)M (dv)

for every ¢ > 0. Let us show that this expectation is warranted.
First, the formula (C.4) means to say that if w(t) = U(t)p, for any given

w€ FE, then

(C.5) u(t) = JT [exp[ J't V(v(s))ds]]Mt(dv)go.

: 0

That is, u(t) is equal to the integral of the function e, with respect to the E-valued

1
additive set function Yw» M t( Yo, Ye? - Comments about integration with respect
to this set function are postponed into the next section.

Now, assuming ¢ > 0 given, let

s

(C.6) fls,v) = V(v(S))exp” V(v(r))dr] ,

0

for every s€ [0, , and ve T,. Then

J fsenarfavio=ste-s)P(VInts),
t
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for every se€ (0,4, and

J; f(s,v)ds = exp[ J:) V(v(s))ds] -1,

for every veT . Therefore, by the Fubini theorem,

u(f) - S(t)p = Jr {exp”; Vols))ds] - 1] Mfdv)e =
i

= J’l’t [ J; f(s,v)ds} M(dv)p = J; [ J"I w(s,U)Mt(dv)f] do =

t

- Jt S(t-5)P(V)u(s)ds ,

0

(C.7) u(t) = S(H)p + J:) S(t-s) P(V)u(s)ds .

If the function V is not 'too large', then, for any ¢ >0, the measure
uw(t) € E, given by (C.5), is absolutely continuous (with respect to the Lebesgue
measure in R® ). (This is of course obvious for V' =0.) If we then abuse the notation
and denote by zv» u(t,z), z€ R® , the density of u(t), we can re-write the integral

equation (C.7) as

: v
o) = | o plba-p)olan) + | | g olt-say) Mhulsiyas, ek,
0
which represents the initial-value problem

i(t,7) = DAu(t,z) + V(z)u(t,s) , £t >0,z€R>;
(C.8)

lim I u(t,z)dz = ¢(B), BeB.
'B

=0+

Our original problem of the superposition of diffusion and a chemical reaction is most
commonly formulated as this initial-value problem.
It is clear that formula (C.5) has certain advantages against the integral

equation (C.7) and the problem (C.8). For it represents wu(¢) in a form which allows
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various calculations and estimations which are not possible directly from (C.7) or
(C.8). Secondly, (C.5) may have a good meaning also when (C.7) or (C.8) do not have

a solution (in some sense) or cannot even be written down.

D. Generaliza,tions, considererd in [31] and [34], of the situation discussed in
the previous section give us the opportunity to introduce problems for which the
classical integration theory is inadequate.

Let E be an arbitrary Banach space, BL(E) the space of bounded linear
operators on £ and S: [0,0) » BL(E) a continuous semigroup of operators. So,

(i) S(t+s) = 5(¢)S(s) , forevery s >0 and ¢ >0;
(ii) S(0) = I, the identity operator; and
(iii) limt_>0+ S(t)p=¢, forevery p€e E. »
Let A be a locally compact Hausdorff space, B(A) the o-algebra of Baire sets
in A and P:B(A)- BL(E) a o-additive spectral measure. That is to say,
(i) P(BnC) = P(B)P(C), for every Be B(A) and Ce B(A);
(ii) P(Q)=1; and
(iii) the set function Br P(B)y, Be B(A), is o-additive, for every pe E.

For a Baire function W on A, we denote by

P(W)=JA WdP

the operator such that

P(W)g = jA W) P(dz)

for every @€ E for which the right-hand side exists as integral with respect to the
E-valued measure Bw P(B)y, Be B(A). (A standard reference for integration with
respect to spectral measures and also with respect to Banach valued measures is the
monograph [14] of N. Dunford and J.T. Schwartz.) The operator P(W) is bounded,
that is, belongs to BL(E) , if and only if the function W is essentially bounded. In

general, P(W) is a densely defined closed operator on E.
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Given a Baire function V on A, assume that the function expV is
essentially bounded on A . Then, for every ¢ >0, the function exp(tV) too is

essentially bounded. In that case, let

I(t) = Plexp(tV)) ,
for every t > 0. The resulting map T': [0,0)~ BL(E) is a continuous semigroup of
operators such that P(V) is its infinitesimal generator. That is

P(V)p=1lin % (T()o-y)

=0+

for every ¢ in the domain of P(V). Then we also write

T(t) = exp(tP(V))

for every t > 0, as customary in the theory of continuous semigroups.

The semigroups S and 7T are interpreted as describing two evolution processes
in which an element ¢ of the space E is transformed, during a time-interval of
duration ¢ > 0, into the element $(t)p and 7T(t)p, respectively. Our problem is to
determine the element of the space E into which a given element ¢ evolves in a time
t >0 if both these processes go on simultaneously. In other words, we wish to
construct a semigroup U which describes the superposition of the processes described
by the semigroups § and T'.

This problem is traditionally formulated in terms of differential equations. Let

Ap=1lin 3 (S()p-¢)
=0+

for every € F for which this limit exists. The operator A, the infinitesimal
generator of the semigroup S, is not bounded in general.
So, we are seeking a semigroup whose infinitesimal generator is A+ P(V),

that is, a solution of the initial-value problem

o

(D.1) Ule) = AU@) + AV)UE), £ 205 U0+)=1.
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In other words, we look for the fundamental solution of the differential equation
w(t) = Au(t) + P(V)ult) , 20

with the unknown FE-valued function, u, right-continuous at 0.

This problem is non-trivial because, strictly speaking, it is not even
unambiguously formulated. The point is that the operator A + P(V) is not necessarily
the infinitesimal generator of a continuous semigroup of operators. On the other hand,
this operator may have an extension which is an infinitesimal generator, but such an
extension may not be unique. It is conceivable that the obvious generalizations of the
objects introduced in the previous section would be helpful in clarifying the issues
involved in this problem and in solving it.

Fora t>0, let T, De a 'sufficiently rich' set of maps v: [0, = A, to be
called paths in A . Let 7% , be the family of all sets (C.2) for arbitrary n=1,2,...,

Ot <iy<itg<..<t <t <tand B],EB(A), j=12,...,n. Let

Mt(Y) = S(t—tn)P(B )S(t -t 1)P(B

n n n-

) - P(B)S(t,-t ) P(B))S(t))

for any such set V.
Then a heuristic argument, similar to that presented in the previous section,
suggests that the operators U(¢) can be expressed by the means of the Feynman-Kac

type formula:
(D.2) o(t) :JT [exput V(v(r))dr”Mt(dv) :

for every ¢ >0. In fact, an integral equation for U can be derived in an manner
precisely analogous to that of deriving (C.7). Namely, assume that ¢ > 0, that the
function €, is given by (C.3) for every veT y and that the function [ is given by

(C.6) for every s€ (0,4 and ve T,. Then
J,, Hoi (@) = =PV UL
i

for every se [0, and
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J; f(s,v)ds = exp U; ‘V(v(r))er -1,

for every ve T . Therefore, by the Fubini theorem (!),

0lt) - S(1) = JT [exp[ f V(U)r))dr} - 1]Mt(dv) -

" 0
- JT [ J; f(s,v)ds} M(dv) = J; [ JT f(s,v)Mt(dv)] ds =
! 1

_ f S(t-5) P(V) U(s)ds .
0

The obtained integral equation,
(D.3) U = S(t) + J S(t-5)P(V) U(s)ds ,

replaces the initial-value problem (D.1).
It goes without saying that once we have a solution of the problem (D.1), then

we have solutions of the initial-value problems
(D.4) w(t) = Au(t) + P(V)u(t) , ¢t >0; w(0+) = ¢,

for all ¢ € F. Indeed, it suffices to put wu(¢) = Ult)p, for every ¢ >0, where U is
a solution of (D.1). On the other hand, the point of the formula (D.2), or the formula
(C.5) for a given e £, isthat U(t) or u(?) could possibly be defined by these
formulas even when the initial-value problems (D.1) or (D.4) do not have a solution or
perhaps could not even be meaningfully formulated.

The question then arises whether the formulas (C.5) and (D.2) can be put on a
solid footing. Or, rather, whether a formal framework can be erected in which these
formulas have a good meaning and the conditions for a legitimate use of the operations
lading to them can be formulated.

Now, integration with respect to the BL(F)-valued set function M , is reduced
to integration with respect to the FE-value set functions Ywr M t( Yip, Ye z, for

every p€ FE.



Accordingly, the equality (D.2) is defined to mean that

vt)e= | [exe] r Vn)dr| | Midvyg,
T, 0 .

for every @€ E, where the integral is understood with respect to the E-valued set
function. This reduction is analogous to integration with respect to spectral measures.
It has the advantage that one may attempt the construction of a solution of the
problem (D.4), for some ¢ € E, by the means of the formula (C.5) and thus avoid the
fundamental solution. In fact, it is conceivable that the integral (C.5) may exist for
some ¢ € F while the integral (D.2) does not.

So, there remains the problem how to integrate with respect to the E-valued set

functions Y»r Mt(Y)w, YeR,, for peE.

EXAMPLE 0.2. In the case when S is the diffusion semigroup (see Section A) and
T the creation/destruction process semigroup (see Section B), the means for an easy
solution of this problem are provided by the Wiener measure. In fact, given a set

Ye 7lt of the form (C.2), the number
w(Y)=J3J J j J p(-t ,y-z )p(t ~t .z -z ) ..
n’ n n n-1""n "n-1
R Bn—l Bn—l B2 Bl

_ ‘ 3
o Dlty=t), 3,2 )p(t) 3, )dz dg, .. dz_ dz dz dy = (M(TV)4)R"),

where the kernel p is given by (A.5), is equal to the Wiener measure (or variance 2D
per unit of time) of the set Y. To be sure, w is a probability measure on the whole
of the o-algebra & ; generated by the family of sets 7 -

Now, for a set Y T, and foR3, let Y-z be the set of all paths
sru(s)-z, se€[0,f, suchthat ve Y. Let wx(Y) = w(Y-z) for every Y€ z, and
z€R®. Then w, is a probability measure on § ; such that wx( Y)=(M 7:( Y)(Sx)(lR?’)

for every Y€ 7lt . Furthermore, if o€ F, let

w (V)= j[R?, w (V)pl(da) = jmg Wl Y-2)¢(da)
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for every YeS& . Then Wy, is a real or complex valued o-additive measure on & .
such that w(p( Y)= (M t( Y)c,o)([R?’) for every Ye Z,. Hence, if b is the variation of
the measure ¢, then wUb is a finite positive measure on & ; such that
|(Mt(Y)g0)(B)I < wu(Y) for every Ye¢ %, and every Be B([R3) . So,if peFE is
real-valued then the norm of the element M t( Y)o of E, that is, the total variation
of this measure, is not greater than wu( Y), forany Ye7 » If pe F is complex
then the norm of Mt( Y)y is not greater than Qwu(Y) , say, for every Y€ z,.
Consequently, there exists a unique continuous linear map ¢ : £1(wu) - F such that

®

z’(p(f) = Mi(Y)go, whenever [ is the characteristic function of a set Ye %t.
Therefore, we may declare a function f on T , to be integrable with respect to the

FE-valued set function Yw» M t( e, Ye » if it is wu—integrable and define

(/)

J, toniavo=i,

for every fe€ Ll(wu) .

EXAMPLE 0.3. Let E= L2([R3) . The Fourier-Plancherel transform of an element
@ € FE is denoted by é\o Let m Dbe a (strictly) positive number. For every real ¢,

let S(¢) : £~ E be the map uniquely determined by the requirement that

A

(S(09)"(6) = exp[- &4 1€1°] o)

for every @€ E and (almost) every £¢€ R®. The Plancherel theorem implies that
S(t) : E~ F is a unitary operator and the resulting map S: R - BL(E) is a continuous
group of operators.

Forevery t#0 and z¢€ R® , let

2
(D.5) p(t,z) = Wexp {im J—ZEH .
mit/m
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(S()¢)(a) = j[Rg plta-y)e(y)dy

for every @€ 'n L2(R3) . The kernel (D.5) is obtained from (A.5) Aby substituting
D=2/mi. |

The group i+ S(f), t€(-0om), is called the Schrodinger group. It is
interpreted as the description of the motions (evolutions) of a free non-relativistic
quantum mechanical particle of mass m with three degrees of freedom. The states of
such a particle are determined by elements of the space £ with norm equal to 1 . The
word 'free' indicates that no external forces are acting on the particle. Then, if the
particle is at a state ¢ at time =0, then, at any other time ¢€ (~o), the
particle was or will be at the state S({)¢p.

Let A=R®. For every Be B(IR3) =B, let P(B) be the operator of point-wise
multiplication by the characteristic function of the set B.  Then, clearly,
P:B- BL(E) is a spectral measure. If W is a measurable function on R® , then
P(W) is the operator of multiplication by W . Therefore, one usually writes simply
W instead of P(W) .

Now, let V be a real-valued function on R® interpreted as the potential of the

forces acting on the particle. Let
T(t) = exp(-itP(V))

for every ¢€ (-w,mw). The group T describes the fictitious motions of the particle
under the influence of the forces with potential V assuming that 'inertial motions' are
suspended.

The superposition, U, of these groups S and 7T describes the real motions of
the particle in the force-field of potential V. The group U can be considered the

fundamental solution of the equation
1) = A Au(t) - 1Vu(t) , t€ (~mm) -

That is to say, if ¢ € E and u(¢) = U(¢)p, for every € (~o,0) , then
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(D.6) 4tz = —217% Au(t,z) - iV(2)u(t,z) , t € (~0) , T € R® 5 u(0,2) = p(z) , z€ R® ,

assuming that ¢ is represented by a sufficiently smooth function and the potential V
is not 'too bad'.

However, there are considerable difficulties associated with the construction of
the semigroup U by the means of the formula (D.2) because it is not at all clear how
to integrate with respect to the BL(FE)-valued set function M ;- Indeed, for most
vectors @ € F and @€ E, the scalar valued set functions Yw (w,Mt( Yoy, Ye 7lt ,

(the scalar product in E) has infinite variation on every 'non-trivial' set in % ”

E. Because of its significance, Example 0.3 deserves further comments.
Although the problems posed by Example 0.3 are much more difficult to handle,
historically it precedes Example 0.2. In his Thesis, [15], R.P.Feynman suggested the

replacement of the initial-value problem (D.6) by the formula
. t 5 i
(1) ea)= | ew[H{F] i) | V(ofs))ds] | o(0)12(0)
0 0
i

(with some insignificant changes of notation) which is to be understood as

n times
—— N
. —3n/2
. [27iht
(E.2) u(t,z) = 1im [—] J J .. J
N L M RS JR3 R®

n

) V(a:k)H w(xo)dxodxl wdz

ifmt o 2 1
" =1

P [ﬁ[—iﬁ ,;::1 |52, |
where z =z . The possibilities of an approach to quantum mechanics based on this
suggestion are systematically explored in the book [16] by R.P.Feynman and
A.R. Hibbs.

The formula (E.1) has a great heuristic value. Its attractiveness to physicists is
to a considerable degree based on the fact that, apart from the factor i/h, the
argument of the exponential function is equal to the classical action along the

trajectory wv. This heuristic value seems to be responsible for the resilience of this
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formula, its popularity and that of its variants and generalizations, in spite of serious
conceptual difficulties associated with it.
The main difficulty presented by (E.1) is that the integration 'with respect to

the variable v' over the space, T,, of paths in R® refers to integration with respect

iy
to the infinite producf of copies of the Lebesgue measure in R® indexed by all the
time-instants from the interval [0,f] . However, such an infinite-dimensional analogue
of the Lebesgue measure does not exist. This is caused by the fact that the measure of
the whole space R® is infinite so that the measure of any (presumably measurable) set
in T . would be either 0 or «. This state of affairs cannot be remedied by admitting
into T, more (or even all) maps w:[0,{] 4R® besides the continuous ones. This
difficulty is intrinsic and directly insurmountable. Therefore, (E:1) cannot be taken as
anything more than a suggestive way of writing (E.2)

By interpreting (E.1) as the limit (E.2), the mentioned difficulty is to a certain
degree circumvented together with that which is related to the existence of the
derivatives o(s) for veT, and s€[0,f] . However, it should be born in mind that
the integrals with respect to Ty 5 Ty peey T, aT€ DOY absolutely convergent because
the integrand has constant absolute value. So, one cannot arbitrarily change the order
of integrations.

There is considerable literature devoted to definitions of the Feynman integral,
interpreted as the limit (E.2), exploiting, roughly speaking, a suitable summability
method for the calculation of .the finite-dimensional integrals in (E.2) and/or its
approximation which facilitates the subsequent passage to the limit.

In a somewhat different manner, a rigorous meaning can be given to (E.1) by
constructing the superposition U of the semigroups S and 7T, defined in Example
0.3, through approximation of the operators U(f) by operators of the form (C.1). In
fact, H.F. Trotter, [65], and T. Kato, [27], have found conditions under which the
limit

Ult)p = 1im(S(tn_1)T(tn_1))n<p

n-0
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exists for every g€ E= L2([R3) . A variant of this approach is used by G.N. Gestrin,
in his paper [17].

However, with this approach integration over the function space T . is to some
extent suppressed and with it the heuristic value of (E.1) diminishes. In a way, the
same can be said about many definitions of (E.1) using sequential limits. A certain
useful compromise in this direction is achieved by E. Nelson in his influential paper
[52]. He uses the Trotter-Kato formula to guarantee the construction, by the means of
integrals over the space T ; of continuous paths, of the operators U C( t) analogous to
U(t) but with the mass m replaced by complex numbers ¢ with positive imaginary
parts. For any ¢€ E, the so obtained F-valued function ¢(r U C(t)<,o is then
analytic in the upper complex h@lf—plane and the vector U(t)p=U m( ©) is obtained as
the boundary value of this function at m, that is, as the non-tangential limit for
¢(»m, Im¢ >0. Unfortunately, the boundary value exists only for almost every m
(in the sense of the Lebesgue measure).

Nelson's approach led to considerable insight into the situation, especially in the
cases of some badly behaved functions V', but still, it did not solve completely the
problem of maintaining the heuristic value of the formula (E.1) and, at the same time,
turning it into a sufficiently flexible and reliable analytic tool. It seems that a solution
of this problem cannot be tied too closely to the specific properties of the Schrédinger
group. A structure or a method is called for which is applicable in a wider class of
cases. A hint that such a structure might exist can be derived from the work of Mark
Kac. He noted that, if the factor i/h is dropped from the exponent in (E.1), then the
integral can be given a perfect meaning in terms of the Wiener measure. (Cf. the
exposition in [26] Chapter IV.) Of course, by dropping the factor i/h we switch to a
different problem. One of the possible physical meanings of the new problem is
described in Section C; to another one is devoted the book [61] of B. Simon (see also
its review [54] by E. Nelson).

The 'derivation' of the equation (D.3), or (C.7), shows that an integration

scheme which allows 'integration with respect to sufficiently wild set functions of
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infinite variation' and for which a Fubini-type theorem holds, would do for the

required structure. Such an integration scheme is presented in Chapters 2 and 3.

F. To emphasize that the difficulties observed iﬁ Example 0.3 are caused
neither by the fact thét the underlying space, T . is infinite-dimensional nor the fact
that the values of the integrator belong to an infinite-dimensional space, in this section
we mention a classical case in which both, the underlying space and the space of
values, are one-dimensional, none-the-less the same difficulties as in Example 0.3
occur. In fact, if the function ¢ has infinite variation in every non-degenerate
sub-interval of the interval [a,0] , then the difficulties associated with the (definition,

existence, properties,... of the) Stieltjes integral

b

(F.1) f f(z)dg(z)
a

are in principle the same as with

|t ane)
T

t

if £, M PR ¥ etc. have the same meaning as in Example 0.3.

Stieltjes integrals (F.1) are the subject of attention for many reasons. Perhaps
the most prominent among them is the exploration of the possibilities of integration
with respect to (individual) sample paths of stochastic processes, such as the Wiener
process, and of the analysis of the solutions of stochastic differential equations. In
spite of marked successes, such as that of H. Sussmann, [63], the progress in this
direction seems still not satisfactory.

An interesting approach to integrals (F.1), expléiting the moduli of continuity
of the functions f and ¢, was initiated by L.C. Young in [69]. The best result is due
to A. Beurling, [3], who used a most ingenious method for introducing integrals of this
type. Unfortunately, Beurling's method is difficult to extend to cases in which the

interval [a,b] of the real-line is replaced by a more general space. Secondly, it does
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not provide a complete metric in the space of functions integrable with respect to a

fixed integrator.

G. The classical theory of absolutely convergent integrals proved to be
inadequate in the situations described in previous sections. So, it is desirable to
produce a more general theory of integration which would be applicable not only in the
classical situations but also in the situations similar to those mentioned above.

Because a generalized theory necessarily lacks certain features of a more specific
one, the question arises: which agpects of the classical theory of integration should be
considered so essential that also the more general theory must retain them? This
question is a result of two related concerns, namely that about the actual erection of
the new theory and that of its usefulness. That is, we wish to choose those aspects of
the classical theory on the basis of which the new theory could be conveniently
developed and, at the same time, would guarantee that the new, more general, theory
would be sufficiently powerful in the situations for which it is intended. Such a choice
is of course a matter of an interpretation of the integration theory.

A short reflection would reveal that an interpretation which is formulated in
terms of a particular method, or procedure, used for introducing integrable functions
and/or integral, is not really helpful. Then the most fruitful of the 'objective'
interpretations of the integration theory, that is, those which are independent of any
such procedure, seems to be one that characterizes the Ll—space as the completion of
simple functions (continuous functions,...) in the Ll-norm. The point of a particular
construction of integral is in showing that the completion is represented by functions
on the original underlying space or equivalence classes of such functions.

This interpretation can be further refined by noting that there exist families of
functions which generate the Ll—space and are not necessarily vector spaces. That is,
the Ll—space is the completion of the linear hull of such a family and its norm is the
largest norm with a given restriction to the generating family of functions.
Characteristic functions of sets belonging to a sufficiently rich family of measurable

sets can serve as a typical example. To make this remark more perspicuous, we recall
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the following fact concerning the classical integration theory.

Let §© be an abstract space and ¢ a semiring of its subsets. For simplicity, a
subset of O and its characteristic function are denoted by the same symbol. Let ¢ be
a real-valued (finite) non-negative o-additive set function on ¢.

A function, f ,. on () is integrable with respect to (the measure generated by)

¢ if and only if there exist numbers ¢ and sets Xj €9, j=12,.., such that

(G.1) f’%“%“w
=1
and
(G.2) flw) = oi ch],(w)
=1

for every we Q for which

(G.3) §|Q%WRw.
=1

Moreover, the Ll—norm,

=] Il

of such a function j is equal to the infimum of the sums (G.1) taken for all such
choices of the numbers ¢ and sets X,- €0,7=12,.... A proof of this fact is given in
Section 2E below. The vector space of all (individual) functions integrable with
respect to + is denoted by £(¢) .

In the case when ) is an interval of the real-line, @ consists of intervals and
¢ is the Lebesgue measure, it can be easily visualized. This case is commented on in
more detail in the Preface to the book [50] of J. Mikusinski and in [33]. More
comments can be found in Section 3B. Now we mention just a straightforward but
important consequence of this fact.

If u is an additive set function on ¢ (which may, possibly, be vector valued)
such that |w(X)| < «(X), for every set X e @, then there exists a unique linear

functional, £ =£’u, on L(¢) such that #X)=u(X), for every Xe@, and
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4] < |Ifll, for every function fe€ £(:). In particular, the integral with respect to ¢
is the linear functional, ¢, on £(:) such that #X)=4X), for every Xe€ @, and
[4f)| < Ifll, for every fe L().

Now, assume that p is an additive set function on @ and that there does not
exist a finite o-additive set function, ¢, such that |u(X)| < «(X), forevery Xeg.
In the previous sections, we have shown that such set functions occur abundantly and
are of considerable interest. In such case, u does not generate a continuous linear
functional on any Ll—space containing the characteristic functions of all sets from 4.
Nevertheless, there may still exist a complete normed space (strictly speaking, a
seminormed space), £, consisting of functions on  and containing the characteristic
functions of sets belonging to €, such that g can be extended to a continuous linear
functional on £ .

So, we may look for a non-negative set function, p, on €@, which is a
restriction to @ (interpreted of course as a family of functions) of the norm on some
such space £, such that |u(X)| < p(X), for every Xe€@. If the space £ is
generated by @, that is, it is the completion of the linear hull of ¢, and if the norm
on L is the smallest norm coinciding with p on @, then x can be uniquely
extended to a continuous linear functional on the whole of £ .

Let us turn the tables and call a non-negative set function, p, on &g an

integrating gauge, if

[

pX) < L leln(X)

=1
for any set X € @, numbers ¢ and sets X,- €0, j=1,2,..., such that

X(w) = jgl chj(w)

for ever we N satisfying the inequality (G.3).
Given an integrating gauge, p, on @, let L(p,d) be the family of all
functions, f, on  for which there exist numbers, ¢ and sets, Xj €9, j=12,..,

such that
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G.4) % |C]~Ip(X,-) < o
=1

and the equality (G.2) holds for every we Q for which the inequality (G.3) does. For

any such function, fe€ L(p,9), let
A 00
of)=inf } [c|p(X),
P j

where the infimum is taken over all choices of numbers ¢ and sets X] €g, j=12,..,
satisfying condition (G.4), such that the equality (G.2) holds for every we Q for
which the inequality (G.3) does.

It turns out that £(p,9) is a vector space and ¢ is a norm (strictly speaking, a
seminorm) under which the space £L(p,d) is complete and the linear hull of g is dense
in it. Moreover, if g is an additive set function on @ such that |u(X)| < p(X), for
every X €@, then there exists a unique linear functional, £, on £(p,9) such that
AX)=p(X), for Xe@, and |Lf)| < ¢(f), for every fe L(:,0) .

Now the problem naturally arises of producing a sufficient supply of integrating
gauges. Of the various ways of solving this problem, let us mention the following one.
If ¢ is a finite non-negative o-additive set function on ¢ and ¢ a continuous,
increasing and concave function on [0,w) such that ¢(0) =0, then the set function
p, defined by p(X) = p(«(X)) for every X € @, is an integrating gauge on & .

To show the usefulness of this construction, let us indicate how it solves the
problem of Stieltjes integration with respect to functions of infinite variation. So, let,
for example, Q=(0,1], let @ be the family of all intervals (s,f] such that
0<s<t<1, let g beafunctionon [0,1] such that |g(¢)-g(s)| < [t—s[%, for any
s€[0,1] and t€[0,1], andlet u(X)=g(t)-g(s), for any X = (5,4 € @. If we define
p(X) = (L(X))% , for every X e @, where . is the Lebesgue measure, then we obtain

an integrating gauge, p, on €. Now we can define

j; fdu = j; f(z)dg(z) ,
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for any function fe€ L(p,9), to be the value, £f), of the continuous linear
functional, £, on £L(p,2) such that #X) = u(X), for every Xe€@.

Other applications are presented in Chapter 7 in which we return to the
problems described in this chapter. Hopefully, they suffice as an indication that the
attention payed to the introduced notions is warranted. Nevertheless, it is natural and
convenient to introduce a still more general structure which generalizes simultaneously
integrals with respect to o-additive set functions and Daniell integrals. To do so, it
suffices to replace the family of characteristic functions of sets belonging to ¢ by any
sufficiently rich family, X, of functions on Q. It is assumed that a functional, p,
to be called an integrating gauge, is given on X such that there exists a complete
(semi)normed space L(p,X), consisting of functions on € such that the linear hull of
K is dense in L(p,X) and the norm of L(p,X) is the smallest norm whose values on £
coincide with those of p. The construction of L£(p,X) is of course analogous to that of
L(p,9); it is briefly described in the pre-amble to Chapter 2. The definition of
integral is sketched in the pre-amble to Chapter 3. Some of the possibilities inherent
in this more general structure are exploited in Chapter 6 which deals with the spectral
theory of operators. Not without interest may also be the fact, adverted to in Chapter
3, that many classical function spaces may be defined as instances of the space L(p,k) ,

for suitable choices of X and p.



1. PRELIMINARIES, NOTATION, CONVENTIONS

Even though the notation and conventions adopted here are fairly standard,
slight variations that occur in the literature can cause inconvenience to the reader. So,
the problem of making the whole text sufficiently self-contained is solved by placing
this chapter at the beginning. None-the-less the chapter can be used as an appendix,
that is, the reader may refer to it only as the need arises. To facilitate such usage,

frequent references to this one are made in the subsequent chapters.

A. The need to treat real and complex vector spaces separately will only
seldom arise. Therefore, the real or complex numbers will be referred to simply as
numbers or scalars.

To maintain the perspicuity of the notation pertaining to vector valued
functions and integrals, the multiplication by scalars of elements of a vector space will
be written commutatively. That is to say, if FE is a vector space, we shall write
interchangeably cz = zc, for any scalar ¢ and a vector z€ E.

By a seminorm on a vector space E is meant a function ¢: E- [0,0) such
that ¢(z+y) < ¢(z) + ¢(y), for every z€ E and ye E, and ¢(cz) = |c|q(z), for
every € F and a number ¢. So, a seminorm has all the properties of a norm with
the only exception that its value may be equal to zero on a non-zero element of E.

The study of spaces of individual integrable functions, rather than those of the
equivalence classes of such functions, makes it convenient to consider general
seminormed and not just normed spaces. To be sure, a seminormed space is a vector
space together with a specified seminorm on it. A majority of concepts referring to
normed spaces are with obvious modifications applicable to seminormed spaces. The
occasional difficulties are caused mainly by the non-uniqueness of limits and similar
objects.

So, let E be a seminormed space with the seminorm ¢ .

A set SC F is called bounded if {¢(z): z€ S} is a bounded set of numbers.

29
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A set SCEis densein E if, for every 7€ E and ¢ > 0, there exists an
y € S such that ¢(z-y) < €.

A sequence, {zn}‘::l , of elements of E is said to be convergent if there exists
an element z of E such that

lim ¢(z-z )=0.
- 00 "

In that case, z is said to be a limit of the sequence {1;71}0::1 . We write

z=1lim z, -
n— oo

If y too is a limit of this sequence, then ¢(z-y) =0 .

A sequence, {xn}‘:::l , of elements of E is said to be Cauchy if, for every
€ >0, thereis a ¢ such that q(a:n—xn) < ¢, forevery n>¢ and m > §.

If we want to be specific, we speak of ¢g-bounded sets, ¢-convergent sequences,
and so on.

The space E is said to be complete if every Cauchy sequence of its elements is
convergent.

We shall reserve the term "Banach space" to denote a complete normed space.
So, FE is a Banach space if ¢ is actually a norm, that is, the equality ¢(z) =0
implies that z=0, andif F is complete.

The norm of an unspecified Banach space will be mostly denoted as modulus.

A sequence, {:I:j}‘;’:l , of elements of the seminormed space FE is said to be
conditionally (or simply) summable if the sequence {sn}i:1 , Where
)
s =) .
L=
for every n=1,2,..., is convergent. If s is a limit of the sequence {sn}‘z:l , then we
write
0
s=Y g
=17

00

and call the element s a sum of the sequence {:cj}],=1 .
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The sequence {:c]}o;zl is said to be unconditionally summable if, for all choices
of €= Qorl, j=1,2,..., the sequence {e]_xj}";’:l is conditionally summable.

The sequence {a:]}‘;o is said to be absolutely summable if

=1
(A.1) Z dz)<w

and if it is summable.
The following two statements are designated as propositions with their own

numbers only to give them prominence. Their proofs are of course omitted.

PROPOSITION 1.1.  The seminormed space E is complete if and only if every

0

=17 of its elements which satisfies condition (A.1) is summable.

sequence, {x}}

PROPOSITION 1.2. Let E be a Banach space with the norm ¢q. Let H be a dense
vector subspace of E. Then every element, z, of the space E can be expressed as the

sum of some elements, z; of H, j=1,2,.., satisfying condition (A.1). Furthermore,

¢(z) = inf f q(x].) ,
=1

where the infimum is taken over all expressions of z as the sum of elements z, of H,

j=1,2,..., satisfying (A.1).

B. Let F be a vector space. Let QC F; the set @ is not assumed to be
a vector space.

The linear hull of @ will be denoted by sim(@Q) . That is, z € sim(Q) if and
only if there exist a (strictly) positive integer =, numbers» ¢ and elements, z, of

Q, j=12,...,n, such that

) n
B.1 = .
(B.1) z ]2::1 ¢z

Elements of the space F' that belong to sim(@) are called @-simple. This notation
and terminology originated in elementary integration theory and will be meiinly used in

that context. (See Section D below.)
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Let E be another vector space. A map p: @~ F will be called linear if

n

j§=:1 c],u(xj) =0

for any n=1,2,..., numbers ¢ and elements z, of @, j=1,2,...,n, such that

n
]2::1 cx.= 0.

A map p:Q-FE is linear if and only if there exists a linear map
B:sim(Q) » E such that j(z) = u(z) for every z€ Q. If it exists, such a linear map
Lo is unique. Therefore, following the custom, we shall not distinguish, in terminology
and notation, between a linear map p: Q- £ and the linear map on sim(@) into F
that extends p .

If E is the one-dimensional vector space, that it, the space of scalars, then a
linear map p: @- E is called a linear function, or a linear functional. The vector
space of all linear functions on the whole of F is called the algebraic dual space to F
and denoted by F*.

Asgsume now that F and F are seminormed spaces with the seminorms p and
g, respectively. Then we can speak about the continuity of a map u: F- FE at a
point z€ F. To be sure, such a map is continuous at a point z€ F if, for every
€ >0, thereisa ¢ >0 such that p(u(y) - w(z)) < ¢ for every y€ F for which
gly-7) < 6.

As in the case of normed spaces, for a linear map u: F- E, the following

statements (i), (ii) and (iii), are equivalent:

(i) There is a point in F at which g is continuous.
(ii) The map 4 is continuous at every point of the space F'.
(iii) There is a constant & > 0 such that p(u(z)) < kg(z) , for every z€ F.

So, it is quite unambiguous to say simply about a linear map on a (whole)
vector space that it is continuous.
The vector space of all continuous linear functionals on a seminormed space F

is called the continuous dual space to F', or just the dual of F, and denoted by F’ .
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If we define ¢’ (z") = sup{|z'(x)| : ¢(z) < 1}, for every 2’ € F’, Then ¢’ is anorm
on F’ which makes of F“ a Banach space.
A sequence, {J;j}"]‘_’:l , of elements of a seminormed space F is said to be

conditionally weakly summable if there exists an element s of F' such that

for every z’ € F .

Q0
j=1"

unconditionally weakly summable if, for any choice of €, = 0 orl, j=1.2,.., the

A sequence, {xj} of elements of a seminormed space is said to be

sequence {ejzj}";f:1 , is conditionally weakly summable.

PROPOSITION 1.3. Any unconditionally weakly summable sequence of elements of a

seminormed space is unconditionally summable.

This proposition is known in the literature as the Orlicz-Pettis lemma. A
special case of it appeared in the early work of W. Orlicz on trigonometric series.
However, the first published proof for an arbitrary Banach space is due to B.J. Pettis,
[57]. Several other proofs were invented since; see, for example, [9], Corollary 4.4 and
the remarks on p.34, and [23], Lemma 3.2.1 and Theorem 3.2.3. It is a matter of a
mere routine to weaken the assumptions so as to allow an arbitrary seminormed space.

We are now going to modify a classical lemma of H. Hahn, see e.g. [23],
Theorem 2.7.7, about the construction of a continuous linear functional from its values
on a subset of a Banach space. The modification consists in relaxing the assumptions
on the functional if the norm of the given Banach space satisfies a certain, rather
stringent, condition. The condition says that it is the largest norm on the space with a
given restriction on the given subset. So, the resulting proposition turns out to be
rather trivial. However, it applies to the usual constructions of Ll—spaces, some of

their generalizations, and to the projective tensor products of pairs of Banach spaces.

PROPOSITION 1.4. Let F be a Banach space with the norm ¢ and let QC F.

Assume that sim(Q) is dense in F and that, for every z € sim(Q) ,
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(B.2) ¢(z) = inf i IlelI(i'?j) )

=
where the infimum is taken over all expressions of = in the form (B.1) with arbitrary
n=1,2,.., numbers ¢, and elements ij @, j=12,..,n.

Let E be a Banach space with the norm denoted as the modulus. Let p: Q- E
be a linear map such that |u(z)| < ¢(z), forevery z€ Q.

Then there exists a unique linear map fi: F~ E such that [(z) = u(z), for

every € Q, and |Wz)| < ¢(z), forevery ze F.

Proof. Let By sim(@) » E be the unique linear extension of 4. Then

L (2)] = 72_:1 cmz)| < ]}:]1 le,l | ulz) < ,-zl lela(z)

n ’ n n

for every z € sim(Q) and every expression of z in the form (B.1). Consequently, by
the assumption, lul(z)l < ¢(z), for every zesim(Q). So, there exists a unique
linear map [i: F- E such that [(z) = ,ul(x) , for every zesim(@Q), and

[i(z)] < ¢(z) , for every z€ F.

C. Let Z and T be any non-empty sets. Let € = =xT be their Cartesian
product. If f is a function on  with values in a given Banach space and £€ =,
then by f(¢,-) is denoted the function on T whose value at any point ve T is equal
to f(&v) . Similarly, for any given veT, by f(-,v) is denoted the function on =
whose value at any £ € Z is f(&v) .

Now, let E, F and G be vector spaces. A map.b: ExF- G is said to be
bilinear if, for every z€ F, the map b(z,-): F~ G is linear and also, for every
yeF, themap b(-,y): E~ G is linear. If G happens to be the space of scalars, we
speak of a bilinear function.

Let B(E,F) be the vector space of all bilinear functions on ExF. Let
B*(E,F) be its algebraic dual; that is, B*(E,F) is the vector space of all linear
functions on B(E,F) .
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For each z€ E and yeF, let z®y denote the linear function on B(E,F)
whose value at any element, b, of B(E,F) 1is equal to b(z,5) . The map
(r,y) » z®y, T€ E, ye F, is an injection of ExF into BYE,F) ; it identifies FxF
with a subset of B*(E,F) which we denote by . The vector space, sim(Q),
spanned by @ is deﬁoted by E®F and is called the tensor product of the spaces F
and F. Themap (z,y)r 2®y, € E, ye F, is called the canonical bilinear map of
ExF into E®F.

It is immediate that (i) c¢(2®y) = (cz)®y=2®(cy), for any number ¢ and
vectors z€ E and ye F. Also (ii) (x1+x2)®y= 7, ®y+ 5,0y, for any 7 €l,
7, € E and y€ F; and, similarly (iii) z8( y1+y2) = 18y, + 18y, , for any z€ E and
y €F and y, € F. So, an element, z, of B'(E,F) belongs to E®F if and only if

there is an integer n=1,2,... and vectors z € Fand Y eF, j=12...,n, such that

n
(C.1) z=) 1.9y .
PR

Alternatively, the tensor product, E®F, of the vector spaces £ and F can
be defined as the set of all formal linear combinations of the products z®y, with
t€E and yeF, reduced so that the identities (i), (ii) and (iii) hold. More
precisely, we define V to be the vector space whose basis is ExF and V0 to be the
subspace of V spanned by the elements of the form (0,y) , (2,0), (xl+z2,y) - (xl,y) -
(2,9) 5 (2y+y,) - (5y) - (By,) , (cmy) - dzy) and  (zcy) - elz,y), with an

arbitrary number ¢, vectors z, A and z, in £ and vectors y, Y and Y, in F.
Then the space E®F is isomorphic (as a vector space) with the quotient space V/ V0
under the linear map that associates any element z®y of E®F, z€FE, ycF,
with the element (z,y) + A of the space V/ v,

Assume now that FE and F are normed spaces with norms p and ¢,

respectively. Let the norm r on E®F be defined by

W) =inf § plz)aly),
=1

for every z€ E®F, where the infimum is taken over all expressions of #z in the form
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(C.1) with arbitrary =n=1,2,.., z € E and y € F, j=12,.,n. Clearly,
nz®y) = p(z)q(y) , for every z€ F and ye€ F. In fact, r is the largest norm on
E®F having this property.

By E®F is denoted the completion of the space E®F in the norm r. The
Banach space E®F is called the (complete) projective tensor product of the normed

spaces F and F.

PROPOSITION 1.5.  For every element, z, of the complete projective tensor
product, E® F | of the spaces E and F, there exist elements, z of the space E and

elements, Y of the space F', j=1,2,..., such that

Q0
(C2) Y oo(z)gly) < w
PR A
and
[eo)
(C.3) z=) z®y .
ARt

Moreover, the norm of z in the space E®F is equal to the infimum of the numbers

(C.2) subject to the expression of z in the form (C.3).
Proof. It follows directly from Proposition 1.2.

Let now G be a Banach space with the norm denoted as modulus. A bilinear

map b: ExF- G is continuous if and only if there is a constant £ > 0 such that

(C4) [6(zy)| < kp(z)g(y)
forevery z€ Fand ye F.

PROPOSITION 1.6. If b: ExF- G is a continuous bilinear map, then there exists a
unique continuous linear map p: E®F- G such that w(z®y) = d(z,y), for every
7€ FE and yeF. Furthermore, if (C.4) holds for every z€ E and y€ F, then
|(2)| < kr(2), forevery z€ EQF.

Proof. It follows from Proposition 1.4.
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This is all that will be needed in the sequel about tensor products. For further
general facts and facts concerning the relation of tensor products with vector

integration, the interested reader is referred to [9], Chapter VIII.

D. We say that I is a nontrivial family of functions on a space © if Q is
a nonempty set and X is a set of scalar valued functions whose domain is € such that
the zero function belongs to £ .

Any such nontrivial family, £, is considered to be a subset of the vector space
of all scalar valued functions on Q. So, the symbol sim(X) has an unambiguous
meaning introduced in Section B ; viz., it denotes the linear hull of L. Functions
belonging to sim(X) are called K-simple.

Clearly, £ is a vector space if and only if sim(X) =K. If X is a vector space
whose elements are real-valued and if, with every function fe€ £, also the function
[7] , that is, the function wwr |[f(w)|, we, belongs to £, then X is called a
vector lattice.

The notion of a X-simple function is extended so as to permit consideration of
vector valued functions. Namely, let X be a nontrivial family of functions on a space
Q and let E be a Banach space. By sim(K,E) is denoted the vector space spanned
by all the F-valued functions ¢f, where c€ £ and jfe K. That is to say,
sim(K,E) consists of all functions f: Q- E for which there exist a positive integer =,
elements ¢, of E and functions fj ek, j=1,2,..,n, such that

cf .
=1 7

Functions belonging to sim(K,E) are called (£,E)-simple.

To save subscripts and circumlocution, subsets of  will be identified with
their characteristic functions. Accordingly, a family, @, of subsets of Q is called a
paving in € if it is a nontrivial family of functions on €, that is, characteristic
functions of sets from ¢ a nontrivial family of functions on Q. So, a family of

subsets of 1 is a paving in Q if it contains the empty set.
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The paving @ is said to be multiplicative if it contains the intersection of any
two of its members.

The paving @ in § is called a quasiring of sets in the space ) if, for any sets
X and Y belonging to @, the intersection XNY is equal to the union of a finite
collection of pair-wise disjoint sets belonging to ¢ and also the difference Y\X is
equal to the union of a finite collection of pair—wisé disjoint sets from 4.

The paving @ in Q is called a semiring of sets in the space 2 if, for every
Xe@ and Yeg, there exist a positive integer n and pair-wise disjoint sets

Zj €0, j=0,1,..,n, such that
n
XnY=2, Y\X=u Zj

and the union

belongs to @, for every k=0,1,...,n. The notion of a semiring is due to
J. von Neumann who uses the term half-ring; see [55], Definition 10.1.5. The
importance of semirings will become apparent in the next section; cf., in particular,
Proposition 1.9.

Every semiring is a quasiring, but it is not difficult to exhibit quasirings which
are not semirings.

A quasiring of sets in 2 which contains the union of any finite collection of its
members is called a ring of sets in the space . A ring of sets which contains the
union of any sequence of its members is called a o-ring. A ring of sets which contains
the intersection of any sequence of its members is called a ¢-ring. A ring (quasiring,
semiring, o-ring) of sets in ) which contains  as one of its members is called an
algebra (quasialgebra, semialgebra, o-algebra, respectively) of sets in the space .

By a o-ideal in the space @ we understand a family of subsets of @ that is
closed under taking countable unions and subsets, that is it contains all the subsets of

the union of any sequence of its elements. A family of sets with this property is in fact
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a o-ideal of the Boolean algebra of all subsets of ; so, this terminology represents a
slight abuse of the language. ‘

If § o-algebra of sets in the space £, a function, f, on  is said to be
S-measurable, if every set of the form {w: f(w) € U}, where U is an open set of
scalars, belongs to § .

The least o-algebra of sets in a topological space @ that contains all open sets
is called the Borel o-algebra in ; its elements are called Borel sets. The least
o-algebra of sets in a topological space § that contains all sets of the form
{weQ: f(w)e U}, where [ a real valued continuous function on € with compact
support and U an open subset of R, is called the Baire og-algebra of sets in 0 ; its
elements are called Baire sets.

If @ is a paving in the space  and Tc, T#0, then the family
gnT={XnT:Xeg} is a paving in the space T. If g is a quasiring then so is
gnT . Similarly for a semiring, ring, algebra, o-ring, é-ring and o-algebra.

If @ is a quasiring of sets in the space ! then every @-simple function has an

expression

(D.1) f= ;§1 ¢X.

where the n is a positive integer, the ¢ are numbers and the Xj are pair-wise
disjoint sets belonging to 4, j=1,2,...,n. The family, %, of all sets belonging to
sim(9) , that is, sets whose characteristic functions re @-simple, is the ring of sets
generated by @. So, every element of % is equal to the union of a finite collection of
pair-wise disjoint sets from @ .

Let @ be an arbitrary paving in the space Q. By X(g) will be denoted the
set of all families of pair-wise disjoint non-empty sets belonging to @.

A family of sets, ?, belonging to X(@) is called a @-partition (of ), if the

union of all sets that belong to 7 is equal to § and, for every X € &, the sub-family,

{YeP:YnX¢0},
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of ? consisting of sets having non-empty intersection with X, is finite. The set of all
Q-partitions is denoted by II(Q) .

Let 7, € I(Q) and 7’2 eIl(9). I, for every set Y€ 7’2, there exists a
(necessarily unique) set X € 7, such that Y CX, we say that the partition 7, is a
refinement of the partition 7’1 and write 7’1 < 7’2 .

We say that a set T' ¢ II(Q) is directed (by the relation of refinement) if, for
every 7’1 €l and 7’2 eI', there exists a partition 7’3 € I' such that 7’1 < 7’3 and
Py< 7.

If ¢ is a multiplicative quasiring, then the set, II(¢), of all partitions is
directed.

If @ is an arbitrary paving and I' is a directed subset of II(g), then the
paving

g9~={0tu u 7,
F{}?er

to which belong the empty set and all the sets forming the partitions belonging to T,

is a multiplicative quasiring of sets.

E. Let E be a vector space.

If X is a nontrivial family of functions on a given space and p: X - E a map,
the question whether the map g is linear or not has a meaning. Indeed, the notion of
a linear map was introduced in Section B. If X satisfies some additional hypotheses,
then it may be possible to simplify the condition of linearity. It is obviously so when
K happens to be a vector space. Less obvious simplifications are possible for some
kinds of pavings.

An F-valued map whose domain is a paving is usually called an FE-valued set
function. The real or complex valued set functions are referred to simply as set
functions, and so are FE-valued set functions whenever the space FE is specified
otherwise or irrelevant.

Let @ be a paving in a space & and p:9- E a set function. Let n be a

positive integer. The set function g is said to be n-additive if
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n
wX) =y wX)
=1 7
for any set X € ¢ and pair-wise disjoint sets X]_ €g, j=1,2,..,n, such that

X=U X .
j

s

1

<,

If p is n-additive, for every n=1,2,..., we say that it is additive.

PROPOSITION 1.7. If @ is a quasiring of sets, then a set function p:Q9- E is

linear if and only if it is additive.

Proof. Any linear set function is additive. So, let @ be a quasiring of sets and
p: Q- E an additive set function. If a function [ € sim(g) is expressed in the form

(D.1), let

n

W)=} cu(X).

=R

The additivity of p implies that this definition is unambiguous. It is then
straightforward that the resulting map [ :sim(g) -~ F is linear and that [(X) = u(X)
for every X € g.

This proposition implies that, if @ is a quasiring of sets and % is the ring of
sets generated by @, then any additive set function x:@- E has a unique additive
extension on the whole of 7; that is, there exists a unique additive set function
p:®- E such that a(X) =u(X), for Xeg.

If @ happens to be a semiring, then the condition of linearity can be simplified

still further.

PROPOSITION 1.8. If Q is a semiring of sets, then a set function p:Q-+E is

additive if and only if it is 2-additive.

Proof. Let @ be a semiring of sets and p: @- F a 2-additive set function. As p is
trivially 1-additive, for an inductive proof, assume that k¥ > 1 is an integer and that

u is k-additive.
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Let Xe€Q and let Xz, €g, i=0,1,2,..,k, be pair-wise disjoint sets whose
union is equal to X . By the definition of a semiring there exist a natural number m
and pair-wise disjoint sets Z]_ €d, j=012,.,m, suchthat Z =XnX =X,

k
U X = X\X =
=1 I

s

Z.
19

and, for every 1=0,1,2,...,m, the set

{
W=U Z
P

0

.

belongs to @ . Then, clearly, Wy=X,, W,=W,_,UZ and W _,NZ-= 0, for every
[=1,2,...m, and W _ =X.
m
Now, by the 2-additivity of u, we have pu( Wl) = Wl—l) + u(ZI) , for every
1=1,2,...,m. Therefore, puf Wl) = WO) + ”(Zl) = u(ZO) + ,u(Zl) i W2) = Wl) +

,u(Z2) = u(ZO) + u(Zl) + ,u(Zz) ; and so on. Hence, by finite induction ending at {=m,

(E.1) WX =uW,)= ¥ uz).

Furthermore, for any i=1,2,....,k, we have XNW,=XnX, = 0, XnW =
(inWI—l)U(XinZI) and (XiﬂWI_l)ﬂ(XiﬂZI) =0, for every [=12,...,m-1, and
Xin Wm = XiﬂX= Xz,. Therefore, u(Xz_ﬂ WI) = u(Xz_n Wl—l) + ,u(Xz,r‘lZI) , for every
1=1,2,...,m, and, hence, by finite induction,

m
(B2) MX) = HXAW,) = § X,02)
for every i=1,2,....k.

On the other hand,

k
Z=U (XnZ)
=S B

for every j=1,2,..,k, and the sets Xz’an’ i=1,2,....,k, are pair-wise disjoint.

Hence,
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k

(E.3) wz) = El ux,nz),

for every j=1,2,...,m, because, by the assumption, the set function p is k-additive.

So, by (E.1), (E.2) and (E.3),

WX = § WZ)=uZ)+
i=0

m k k m
=uX)+ ) ¥ u(XZ.ﬂZj):u(XOHZ X ux.nz) =
j=1 =1

k
= p(X,) + ;1 WX) = Z}O wX) .

That is, p is (k+1)-additive.

It may be interesting to note that this proposition does not hold for quasirings

instead of semirings.

EXAMPLE 1.9. Let Q={1,2,3} and let Q= {0,{1},{2},{3},2}. Then @ isa
quasiring of sets in the space Q. Let w(0) =0, p({1})=w({2}) =u({3}) = () =1.
Then obviously, w(X) =u(Y) +u(Z), for any sets X, Y and Z belonging to @,
such that YNZ =0 and X = YUZ. However, u is not additive.

The surprisingly nontrivial Proposition 1.8 expresses a property of semirings
that makes them preferable to quasirings. It is due to J. von Neumann, [55], Theorem
10.1.12; see also [19], Exercise 5 in §7. However, some naturally occurring pavings in

torus-like spaces are only quasirings.

F. Let @ be a paving in a space Q. Let E be a normed vector space.

A set function g : g~ E issaid to be o-additive if

W= § ux)
=1
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for any set X € § and pair-wise disjoint sets Xj €@, 7=1,2,..., such that

0
X=U X .
=17

PROPOSITION 1.10. Let @ be a quasiring of sets and % the ring generated by & .
Let p: Q- E be an additive set function and [i: B~ E its additive extension.

The set function [ is o-additive if and only if p is o-additive.

Proof. It follows directly from the fact that every set in % can be written as the

union of a finite collection of a pair-wise disjoint sets from g .

Demonstration of the o-additivity of a given set function may not be a simple
matter, not even if the set function is scalar valued. In fact, the problem of
o-additivity of vector valued set functions is often reduced, via the Orlicz-Pettis
lemma, say, to the problem of c-additivity of some scalar valued set functions and
even positive real valued ones. The basic source of positive o-additive set functions is
the theorem of A.D. Alexandrov; see [14], Theorem II1.5.13 and the remarks in Section
II1.15 (p.233), and also [55], Theorem 10.1.20. Because of its importance, we present
here an elementary proof of an extended and, at the same time, simplified version of
this theorem.

A paving C is called compact if

(F.1) nC 40

n=1

for any sets C’n €eC, n=1,2,.., such that

k
(F.2) noc# 0,

n=1

for every k=1,2,....
More appropriately, instead of "compact", we should have used - as some
authors actually do - the term "semicompact" or "sequentially compact". The proof of

the following lemma is taken from [56], Lemma 1.6.1.
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LEMMA 1.11. Let C be a compact paving. Let D be a paving whose elements are the

unions of finite collections of sets from C . Then the paving D too is compact.

Proof. Let D e D, n=12,..., besets such that

' k
(F.3) n Dn £ 0

n=1

for every k=1,2,.... The proof will be accomplished if we show that the intersection
of all the sets Dn , n=12,.., isnotempty.

For every n=1,2,.., let m, be a natural number and Ci, j= 1,2,...,mn7

sets from C such that

Let M = {1,2,...,mn} , for every n=1,2,.... Let J be the set of all sequences
L= {Ln}‘:::1 such that ¢ € M_ for every n=1.2,... Finally, for every k=1,2,..., let
Jk be the set of all sequences ¢ € J such that
k 12
(F.4) ncr+0.
a=l "
It then follows immediately that,
(i) if 1€ Jk’ k€ J and K =t for every n=1.2,.,k, then ke J ;
(ii) if p and ¢ are natural numbers such that p < ¢, then Jq C Jp .
Moreover, by the distributive law,
k k L
nD=uU [ n Cn”] .
=1 " e L=t
Therefore, by (F.3), (F.4) holds for at least one ¢ € J. So,
(iii) Jk #0 forevery k=1.2,...
Our next aim is to prove that there exists a sequence ¢ € J which belongs to

Jk for every k=1,2,.... Such a sequence is constructed inductively.
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First, using (iii), for every k=1,2,..., we fix an element & of the set Iy -
(1) Because the first terms, Lf , of the sequences & , k=1.2,..., all belong

to the finite set M1 , there exist an element ¢ of M1 such that the set, Sl , of all

1

natural numbers & for which Lf =l is infinite.

(I1) Assume that p is a natural number and that for every n=12,...,p, Ly
is an element of Mn such that the set, Sp , of all natural numbers £ such that

L= Lz , for every n=1,2,..,p, isinfinite. Because the (p+1)-st terms, L§+1 , of the

sequences & , k=1,2,..., belong to the finite set MP there exists an element byt

+1 7 1
of MP 1 such that the set Sp 1o of those elements k of the set Sp for which
Lp+1 = L;fﬂ , is infinite. Then L = L: , for every n=1,2,..,p, p+1, whenever
ke SP o

[e]

n=1 is constructed such that, for every p=1,2,..., the

So, a sequence ¢ = {u,}
set Sp of natural numbers % such that L= Ls , for every n=1,2,..,p, is infinite.
Consequently, for every natural number p, there exists a natural number ¢ > p such
that o = LZ, for every n=12,..,p. But then, by (i), ¢ JP. Hence, by (i),
LE Jp. Because the constructed sequence, ¢, belongs to J,, (F.4) holds for every
k=1,2,... Consequently,

©
nc +0,
a=1 "

because the paving C is compact, and the intersection of the sets D, n=12,..,

cannot be empty either.

Let p be a non-negative real valued additive set function on ¢ and C a
paving in 2. The set function g is said to be C-regular if, for every X €@ and

every ¢ >0, thereexist aset CeC and aset Y€ g such that
YcCcX and w(X)-pu(Y) < €.

PROPOSITION 1.12. Let g be a quasiring of sets and C a compact paving in the
space 2. Any C-regular non-negative real valued addz'tive set function on @ is

o-additive.



Proof. Let p be such a set function. Without a loss of generality we will assume
that ¢ is a ring of sets. For, if it is not the case, let Ji be the additive extension of 4
on the ring, %, generated by &, and 7 the paving consisting of the unions of all
finite collections of sets from C. Then [ is, obviously, P-regular, because every set
from 7% is thé union of a finite collection of sets from ¢, and, by Lemma 1.11, the
paving 7 is compact.

So, let X € g Dbe sets such that X,0X ., and ,u(Xn) >, for some
a>0, n=12,. . Let C’n €C and Yn € g be sets such that

-n
Y ¢ CnCXn and u(Xn) —,u(Yn) <2 ",

so that Z, # ¢ and (F.2) holds for every k=1,2,.... By the compactness of C, (F.1)

holds, and, consequently,

X #0,

n=1

which implies the ¢-additivity of 1, because @ is a ring of sets.

G. By a Young function we shall understand a real valued function, ®, on
the interval [0,0) that is continuous, strictly increasing and convex and satisfies the

conditions
lim 0 -0 and 1im &Y -5

-0+ -0

It follows that ®(0) =0 and ®(¢) >0 for ¢ > 0.
Proofs of the following two propositions can be found in [38], I.1.5 and 1.2.2,

respectively.
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PROPOSITION 1.13. A function, ®, on [0w) is a Young function if and only if
there exists a non-decreasing function, ¢, on[0w) such that ¢(0)=0, ¢(s) >0 for

§>0, p(8)~w as s~w, and

1
(G.1) (1) = j ols)ds,

for every t > 0. Moreover, if o is right-continuous at every point of the interval

[0,0) , then it is unique.

The Young function, @ , is said to satisfy condition (A,) for large values of

5)
the argument if there exist numbers £ > 0 and @ >0 such that

(G.2) ®(2t) < k(1) ,

for every 1€ [a.) .

The Young function, @ , is said to satisfy condition (A,) for small values of

o)
the argument if there exist numbers £ > 0 and @ > 0 such that {G.2) holds for every
te[0,q] .

If a Young function satisfies condition (A,) for small and also for large values

5)

of the argument, we say that it satisfies condition (Az) .

Let @ be a Young function. The function ¥ defined by
U(t) = sup{st- ®(s) : s > 0},

for every ¢ >0, that is, the Legendre transform of &, is called the function

complementary to @ .

PROPOSITION 1.14. Let ® be a Young function and let ¢ be the right-continuous
function in [0,0) such that (G.1) holds for every t > 0. Let

¥(t) = sup{s: o(s) < 1}

for every t€ [0,) . Then the function U, complementary to ® , is given by
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t
o= | welds,
0
forevery t>0.
The function ¥, complementary to a Young function, &, is again a Young
function and the function complementary to ¥ is & . If ® and ¥ is a pair of
mutually complementary Young functions, then the inequality, called the Young

inequality,

st < ®(s) + (1)

holds for every s >0 and t>0.

Given a Young function, ® , and an integer n > 1, let

for every vector z= (xl,zz,...,:vn) in C".
The following proposition is known; its proof can be found, for example, in [51],

3.32. It is of course a special case of an inequality valid in general Orlicz spaces. (See

Section 3C below.)
PROPOSITION 1.15. For every vector z€ C*, let
2l g = inf{k: k>0 , My (K '2) < 1}

and, if x= (zl,:z;z,...,xn) ,

0 n
ll#ll g = sup{ |,~§1 gy |2 y= (Y09, €C, Myly) < 1},

where U s the function complementary to @ .
Then the functions z+ ||zllg and o |[z||g) , 2€C", are norms on C*, each

making of C" a Banach space, such that

0
ldlg < lladlg < 2ll#lg »

for every zeC".



2. INTEGRATING GAUGES

An integration theory involves two constructions, namely that of the space of
integrable function and that of the integral. These two constructions are often carried
out simultaneously. However, having in mind the generalizations pursued here, it is
desirable to keep them at least conceptually separated. In this chapter, spaces of
integrable functions are introduced; integrals will be dealt with in the next one.

We start with a family of functions, X, defined on a space {2, which contains
the zero-function but is not necessarily a vector space, and a non-negative real valued
functional, p, on K, called a gauge, such that p(0) =0. Then we introduce the

vector space £ = L(p,X) of functions, f, on  which can be expressed in the form

(*) flw) =} ef(w),

1

for all we ! subject to certain exceptions, where ¢, are numbers and f], functions

belonging to £, j=1,2,..., such that

0

(%) Y lelolf) <o

=1
The equality (*) is not required to hold for those points w € §) for which

e ]

Z |cjf].(w)‘ =,

i=1
even if the sum on the right in (*) exists as the limit of the sequence of partial sums;
the values of f at such points are arbitrary. For the seminorm, ¢(f), of such a
function f we take the infimum of the numbers (¥) . The épace L is complete in this
seminorm and the linear hull of X is dense in it. Of course, to avoid the obvious
pathology that the seminorm of some functions fe€ X with p(f) >0 collapses to 0,
some conditions have to be imposed on the gauge p. Accordingly, the gauge p is
called integrating if ¢(f) = p(f) , for every function fe K.

If I is the family of characteristic functions of sets from a o¢-algebra, say, and

p is a measure on it, then this construction gives us precisely the family of functions

50
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integrable with respect to p and the corresponding seminorm of convergence in mean.
Similarly, if £ is a vector lattice and p(f) = «(|f|), for every fe X, where ¢ isa
Daniell integral on £, then £ is the family of all (-integrable functions. Other
choices of ¥ and p lead to other classical and less classical spaces some of which will

be described in the next chapter.

A. Let X be a nontrivial family of functions on a space Q. (See Section
1D.) A non-negative real valued functional p on X such that p(0) =0 will be called
a gauge on K. Good examples of gauges to keep in mind, in what follows, are
seminorms on vector spaces of functions and (finite) non-negative additive, or just
sub-additive, set functions on quasirings of sets. (Recall that we identify sets with
their characteristic functions.)

The following definition can be viewed as the abstract core of the construction
of the space of integrable functions and its I'-seminorm from a given elementary
measure or content.

Let p be a gauge on the family of functions £. A function f on @ will be
called integrable with respect to p, or, briefly, p-integrable, if there exist numbers

¢ and functions fj ek, j=1,2,..., such that

(A.1) f le10(F) < w
=1
and
(A2) flw)= § (o
=1
for every w e © for which
(A.3) L lef ()l <o

p=
The family of all (individual) functions integrable with respect to p is denoted
by L(p,X) .
For any function fe L(p,X) , let
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g0 =t § 1lolf)

where the infimum is taken over all choices of the numbers ¢ and the functions
f; eX, j=1,2,.., satisfying condition (A.1), such that the equality (A.2) holds for
every w € §) for which the inequality (A.3) does.

Clearly, L(p,X) is a vector space such that sim(X) ¢ L(p,X) . (See Section 1D.)
Also, it is not difficult to see that ¢ , is a seminorm on L(p,X); it is called the
seminorm generated by the gauge p. Consequently, we can speak of qp—Cauchy and
q p~convergent sequences of functions from L{p,X) .

The p-equivalence class of a function fé€ L(p,X), consisting of all functions
g€ L(p,X) such that qp(f-g) =0, is denoted by [f]p . The set {[ﬂp :feLllpX)} of
all p-equivalence classes of functions from L(p,£) is denoted by L(p,X). Then
L(p,X) is a normed space with respect to the linear operations induced by those of
L(p,X) and the norm induced by the seminorm ¢ - This nofm is still denoted by qp .

It is sometimes useful, even necessary, to indicate the domain, £, of the gauge
p not only in the symbol of the space L(p,X) but also in the symbol for its seminorm.
Then, instead of ¢ ) we write more precisely quC. In fact, it is customary not to
distinguish in the notation between a gauge p on X and its restriction to a nontrivial
subfamily, J, of X. But then £L(p,J) c L(p,f) and qp,IC( f) < " j( f) {for every
feLlp,J). What is more, the inclusion may be strict and, for some functions

fe L(p,J), the inequality may be strict too.

PROPOSITION 2.1. Let fi € L(p,k), j=1,2,.., be functions such that
0
(A.4) L 4f) <a

and let f be a function on Q such that

(A5) CEDRI®
j:

for every we Q2 for which

(A.6) RUCIEES
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Then fe L(p,X) and

(A7) lin qp[f.— ) fJ -0,

N300 j=

Proof. For every j=1,2,..., let cj be numbers and f,-kEIC functions, £=1,2,...,

k
such that
L ealolly) < gl1) + 27
and
SCEERAE

for every w € ) such that

,_;m kgl Loy lolfy) < j:§+l Q) +2" <o
and
- 7)——:1 fj (W= FEH kgl jkf"k(w)

Therefore, the function

belongs to L(p,X) and

G- 2 1)< X g2

j=n+l

for every n=0,1,2,... .

The most important implication of this proposition is, of course, that the space

LpX) is qp-complete so that L(p,X) is a Banach space.
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B. Let K be a nontrivial family of functions on a space € and let p be a
gaugeon L.

A function f on @ is said to be p-null if fe€ L(p,X) and qp(f) =0. A set
X issald to be p-null if its characteristic function is p-null. The family of all
p-null sets is denoted by 2 I We shall use the customary jargon related to null sets.
So, for example, we refer to a p-null set by saying that p-almost all points of
belong to its complement.

The next proposition says, among other things, that Zp is a o-ideal in the

space ). (See Section 1D.)

PROPOSITION 2.2. A function | is p-null if and only if the set {we Q: f(w) # 0}
18 p-null.

If the function [ is p-null, then there exist numbers ¢ and functions fj exr,
J=1,2,..., satisfying condition (A.1), such that

®

(B.1) ]21 lef (W)l =
for every we Q) for which f(w)#0.

Conversely, if there exist functions fj € L(pX), j=1,2,.., salisfying condilion

(A.4), such that
00
(B2) Y1) =
-
for every we Q for which f(w)# 0, then the function f is p-null
If X; , J=12,..., are p-null sets and

00
Xcu

X,
=1 7

then the set X too is p-null.

Proof. Let X be a p-null set. Then, by the definition of £(p,X) and ¢ ) for every

k=1,2,..., there exist numbers ¢, and functions f, € X, n=1,2,.., such that
kn kn

2 -k
ngl ley, lo(fy,) < 2

and
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°z°1 e fo (@) 21,

n=

for every we X. Then

LY lelolh) <o

and

(W) =w

g
~18

| clcnf kn

1 n=1

1

for every we X. So there exist numbers ¢ and functions f,' er, j=12,..,
satisfying condition (A.1), such that (B.1) holds for every we X.

Let function ¢ be p-null. Let f be the characteristic function of the set
{w: g(w)#0} . Then the function sz Jjg is p-null and ¢ p(fj) =0, for every
j=1,2,.... Hence, condition (A.4) is satisfied and the equality (A.5) holds for every
we Q for which the inequality (A.6) does. Therefore, by Proposition 2.1, f€ £L(p,k)
and ¢ p( fl=0.

Let f be a function such that the set {w: f(w) # 0} is p-null. Let f1 be the
characteristic function of this set and let sz jfl , for every j=1,23,... Then
q p( fj) =0, forevery j=1,2,..., and so, condition (A.4) is satisfied. Furthermore, the
equality (A.5) holds for every we ) for which the inequality (A.6) does. So, by
Proposition 2.1, f€ L(p,X) and qp( fl=0.

‘Now, let f be a function on Q and let fj € L(pX), j=12,.., be functions
satisfying condition (A.4), such that the equality (B.2) holds for every we Q for
which f(w) # 0. Then, for every n=1,2,...,

) (f)+ y (-f) < o
gnqﬂ j ]Z_:nqp o
and
f@) =T flw) e § A =0
=n =n

for every we Q for which

CEDRE IR

=n =n
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Then, by Proposition 2.1, f€ £L(p,X) and ¢ p( f) =0 sothat f is p-null.

C. The following theorem is the Beppo Levi theorem stated in terms of

absolute summability rather than monotone convergence.

THEOREM 2.3. A function { on Q belongs to L(p,X) if and only if there exist
numbers ¢ and functions f], ek, j=1,2,.., satisfying condition (A.1), such that the
equality (A.2) holds for p-almost every we .

Let f], € L(p,X), j=1,2,.., be functions satisfying condition (A.4). Then the

inequality (A.6) holds for p-almost every we Q. If, moreover, [ is a function on
such that the equality (A.5) holds for p-almost every we Q, then fe L(p,X) and the
equality (A.7) holds.

Proof. It is a direct consequence of Proposition 2.1 and Proposition 2.2.

In the terminology of N. Aronszajn and K.T. Smith, [1], the following theorem
says that £(p,X) is a complete normed functional space, in fact, it is a functional

completion of sim(X) .

THEOREM 2.4. A function f on 0 belongs to L(p,X) if and only if there exists a

q ) Cauchy sequence of functions hn € sim(X), n=1,2,.., suchthat

(C.1) flw) = lim hn(w)

n—00

for p-almost every we Q.

Every qp—Cauchy sequence of functions gneﬁ(p,IC) , n=12,.., has a

o
n=1"’

[ed]

is convergent
n=1 g

subsequence, {hn} such that the sequence of numbers {hn(w)}
for p-almost every we Q. Moreover, if {hn}‘:::l is such a subsequence of {gn}‘:;’=1
and | is a function on $ such that the equality (C.1) holds for p-almost every

weq, then fe L(pX) and

(C.2) lim qp(f—gn) =0.

n—00
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Proof. If the sequence, { gn}‘::l , of functions from L(p,X) is qp—Cauchy, we can
select a subsequence {I‘Ln}";’:1 such that

(C.S) Z p ]+1 j < .

Then Theorem 2.3, applied to the functions fj such that f =h, and fj 1= hj 41 hj

for j=1,2,..., implies that the sequence {hn(w)}°:= is convergent for p-almost every

1
we.

Now, if {A }>_  is a subsequence of {g }*_  such that the sequence {h }*_
is convergent for p-almost every we {1, we can achieve, by passing to a subsequence
of {h } , if necessary, that (C.3) holds. Then, if (C.1) holds for p-almost every

we, by Theorem 2.3, f€ L(p,k) and

lin ¢ (f-h,) =
100
Because {hn}‘:z: is a subsequence of the A -Cauchy sequence { g, } (C.2) holds.

COROLLARY 2.5. Let J bea qp—complete vector space, containing every p-null
function, such that X ¢ JC L(p,X) . Then J=L(p,k) .

D. Theorems 2.3 and 2.4 demonstrate the usefulness of the space £L(p,X)
and its seminorm 7 . But this usefulness could be limited by the fact that, in general,
we can only say that ¢ p( f) < plf), forevery fe Xk, and the inequality may be sharp

for some f even if X is a vector space and p is a seminorm on it.
EXAMPLE 2.6. Let Q=(0,1], 9={(u9:0< u< v< 1}, L=sim(d) and

p(f) =1lim [f(5)] ,

=0+

for every fe€X. Then every function on £ belongs to L(p,f) and ¢ p( fi=0 for
every fe L(p)k).

So, of particular interest are the gauges singled out in the following definition.
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We shall call the gauge p integrating if qp(]’) = p(f) for every function f
belonging to its domain, X .

Obviously, if a gauge on a vector space is integrating, then it is a seminorm. A
seminorm which is an integrating gauge will of course be called an integrating

seminorm.

PROPOSITION 2.7. The gauge p is integrating if and only if

[

o) < 3 lelolf)

=1

for any function fe X, numbers ¢ and functions f; ek, j=12,..., such that the
equality (A.2) holds for every we Q for which the inequality (A.3) does.

Let p be an integrating gauge and let J be a nontrivial subfamily of its domain,
X . Then the restriction, o, of p to J is an integrating gauge, L(0,J) C L(p,X) and
(1) = q,(f) , for every fe L(0,]).

If p is any gauge on a nontrivial family of functions, X, then the functional

1

9% is an integrating seminorm on L(p,X) such that L( qp,t(p,IC)) =L(p,X) and q, (f) =
P
qp(f) , forevery fe L(p)k) .

Proof. The first statement is a direct consequence of the definitions and the second one

follows from it. The third statement is a corollary to Proposition 2.1.

PROPOSITION 2.8. Let X be a vector space of functions on & and let p be a

seminorm on K. Then p is integrating if and only if
n
(D.1) 1imp[2 f.] =0
N300 §=1 ]

for any functions fj ek, j=12,.., satisfying the inequality

(D.2) Lol <w,

=1
such that
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o

(D.2) L f(w)=0
=17

for every we Q for which the inequality (A.6) holds.

Proof. By Proposition 2.1, the stated condition is necessary for p to be integrating.
Conversely, assume that (D.1) holds for any functions f; e, j=12,.., satisfying
(D.2) such that (D.3) holds for every we€ Q for which (A.6) does. Let fe X and let
€ > 0. Then there exist functions fj ek, j=12,.., such that (A.5) holds for every
we Q for which (A.6) does and

Then, by the assumption,

00

lin p{f— 721 f]_] 0.

Hence

7=1 =1

<ol g)res ) or)ee

for a sufficiently large n. Consequently, p(f) < qp( f) +2¢.

PROPOSITION 2.9. The semihorm p on a vector space K is integrating if and only
if
(D.4) lim p(gn) =0

n—00

for every p-Cauchy sequence {gn}";=1 of functions from K such that

(D.5) lim gn(w) =0

n—00

for p-almost every we §).

Proof. Assume that (D.4) holds for every p-Cauchy sequence { gn}(’;’:1 of functions
from K which converges p-almost everywhere to 0. Let fj ek, j=12,., be
functions satisfying condition (D.2) such that the equality (D.3) holds for every we (2
for which the inequality (A.6) does. Let |
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(D.6) 9:2f»

. ‘
=17

for every n=1,2,.... Then, by Proposition 2.2, the equality (D.5) holds for p-almost
every w€ ). Hence, by the assumption, (D.4) holds, which means that (D.3) does.
S0, by Proposition 2.8, the seminorm p is integrating.

Conversely, assume that the seminorm p is integrating. Assume that { gn}‘:::l
is a p-Cauchy sequence of functions from X such that (D.5) holds for p-almost every
we Q. To prove (D.4), it suffices to show that p(hn) -0, as n-w, for a
subsequence {'\hn}";l’:1 of the sequence {gn}~°n°=1 . Therefore, assume that, if f1 =g
and f], =9,- 91> for j=2,3,..., then (D.2) holds. Because (D.5) holds for p-almost
every we ), we have (D.3) for p-almost every we€ Q. Then, by Theorem 2.3,

. . n
lim p(g,) = lim p[z f]] =0.
700 noo =1
PROPOSITION 2.10. Let p be a gauge on a nontrivial family of functions, X . For

every € sim(X), let

o =inf § lelali),

=1

where the infimum is taken over all expressions of the function { in the form

n
f: 721 C,’lff
with arbitrary n=1,2,..., numbers , and functions fj €er, j=1,2,...,n.
Then L{o,sim(K)) = L(p,X) and qU(f) = qp(f) , Jorevery [€L)osim(K)). The

equality o(f) = ¢ ,o( f) holds for every fesim(X) if and only if the seminorm o is
integrating.

Proof. Obviously, L(p,X) c L(o,sim(k)) and qa( l<yq p( f), for every fe L(pk).
On the other hand, ¢ p( 1) S o(f), for every fesim(X) and, therefore,

L{o,sim(X)) c £ qp,sim(lC)) c L qp,[(p,IC)) . Because, by  Proposition 2.7,
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Lg,LpK)) = LipK) , we have L(osim(£)) € L(pX) and ¢,(f) < ¢,(f), for every
fe Llosim(K)) .

Now, because 7,=4 )
seminorm ¢ is integrating. Conversely, if ¢ is integrating, then qa(f) =o(f), for

if of) = qp(f) , for every fesim(K), then the

every fe€sim(X) and, hence, o(f) = qp(f) , for every fe sim(K) .

EXAMPLES 2.11. (i) Let X be a vector space of bounded functions on a
space . Let p(f) =sup{|flw)|:weQ}, for every feX. Then p is an
integrating seminorm on £ .

(ii) Let -w< a<b<o and Q=[qab]. Let [ be the space of all functions
on [a,b] of bounded variation and let p(f) = [f(a)| + var(f) , for every fe K. Then

p is an integrating seminorm on £ .

E. It can be easily deduced from the general theory of measure and integral
that (positive) measures are integrating gauges. However, we wish to show that the
classical measure and integration theory is an instance of the theory presented here.
Therefore, we prove first that a measure is an integrating gauge. Actually, we prove
two slightly more general results. It is convenient to start with a re-statement of
Stone's condition, [62], for a positive linear functional to be a Daniell integral.

Let £ be a vector space consisting of real valued functions on a space Q. A
real valued linear functional, ¢, on K is said to be positive if «f) >0, for every
function fe X such that flw) >0 for every we Q.

In this definition, it is not assumed that X is a vector lattice (see Section 1D),

but, in the following proposition, such an assumption is made.

PROPOSITION 2.12. Let £ be a vector lattice of real valued functions on Q0 and let
¢ be a positive linear functional on K. Let p(f) = «(|f]), forevery fek.

Then p is a seminorm on K which is integrating if and only if

(B1) A< § dif))
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for any functions fe€ X and fj ek, j=1,2,.., such that

(E.2) 1w <} 1f(w)]

for every we Q.

Proof. - If this condition is satisfied then, by Proposition 2.7, the seminorm p is
integrating.

Conversely, let us assume that the seminorm p is integrating. Let fe X and
fj ek, j=1,2,.., be functions such that the inequality (E.2) holds for every we Q.
Using the fact that X is a vector lattice, we construct inductively functions g; ex

such that Igjl < Ifjl , j=12,..., and
for every we Q for which

Then

0

W =ns § ag)= T dighs T aifn,
= = j

=1 =1

because p is integrating.

The following proposition says slightly more than that a non-negative
o-additive set function is an integrating gauge, even if we do not assume that its
domain is rich. If we wanted to prove merely that a non-negative o¢-additive set
function on a quasiring (see Section 1D) is an integrating gauge, then the proof could

be slightly simplified. (See Example 4.28(i) in Section 4G.)

PROPOSITION 2.13. Let ¢ be a nonnegative real valued additive set function on a
quasiring of sets @ in a space . Then ¢ zs an integrating gauge on @ if and only if
it is o-additive. Moreover, if « is o-additive and p(f) = (|f]), for every
fesim(d), then p is an integrating seminorm on sim(Q) , L(p,sim(Q)) = £(:,9) and

0,(N) = ¢(f) for every feL(10) .
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Proof. If + is not o-additive, then, obviously, ¢ is not an integrating gauge. So, let
us assume that ¢ is o-additive. Let X =sim(g) and let p(f) = «(|f]) for every
fe k. If we show that the seminorm p is integrating, it will follow, by Proposition
2.7, that ¢ is an integrating gauge. To do that, by Proposition 2.12, it suffices to
show that (E.1) holds for any functions f€ X and f], ek, j=1,2,..., such that (E.2)
holds for every we . But this follows from a result of F. Riesz ([59], Lemma A and
Lemma B in no. 16). For completeness we include the proof,

Let m be a positive integer, dj > 0 numbers and Y] € g pair-wise disjoint

sets, j=1,2,...,m, such that

m
[fl =j§1 QY.

Let Y be the union of the sets Y] and d the largest of the numbers dj,

j=12,...om. Let ¢ >0 and,

n

9,= jgl T

Z ={weY:g(w) > If(w)] - e},

for every n=1,2,... Then 4 Y\Zn) -0, as mn-owo, because the sets Y\Zn
decrease monotonically to @ , they belong to the ring generated by ¢ and the

extension of ¢ to this ring is ¢-additive. Furthermore,

dg,) 2 dYg)=uZg)+U(Y\Z)g,) 2 dZ (1f] - €)) + d(Y\Z )(g,-1f1)) =

=UZ \f1) - el Z)) + U(Y\Z)g ) - (Y/Z)I]]) 2

> l1f1) - alZ) - 20(Y\Z)I11) = d1f]) - e Y) - 20 Y\Z,)

for every n=1,2,.... Therefore,
m o
Y 17 D) =1indg) 2 d1f]) - V),
=1 7 100

and (E.1) follows.

Now, by Proposition 2.7, £(s,8) C L{p,X) and qp(f) < qb(f) . On the other

hand, £ c£(:,9) and p(f) = qL(f) , for every fe kX, because, obviously, qé(f) < o(f)
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and, since the seminorm p is integrating, p(f) = qp(f) < qL(f) . So,if feL(pk), let
fj €L, j=1,2,.., be functions, satisfying condition (D.2), such that the equality (A.5)
holds for every we Q for which the inequality (A.6) does. Then, by Proposition 2.1,

feL(1,9) and

® [« Y]
¢N= ¥ glf)=1 o)
=1 7=
Consequently, qL( fl<q p(f) .
F. In this section, we present some methods of producing new integrating

gauges if some are already given.

PROPOSITION 2.14. Let X be a nonirivial family of functions on a space ). Let

P be a collection of integrating gauges on X such that

o(f) =sup{p(f) : p€P} < w,
for every feX. Then o is an integrating gauge on X .

Proof. Let feX and ¢ >0. Let pe P be a gauge such that of) - € < p(f) . Then
[e9)
L lelolf),

=1

oA =< =g < § Ieialf) s

for any numbers ¢ and functions fj ek, j=1,2,.., such that

% U(f]) < 0,

=1

and (A.5) holds for every we Q for which (A.6) does. Hence, o(f) < qa(f) , which

means that o is integrating.

EXAMPLE 2.15. Let 3 be any space. Let W be a real valued function on © such
that W(w) >0, forevery wefl. Let 1< p< . If JCQ is a finite set, let

1
piN=[ 3 Mol "



if 1< p<w, and

p f) = max{ M) |f(w)| : we T},

if p=w, for any scalar valued function f on . Let X be the family of all

functions f on € such that

pf) =sup p(f) < @,

where the supremum is taken over all finite subsets, J, of . By Proposition 2.14,
p is an integrating gauge on £ .

It is straightforward that £ is a vector space and that p is a seminorm on £ .
Actually, p is a norm because the only p-null set is the empty set. Then it is not
difficult to ascertain that £ is p-complete. Hence, by Corollary 2.5, L(p,X) =X and
qp =p. Of, course, X is the classical weighted ¥ space on  with the weight W
and p in its norm;

1/p
o =] Wlf?) ",
wefd

for 1< p< o, and p(f) = sup{ Mw)|f(w)| : we Q} for p=w, f€X.

PROPOSITION 2.16 Let £ be a vector space of scalar valued functions on a space §2
and let o be an integrating seminorm on L. Let K be a vector subspace of £ and let
p be a seminorm on K such that
(i) o(f) < p(f) forevery fek:
(it) - every o-null function [ is p-null, belongs to X and p(f)=0; and
(iii) the space K is p-complete.

Then L(p,X) =X and q,=p, 80 that the seminorm p is integrating.

Proof. Let { gn}‘:;’=1 be a p-Cauchy sequence of functions from X such that (D.5)

holds for p-almost every we Q. Let f€ X be a function, existing by (iii), such that

lim p(f-g,) =0 .

N0



2G 66 2.18

The requirement (i) implies that every p-null function is ¢-null. Hence, (D.5) holds
for o-almost every we€ Q. Furthermore, by (i) the sequence {gn}‘);:1 is o-Cauchy.
Hence, by Theorem 2.4, the function f is o-null. Therefore, by (ii), p(f)=0.
Consequently, the equality (D.4) holds and, by Proposition 2.9, the seminorm p is

integrating. By Corollary 2.5, £L(p,X) =X and so, ¢ =P

PROPOSITION 2.17. Let L be a vector space of scalar valued functions on a space
Q andlet o be an integrating seminorm on L such that L(o,L)=L. Let X bea
vector subspace of L, let E be a Banach space and let u: K- E be a closed linear
map. Let

p(f) = o(f) + 1)
for every fek.

Then p is an integrating seminorm on X and L(pX) =X .

Proof. Let fj ek, j=1,2,.., be functions satisfying condition (D.2) and let f be a
function on € such that the equality (A.5) holds for each we ) for which the
inequality (A.6) does. Then

[eY]

) a(fj) < w and i

[(f)] < .
5=1 j=1 7

Let the functions 9, be given by (D.6) for every n=1,2,.. . Then, by Proposition 2.1,
fel and of 9,- /)= 0, as n-w. Furthermore, there exists an element z of F
such that |u(gn)—x| -+ 0. Therefore, feX and u(f) =z, because the map p is
closed. But then p(gn—f) -0, as n-w. Consequently, by Proposition 2.8, the
seminorm p is integrating and, by the definition of p-integrable functions,

Lip k) =K.

G. The space L(p,X) is not necessarily a vector lattice. (See Section 1D.)

EXAMPLE 2.18. Let I be the family of all functions continuous in the closed unit
dise, Q={(zy) : 2+ y2 < 1}, and harmonic in its interior. Let p(f) = sup{|f(w)] :

we I}, for every fe X . Then the seminorm p is integrating and L{(p,X) =X, but
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the space [ is of course not a vector lattice.

We are going to give a sufficient condition for L(p,X) to be a vector lattice.
The formulation of the following definition and propositions is slightly more general; it
allows also for complex valued functions to belong to £ and L{(p,X) .

A gauge, p, on a nontrivial family of functions, £, will be called monotonic
if p(f) < plg) for any functions fe £ and g€ X such that |f] < |g] .

The seminorm p in Example 2.18 is obviously monotonic.

PROPOSITION 2.19. Let X be a vector space of scalar valued functions on a space
Q. Let p be an integrating seminorm on K. Assume that |f| € L(p)X), for every
feX, and that qp(|f|—|g|) < o(f-g), for every fek and gek. Then

[l € Lip)X), for every [e L(p,k) and qp(lfl—lgl) < qp(f-g), for every f € L(p,X)
and g€ L(p,K) .

Proof. It is a matter of routine application of Theorem 2.4, say.

PROPOSITION 2.20. Let £ be a vector space of scalar valued functions on a space
Q such that |f| € X forevery fe€X. Let p be a monotonic integrating seminorm on

K. Then |f| € L(pX), for every [€ L(p,X) and the seminorm A is monotonic.

Proof. = The monotonicity of p implies that p(|f])=p(f), for every fek.
Moreover, p(|f[-1g]) = p(lIfl-19lD) < p(|f-g]) = p(f-g) , for every fek and geX.
Hence, the assumptions of Proposition 2.19 are satisfied and so, |f| € £L(p,X), for

0,

every fe L(p,X). Then it is again a matter of routine to deduce that qp( lfl)=1¢ ,

for every fe L(p,k) .
Now, let fe L(p,X) and ge€ L(p,X) be functions such that |f] < |g| . Let
{fn}"::1 and {gn}C’;’:1 be p-Cauchy sequences of functions from X, converging

p-almost everywhere to the functions f and ¢, respectively. Let hn =

15, +g,-lf,1-1g Il , forevery m=12,... Then |h -h | < |f-f | +lg-g |, for
any integers n >1 and m >1, so that the sequence {Izn}";’:1 is. p-Cauchy.

Moreover, the sequence {Izn}°:=1 converges p-almost everywhere to the function |f] .
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Because p(h ) < plg ) for every n=1,2,..., by Theorem 2.4,

)= q,(1f1) = Limpl(h,) < Linp(g,) = q,(g) -

n—00 n—-00 P

P

PROPOSITION 2.21. Let X be a vector space of scalar valued functions on « space
Q such that |f| € X forevery feX. Let p be a monotonic integrating seminorm on
L such that L(p,k)=X. Assume that each p-bounded monotonic sequence of real
valued functions from X is p-Cauchy.

(i) Let {f }°°_1 be a p-bounded monotonic sequence of real valued functions
from K. Then the sequence {f e o1 s convergent for p-almost every we Q. If,
moreover, f is a function on §1 such that

(G.1) flw) = 1im § (w)

N0

for p-almost every we Q, then fe€X and

(G.2) Lin (1) =
100
(i1) Let g€k be a real valued function and fn er, n=1,2,..., arbitrary

functions such that ]fn] < g for every n=12,... and the sequence {fn(a))}o;l’:1 is
convergent for p-almost every we€ . Let | be a function on Q such that (G.1)

holds for p-almost every we Q. Then fe X and (G.2) holds.

Proof. (i) By Theorem 2.4, the sequence { fn}‘z:l has a p-almost everywhere
convergent subsequence. Hence, because of its monotonicity, the sequence { fn( w)}";’:1
converges for p-almost every we . By Theorem 2.4, if f is a function on £ such
that (G.1) holds for p-almost every we £, then fe X and (G.2) holds.

(ii) Let the function fn , n=12,.., bereal valued. Let

gn(w) = 1im(sup{fj(w) :n< j< m}), hn(w) = lim(inf{fj(w) :n< j< m})

M0 m—oo )

for every n=1,2,... and we€ Q. Because the seminorm p is monotonic, by (i) we

have g €l and h €L, for every n=12,... Also, the sequences {gn}iz1 ,
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{hn}‘;’:l and {gn—hn}‘zzl are monotonic and p-bounded, h (w) < flw) < g (w) for
every n=1,2,... and p-almost every we Q) and

lim hn(w) = flw) = 1im gn(w)

=00 n—00

for p-almost every we . Therefore, by (i), feX and p( gn—hn) -0, a8 n-w.
Because p(f—hn) < p(gn—hn) and p(f -h )< plg -h ), for every n=12,.., we have
(G.2).

EXAMPLE 2.22. Let Q=[0,1], £=C([0,1]) and p(f) = sup{|f(w)| : we Q}, for
every fe€X. Then p is a monotonic integrating norm on X such that L(p,f) =X.
However, not every p-bounded monotonic sequence of real valued functions from £ is

p-Cauchy.

If the space X and the seminorm p satisfy the assumptions of Proposition

2.21, we say that they have the Lebesgue property.

H. Let B be a set of integrating gauges; each gauge F€ B is defined on a
nontrivial family, £ 8 of functions on a space 3 The spaces 8 BeB, are
assumed to be pair-wise disjoint.

Let J be a vector lattice or real valued functions on B and « a monotonic
integrating seminorm on J .

Let

Q= U Q,.
BeBﬂ

Let X be the family of all functions f on £ such that, for every g€ B, the
restriction, fﬁ=f|Qﬂ, of f to Q,B belongs to ICﬂ and the function p; on B, such
that ¢ f(ﬂ) = B(f /3) for every € B, belongsto J.

Let

o) = ol

forevery fe k.
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PROPOSITION 2.23. The functional p is an integrating gauge on X .

Proof. Let fe X and let ¢ be numbers and fj ex functions, j=1,2,..., such that

[¢9] Q0

) |Cj|ﬂ(fj) =y IC].Ia(cpfj) <

=1 =1

and the equality (A.2) holds for each wé€ @ for which the inequality (A.3) does. By

Proposition 2.7,

o) = Blig) < gl FACGRNED) Ic],lcpfj(ﬂ)

=1

for each § € B, because these gauges are integrating. Let

'Cwa

|IM8

for every € B such that

®

721 Ic].lwfj(ﬂ) <,

and let ¥(8) = ¢ f( B3), for every € B such that

<Y

j):jllcwf(ﬁ) © .

Then 9e L(w,J) and 0 < cpf < . Therefore, by Proposition 2.19,

0 o

plf) = ale) =gy fa) < g (¥) < § lelalo )= T lelplf) .

=1 i =l
S0, by Proposition 2.7, the gauge p is integrating.
In practice, the most useful choice of J is perhaps the space [ 1(B) , or the

space [®(B), with its natural norm (Example 2.15 with weight W(8) =1 for each
feB).
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J. The basic way of showing that a positive additive set function is in fact
o-additive is to exploit compactness and regularity of some sort or another, that is, to
use the Alexandrov theorem or some of its generalizations. (See Section 1F.) In this
section a similar means for showing that a gauge is integrating is presented.

Let @ be a qﬁasiring of sets in a space Q. (See Section 1D.) Let p be a
gaugeon g.

Let us call the gauge p very sub-additive if the inequality

X< 3 eplx)
=1

holds for any set X e @, any n=1,2,.., and any sets Xj € 2 and numbers ¢ >0,

j=12,...,n, such that

n

X(w) < le chj( w)

for every we Q.
The use of the adverb "very" in this definition is dictated by a certain caution:

it is a warning that a gauge may rather unexpectedly fail to be very sub-additive.

EXAMPLE 2.24. Let Q=R> and let g be the family of all intervals
X=(u1,1)1]><(u2,1)2] with U < v and U, < v, . Let f=2(0,3]x(0,3] - 3(1,2]x(1,2] and

uX) = ijcu ,

for every X € @, where ¢ is the two-dimensional Lebesgue measure. The gauge p,
defined by
p(X) = sup{|(XnZ)| : Z€ g}

for every X e @, is not very sub-additive. In fact, the interval X =(0,3]x(0,3] is

equal to the union of the intervals X = (1,2]x(0,3] , X, = (0,3]x(1,2] , X, = (0,1]x(0,1],

X, = (23x(0,1], X, =(23]x(23] and X = (0,1x(2,3], but p(X)=15, p(X))=
=2.

p(X)) =3 and p(X,) = p(X,) = p(X) = p(X,)
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The property of being very sub-additive is rather advantageous though, because
it allows us to use the following property of regularity to prove that a gauge is
integrating.

Assuming that € is a topological space, the gauge p is said to be regular if,

for every set X € @ and ¢ >0, thereis

(i) an open set UDX and a set Ye@ such that UcCY and
p(Y) - p(X) < €; and
(ii) a compact set KCX and a set Z€¢ such that Zc K and

oX) - p(2) < e

PROPOSITION 2.25. A very sub-additive and regular gauge on a quasiring of sets in

a topological space is integrating.

Proof. Let @ be a quasiring of sets in a topological space Q. Let p be a very
sub-additive and regular gauge on @.

Let Xe€@ and, for every j=1,2,..., let Xje @ be a set and ¢ a number

such that
[ee]
(J.1) Xw) =} cX(w)
=
for every we 2 for which
Qo0
(J.2) YolelX(w) < w.
F=T A
Our aim is to show that
0
(J.3) pX) < ) lelp(X) .
=1

Let 0<e<1. Let K be a compact set and Z asetin ¢ such that Zc Kc X
and p(X) - € < p(Z). For every j=1,2,..., let U] be an open set and Y) asetin @
such that X,- C ch Y] and |cj|p( Yj) < Ic],lp(Xj) +€e27. Let n>1 be an integer

such that

L o1e) (o) 2 (1-02w)
=1
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for every we . Then

(1-0p20-0) < (1942 = T 1610lY,) <
j:

<y (|lel?(X].) +e270) < % le|P(Xj) +e.
=1 =1

Hence, (J.3) holds and, by Proposition 2.7, the gauge p is integrating.

K. The first proposition of this section represents a method of producing
new integrating gauges from ones already guaranteed to be integrating. Recall that a
quasiring, @, is said to be rﬁultiplicative if XnYeg for any sets Xe g and
Ye g. (See Section 1D.)

Clearly, a gauge, o, on a quasiring of sets, @, is monotonic if and only if

o(X) < o(Y) for any sets Xe @ and Ye g suchthat Xc Y. (See Section G.)

PROPOSITION 2.26. Let o be an integrating monotonic gauge on a multiplicative
quasiring, @, of sets in a space . Let ¢ be a real valued, continuous, strictly
increasing and concave function on the interval [0,0) such that ¢(0)=0. Let
p(X) = p(o(X)) forevery Xe@.

Then p is an integrating gauge on G .

Proof. Let X €@ be a set, ¢, numbers and X] €9 sets, j=1,2,..., such that the
equality (J.1) holds for every w € §) for which the inequality (J.2) does. Our aim is to
show that (J.3) holds.

Without loss of generality, we will assume that Xj cX, forevery j=1,2,..,
because, if the sets Xj are replaced by X,- N X, then the equality (J.1) remains valid
for every we Q) satisfying (J.2) and p(Xj nx= go(a(Xjﬂ X)) < ga(a(Xj)) =p(X),

7
by the monotonicity of ¢ and o. We will also assume that

[«

(K.1) ) chlp(Xj) <
=1

and that a(Xj) #0, for some j=1,2,...
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Let 5=sup{a(X]_): j=12,..}. By the assumption just made and the
monotonicity of ¢, we have 0< s< o(X). Let k=¢(s)/s. Then ka(Xj) <

of a(Xj)) = p(Xj) , for every j=1,2,..., because the function ¢ is concave. Therefore

[«

t= Z chla(Xj) <Kt i chlp(Xj) <.

7:]_ =

By Proposition 2.7, o X) < t, because the gauge o is integrating, and so, s< ¢.

Consequently, by the monotonicity and concavity of ¢, we have

PN = plolX) < o)< W=k § lelolx) < §

lelp(X).
7=1 =17 !

So, (J.3) holds. But, if (K.1) does not hold, then (J.3) is trivially true. Moreover, if
a(Xj) =0 for every j=1,2,.., then, by Proposition 2.7, ¢(X) =0, because the gauge
o is integrating. Hence, (J.3) holds also in this case, and, by Proposition 2.7, the

gauge p isintegrating.

Typically, a non-negative o-additive set function is used in the role of the
gauge o in Proposition 2.26.

The second proposition of this section says that if p is an integrating gauge on
a quasiring of sets, then the assumptions of Proposition 2.10 are satisfied, that is, the

seminorm, ¢, defined in that proposition is integrating.
PROPOSITION 2.27. Let @ be a quasiring of sets in a space Q0 and let p be an
integrating gauge on @ . Then, for every real valued function fesim(Q) ,

q

() = inf ;"

L !c].lp(Xj.) ,

where the infimum is taken over oll expressions of f in the form

n
f: ]_gl chj 5

with arbitrary n=1,2,..., real numbers ¢, and sets Xj €9, j=12,...,n.
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Proof. Let 7 be the ring of sets generated by @. (See Section 1D.) For every set
YeR, let

oY) =min J, p(X),
1

7':
where the minimum is taken over all expressions of the set Y in the form

n
v= ,)_:1 e%;
=
with arbitrary n=1,2,..., arbitrary choices of e], =1 and sets X], €g, j=1.2,...,n.
Then, for every real valued function fé€ sim(g), there exist unique integers %k > 0
and £ >0, sets YZ_E’IZ, Zje’ll and real numbers ¢, > 0, dj >0, i=1,2,...k,
j=12,.,t, such that Y, nZ = 0, Yy oy, Z]__1 C Zj, for i=2,.,k and

j=2,.,0, and

Now, L{o,sim(g)) = L(p,d) and qa(f) = qp(f) , for every feL(osim(@)). In

fact, gcCsim(g) and p(X)=o0(X), for every Xe Q. On the other hand, if

f], € sim(g) , j=1,2,..., are functions such that

W

2 a(fj) <,

=1
then there exist numbers ¢ and sets X] €9, j=1,2,.., such that

[« © <9

) chlp(Xj) <o, ¥y cX(w=1} f(w)

=1 e
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and also
Q0 0
Y lelX(w) =Y If(w)],
=1 1 7

for every we Q. It follows that ¢ is a seminorm on (real) sim(g) and that L(p,9)
can be identified with the completion of sim(g) in (the norm induced by) o.

Consequently, qp( f) = olf), for every fe sim(Q).



3. INTEGRALS

Besides an integrating gauge, p, on a family of functions, £, we consider a
functional, g, on K which can be extended to a continuous linear functional, u x
defined on the whole of £ = L(p,£) . The continuity is understood with respect to the
seminorm, 7> induced by p on £, defined in the previous chapter. More generally,
we consider a map, 4, from K into an arbitrary Banach space, E, and a continuous
linear map, Hy s from £ into E, generated by u. Given a function fe L, the
number, or vector, u p( f) is looked upon as the integral of f with respect to .

The classical case of integration with respect to a (positive) measure, ¢, is
obtained by taking for K a sufficiently rich family of (characteristic functions of) sets
of finite measure and putting both p and g equal to (the restriction to £ of) ¢. If y
is an additive set function having finite and o-additive variation, then integration with
respect to p can be introduced by choosing p equal to the variation of p. Of course,
this choice is not available in general, and so, given an additive set function, u, the
problem of integration with respect to p is reduced to that of finding a suitable p.
This problem will be treated more systematically in Chapter 4.

Here we show how the integration with respect to Banach space valued
measures, due to R.G. Bartle, N. Dunford and J.T. Schwartz, [2], fits into the
presented scheme. Also in this chapter, the definitions of the Orlicz, the Sobolev and

the Hardy spaces are shown to be special cases of the construction of the space £L(p,X)

for suitable choices of £ and p.

A. Let £ be a nontrivial family of functions on a space . Let E bea
Banach space. Let u: X - E be a linear map. Recall that the domain of a linear map,
or a linear functional, is not necessarily a vector space. (See Section 1E.)

We shall say that a gauge, p, on XK integrates for the map p if it is
integrating (see Section 2D) and |u(f)| < eq (f), for some number ¢ >0 and every

P
function f € sim(X) .

7
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If the gauge p integrates for the linear map p:X- E, then there exists a
unique linear map u 7% L(pX) - E such that u p(f) =u(f), for every fek, and
Iup(f)l < cqp(f) , for some number ¢ >0 and every fe€ L(p,X). In fact, x has a
unique linear extension on sim(X). In fact, © has a unique linear extension on
sim(X) (see Section 1B) which, by the assumption, is continuous with respect to ¢ )
and sim(K) is qp—dense in L(p,X) .

We shall also use the conventional notation

(A1) J o fa= | e =l

p

for every f € L(p,X) . The subscript is omitted when p is understood or immaterial.

If ¥ happens to be a vector space, thén an integrating gauge p on X
integrates for the additive map p: X~ E if and only if there exists a constant ¢ >0
such that |u(f)| < cp(f), for every fe K. In fact, in this case, sim(k)=£k and
g () =p(f) for every feX. For an arbitrary nontrivial family of functions X, we

P
have the following

PROPOSITION 3.1.  An integrating gauge p on K integrates for the additive map
p:X=E if and only if there exists a constant ¢ >0 such that |u(f)] < co(f), for
every fek, and

n

(A.2) lim | ¥ c]ﬂ(f)l -0

noo ' §=1

for any numbers c], and functions fj ek, j=12,.., such thal

(A.3) f Ic].!p(fj) <o
7:

and

(A4) T ef(w)=0

for every we Q for which

(A.5) L lef (@)l <o
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Proof. Let the gauge p integrate for u. Let ¢, be numbers and f,' € I functions,
j=1,2,..., satisfying condition (A.3), such that (A.4) holds for every w € © for which
(A.5) does. Then, by Proposition 2.1,

limqp[i cf,}=0.

n- 0 =1 7

Because, by the assumption,

< qu[jzl c]f].} ;

for some ¢ > 0 and every n=1,2,..., the equality (A.2) follows.

Conversely, assume that p is an integrating gauge on X, that there exists a
number ¢ >0 such that |u(f)| < co(f), for every fe X, and that (A.2) holds for
any numbers 2 and functions f], ek, j=1,2,.., satisfying (A.3), such that (A.4)
holds for every we€ Q for which (A.5) does. Then, for any function f€ £L(7,K), let

i(f) be the element of the space E such that

0

B =§ eulf),

=1

where the ¢, are some numbers and the fj some functions from £, j=12,...,

satisfying condition (A.3), such that

=1
for every we ) for which the inequality (A.5) holds. By the assumption, the vector
I(f) depends on the function f alone and not on a particular choice of the numbers cj

and the functions fj , §=12,... Consequently, (f)=u(f) for every fesim(X).

Furthermore, for every ¢ > 0, we can choose these numbers and functions so that

o]

L lelalf) < gff)+e.

=1
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Hence, |u(f)] < cqb(f) + ¢, because lu(f]_)l < cp(fj) for every j=1,2,.... So,
|BN1 < eq)(f), forevery fe Lip).

Whenever applicable the following proposition is of course easier to use. By

Proposition 2.27, it can be used, in particular, when £ is a quasiring of sets.

PROPOSITION 3.2. Let p be an integrating gouge on K such that, for every

function f € sim(k) ,

0D =inf § lelo(f),

p =1

where the infimum is taken over all expressions of f in the form

n
=X ofy
with arbitrary n=1,2,..., numbers ¢ and functions ijIC, i=12,...,n. Let

p:K-E be an additive map such that |u(f)| < co(f), for some ¢ >0 and every
fek.
Then the gauge p integrates for the map u .

Proof. The assumptions imply that |u(f)| < cqp( f), for every fe sim(K).

B. Let g be a quasiring of sets in a space . Let ¢ be a o¢-additive
non-negative real valued set function on @ . (See Sections 1D and 1F.)
Because [u(f)] < «(|f]), for every fesim(g), by Proposition 2.13, & is a

gauge which integrates for itself. So, there exists a unique linear functional, ¢ , on

A 7
L(1,9) such that LL(X) =4(X) for every Xe g, and the inequality !LL( Nl < qL( f)
holds for every function fe £(¢,0). Conforming to standard notation, we shall of

course write
uf) = jﬂ du= JQ f@ildw) = o

for every function fe £(1,9) .
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PROPOSITION 3.3. If fe L(s,9), then also |f| € L(+,9) and qb(f) = u(]fl) for
every function f€ £(:,9) .

Proof. Let p(f) = «(|f]), for every f€ sim(9). Then the seminorm p is monotonic
and, by Proposition 2.13, £(1,9) = L(p,sim(d)) . Hence, by Proposition 2.20, if
feL(:,9), then also |f| € £(:,d) . Now, the seminorms fw«(|f]) and fr qL(f) ,
feL(,9), are both qb—continuous and they agree on a qb—dense subspace, sim(4) ,

of £(¢,9) . Therefore, they agree on the whole of £(4,9) .

The Beppo Levi monotone convergence theorem and the Lebesgue dominated
convergence theorem are now special cases of the two respective statements of
Proposition 2.21. The Fatou lemma can then be deduced in the well-known manner.
(See e.g. [59], no. 20.)

Let 2(:) be the family of all +~integrable sets, that is, sets with characteristic
function belonging to £(¢,d) . Then R(s) is a d-ring of setsin 2 . The existence of a
(finite) non-negative a—a,dditix}e extension of ¢ onto the whole of %(:) is now
obvious. Moreover, by Proposition 2.7, L(4,%(:)) = £(1,9) . Therefore, we may
suppress the domain, @, of ¢ in the symbol for the space of i-integrable functions
and write simply £(¢) = £(:,9) .

There are now several possibilities of defining ¢-measurable sets and functions.
We may call a set (~measurable if it belongs to the o-algebra or just the o-ring of
sets generated by 7A(¢) . A larger family of i-measurable sets is obtained if we call
(-measurable any set X C§ such that XnQ such that Xn ZeR(:) for every
Z € (¢) . The choice of the definition depends of course on the purpose to which it is
to be used. But in either case, it is customary to put «(X) = o for every ;-measurable
set X which is not ¢-integrable.

So, the set function : determines a measure in the space £ which is of course
denoted still by ¢.

It should be noted perhaps that the term "measure" is not used in the same
fashion throughout the literature. It often designates a non-negative extended real

valued (w is allowed as a value) set function on a o-ring of sets covering the whole
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space or a o-algebra. Other authors designate by this term the corresponding
integral, that is, the linear functional whose value at an integrable function, f, is
equal to the integral of f with respect to the measure in question, or even its
restriction to a linear subspace dense in the I'-seminorm in the space of all integrable
functions.

This lack of uniformity will not cause any inconvenience in the sequel, because,
however the term "measure" is interpreted, specifying a measure, ¢, entails the
specification of the following objects: a vector lattice, £(¢), of functionson @ and a
positive linear functional, ¢, on £(¢) such that L(p,L(:)) = L(¢), where p(f) = u|f])
for every fe L(¢), and if R(:) is the family of sets (with characteristic functions)
belonging to £L(¢), then L(p,R(s)) = £L(+) . The functions belonging to £(:) and sets
belonging to %(:) are then called integrable with respect to the measure ¢ or
t-integrable.

Now, returning to the the measure, ¢, determined by its values on the
quasiring @, let us note that, in view of Proposition 2.13 and Proposition 3.1, the
definitions adopted in Sections 2A, 2D and 3A, give us a direct and economical
representation of integrable functions circumventing the Carathéodory theory of
extension of ¢ onto all measurable sets. Namely, a function f is i-integrable if and

only if there exist numbers ¢ and sets Xj €9, j=1,2,.., such that

00
,21 le, ] dX) < o
and
) oY)
flw=7} c¢X(w)
F=EA
for every we Q for which
9]
Y olelX(w)< .
F= T

The integral of such a function f is then given by the formula

JQ fde = OZO ch(Xj) .

=
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It is striking how close this characterization of integrability and integral is to
the ideas of Archimedes, especially to one of his calculations of the area of a parabolic
section; see e.g. [21]. As noted by J. Mikusiski in the Preface to his book [50], it
makes the presentation of the Lebesgue integral at elementary level more viable than
that of the Riemann iﬁtegral. For further elementary comments, see [33].

An approach to integration along similar lines was suggested by J.L. Kelley and
T.P. Srinivasan, [28]; see also [29]. » 7

As suggested, a measure in the space 0 is sometimes spe&iﬁed by specifying
the values of the corresponding integral on a sufficiently rich vector subspace of the
space of all integrable functions. It is done by invoking a theory of the Daniell integral
or its generalization. Such theories too are instances of the general scheme presented
in Section A. To describe the main points, let us recall some notation.

For a real valued function, f, on ), we write f+ =4(f1+f),  =4(f1-D
and fAl =g, where ¢g(w)=4(f(w)+1-|f(w)-1|) for every we Q. For a nontrivial
family, £, of real valued functions on €, we write £ = {fek:f>0} and
K-K = {f-g:fextget’}.

Let £ be a vector lattice of real valued functions on the space §2. A positive
linear functional, ¢, on X (see Section 2E) is called a Daniell integral, if fn) -0,

as n-w, for any functions fn € £ such that fn(w) >f (w), n=12,.., and

n+l
fn(w)—>0, forevery we, as n-w.

It is easy to show using Proposition 2.12, say, that a positive linear functional,
¢, on K is a Daniell integral, if and only if, the seminorm, p, defined by
p(f) = «(|f|), forevery fe K, isintegrating.

Assume now that ¢ is a Daniell integral on X . It is then obvious that the
seminorm p integrates for the functional ¢. Let us write £(¢) = L(p,X) and denote
by R(:) the family of sets (with characteristic functions) belonging to L(¢) .

We say that the Daniell integral & satisfies the Stone condition if the function

JAl belongs to £(:) whenever the function f does. It is well-known that, if fAl

belongs to K whenever f does, then ¢ satisfies the Stone condition.
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Let o 5 be the unique continuous linear functional on £(:) that extends .
(See Section A.) Its restriction to R(:) is a non-negative o-additive set function.

M.H. Stone has shown, [62], that £(¢) = £(¢ ,R(¢)) if and only if ¢ satisfies the Stone

0
condition.

M. Leinert, [40], and H. Konig, [36], have generalized the notion of a Daniell
integral by requiring that X be merely a vector space and not necessarily a vector
lattice. Such generalization is interesting because it represents the abstract core of
situations not infrequently occurring in analysis; see [37], [41].

So, let X be a vector space of real valued functions on Q and let ¢ be a

positive linear functional on X . For any real valued function f on Q, let

+ .. R
V(f)=inf }df),
=
where the infimum is taken over all choices of functions fj ext , J=1,2,..., such that
o8]
(B.1) flw) < I f(w)
5=1

where the infimum is taken over all choices of functions fl €kl and f;e I,
J=2,3,..., such that (B.1) holds for every we Q.

We say that the functional ¢ satisfies the Konig continuity condition, if
Sy = uf) + S(), for every function fe K.

We say that the functional ¢ satisfies the Leinert continuity condition, if
S5 = uf), forevery fek.

Clearly, if ¢ satisfies the Ko6nig continuity condition then it satisfies the
Leinert continuity condition. Moreover, if £ happens to be a vector lattice, then
satisfies the Konig continuity condition if and only if it is a Daniell integral, and also it

satisfies the Leinert continuity condition if and only if it is a Daniell integral.
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Now, assume that X =X"-X". Then we can define gauges, p, and Py, O K
by letting pl(f) =7(|f1) and pz(f) = Lf( [fl), respectively, for every fe k. Let,
further, Py be the gauge on X" such that p3( f) = uf), for every f€ ICf .

If ¢ satisfies the Leinert continuity condition, then the gauge Py is
integrating. The gauge Py, Which is a seminorm, is automatically integrating. If ¢
satisfies the Konig continuity condition, then Py =Py the gauge Py is integrating
and £(p1,IC) = £(p3,IC+) . We may note that, while the Koénig condition is sufficient, it
is not necessary for the gauge p, to be integrating. However, the Kdnig condition is
convenient to use without loss in the context of uniform algebras.

For a more complete consolidated exposition we refer to [37].

C. Natural seminorms in the classical function spaces defined in terms of a
measure usually turn out to be integrating.

Let ¢ be a measure in a space 2 and p a real number such that 1 < p< w.
The family of all functions f on € such that f|f|” '€ £(s) is denoted by £P(s).
So, in particular, l:l(é) =L(:). Tt is well-known that £P(s) is a vector space.

Moreover, if

i, =[] e,

for every fe LF(:), then ”’”p,a is an integrating seminorm on £P(;) such that
£(|- ||p7 L,ﬂp (¢)) = LP(s) . This fact is implicit in the standard proof of the completeness
of £P(:) which avoids the notion of convergence in measure. The induced normed
space is of course denoted by LP(:). M.H. Stone, [62], introduced the LP-spaces
along these lines in the context of Daniell integrals instead of measures.

These spaces (based on a measure rather than a Daniell integral) are special
cases of the general Banach function spaces studied systematically by
W.A.J. Luxemburg and A.C. Zaanen in a series of papers of which the first one, [47],
contains an introduction to the ‘subject with the relevant historical background. See

also [72], §§63-64.
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Let & be a o-algebra of sets in the space 0 and let Z be a o-ideal in the
space  (see Section 1D) such that ZC 8. Let M= MS) be the family of all complex
valued S-measurable functions and A the family of non-negative real-valued
functions belonging to #. Let ¥= MZ) be the family of all functions f on € such
that the set {w: f(w) # 0} belongs to Z. Clearly, ¥ C M because ZCS.

Following [48], Definition 3.1, a functional, p, from X into [0w] (the value
w is allowed) will be called a function norm (with respect to & and Z) if it has the
following properties:

(i p(f) =0 if and only if fe J¥;
p(f) =
(

plef) = |a|p(f) for every number « and every function fe X;

(i

)

) p(1f1) for every feM;
(iii)

)

)

p(f+9) < plf) + plg) forevery fe M and ge M ; and
if fel, geMd and f< g, then p(f) < plyg) .

(iv

(v

Given a function norm, p, let £ )= {feH:p(f) < o} . Then the restriction of

p to Kk ) is a seminorm; it will be called the seminorm induced by the function norm

p and still denoted by p. Our aim is to characterize those function norms which

induce in this manner integrating seminorms such that le =L(p,k p) and the family of
p-null functions coincides with V.

The function norm, p, is said to have the Riesz-Fischer property, see [48],

Definition 4.1, if, for any functions f,- €M, j=12,.., such that

00

(C.1) X of) < w,

=1

the set, Y, of all points we  for which

belongs to Z, and, if f is a function on Q such that
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(C.2) flw)=} f(w)

for every w € Q not belonging to Y, then fe ICp .

For the sake of unity of style, our formulation differs from that of W.A.J.
Luxemburg and A.C. Zaanen, but the difference is merely technical. Luxemburg and
Zaanen achieve some simplicity of the formulation by admitting into 4 also functions
with infinite values. However, the resulting theories are equivalent because then, for
every function fe X such that p(f) < o, theset V={w: |f(w)|=w} belongsto Z.
Indeed, Y < n_llfl , and, by (iii) and (v), p(Y) < n_lp(f) , for every n=12,...
So, p(Y) =0, and, by (i), Ye Z.

The following lemma and proposition are due to I. Halperin and W.A.J.

Luxemburg, [20].

LEMMA 3.4. If p has the Riesz Fischer property, then

whenever fj €M, j=12,.., are functions satisfying condition (C.1) and fe M isa

function such that

for every we ).

Proof. If not, there exist such f]_, j=12,.., and f as in the statement of the

lemma, but

oD > s § o)
1

]‘:
with some « > 0. Consequently, for each k=1,2,..., there exist functions fk], eu ,

j=1,2,..., and a function fk € X" such that

)=} e

for every we Q for which
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El fkj(w) <
and
(C3) o> olf) >k L olfy)
j:

Because

(3,5 = £ oy

=1

for every r=1,2,..., we can assume that, besides (C.3),

i plfy) < K°

=1
for every k=1,2,.... Let us arrange the functions fk],, j=12,.., k=12,.., intoa
single sequence q,, n= 1,2,.... Then
0 o] -9
T oag)< 3 Kl<a.
n=1 k=1

Let g be a function such that

for every we O for which
9]
). gn(w) <.
n=1

Then, for every k=1,2,..., there is a function h, € X such that gw) > fk( w) + hk(w) ,

for every we Q, and, hence,

plg) 2 p(f) 2 k.
So, p(g) =w, contrary to p having the Riesz-Fischer property.
PROPOSITION 3.5. The function norm p has the RieszFischer property if and

only if the induced seminorm on K y is integrating and L(p,X p) =K 5
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Proof. If p has the Riesz-Fischer property, let fj ex 5 Jj=12,.., be functions
satisfying (3.2) and let f be a function on € such that (C.2) holds for every we Q
<such that

(C4) | IR
=

Then fe M and p(f) < 0, that is, fE,’Cp, because ZCS and p has the

Riesz-Fischer property. Furthermore,

fw -1 1= F 1w
=1 j=nt+l

for every w e @ for which (C.4) holds, and so, by Lemma 3.4,

pi[f- f f} < %E of),

j=n+l 7

for every n=1,2,.... Therefore, p is integrating and £(p,Kp) = ICp .

Conversely, if the seminorm induced by p is integrating and L(p,X p) = le .

then, obviously, p has the Riesz-Fischer property.

Besides the -IP-spaces, the classical spaces which are covered by this
proposition include notably the Orlicz spaces.

Let ¢ be a o-finite measure-in the space € ; that is, the space Q is equal to
the union of a sequence of :-integrable sets. Let M be the family of all :-measurable
functions; the assumption of o-finiteness implies that the definitions of measurability
mentioned in the previous section are equivalent. A is the family of ¢-null functions.
Let @ be a Young function. {See Section 1G.)

For any function fe M, let
Mgl =] a(ifia.

We are using the convention that, if the function ww @(|f(w)|), we, is not

t-integrable, then M<I>( f) =w . Let, further,
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pp) =inf{k: k>0, Mg(K'f) < 1}

for every fe€ M. Now we are using the convention that the infimum of the empty set

is .

PROPOSITION 3.6. The functional Pp is a function norm having the Riesz-Fischer

property.

Proof. For brevity, we write p = pg .

If the set {w: |f(w)] > 0} has non-zero measure, then, for some ¢ >0, the
set X={w: |flw)| = ¢} has non-zero measure and, hence, Mq)(f) > ®(e)u(X) >0.
Consequently, 0< p(f)<w. Conversely, if o{w:|f(w)] >0})=0, then
M@(af) =0, for every a > 0, and, hence, p(f)=0.

Assume that 0 < p(g) < w. Choosing a decreasing sequence of numbers k,,
n=12,..., tending to p(g) and applying the sequential form of the Beppo Levi
theorem on the functions k;ll g, n=12,.., tending point-wise monotonicaliy to

h(p(g))_llg |, we deduce that Mg((pl g))_1 g) < 1. From this observation we deduce
further that, if |f] < |gl, then p(f) < p(g). For, if |f| < |g|, then
My((o(9) ) < Mgl((p(g) g < 1.

Now, assuming that f>0, g>0, p(f)+p(g)=7 >0, let p(f)=ay and
p(g) = By, sothat a+ #=1. Then, by the Jensen inequality,

Mg((f+9)/7) = Mg(af/ oy + Bg/By) < aMy(f/p(f) + BMy(g/p(g)) < a+ B=1,

and so, p(f+g) < 7.
From these remarks and from the definition of p, it follows easily that p
satisfies all the requirements (i) - (v), which means that it is a function norm on X .
To prove that p has the Riesz-Fischer property, let g, € i , n=12.., be
functions forming a non-decreasing sequence such that 0 < a = sup{p( gn) :
n=12,..} < w. Because M(I)(af—lgn) <1, forevery n=1,2,..., by the Beppo Levi

1

theorem, Mg(a “g) < 1. Hence, p(g) < «. In particular gek 5 It is now evident

that p has the Riesz-Fischer property.
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The proof of Proposition 3.6 gives slightly more than the Riesz-Fischer
property of the function norm pg . For more details we refer to [72].

Let us note that the space £ "z for p= Pg > consists of all functions fe€ M for
which there exists a number k& >0 such that M(I)(kf) < w. Furthermore, if the
Young function @ satisfies condition (A2) , then fe€ ICp if and only if M <I>( fl<w.
If Q)< w and & satisfies condition (AQ) for large values of the argument, then
f§ ICp if and only if M@(f) <.

The space £ - is conventionally denoted by £®(L) and the corresponding

normed space by L(D(L) . These spaces are known as Orlicz spaces. One writes

”f“q’,b = p@(f) , that is,

flg,, = imf(k>0: [ @G If(w)])lde) < 13

for any function fe€ ,C(I)([,) . The seminorm ||| &, and the induced norm on L(I)( t)
are called the Luxemburg seminorm and the Luxemburg norm, respectively. Another

seminorm on ,C(I)(L) is defined by the formula
191§, = sup{l | _fgdul s | wlghdi< 1},
D 0 Q lg] }

for every fe€ L'(I)(L) , where ¥ is the Young function complementary to @ . (See
Section 1G.) The so-defined seminorm and the corresponding norm on Lq)(a) are

called the Orlicz seminorm and the Orlicz norm, respectively. The inequalities

Iflg, < g, < 2,

hold for every fe€ L'CI)(L) , so that the Luxemburg and the Orlicz norms are equivalent.
The classical reference about Orlicz spaces is [38]. Useful information can also
be found in [39], especially Sections 3.1-3.9, and of course elsewhere.
For the definition of the class £¢)(/,) , the assumption that the measure ¢ be

a-finite is of course not necessary. Explicitly, L(I)(L) consists of the i-measurable
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functions f on  for which there exists a number % >0 (depending on f) such
that
JQ B f(w))i(dw) < w .

D. Another class of important and extensively studied integrating
seminorms is constituted by the seminorms inducing the natural norms of the Sobolev
spaces. Following A. Kufner, O. John and S. Fuéik, [39], Section 5.1, we present a
general scheme for introducing these spaces which may be useful also in other contexts.

Let £ be a vector space of functions on a space 1. Let I be an integrating
seminorm on L. Let J be an index set. For every a€ J, let p o be an integrating
seminorm on a vector space, £ o’ of functions on a space Qoz such that
£a = £(pa,£a) and let Sa 3 AN Ka be a linear map.

The maps S o € J, will be called collectively closable if pa(ha) =0 for
any functions % o€ L o for which there exist functions g, € K, n=1,2,.., such that

(D.1) lim po(gn) =0 and lim pa(%g

- 00 7 00

_fa)zoa

n

for every a€ J.

PROPOSITION 3.7. If the set J is finite and the maps S _, a€J, are collectively

a 9
closable, then the functional, p, defined by

(D.2) AN =pN+ 3

S0,
aera(af)

for every fe kX, is an integrating seminorm on X .

Proof. Clearly, p is a seminorm. Let fj ek, j=12,..., be functions such that

2M0<w

and

for every we Q for which
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Y f (W) <o
=1 7
Then
Q0 Q0
) po(f.) < o and E f, (f,-) <
=1 =1
for every a€ J. Let
)
9,= L I
n 17
for n=1,2,... Then, by Proposition 2.8, po(gn)—>0 as 7n-w, because the

seminorm Po is integrating. Furthermore, by Theorem 2.4, for every « € J, there
exists a function ha € Ka such that pa(Sagn—ha) -0 as n-ow. Then pa( ha) =0,
for every a€J, because the maps S o € J, are collectively closable. By
Proposition 2.1, pa(Sagn) -0, for every a€J, and, hence, p(gn) -0 as n-w,

because the set J is finite. By Proposition 2.8, the seminorm p is integraiing.

To describe the most important particular cases, let n > 1 be an integer. Let
¢ be the Lebesgue measure in R". Let 0 be a non-empty bounded open set in R".
Let k>0 be an integer and 1< p<w. For J, we take the set of all n-tuples

o= (al,a2,...,an) of integers @ 20,0, 20,0 20 such that

0<]a|=§:

a < k.
=17

For any such a€J, let D%-= DileZ2 D:" , Where Dl’Dz""’Dn are the
operators of partial differentiation on R"™ with respect to the first, second, ..., n-th
variable, respectively.

Now, for I, we take the space of all restrictions to Q of C™-functions on R”

and let
p_ Pyd ,
(py(1) jﬂ | /() P4 dw)

for every fe k. Forevery a€J, wetake £ o to be the space of all ¢-measurable
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functions on £ such that (po(f))p < o and put pa(f) = pO(f) , for every fe€ Ea'
Finally, we put S af =DY%, forevery feX and every a€ J.

LEMMA 3.8. Forevery o€ J, themap S o’ K-L o is closable.

Proof. Let 9, € K, n=12,..., and ha € £a, be functilons such that (D.1) holds.
Then, by the Green formula and the Holder inequality,

J h&<de=limJ D% di = (1) ¢! 1imJ g D%di =0,
Q n o’

no0 Y {1 n— 00

for every (*-function ¢ whose support is contained in €. Consequently,

polh,)=0.

This lemma obviously implies that the maps S o Q€ J, are collectively
closable. So, by Proposition 3.7, the seminorm, p, defined by (D.2) for every fe X,
is integrating. The corresponding Banach space L(p,L) is usually denoted by
whe(Q) .

Let KO be the space of all C* functions with supports contained in € . Then
IC0 C X, but the restriction of p to ICO is still denoted by p . The corresponding space
L(p,}CO) is denoted by Wg’p () . The spaces WhP(Q) and Wg’p (Q) do not coincide,
in general.

For further discussion, examples and ramification along these lines we refer to

[39], Chapters 5, 7 and 8. The literature on the Sobolev space is of course very large.

E. Both the classical and the real-variable definitions of the Hardy spaces
can be viewed as the special cases of the construction of the space L(p,X) with a
suitably chosen integrating gauge p on a family of functions X . Let us start with the
classical definition.

Let 1<p<ow. Let £=X 5 be the family of complex functions on the closed
unit disc Dl ={z€eC: |2| < 1} for which there exists a ¢ such that 0 < §< o and
fek if and only if f has an analytic continuation on the disc

D, s= {#zeC€:|z] <1+ 6. In particular, IC00 consists of the restrictions to Dl of
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the entire functions. Given an r such that 0 < r< 1, let

27 1/p
oD = (35 | tresioyi?as

for every fe X . Finally, let

p(f) =sup{p,(f) : 0 < r< 1}
for every fe k.
PROPOSITION 3.9. The functional p is an integrating seminorm on K .

Proof. We have p(f) < o for every fe€ X because every function belonging to £ is
bounded on ]31 . Using the analyticity of the functions in £, it is easy to deduce
that each seminorm Py 0 < r< 1, isintegrating. Then, by Proposition 2.14, the

seminorm g is integrating too.

The space L(p,X) is usually denoted by H? .

It may be noted that, for X, the space of all complex polynomials could be
taken, which is even smaller than IC00 , or, on the other hand, the space of all functions
continuous in Dl and analytic in the open disc D1 , Which is larger than all the
spaces IC§, §>0.

The given definition of the space HP can of course be adapted to the case of
the space le ={(zy):zeR,y >0}, oreven [Rj:’+1 ={(z,y) : zeR", y > 0} for any
n=1,2,..., replacing the disc I_)1 .

Let us turn now to the real variable definition. We will consider only the Jig
spaces on R™. That will suffice for our purposes; any attempt to treat systematically
the Hardy spaces, or even just their connection with the theory of integrating gauges,
is out of place here anyway. We may refer, however, to the survey [6] in which the
history and the richness of the subject are elegantly presented.

Let n >1 bean integer. Let ¢ be the Lebesgue measure in R" .

By an H'-atom in Q=R is understood any function, f, for which there

exists a (solid) ball B such that |f(w)| < (L(B))_IB((U) , for t-almost every we ),
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and «f)=0. We say that the atom f is supported by the ball B. Let
K=ICa(H1([Rn)) be the family of all H'-atomsin Q.

For every fek, let

p,(f) = inf ,-02-01

c
el s
where the infimum is taken over all choices of the numbers cj , j=1,2,..., such that

Qo0
(E.1) yolel<w,
17

and there exist functions fj ek, j=1,2,.., such that

o]

(E2) fw)= 3 1w,
=1
for every we Q for which
(£3) L lel 1)l <o
=1

If ¢ is a number and fe X, then, clearly, «(|cf]) < |e¢|. Therefore,
condition (E.1) implies that the inequality (E.3) is satisfied ¢-almost everywhere. So,

by the Beppo Levi theorem, o(|f]) < p a( fl<1, forevery fek.

PROPOSITION 3.10. The functional Py, is an integrating gauge on the family of
functions K=K aJ(Hl([R")) . A function [ belongs to the space £(pa,lC) if and only if
there exist numbers € j=1,2,..., satisfying condition (E.1), and functions fj exr,
Jj=12,..., such that the equality (E.2) holds for every we€ Q) for which the inequality
(E.3) does.

Proof. Let o(f)=1, for every function fe€ X which does not vanish ¢-almost
everywhere, and o(f) =0, if f(w) =0 for almost every we Q. Then qo( f) = pa( fl,
for every fe X, Dby the definition of q, (Section 2A) and that of Py - Because, by
Proposition 2.7, a, is an integrating seminorm on £( a,k) , its restriction, Py > to

the family X too is integrating.
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Now, by Proposition 2.7, £( qa,ﬁ( o,k)) =L(o,)X) and, by Corollary 2.5,
£(pa,K) = E(qo,L(G,IC)) . So, £(pa,IC) = lI(a,IC) which means that the space ,C(pa,IC)
consists precisely of those functions f for which there exist numbers ¢ and atoms
f], ek, j=1,2,..., such that (E.1) holds and the equality (E.2) holds for all we Q for

which the inequality (E.3) does.

In view of the atomic representation of Hl([R") , this proposition says that the
spaces L(pa,lC) and Hl(lR") are identical and their respective norms are equivalent.
This fact can also be deduced from the consideration of their duals; cf. the discussion
in [6]. We will only identify the dual of the space L(pa,kf) by showing that the
continuous linear functionals on it are generated by functions of bounded mean
oscillation. Let us recall the definition.

A function F on Q=R" is said to have bounded mean oscillation if it is

locally integrable and there is a constant M such that
(E.4) («(B)) fB | Flw) - (B))™ JB Fdiu(dw) < M,

for every ball BcC Q. The infimum of all the constants M for which (E.4) holds is
denoted by [[Fll5,;q - Let us note that 1 Fllgpo = O if and only if the function F' is

t-almost everywhere equal to a constant.

PROPOSITION 3.11. If F is a function of bounded mean oscillation, then there
erists a unique continuous linear functional, £, on the space L(p,K) , K = ICa(Hl([R")) ,

P=py s such that
(E5) af) = | Ao

for every fe k; the norm of £is equalto ||Fl|g, . Conversely, for every continuous
linear functional, £, on L(pX), there is a function F of bounded mean oscillation

such that (E.5) holds for every fek .

Proof. Let the function F have bounded mean oscillation. Then the formula (E.5)

determines the number 4[f] ) unambiguously for every atom f. Moreover, if fel,

p
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let ¢, be numbers satisfying (E.1) and fj € X atoms, j=1,2,..., such that (E.2) holds
for every we Q) for which (E.3) does; let the atom fj be supported by the ball Bj ,

j=1,2,.... Then, by definitions of atoms and of ”F”BMO ,

| jﬂ P4 <] jB. o)) - B jB. FaiJudo)| < 1 Plgyyo
J

7

for every j=1,2,.... So, by the series version of the Beppo Levi theorem,

aln) = JQdeL - zl : j i

Consequently, lf([f]p)l < p(f)HFHBMO, because the numbers ¢ j=1,2,..., can be
chosen so that the sum of their absolute values is arbitrarily close to p(f). This
argument can obviously be applied to any function fe€ L(p,X). Alternatively,
Proposition 3.2 implies that there is a unique continuous linear functional ¢ on
L{p,X) , satisfying (E.5) for every f€ X, whose norm is not larger than ||F||BMO .
Because, however, there are atoms, f, such that p(f)=1 and «fF) is as close to
”F”BMO as we please, the norm of ¢ is actually equal to ”F”BMO .

Conversely, assume that £ is a continuous linear functional on L{p,X). For
n=1,2,..., let £n be the subspace of L{p,X) consisting of the (equivalence classes of)
functions, f, represented in the form (E.2), where the numbers ¢ satisfy (E.1) and
the atoms f,' are supported by balls wholly contained in Bn: {w: |w| < n},
7=12,.... Then £n containg all essentially bounded functions supported by Bn with
integral equal to 0. Because the dual space of L® (on a space of finite measure) is
equal to It , there is a function Fn , determined uniquely (-almost everywhere on

B, such that t’([f]p) = l,(an) , for every fe £n , and

J Fdi=0,
B’Il
n=1,2,... Consequently, there is a locally integrable function F which coincides
(-almost everywhere on Bn with the function Fn , forevery n=1,2,... Then, using

a similar argument as in the first part of the proof, it is straightforward to deduce that
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A p) = y(fF), for every fe€L(p,k), or just for every fe k. By what we have

proved already, the function F has bounded mean oscillation.

F. Let E be a Banach space. Let & be a quasiring of sets in a space £
and p:9-F an additive set function. (See Sections 1D and 1E.)
For every set Xe g, let

Y X) = sup f: IM(X].)I s
=1

where the supremum is taken over all integers n=1,2,... and all choices of pair-wise
disjoint sets X],E 9, j=12,..,n, whose union is equal to X. Then : is an
extended real valued additive set function on ¢ such that

(i) [m(X)| < X), forevery Xe@; and

(ii) if &k is any extended real valued additive set function on ¢ such that
|u(X)| < #(X), forevery X€ @, then X) < k(X), forevery Xe@.

The set function o+ is called the variation of p. We write o(y) =1,
o, X) = (X) for X €@ and even v(pf)=f) for any function f such that «(f) is
defined. Alternatively, we write |u| =¢.

The set function g is said to have finite variation if (,X) < « for every
Xed.

It is well-known that the variation of a o-additive set function is o-additive.
Also, if the space E is finite-dimensional, ¢ is a §-ring and the set function
p:9- E is o-additive, then g has finite variation.

The conventions about the integration 'with respect to u ' are not fixed even if
the set function p:8- E is o-additive. The reason being that there may exist
several gauges on @, or sim(g), integrating for g but generating different spaces of
integrable functions, all considered 'natural' from alternative points of view.

If p has finite variation which is o-additive then we can let ©(y) integrate
for 4. That is to say, we let ¢ = o(y) and note that there exists a unique linear map

b, L(t) = E such that
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(i) ,uL( f) = (X)), whenever [ is the characteristic function of a set X € g;
and

(i) |1 < «If1), forevery feLls).
Then we write L(u) = £(+) and

) = | dan= | feua)=un

for every fe€ L(u). It is often assumed that & is a o-algebra, or at least a 4-ring,
[10], but this assumption has no significant bearing on the theory.
Another posgibility arises when, for every z’ € E’ , the set function z’oy has

finite and o¢-additive variation and

(F.1) sup{v(z’op,X): 2" €E' |, |2'| < 1} < w
for every X € @. In that case, let
(F.2) p(f) = sup{v(z’op,|fl) : 2" € B, |2"| < 1},

for every fesim(d). By Proposition 3.3 and Proposition 2.14, p is an integrating
seminorm on sim(g) . Obviously, the seminorm p integrates for x. So, one can

define L(u) = L(p,sim(g)) and
uf) = jQ fdu= jﬂ fa g

for every fe L(u) .
Condition (F.1) is surely satisfied and the seminorm (F.2) integrates for u if u
has finite o¢-additive variation. In that case, L(v(u)) C £(p,sim(g)) and the inclusion

may be proper even when @ is a o-algebra.

EXAMPLE 3.12. Let Q={1,2,...} be the set of all positive integers and let @ be

be an absolutely summable sequence of

the family of all subsets of Q. Let {xj}‘;’zl

elements of the space E. Let
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for every Xe Q.
Then L(v(y)) consists of all functions f on  such that the sequence
{f( j):vj}‘);:l is absolutely summable. The space L(p,sim(g)) consists of all functions f

on  such that the sequence {f{( j)zj}?zl is unconditionally summable.

So, if p has finite and o-additive variation, then the symbol " L{u) " is
ambiguous and would remain so even if the domain of y were indicated. Though, if
the space FE is finite-dimensional, then £L{(:) = L(p,sim(d)), with ¢=ov(y) and p
defined by (F.2), and the respective seminorms are equivalent.

Of course, it might be possible to form the space L(p,sim(g)), with p defined
by (F.2), also when g does not have finite variation. By the following proposition,

this space surely can be formed when ¢ isa &ring and p is o-additive.

PROPOSITION 3.13. Let @ be a &-ring of sels in the space . Let & be the
o-algebra of all sets X C Q) such that XN ZeQ forevery ZeQ. Let p: 9~ F bea
o-additive set function.

Then, for every z’ € E’ , the set function z’op has finite variation and the
inequality (F.1) holds for every X e @.

Let the seminorm p be defined by (F.2) for every fesim(d). Then the
seminorm p integrates for p. The seminorm p is monotonic and the space
Llp,sim(9)) is a vector lattice. A function on Q is p-null if and only if it is
oz’ op)-null for every z’ € E . The seminorm p is equivalent to the seminorm o
defined by

o(f) = sup{|u(Xf)| : X € G}
for every [ € sim(Q) . |
Let | be a function on Q. Then the following statements are equivalent:
(i) 1€ Lpsim(Q)) .

(ii) There exist Q-simple functions fn , n=12,.., such that

?
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(F3) | fw) = lim £ ()

- 00

0

=1 converges to an element of

for p-almost every we O and the sequence {u(an)}
the space E, forevery XeS§.
(iii) For every z’ € E’ , the function | is v(z’ ou)-integrable and, for every

X €S, there exists an element V(X) of E such that

2 (U X)) = j e on)

for every z’ € £’ .

Proof. Some of the statements were already proved. The equivalence of the
seminorms p and o was noted by R.G. Bartle, N. Dunford and J.T. Schwartz in [2];
see also [14], Lemma IV.10.4(b). They also noted that a set is p-null if and only if it
is o(z’op)-null for every 2’ € E’ . Hence, by Proposition 2.2, a function is p-null if
and only if it is {2z’ oy)-null for every z° € £ .

Given a function f on 2, the equivalence of the statements (i), (ii) and (iii)
was essentially proved by D.R. Lewis in [44]. In fact, (i) obviously implies (ii) and (ii)
implies (iii). Now, let X be the family of all functions f for which the statement (iii)
holds. Define p(f) by (F.2) for every feX. Then p(f) < w, for every fek

because, by the Orlicz-Pettis lemma, the set function v is co-additive and
o(f) = sup{v(z'or,Q) : 2" € B’ | < 1} .

By Theorem 3.5 of [44], for every fe X and ¢ > 0, there exists a function g € sim(9)
such that p(f-g) < ¢. Hence, by Theorem 2.4, for every f€ X, one can produce a

sequence, { j‘n}"zz1 , of J-simple functions such that

lim p(f-f,) =0

n—00

and (F.3) holds for p-almost every we Q. So, k¢ L(p,sim(g)) .
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This proposition summarizes the main approaches to integration 'with respect
to Banach valued measures' of not necessarily finite variation which appeared in the
literature. R.G. Bartle, N. Dunford and J.T. Schwartz, [2], used condition (ii) to
define integrability in the case when ¢ is a o-algebra; see also [14], Section IV.10.
Property (iii) was used by D.R. Lewis in [44] and [45]. Different approaches, leading to
different spaces of integrable functions are of course possible. One of them will be

described in Example 4.27 (Section 4F).

G. The structure described in Section 3A represents a possibility for

defining, in a reasonably systematic manner, integrals of the form

jZfdw,

where w is an arbitrary continuous function in the interval [g,b] . In this section, we
present a way of doing so sketched in [32]. We shall return to this theme again in
Sections 4C and 4D, where we impose on w some additional conditions, similar to but
still much weaker than the finiteness of variation, and, on the other hand, extend the
generality of the whole set-up.

Let w be a bounded continuous real or complex valued function on the
real-line, Q = (~o0,0) .

Let CO((—oo,oo]) be the Banach space of all functions continuous on the
two-point compactification, [-ww], of the space €} and vanishing at -w, under the

usual sup-norm, || ||00 . Let E be the space of all bounded sequences of elements of

CO( (-w,0]) equipped with the norm defined by

lell = sup{llo,ll,: n=1,2,..} ,

for every element, ¢ = {(pn}‘::l , of E. Let F be the subspace of E consisting of
those sequences of elements of CO((—oo,oo]) which are convergent in CO((-oo,oo]) .
Let ¢ be the Lebesgue measure in the space 1. As usual, this measure is not

shown in integrals written down using a dummy variable. For the functions f and ¢
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on 2, we denote
(ﬂmm=j flt-s)gls)ds ,
9

for every t€ Q for which this integral exists (in the sense described in Section B).
Now, let kn, n=1,2,.., be continuously differentiable functions on £,
(-integrable together with their derivatives such that kn*w - ¢, as n- o, uniformly
on , for every continuous function ¢ on £ with compact support, and
k;*<p—> @', as mn-w, uniformly on £, for every continuously differentiable
function ¢ on Q with compact support (the dash denotes the derivative). For

example, we can take

forevery t€Q and n=1.2,...

Given a function fe L(s), let

t
v (0= fo)Epu)(e)ds,

for every t€ [-om| and n=1,2,...
Let K be the vector space of all functions fe€ £(:) such that the sequence

uf) = {un( ]‘)}‘Z:1 belongs to E, and let

p(f) = L151) + [l

for every feX. Let J be the subspace of X consisting of the functions fe€ X such
that (f) belongsto F.

PROPOSITION 3.14.  The functional p is an integrating seminorm on K such that
LpX) =K and LipJ)=17.

Proof. It is obvious that p is a seminorm. So, let f,- ek, j=12,..., be functions

such that
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floy=3 0,
=1

for every ¢€ Q for which
LG
=1

Then
RCARES
=1

and, by the Beppo Levi theorem (or Proposition 2.1 applicable by Proposition 2.13),
feL(s). Also

E Il < a,
7=1

and, because the space F is complete, there exists an element, ¢ = {“’n}:q , of E

. such that

Y uf)=9

=1 7

in the sense of convergence in the space E. It follows that I/n( f) = Y, because the

continuity of the map v L(1) = CO((O,oo]) implies that

o

v(N=3 v(f),

=1 !
for every n=1,2,... So, by the definition of £, the function j belongs to it, by
Proposition 2.8, the seminorm p is integrating and, by the definition of the space

L(p,X) , the equality L(pX) =L holds. Then also the restriction of p to J is
integrating and the same argument shows that L(p,J) =J .

Let LIM be a Banach limit. That is, LIM is a continuous linear functional

on the space of all bounded sequences of scalars equipped with the sup-norm,
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independent on any finite number of coordinates, such that

LIM{e }>_ =lima
n— 00

whenever the sequence {an}°:=1 is convergent.

Given a function fe X = L(p,X), we define

i
J fdw=LIM {z (N(H)®

n=1
-00
for every € [-oo,w| . Then
frapdf =] fdv,fer,
—Q0

is a continuous linear functional on the complete space L(p,X) such that

J:ofdw= - Ji F (Db,

for every continuously differentiable function f on Q with compact support. This
functional depends of course on the choice of the Banach limit LIM . However, its

values on the functions belonging to J are determined uniquely.



4. SET FUNCTIONS

Given an additive set function, i, on a semiring of sets, &, the problem
arises naturally of finding a gauge which integrates for x. (See Section 3A.) If there
exists a finite non-negative o¢-additive set function, ¢, on @ such that
[w(X)| < X), for every Xeg, then p is said to have finite variation. In that
case, ¢ is a gauge integrating for x . This situation is classical.

The point of this chapter is that, even when g does not have finite variation,
there may exist gauges integrating for p. For, there may exist a continuous, convex
and increasing function, ®, on [0,0) such that ®(0)=0 and a o-additive set
function ¢:9-[0w) such that &(|w(X)]) < (X), for every Xeg. Then
| X)] < p(X), where p(X)=((X)), for every X€@, and ¢ is the inverse
function to ® . By Proposition 2.26, the gauge p is integrating.

So, we are led to the consideration of higher variations introduced by N. Wiener

and L.C. Young. (See Example 4.1 in Section A below.)

A. Let @ be a multiplicative quasiring of sets in a space . Recall that,
by X =2%(0) is denoted the set of all families of pair-wise disjoint sets belonging to
Q. (See Section 1D.) An element, ?, of ¥ such that its union is equal to Q and,
for every X e @, the sub-family {Ye?: YNnX#0} of 7 is finite, is called a
partition. The set of all partitions is denoted by II = II(Q) .

Let F be a Banach space and p: @~ F an additive set function.

Given a Young function @ (see Section 1G), a set X from ¢ and a partition
P, let

Al P, X) = (| (X .
(A.1) Vg (1,75.X) YE? (lu(Xn¥)])

Then, for the given &, X and a set of partitions A CII, let

(A:2) v(I)(u,A;X) = sup{vq)(u,?;X) :PeA}.

107
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The possibility of v('I)(u,A;X) = o is admitted. We write vq)(u;X) = vq)(u,H;X) , for
every Xeg.

The set function vq)(u,A) , that is, Xw %(u,A;X) , Xe@, is called the
®-variation of the set function u with respect to the family of partitions A . The set
function vq)(u) = 1)(1)( u,I1) is called simply the ®-variation of p. If vq)(,u,A;X) < o
for every X e @, the set function p is said to have finite ®-variation with respect to
the set of partitions A .

In the case when ®&(s)=s", or even when &(s)=cs’, for some constants
¢>0 and p>1 and every s€[0,w), we shall write simply vp(,u,A) instead of
v(p(u,A) and speak of the p-variation instead of the ®-variation. Similar conventions
are used without explicit mention in other symbols denoting objects depending on @,
and in the corresponding terminology. The 1-variation, vl(u,A) , of the set function
p with respect to the family of partitions A is called simply the variation of p with
respect to A and denoted by o(p,A) .

Formulas (A.1) and (A.2) have meaning as they stand for arbitrary quasirings,
not only multiplicative ones. For, XNZ= XZ € sim(g), whenever X€ @ and Z€ @,
and so, by the convention introduced in Section 1B, u(XnZ) is well-defined.
However, in such wider context, useful pronouncements would require more
complicated formulations and the gained generality would be of little value.

On the other hand, it is sometimes advantageous to define vq)(u,’P;X) and
v(I)(u,A;X) by (A.1) and (A.2), respectively, for any set - X belonging to the ring,
B ="%Q), generated by &, not only for X € ¢. This represents no difficulty because
every set belonging to % is eqﬁal to the union of a finite family of pair-wise disjoint

sets belonging to 4.

EXAMPLE 4.1. Let @ and b be real numbers such that a< b. Let £ =(a,b] and

9={(st]:a< s< t< b}. Let d bea function on the interval [a,0] and let

w(s,4) = d(¥) - dls) ,

forany s and ¢ suchthat a< s<¢t<b.
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Although not much attention seems to have been paid to ®-variation of
additive set functions in general, there is already considerable literature devoted to this
case. To be sure, the ®-variation of the set function p is discussed in terms of the
function d. In fact, if the partition P is determined by the points @ = 8y < 8 <

S5, < ...< §

A <s =b, thatis, 7= {(sj_l,sj] :j=1,2,..,n}, then

n—1
n

v (1, 752) = ]_;1 o(ld(s) - d(s,_D1) -

Actually, often the function d itself is the centre of interest, because some
convergence properties of the Fourier series of d can be studied using the notion of the
d-variation; see e.g. [66].

Besides A =1II, the set of all dyadic partitions is often taken for A,
especially when ¢=0 and b=1.

The variation (that is, 1-variation) is a classical concept dating back to
C. Jordan. The notion of the p-variation was introduced in this case by N. Wiener in
[67]. It was subsequently studied by several authors, notably by L.C. Young, who
considered, in [69], Stieltjes integration with respect to functions of finite p-variation
and introduced, in [70], the notion of a function of finite ®-variation. Spaces of
functions of finite ®-variation were studied by W. Orlicz and his collaborators, [51],
[42], and by M. Bruneau, [4].

The notation and terminology are not firmly established in the literature

although they seem to converge to similar ones to those adopted here.

The introduction of the set of partitions, A, as an additional parameter on
which the ®-variation, vq)( u,AA) , depends, genuinely increases the generality of this

notion. It is illustrated by the following classical

EXAMPLE 4.2. In the situation of Example 4.1, let ¢=0 and b=1. For every

m=1,2,..., let 7’m be a partition, determined by the points

= < <..< =1
0 Sm,O Sm,l sm,n ’
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such that ?m <7P that is, every point S0 £=0,1,....,n_, is among the points

m+l’

determining the partition ?m e and

lim max{s_ 2 St :£=12,...n }=0.
m= 0o m, m

Let A= {7’m: m=12,.}. By a classical result of P. Lévy, [43], (see also [11],
Theorem VIIL.2.3) the limit
lim v2(u,7’m;ﬂ)

m— oo

exists for almost every, in the sense of the Wiener measure, continuous function d on

[0,1] and, hence, v2(u,A;Q) < w. However, 112(u,H;Q) =w. See, e.g., [64], §4.

EXAMPLE 4.3. Let ©=R. Let @ be the family of all bounded Borel sets in Q.
Let ¢ be the Lebesgue measureon R. Let 1< p< o andlet E=LP(1). If Xeg,
let

w0 =1im L[ 7 JHeas,

u= 0+

for every t€R for which this limit exists. Then g(X) represents an element of the
space E. What is more, M. Riesz has proved, see [7], that there exists a constant,

A, depending on p, such that

P
i, < 4 [ 1f(o1ds

for every fesim(g). Consequently, the resulting additive set function g:@- E has
finite p-variation.

The Riesz estimate was extended to a wide class of kernels in Euclidean spaces
of arbitrary dimension by A.P. Calderén and A.Zygmund, [7]. Accordingly, such
kernels give rise to similar vector valued set functions of finite p-variation on bounded

Borel setsin R", n=12,....
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EXAMPLE 44. Let Q=R and let @ be the family of all bounded intervals (of all
kinds) in Q. Let
SXf(s) = J f(w)exp(27n'sw)dw ,
X

for any s€eR, Xe@ and any function f on R integrable with respect to the
Lebesgue measure, where
flu)= | fts)exp(@risu)ds,

R
for every we Q. J.L. Rubio de Francia, F.J. Ruiz and J.L. Torrea have proved, in
[60], Corollary 2.4, that, for every p € [2,0) , there exists a constant Cp such that

L) 1sitas< ¢, [ ifta)iRas

for any such function f and every family of intervals 7 € £(9) .

Consequently, if E=L?(1), f¢ cng? (¢) , where ¢ is the Lebesgue measure in
R, and if, for every X €@, we define u(X) to be the element of the space F
determined by the function S «f» we obtain an additive set function p: g- F having

finite p-variation.
PROPOSITION 4.5. Let AcIl, Pe A and Xe Q. Then

U (1,8, X0Y) < g (1,4;X)
Yé? (I) ®

for any additive set function u: Q- E and a Young function @ .
Proof. It is obvious.

It is worth-while to note explicitly that, if the Young function @ 1is not a
multiple of the identity function on [0,®), then the @®-variation is not necessarily

additive.

EXAMPLE 4.6. In the situation of Example 4.1,let a=0, b=1 and d(s)=s for
every s€[0,1]. Then v2(u;(s,t]) = (t—s)2 , for every s and ¢ ~ such that

0<s<t<1.
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B. Let @ be a multiplicative quasiring of sets in a space . Let @ be a
Young function.

Recall that the set II=TII(@) of all partitions is directed by the relation of
refinement. (See Section 1D.)- We refer to the same relation when we speak of
directed subsets of II .

To aveid some trividlities, we assume that, for every finite set 7)€ (9,
thereexists a partition P€ 1 such that ﬂ’@ c?P.

TLet F bea Banach spaceand p: @~ F am additive set function.

PROPOSITION 4.7. The ®-variation, vq)(u) , of the set function n is additive if
and only if
(B.1) vq)(u;X) = sup{vq)(u,?;X) : ’PO <Pell},

forevery X€ @ and 7’0 ell.
Proof. For any X€g and ’If’o el,

U5 XNY) = sup{vL (P, XNY): Pe I} =
y);;v o yé? &

0 0
= ¥ sup{oz(u?XnY): P < Pell}=
' Y);'}’O { @ 0
= sup{ Yg? vq)(u,?;XﬂY) : ’PO <Pe H} = sup{vq)(u,?;X) : 7’0 <Pell}.

0

Therefore,

vs (1 X) = v (1, XNY)
2 Y§7’0 ?

if and only if (B.1) holds.

Let ¢ be a non-atomic measure in the space O such that every set X e g is
t~integrable. (See Section 3B.)
For a partition 7€ 1Il, the i-mesh, |7, of 7 is defined by

”7)“4 =sup{yX): Xe€P}.



4.8 113 4B

Because the cardinal number of 7 may be infinite, the possibility that ||7’||L =0 may
occur.

A set of partitions A c II will be called s~fine if,
inf{H?HL :PeA}=0.

We say that the ®&-variation, vq)(u,A), of u with respect to a set of
partitions, A, is scontinuous if, for every ¢ >0, there is a 6 >0 such that
vq)(u,A;X) < ¢, for every set X in the ring, T =7R(g), generated by @ such that
U X) < . Recall that, by formula (A.2) in the previous section, vq)(u,A;X) is indeed
well-defined for any Xe 7% .

Now, if A I is a directed set of partitions, then the family
(B.2) 9,={0tuu 7
A PeA
of all sets, X, for which there exists a partition, P?€ A, such that Xe7?,
augmented by 0, is a quasiring.
PROPOSITION 4.8. Let A be a directed set of partitions. If

(B.3) Vg (A, X) = Lim vg (u,7:X)
PeA

for every X e @, then the set function vq)(u,A) is additive on the quasiring @ A If,

moreover, vq)(u,A) is —conlinuous then vq)(u,A) is o-additive on the whole of R .

Proof. The first statement is obvious. The second one follows from the fact that, for
everyset X€ 7% and ¢ > 0, thereisaset Y, which is the union of a finite family of

pair-wise disjoint sets from QA , such that (| X-Y]) < €.
In some cases of great interest, instead of (B.3), the formula

(B.4) v (1,25 X) = Lim sup{vg(uPX) : |||, < r, P € A}
=0+
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holds for every X € @. It might be expected that this formula too would imply the

additivity of vq)( u,A) . However, this is not necessarily the case.

EXAMPLE 4.9. Let the set-up be as in Example 4.1 with ¢=0 and d=1. Bya

result of S.J. Taylor, [64], Theorem 1, if @ is a Young function such that

25‘2<I>(s) log log staa ,

as s- 0+, then, for almost every (in the sense of the Wiener measure) continuous
function d on [0,1], (B.4) holds with A =1II and with the Lebesgue measure in the
role of ¢. On the other hand, M. Bruneau proved, [5], Théoréme 1, that the set of
points ¢ € [0,1] such that

Vg (1,115(0,1]) = vg, (,T;(0,1]) + v (w15 (3,1])
for almost every continuous function d, has empty interior.

Because vq)(u,A) indeed, also in interesting cases, fails to be o-additive, it is
desirable to find a o¢-additive set function o¢:80- [0,0) such that %(u,A;X) <
o(X), for every X € @. Such a set function ¢ can be used together with the inverse

function, to ® , to produce a gauge integrating for u .

EXAMPLE 4.10. Let the set-up be as in Example 4.1 with arbitrary ¢ €R and

beR, a< b. Forsome A CII, assume that vq)(,a,A;Q) < . Let
U((S>t]) = ”(I)(/%A,(a,t]) - v@(u,A;(a,s])

forany s and ¢ suchthat a< s<t<b.

Now, if A is a directed set of partitions, then ¢ is a non-negative and
additive set function on the quasiring @ A such that vq)(,u,A;X) < o(X), for every
Xegd A - If, moreover, A is ifine, where ¢ is the one-dimensional Lebesgue
measure, and the function d is continuous, then ¢ is o-additive on the whole of ¢

and the inequality vq)(,u,A;X) < o(X) holds for every Xe€g.
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If A=1I, then ¢ is o-additive on ¢ and U(I)(,LL,A;X) < ¢(X), for every
X e g. This observation is due to L.C. Young, [71].

PROPOSITION 4.11. Let ?n €Il be a partition such that ?n < ?ﬁﬂ , for every
n=1,2,..., and
lim [|7 ||, = 0.

- 00
Let A= {?n: n=12,.} and assume that «X) >0 for every non-empty set
Xed A -
Let ® be a Young function such that u has finite and -continuous
®-variation with respect to the set of partitions A .

Then there exists a o-additive set function o : Q- [00) such that

(B.5) Vg (1:A5X) < o(X)

for every X e QA .

Proof. Let
0,(X)= T g VUY))(XNY)

YE’Pl

for every (-measurable set X . Then o is a measure in {1 such that

Vg (1,0:X) = 0, (X)
for every X € 7’1 .

Now, if » > 1 is an integer and o, ameasure in Q) such that
(B.6) g (105 X) < o (X)

for every Xe€ 7., forevery set Ye? U {0}, let w(Y) be a number such that
w®) =0, vg(sA;Y) < w(Y) and

yZ wXnY) = g (X)
E/pn+l

for every Xe ? . By (B.6) and Proposition 4.5, such numbers w(Y), Ye7? do

n+l’
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exist. Then we put

X) = “L(xn
o,1(X) 1)e:?nJrlw(Y)(t(Y)) y{XnY)

for every (-measurable set X . This defines a measure, Ops1> in £ such that

0n+1(Y) , forevery Ye? and 0n+1(X) = an(X) , forevery Xe? .

n+l’
So, by induction, a sequence of measures, o,, M= 1,2,..., is constructed such
that, if we define

o(X)=1im an(X) ,

100

for every (-measurable set X, we obtain a measure in Q such that (B.5) holds for

every X € QA'

C. Let ¢ be a measure in a space . Let 7%(:) be the family of all
i-integrable sets. (See Section 3B.) Let ¢ be a multiplicative quasiring of sets such
that @ CR(s) . To avoid some trivialities, we assume that the measure & is generated
by its restriction to @. Let ¢ be a real valued, continuous, concave and strictly
increasing function on [0,w) such that ¢(0)=0. Let p(X)= (X)) for every
X € 0. By Proposition 2.26, p is an integrating gauge on g.

The reason why we are interested in this situation is clear: If F is a Banach
space, p: @~ E an additive set function, ® a Young function and A € II(Q) a set of
partitions such that v@(u,A;X) < X)), forevery X €@, then, assuming that ¢ is
the inverse function to @, the gauge p integrates for the set function p. (See
Section 3A.) |

The purpose of this and the next section is to provide some information about
the space L(p,d) , namely to present workable sufficient conditions for a function to
belong to L(p,d) . In this section, we discuss the relation of the spaces L{(p,d) and

C(I)(L) , where @ is the inverse function to ¢ . (See Section 3C.)

PROPOSITION 4.12. Let pe[lw) and olt)= tl/p for every t€[0w). Then
L(p,9) ¢ LP(0) .
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Proof. Let fe L(p,d). Let ¢, be numbers and Xj € 9 sets, j=1,2,..., such that

0

(C.1) Yolelp(X) <o
F= j
and
[¢)
(C.2) flw=Y c¢X(w
P
for every we Q for which
a
(C.3) YolelX(w) < o.
F= I

_ - _ _ /p _
Denote f],— chj, for every j=1,2,.... Then “fij,L" chl(L(Xj)) = ]leﬂ(X].) , for

every j=1,2,.... (See Section 3C.) So, by (C.1),

0

Consequently, fe £P(4) .

The following proposition extends the above result to more general functions
¢ . (For the notion of a Young function, see Section 1G; for the definition of the class

L'q)(L) , see Section 3C.)

PROPOSITION 4.13. Let ¢ be the inverse function to a Young function, ® , and
K a constant such that 0< K< g.o(t)(,o(t_l) for every t€(0,w).  Then
L(0,0) c £2(1).

Proof. First, let ¢ be a number, X a set belonging to @ and g¢g=cX. Assume that
c#0 and «X) > 0. Recall that the Luxemburg norm, ||gl|q) ,» of the function g is

defined by the formula
lollg,, = imt{k: k>0, JQ S| g(w)])uldw) < 1} .

Hence, ]|g||¢ ,=F%, where £ is the number that satisfies the condition
(K[ c|)dX) = 1. Tt follows that |lgllg , < K ~'le[)o(uX) = K" [c[p(X), where

K is the constant mentioned in the statement of this proposition. This estimate is.
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obviously, true alsoif ¢=0 or «z)=0.

The proof is now finished as that of Proposition 4.12. Namely, if fe€ £L(p,9)
and ¢ are numbers and Xj €0 sets, j=1,2,.., satisfying (C.1), such that (C.2)
holds for every weQ {for which (C.3) does, we denote fj= chj , for every
j=1,2,.... Then we use the obtained estimate of the Luxemburg norm to deduce from

(C.1) that
a0
o<

which implies that f€ [:(I)(L) .

In the following proposition, no additional conditions are imposed on ¢ . (For

the concepts used in its statement, see Section 1D.)

PROPOSITION 4.14. If @ is an algebra of sets, then every bounded function

measurable with respect to the o-algebra generated by @ belongs to L(p,9) .

Proof. Let § be the o-algebra of sets generated by @ . Because, for every set Ye S
and ¢ >0, thereis aset Xeg such that Y| Y-X|) < € and the function ¢ is
continuous, it is obvious that & C £L(p,9) . Then, by Proposition 2.7, £( qp,S) = L(p,9)
and, by continuity, qp( V)= (YY), for every YeS. Hence, without a loss of
generality, we can assume that @ is a c-algebra.

Now, let f be a @-measurable function such that 0 < f(w) < 1, for every
w€ Q. Assuming that %k >1 is an integer and the sets X,-’ j=1,2,....,k1, are

already constructed, let

k-1 .
X, = {w: flo) - § 27X (w) 2 2"“}.

j=1
Then
°Z°1 2Ip(X) < 9l0) <
]:
and
flw) = § 27X (w)
=1

for every we Q).
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PROPOSITION 4.15. Let @ be an algebra of sets. Let 1< p< g and let
olt) = alr , for every t>0, so that p(X)= (L(X))l/p , for every XecQ. Then
£9) ¢ L(p,9) .

Proof. Without loss of generality, we shall assume, as in the proof of Proposition 4.14,
that @ is the family of all ~-measurable sets.

Let f be a non-negative function belonging to £%:). Let Xj ={w: flw) =7},
for every j=1,2,.... Then

0

v 1 g .
L 0T < § GRG0 < [ S,

so that

=1 !
By the Holder inequality,
v _ 7 JWroy -0/p et 1/p
)= 5 = § (X))

. [ § j(l—q>/<p—1)] (1"”/”{
j:

because (¢-1)/(p-1) > 1. So, if we let

)

1/p
Fmaﬂ <o,
7

1

[¢9]
=} X(w
=1 7
for every we 1, then ge L(p,9) .
Now, let h=f-g. Then 0< Mw)< 1, for every we Q. By Proposition
4.14, h belongs to L(p,9) and, therefore, f= g+h too belongs to L(p,9) .

The following examples settle some natural questions about the space £(p,9) .

They were designed by Susumu Okada.

EXAMPLES 4.16. Let ¢ be the one-dimensional Lebesgue measure. Let Q= (0,1],
0={(5#]:0< s<¢t< 1} and % be the algebra of sets generated by g. Let 1< p
and let p(X) = (L(X))l/p , for every X e 7. Then, obviously £(p,9) C L(p,2) and, by
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Proposition 4.12, L(p,B) c LP(1). We wish to show that L(p,9) # L(p,2) and
L(p,R) # LP(s) . Let us denote, for short, a=p ©.

(i) Let us note first that there exists a constant ¢ >0 such that

| 2%0st ! - ?%e0ss™}| < ¢,|t-5] o)

for every s€ ) and t€ . Indeed,let 0 < s<t< 1. Let n=>1 be the integer

1 -1

such that (n+1)_1 < t< n . Assume first that (n+2)_1 < s and put u=(n+2)

and v=n"" , sothat v< 3u. By the Lagrange theorem,
|t2acost_1—s2acoss_1| [t-s|"% < 3|t—,.<:|1_0‘52a_2 < 3(2un) %2 % < 3617
If s< (n+2)_1, then
|t2acost~1— szacoss_ll ]t—$|—a < (n_2a+(n+2)_20‘)((n+1)_1 ~(m2) )y %< 20%,

Integrating by parts, we then obtain that

t t
J w?* %inu M| < ]tmcost_1 - s2acost_1| +J’ 2002 1qu < c|t-s|%,
S 8§

for some ¢ > 0 andevery s€) and t€ ). So, if we put d(0) =0 and

t
d(t) =lim 2% %giny du ,
s=0+7Ys

for every t€ (0,1], then d is a well-defined continuous function on [0,1] .

Let u((s,t]) = d(¢) - d(s), for every s and ¢ such that 0<s<t<1.
Furthermore, given apoint s€Q, let p’(X)=pu(Xn(s1]), for every XeQ. We
have noted that |u’(X)| < U X)% = ¢p(X), for some ¢ >0 and every Xeg.
Therefore, by Proposition 3.1,

Nl < eq (),

1
20-2. -1, | _
‘ L flu)u sinu “du| = | : A

for every f € L(p,d) .
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Let ¢(t) = #7207 , for every te€ ). Then the function ¢ does not belong

to L(p,d) , because

1
lim J g(u)um_zsinu_ldu:oo.
s—~0+Ys

None-the-less, ¢ belongs to L(p,2) . Indeed,if p > 2, thatis, @< 4, this follows
from Proposition 4.14. If p< 2, we choose a number g¢¢€ (p,p/(2-p)). Then
g€ LY1) and, by Proposition 4.15, ge L%(p,7) .
Consequently, £L(p,d) # L(p,7) .
(ii) To show that L(p,R) # £P(s), let A(t) = t_a|10gtl_1 , for te(0,4],
and A(t)=0, for te(4,1]. Then he LP(:). However, the function h does not

belong to L(v,R) = L(v) , where

YX) = aJ uatldu,
X

for every X € @. Using the fact that every set in 7% is the union of a finite collection
of pair-wise disjoint intervals belonging to €, we can prove that (X) < p(X), for

every X € . Therefore, the function & does not belong to L(p,?) either.

D. We maintain the notation of Section C.
A function f on © will be called @-locally :-integrable if it is integrable with
respect to ¢ on every set belonging to &, that is, if Xf e L(:) for every X € g.

Now, assuming that f is a @-locally ¢-integrable function, let

M) =ity |

for every set X € @ such that «(X) >0, and M L( f,X) =0 for every set X such that
dX)=0. If X) >0, then the number M L( {,X) is the mean value of the function f
on the set X with respect to the measure ¢.

Furthermore, if ? € II(Q) is a partition, let

M@GF?) = ¥ M(FXX.
7= T M)
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So, M L( f,?) is a function on £, constant on every set belonging to ?, having the
same mean value as the function f on every set X € 7 such that «X) > 0.

Let ¢ be a real valued, continuous, and strictly increasing function on [0,x)
such that ¢(0)=0.

We shall say that a function f on € satisfies the ¢-Holder condition with

respect to the quasiring ¢ and the measure ¢ if

[f(w) - f(v)] < ¥(X)),
for every set X € @ and any points we X and ve X.

PROPOSITION 4.17. Let [ be a «-measurable function satisfying the - Holder
condition with respect to § and ¢. Then [ is Q-locally 1~integrable.

Let 7’n € II(9) be a partition such that ?n < 7’n+1 , for every n=0,12,.., and
I7,ll,-0 as n-ow. If

P MEX)X)+ Y T HdD) T eld¥nz) < w,

0 =1 ZE?],_I YE?’]

then fe L(p,9) .

Proof. 'The first statement is clear, because the function [ is bounded on every set
belonging to g .
Let fo = ML( f,?o) and
jj = ML(f—ML(f’?j—l)’?j) 3

for every j=1,2,.... Then

L f=M{17),

=0
for n=0,1,2,... . Now,

0,(fy) < xé% M (1,X00(X) .

(See Section 2A.) Furthermore, for every j=1,2,...,

Mb(f-ML(fa?j_1)>Y) = ML(f_ML(ﬁZ),Y) 5
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for any Ye 7’],, where Z is the set belonging to 7’7._1 such that Y c Z. Then
| f(w) - Mb(f,Z)] | < ¥((2)), forevery we Z, and, hence,

| M(f-M(£,2), )] < W) .

Consequently,

0(f) < T IMUMEP_ LN < T WD) § edvnz),

PTI T vep 77 YED.
g j-1 j

for every j=1,2,.... So, Proposition 2.1 applies.

+10 Y
every X € 7’]_ and j7=0,1,2,..., and A= {7’], 1§=0,1,2,...}.

COROLLARY 4.18. Let R €, 7y ={0}, 7.<7  , «X)=|7]l, = (:)uQ), for

If f is an --measurable function satisfying the -Hdélder condition with respect

to the quasiring @ A and the measure ¢, and

(D.1) Jlﬂi)g’ﬂldk ®,

0 t

then fe L(p,9) .

Proof. Let o= (1) . Because the functions ¢ and % are increasing,

¥ T 42 T eldynz)= 3 P2 e)e ) <
=1 2P Ye?, =1

® 3 ) ) ) 1 o
< ¥ 222 et )2 < 4J M%ﬂldtﬂmj LU g
=1 0 t 0 t

COROLLARY 4.19. Let Q= (a,b] with acR, beR and a< b. Let 9= {(s1:

a< s<t<b}. Let d beafunction on [a,b] such that

[d(t) - d(s)| < o(t-5),
and let

w(s,1]) = d(t) - d(s) and p((s,q]) = p(t-s) ,
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for every s and t such that a< s< t< b. Then p is a gauge integrating for the
additive set function .

If, moreover, | is a function on 0 such that

[f(2) - f(s)] < ¥(It-sl),
forany s€Q and teQ, and (D.1) holds, then fe L(p,9) .

Condition (D.1) is satisfied, in particular, when  ¢(f) = cltl/ P and

¢(t):c2t1/q, fOI‘eVeI‘y tZO, where ¢ >0’ C2>0 and p—1+q—1 1.

1

E. In some sense the notion of an additive set function with finite
p-variation is analogous to the notion of a (point) function locally belonging to an IL?
space. The analogy reverses the extension of these notions though, because, if p < ¢,
to have finite p-variation is a more restrictive condition than one to have finite
g-variation. In this section, we introduce additive set functions which are analogous to
functions locally belonging to an L® space.

Let @ be a multiplicative quasiring of sets in a space Q. (See Section 1D.)
Let E be a Banach space. Let p: 8- E be an additive set function.

For any set X € g, let

(E.1) v (1:X) = sup{|w(XnZ)| : Ze g} .

The possibility vw(u;X) = is admitted.

The set function g will be called locally bounded if voo(u;X) < o, for every
Xegd.

A wealth of locally bounded additive set functions do not have finite
®-variation for any Young function @ is provided in Chapter 6. Here is a simple

example of such a set function.

EXAMPLE 4.20. Let Q and @ be as in Corollary 4.19.  Let E be the Banach space
of all bounded Borel measurable functions on € with the sup-norm. For every

Xegd, let u(X) be the characteristic function of X considered as an element of the
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space E. Then p:0- E is an additive set function such that voo(u;X) =1, but
v@(u;X) =w, forevery Xe @, X+ 0, nomatter what the Young function & .

The set function x will be called indeficient if it is locally bounded and the

gauge, p, defined on @ by
(E.2) - p(X) =y (X)),

for every X € @, isintegrating. (See Section 2D.)
So, if the set function g is indeficient then this gauge integrates for it. (See

Section 3A.)

PROPOSITION 4.21.  The set function u is indeficient if and only if it is locally

bounded and
(03]

(E?)) Z c]ﬂ(X].) =0,
=1

for any numbers ¢, and sets Xj €g, j=12,..., such that

Y
(E.4) 72::1 chlvoo(u;Xj) < o
and
Q0
(E.5) L eX(w)=0
PN
for every we Q such that
0
(E.6) Y olelX(w) < w.
F=T A

Proof. Let us show first that, if the condition is satisfied, then the gauge , p, defined
by (E.2) is integrating. Let X € Q. Let ¢ be numbers and X]_E g sets, j=1,2,..,
satisfying condition (E.4), such that

(E.T) X(w) =T X (w)
P

for every w satisfying the inequality (E.6). Let ¢ >0 andlet Ze@ be a set such
that pM(X) < |W(XnZ)| + €. Because
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n

lim |p(Xn2) - ) cj,u(XjﬂZ)I =0,

n— oo ]—1
the inequality

¢ ] Q0

pX) - €< |uXNZ)| < ¥ lel X NZ)] < ¥ lelplX)
=1 =1

holds. So, by Proposition 2.7, the gauge p is integrating.

Conversely, assume that p is indeficient. That is, vm(u;X) < o foreach Xe€
9@ and the gauge (E.2) integrates for u. So, if ¢, are numbers and X] €0 sets,
j=12,..., satisfying (E.4), such that (E.5) holds for every we  for which (E.6)
does, then, by Proposition 2.1,

n
lim qp[g ch,] =0.

n- 00 5=1 J

Because

n n
zj cu(X.)\ < cqp[gl c].X].} ,
for some number ¢ > 0 and every n=1,2,..., (E.3) follows.

The following proposition is a simple means for producing examples: it helps us
to prove the indeficiency of some additive set functions which arise in connection with

classical improper integrals and are not ¢-additive.

PROPOSITION 4.22. Let the set function p:@- E be locally bounded. Let Qn €g
be sets such that Qn C Qn + and the restriction of u to the quasiring Qnﬂn is
indeficient, for every n=1,2,..., and that

lim [p(X) - p(XnQ )| =0,

- 00

forevery Xe@.

Then the set function u is indeficient.

Proof. Let ¢ be numbers and X] € g sets, j=1,2,.., satisfying condition (E.4)
such that the equality (E.5) holds for every w € 2 for which the inequality (E.6) does.
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Let ¢ > 0. Let J be a positive integer such that
T o1e iy wx)
lelv (X)) < €.
PSS I ® I
Let m be a positive integer such that
J J
|j§1 c],u(Xj) - jgl cfu(Xj n Qm)' < e€.

Let N be a positive integer such that

n

]zl C]ﬂ(XjﬂQm)‘ < ¢

for every n > N. Such an integer N exists because, by the assumption, the

restriction of p to QﬂQm is indeficient. Then

n n
;§1 X)) - El c]u(XjﬂQm)| <

n n
jgl c],u(Xj)l < ’jgl c],u(Xjﬂ Qm)! +

n

< €+ l}j C]M(X].)-Z cfu(X,-an)l +} ) cu(‘X,)— f cp(XNQ )| <

m

5=1 =1 1t
00
<2+2 ) lelv (5X) < 4e,
j=J+1 7o I

for every n > max{J,N}. Hence, by Proposition 4.21, the set function p is

indeficient.

EXAMPLES 4.23. (i) A non-negative real valued additive set function on a
quasiring of sets is indeficient if and only if it is o-additive. This follows from
Proposition 2.13 and Proposition 4.21.  However, the argﬁment establishing
Proposition 2.13 can be simplified for the purpose of proving the indeficiency of such a
set function directly.

So, let ¢ be a non-negative real valued additive set function on the quasiring

Q. Then vw(L,X) =yX), forevery Xeg.
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If + is not o-additive, then, obviously, it is not an integrating gauge. Let us

assume, therefore, that ¢+ is o-additive. We want to prove that

(E.8) {X) < 020: IleL(Xj)
=1

for any set X e @, numbers ¢ and sets Xj €@, j=1,2,.., such that the equality
(E.7) holds for every we Q for which the inequality (E.6) does. Let ¢ >0 and, for

every n=1,2,.., let Zn be the set of those points w € X for which

n
YolelX(w) >1-€.
PR A

Then Z € sim(9) , zZ CZ ., and

n n

L leldX) > )

=1 =1 "

IC].|L(XjﬂZn) > (1-e)dZ ),

for every n=1,2,.... Because ¢ is o-additive on the ring of sets whose characteristic
functions belong to sim(49) , and the union of the sets Zn , n=12,..., is equal to X,

there is an integer n > 1 such that L(Zn) > i(X) - €. Hence,

o]

21 le]UX) 2 (1-€)(s(X)-¢)
=
for every ¢ >0, and the inequality (E.8) follows. By Proposition 2.7, the gauge
Xn voo(L;X) = (X) is integrating and, hence, ¢ is indeficient.

(ii) Let @ be a ring of sets and let u be a locally bounded real valued
o-additive set function on @ . Then p is indeficient.

In fact, let = u+ - i be the Jordan decomposition of p. So u+ and 4~ are
non-negative o¢-additive set functions on @ such that p M(X) < uH(X) +u (X) and
ph(x) < pu(X) , w(X)< pM(X) , for every Xe@. Hence, the indeficiency of p
follows from that of u+ and g by Proposition 4.21.

(iii) Let @ be a ring of sets and let u be a locally bounded complex valued

o-additive set function on ¢. Then g is indeficient. This follows from (ii) by
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considering the real and imaginary parts of x .
(iv) Let ©={1,2,...} be the set of all positive integers. Let @ be the family

of all intervals in €, that is, intersections of  with intervals of the real-line. Let

o]

E be a Banach space and let {ozj}j:1

be a conditionally summable sequence of its

elements. Let

WX) =1lim 3 X(a,

n—o0 j=1 J

for evéry Xed.
If we choose Q = {1,2,...,n} , for n=12,..., in Proposition 4.22, we deduce
easily that the set function g is indeficient.
(v) Let ©=R and let @ be the family of all (bounded and unbounded)

intervals of the real-line. Let s+ 0 be a real number and let

wX)=1lim Ju X(t)exp(istz)dt

U 00

for every X € @. Then p is an indeficient additive set function on g .

In fact, let Qn = (-n,n) , for every n=1,2,... The restriction of y to QﬂQn
is indeficient for every n=1,2,.... This can be seen by considering the real and
imaginary parts of u separately and noting that each Qn can be divided into a finite
number of intervals such that in each of them Rey and Imp are of constant sign.

Proposition 4.22 then applies.

If the set function p: Q- E is indeficient then the gauge p, defined by (E.1)
and (E.2), integrates for u. However, this is not necessarily the only gauge which
integrates for x. For example, if p has finite and o¢-additive variation it might be
convenient to let the variation integrate for g . But the resulting spaces of integrable

functions could be very different even if E is just the space of scalars.

EXAMPLE 4.24. Let Q and g be as in Example 4.23(iv). Let

X) =Y (-1)572
HX) ,EX( Y'j
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for every Xe€g. Then g has finite and o-additive variation, o(z), and, by
Example 4.23(ii), it is indeficient.
Let e(w) = w, for every we Q. Then

dw=§

; 1X].(w)

for every we O, where Xj = {j,j+1,...} forevery j=1,2,.... Because

PX) =0 (X) = sup{ WX N2)|: Ze G =5,

for every j=1,2,..., the function e belongs to £(p,0) .
On the other hand, a function f belongs to £(v(u),d) if and only if

00

T i< w.

=1

F. Roughly speaking, indeficiency is preserved by closed rather than
continuous maps. |

Let @ be a multiplicative quasiring of sets in a space 2. Let E be a Banach
space.

Let A be an index set and, for every a € A, let Fa be a Banach space and
T oy E-F ,, & continuous linear map. We say that the family of maps {T o Q€ A}
separates the points of the space FE if the equality Ta( z)=0, for some z€ F and
every a € A, implies that z=0.

For every a€ A, let v o g-F o be a locally bounded additive set function.

The family of set functions {v,: o€ A} is said to be collectively indeficient if
F . 5}
(F.1) jgl cjl/a(Xj) =0,

for every a € A, whenever ¢, are numbers and X] € g sets, j=1,2,..., such that

[+

(F.2) 2 |cjlvw(oa;Xj) <w,

j=
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for every a€ A, and the equality (E.5) holds for every we Q) for which the
inequality (E.6) does.
By Proposition 4.21, if each set function V> QE A, is indeficient, then the

family {v ol @€ A} is collectively indeficient.

PROPOSITION 4.25. Let p: Q- E be a locally bounded additive set function. Let
Vo= Taou, for every a€ A .

If the family of maps {Ta: a € A} separates points of the space E and the
family of set functions {l/a: a € A} s collectively indeficient, then the set function p

is indeficient.

Proof. Let us note first that the local boundedness of x and the boundedness of T o
imply that each set function v o @€ A, islocally bounded.

Let ¢ be numbers and X; €0 sets, j=1,2,..., satisfying condition (E.4),
such that the equality (E.5) holds for every w e £ for which the inequality (E.6) does.
Let

Condition (E.4) and the continuity of Ta imply that (F.2) holds for every «€ A.
Consequently, (F.1) holds for every a€ A, because the family of set functions

v_:a€ A} is collectively indeficient. So, by the continuity of 7, the equality
o «

o0

T (9)=T, L; c],u(Xj)] - jgl ey (X)) =0

holds for every o€ A . Then =0, that is, (E.3) holds, because the family of maps

{Ta: a€ A} separates points of the space E. So, by Proposition 4.21, the set

function g is indeficient.

COROLLARY 4.26. Let p: Q- E be alocally bounded additive set function.
If the family of functionals z' € E', such that the scalar valued set function
x'ou 15 indeficient, separates points of the space E ., then the set function it s

indeficient.
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EXAMPLE 4.27. Let FE be a Banach space. Let ¢ be a ring of sets in a space {2
and let p:9- E be a locally bounded additive set function. By Corollary 4.26 and
Example 4.23(iii), if the set of functionals z‘€ E’ , such that the set function z’opu
is o-additive, separates the space FE, then the set function g is indeficient. In
particular, a locally bounded o¢-additive set function p:@- E is indeficient. This
fact opens another way to integration 'with respect to vector measures'.

So, let p:9-FE be a locally bounded o-additive set function. Let

pM(X) (u, (), for every X€@. Let p bethe seminorm on sim(g) defined by

p(f) = sup{v(2’op, | f|) : 2" € B", |2’ | < 1},

for every fesim(g). Then pu(X) < p(X) < Opu(X) , for some C >1 and every
X e Q. (See Proposition 3.13.) Therefore, £(p,d) = [(pu,Q) . But of course L(p,9) C
L(p,sim(9)) and the inclusion may be strict.

In fact, let © ={1,2,...} be the set of all positive integers and let E=c, be

0
the space of all scalar valued sequences tending to 0 equipped with the usual sup

norm. Let @ be the family of all subsets of . For every X € @, let

wx) =y jle,
EX J

where € j=1,2,..., are the elements of the standard base of the space ¢, - Let

/= Z i(log) {4} -
=2

The function f is wv(z’ou)-integrable, for every z’€ E’ . (See Section 3F and/or

Section A of this chapter.) Moreover, if

for every X € g, then
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for every z°€ E/ and X e ¢. Hence, by Proposition 3.13, the function f belongs to
L(p,sim(Q)).

On the other hand, the function f does not belong to £(pu,Q) . In fact, let
Q -9
MX) =Y 577,
jeX
for every Xed. Then MX)< Zpu(X), for every Xeg@. Therefore,

E(pﬂ,Q) CL(A9). Because f does not belong to L(A,0), it does not belong to
E(pM,Q) either.

EXAMPLE 4.28. Let Q=(0,1] and let @ be the semiring of all intervals X = (s,
such that 0 < s< ¢t< 1. Let ¢ be the space of all convergent sequences = {xn}izl
of scalars equipped with the standard sup norm. Let d be a continuous scalar valued
function in the interval [0,1] and let v((s,f]) = d(¢) - d(s) for every s and ¢ such
that 0<s<t<1l. Let : be the one-dimensional Lebesgue measure. Given an
integer n > 1, let ij ((j—l)n_l,jn_l] for every j=1,2,...,n, and let

m(XﬂZj)z/(Z.)

M(X)=i f

K =1

for every X € @. Finally, let u(X)= {un(X)}"nO=1 for every X e @. This defines an
additive set function x:9- ¢.

The set function p is locally bounded. Furthermore, by Proposition 2.23, each
component of 1 is indeficient because it is the direct sum of a finite collection of
multiples of the Lebesgue measure. Since the coordinate functionals separate the space

¢, by Corollary 4.26, the set function x is indeficient.

If the set function p:¢- F is indeficient, then the set functions zou,

z’ € B, are not necessarily all indeficient.

EXAMPLE 4.29. Let Q and @ be as in Example 4.28. Let E be the closure of
sim(g) in the space of bounded functions on ) equipped with the sup norm. For

every X €0, let u(X)= X, interpreted as an element of the space E.
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To see that p is indeficient, let cj be numbers and Xj €0 sets, j=12,..,
satisfying condition (E.4), such that (E.5) holds for every w € ) for which (E.6) does.

Then of course

o] [
]2::1 cuX) = gl cX =0

in the space F.
On the other hand, let

z’(z)=lim 2(w)
w-0+

for every Xe E. Then z°€ B and z’oy is scalar valued additive set function

which is not indeficient.

G. Proposition 4.25 and its consequence, Corollary 4.26, are only effective
when the space FE is infinite-dimensional. However, we describe now a device which
makes it possible, at least in principle, to use these propositions also on scalar valued
set functions.

Let @ be a multiplicative quasiring of sets in a space 1. We assume that @
is directed upwards by inclusion. That is, the union of any finite collection of sets from
g is contained in a set belonging to ¢ .

Let E be a Banach space. Let BV®(Q,E) be the set of all bounded additive
set functions ¢:9- E. Then BV®(Q,E) is a vector space with respect to the natural

(set-wise) operations. Let

V (€) = sup{] £(X)| : X e @}

for every £ € BV®(Q,E). Then (v Vw(f) , e BV°°(Q,E') , is a norm which makes of
BV®(,E) a Banach space. ’

Let wu:9-E be a locally bounded additive set function. For every
fesim(9), let fu be the element of BV*(Q,E) such that (fu)(X)= u(fX), for
every X €. It is straightforward that the set function fu so defined is indeed an

element of BV®(Q,FE) .
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PROPOSITION 4.30. Let p:9-E be a locally bounded additive set function. Let
;2: 9- BV®Q,E) be the set function defz'ned by ﬁ(X) =Xu, forevery Xeg.

Then 1 is indeficient if and only if /2 is indeficient.

Proof. The set function ;2 is obviously additive and locally bounded.
Now, if ;2 is indeficient then it follows easily from Proposition 4.21 that pu is

indeficient because
yoo(ﬁ;X) = sup{ VOO(/,/L\(XHZ)) 1 Z€ @} =sup{luXn2)| : Ze G} =0 (1X),

for every X € §. The multiplicativity of ¢ is used.
Conversely, let p be indeficient. Again, Proposition 4.21 implies that ;2 is

indeficient. Indeed, let cj be some numbers and Xj € g sets, j=1,2,..., such that

oY)

A
(G.1) ,§1 chlvw(u;X].) <o

and the equality (E.5) holds for every we 8 for which the inequality (E.6) does.

Then

n
lim | § ep(x,n2)| =0,

no  j=1

for every Z € @, by the indeficiency of p. But then

lim Vm[ 2 c}ﬁ(X})] =0.

n- 00 =1 J

For a locally bounded additive set function x:9- E, let BV®(u,d,E) be the
closure of the space {fu: f € sim(Q)} in BV®(Q,E) .

PROPOSITION 4.31. Let P and @ be multiplicative quasirings of sets in the space
Q such that @C?P. Let E and F be Banach spaces and p:@-FE and v:P-=F
locally bounded additive set functions. Assume that v is indeficient and that there
erists an injective continuous linear map T:BV®(u,0,E) - BV(v,?,F) such that
T(Xp) = Xv, forevery X € Q. Then the set function p is indeficient.
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Proof. Let ¢, be numbers and X],E 9 sets, j=1,2,.., satisfying condition (G.1),
such that the equality (E.5) holds for every w € §) for which the inequality (E.6) does.
Then the sequence {ch]u}";zl is absolutely summable in the space BV*(y,0,E) ; let
& be its sum. Because the map T is linear and continuous and va = T(Xfu) , for
every j=1,2,..., the sequence {ch;‘V}O;ﬂ is absolutely summable in the space
BV*®(v,?,E) . By the indeficiency of v and Proposition 4.30, the sum of the sequence
{ch]_V}";zl is the zero-element of the space BV®(v,?,E). Then T(¢) =0, because
the map T 1is continuous, and then &=0, because T is injective. Hence, by

Proposition 4.30, the set function g is indeficient.

The use of Proposition 4.31 is mainly in that it gives a sufficient condition for

the preservation of indeficiency in passing to a sub-quasiring.

H. Let ¢ be a multiplicative quasiring of sets in a space . Let E be a
normed space and 4 :@- E an indeficient additive set function. Let the gauge p be
defined by (E.1) and (E.2), for every X € . Then of course the gauge p integrates
for the set function u . But the usefulness of p is thereby not exhausted; the gauge p
integrates possibly for many other, not necessarily indeficient, additive set functions on
9. For instance, it does integrate for every set function of the form Tou , where T

is a continuous map from F into another Banach space.
EXAMPLE 4.32. Let us adopt the notation of Example 4.28. Because

WX) = Lin 4, (),

700

for every - X € @, and the limit is a continuous linear functional on the space ¢, the
gauge p integrates for the scalar valued set function v .
Such a gauge integrating for the set function v is especially interesting if v

does not have finite variation in any interval.

EXAMPLE 4.33. Let E= L2([R) . Let S5(0) = I be the identity operator on the space
E. For t#0, let S(¢) bethe operator on E such that



4.33 137 4H

2
(S(0))(z) = 42—% Jo o=l (4] o)y

for every g€ rt ﬂLQ([R) . It is well-known that by this a unitary operator S(¢): B~ E
is defined and that the resulting one-parameter family of operatrors tw S(1),
1 € (~oo,w) , i8 a unitary group.

For a Borel set B in R, let P(B) be the operator of point-wise
multiplication by the characteristic function of B on the space FE.

Let ¢ >0 be fixed and let Q be the set of all continuous functions (paths)
w: [0, »R. Let @ be the family of all sets

(H.1) X={wef: w(tj) € Bj ,j=12,...,n},

for arbitrary n=1,2,..., 0< b <ty<..<t <t <t and Borel sets B]_ in R,
j=12,..,n.

Let ¢ be a non-zero element of the space E. Let

)P(B

JP(B_)... P(B

)iyt P(B )

UX) = S(t-¢ )P(B )S(t -t _ PR

for any set X € @ written in the form (H.1).

Then v:g- E is an additive set function which has infinite variation on every
set Xe€g. A gauge integrating for » can be constructed in a similar manner as a
gauge for the set function of Example 4.28.

Indeed, let /4, be partitions of the real-line into finite numbers of intervals
such that S is a refinement of oy n=12, For every n=1,2,..., let ?n be

the family of all sets X € @, which can be written in the form
X={w:w(j/2") e B, j= 1,2,...,2"},

where the sets B], , depending on X, belong to A j=12,..,2" . Then ?n € I1(9)
are partitions such that ’Pn +1 is a refinement of ?n , forevery n=12,... Let ¢ be
the Wiener measure in ) with unit variance per unit of time and with the standard

normal initial distribution, say. That is, ¢ is the measure such that
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dz dg, ... dz _,dz ,

2 2
R e
B,’B,; “B'R =17 e

for every set, X, of the form (H.1), where we put ty=0. Assume that the partitions
/£, are so chosen that, for every n=1,2,.., there is a number m, > 0 such that
dX) = m, for every Xe 7’n and that m, - 0 as n-o. Partitions of € similar to
?n were used by N. Wiener in the first constructions of the measure named after him;
see, for example, [68].

Now, given an integer n > 1, let

-1
un(X) =m_ Zé?n UZnX)v(Z)

for every X € @. Then b, @~ F is an indeficient additive set function.

Let ¢, be the space of all convergent sequences of elements of the space F

E
equipped with the usual sup norm. Let p:¢- ¢, be the set functions such that

E
wX) = {un(X)}‘:::l , forevery Xe@. Let F =FE andlet T :c,~F be the n-th
coordinate map, for every n=1,2,.... The set functions Tnou g~ Fn are then
indeficient because Tnou =p,, n=12, Therefore, by Proposition 4.25, the set
function p is indeficient.

Because

WX) = Lin g (X),

n—00

for every X e g, and the limit is a continuous linear map from the space ¢ p onto

E, the gauge p, defined by (E.1) and (E.2) for every X € @, integrates for v .

J. Let @ be a multiplicative quasiring of sets in a space 0 directed
upward by inclusion. (See Section G.) Let A c II(g) be a set of partitions. Let E be
a Banach space.

Given a Young function, @, the family of all additive set functions £:9- F
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such that
sup{vg(&,A:X) : X €0} < w,

will be denoted by BVCI)(A,E) . We shall write BV(I)(Q,E) = BV(I)(H,E) .
These notions are useful mainly in the case when @ is a quasialgebra, that is,

2 € g. Inthat case, the definitions can be simplified somewhat.

PROPOSITION 4.34. If ® is a Young function, then BVI(A,E) C BV(I)(A,E) C
BV®(Q,E) , for any set of partitions A cII.

If @ and U are Young functions for which there exist numbers a >0 and
k>0 such that U(s) < k®(s), for every se[0,a], then BV(D(A,E') C BV\II(A,E) ,

for any set of partitions A CII.

Proof. The first statement is obvious. The second one is analogous to the statement
1.15 in [51]. For its proof, let us note first that, if the condition is satisfied, then, for
every b > 0, thereis a constant ¢ > 0 such that U(s) < £®(s), for every se€[0,0] .

In fact,if a< s< b, then

a(s) > il a(s) =t EA A wio) > 4 u(s).

So, let us assume that &€ BV@(A,E). Then there exists a b >0 such that
[6(XNY)] < b for every set X€e @ and every set Y belonging to some 7€ A.
Consequently, ¥(|£(XNY)| < ¢&(1£(XnY)|) and vq,(ﬁ,/_\.;X) < €v¢(§,A;X). v

The second part of this proposition has a converse: If & and @ are as in
Example 5.28 and BVQ(Q,R) C BV‘I;(Q,[R) , then there exist numbers a >0 and
k> 0 such that ¥(s) < k®(s) for every se€[0,a] . Cf. statement 1.15 in [51].

The sets BVI(A,E) and BV®(A,E) are, obviously, vector spaces with respect
to the natural operations. The following proposition says that, if the Young function,

® , satisfies condition (A,) for small values of the argument (see Section 1G), then

2
also BV(I)(A,E) is a vector space. It is analogous to statement 1.13 in [51] and so, its

proof too is analogous.



43 140 4.35

PROPOSITION 4.35. If the Young function, ® , satisfies the condition (AQ) for
small values of the argument, then BV(D(A,E) is a vector space under the natural

operations.

Proof. Assume that £ >0 and a >0 are numbers such that ®(2s) < k®(s) for
every s€[0,a]. Then, for every & >0, there is an #b) >1 such that
D(2s) < £(b)®(s) for every se€ [0,4(0)] . Infact,if sa< s< b, then

P(a _1®(a) ®(s 1 ®(a
a(s) > 1griks 5(s) = } 4l Bl 0(29) > 1 Bt 0(29).

Now, if £¢€ BV¢(A,E) and ne BV(D(A,E) , there exists a b > 0 such that
[E(XNY)| < b and |9(XNY)| < b, for every X € g and every set Y belonging to

any partition from A . Consequently,

for every X e @. I, further, ¢ isa number, let m be the least positive integer such
that |¢| < 2™. Then

vg(CE,A5X) < (A2™710) Mg (€,A:X)
for every Xe g.

For every (€ BVl(A,E) , let
V,(64) = sup{o, (§A:X) : X € 0}

Then the functional ¢w V1(§,A) , L€ BVI(A,E) , is a norm making the space
BVl(A,E) complete.

If the Young function, @, satisfies condition (AQ) for small values of the
argument (see Section 1G), then a norm still can be introduced in the space
2

BV~ (A,E) . It can be naturally done in at least two ways. Thus let

Vg(&A) =inf{k > 0: vg(K6AX) < 1, Xeg},

for every ¢€ BV(I)(A,E) . Secondly, given a set function ¢¢€ BVq)(A,E) and a

partition P € A, let
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va(ea) =swf T AXNVIMXNY)I i e Byy, Pe A, Xegf,
Ye?P

where BX?’ is the set of all functions

B:{XnNY:YeTP}-[0w)
such that

Y ¥(AXnY)) <1,
YEP

and U is the Young function complementary to ® . (See Section 1G.)

By analogy with the usual terminology in Orlicz spaces, the functional
En V¢(§,A) , L€ BV@(A,E) , will be called the Luxemburg norm and the functional
v V%(&,A) , te BV(I)(A,E) , the Orlicz norm. It turns out that these functionals

are indeed norms on the space BVQ(A,E) and they are equivalent.

PROPOSITION 4.36. Assume that the Young function @ satisfies conditions (0),
(w) and (A2) for small values of the argument. Then the functionals V(I)(~,A) and
V(;%( -, A) are norms on the space BV(I)(A,E) such that

(J.1) Val6A) £ VE(EA) < 2V(£,4)

for every &€ BV(I)(A,E) . The space BV(I)(A,E) is complete in each of these norms.

Proof. The inequalities (J.1) follow directly from the definitions of the functionals
V®(~,A) and V(%( -,A) and from Proposition 1.15. We omit the proofs that these

functionals are indeed norms and of the completeness of the space BV(I)(A,E) .

Let us note that, if 1 < p< o and ®(s) = s”, for every s€ [0,w), then

V(6A) = [sup{ L |6XNY)|P:PEeA, Xe Q}]l/p,

for every ¢ € BVP(AE) .
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K. Let & be a multiplicative quasiring of sets in a space ! which is
directed upward by inclusion and E a Banach space. Let A cII=T1I(@) be a set of
partitions and let ® be a Young function satisfying condition (AQ) for small values
of the argument. (See Section 1G.) |

Let us note first that, if the additive set function px:g- E has finite
®-variation with respect to the set of partitions A and f is a @-simple function,
then fue BV(I)(A,E) . Now, assumjng that g is such a set function, the closure of
the vector space {fu:fesim(9)} in BV‘I)(A,E) will be denoted by BV(I)(A,M) .
Then BVQ(A,u) is a Banach space, being a closed subspace of BVQ(A,E) . Again,
we write BV‘I)(Q,u) = BVq)(H,u) .

If ¢ is a real valued positive o-additive set function on @, then
(K.1) Vi = ifld
Q

for every f € sim(g) . Therefore, the elements of the space BVl(Q,L) are canonically
associated with -integrable functions, or, more accurately, with the equivalence
classes of such functions. In other words, the space BVI(Q,L) is identified with Ll(b) .

In this section, those set functions, p:@- E, are isolated for which an
analogous identification of BVQ(A,/J,) with a space of (equivalence classes of)
functions on € is possible. The definition is immediate.

An additive set function u: g~ E will be called (®,A)-closable if it has finite
®-variation with respect to the set of partitions A and the seminorm p=p L@ A o0
sim(9) , defined by

o) = Valfu)

for every fe€sim(g), is integrating. In that case, we write L(u,®,A) = L(p,sim(g))
and ” : HM,Q),A = pﬂ,@,A =p= qp . AISO) K(H,'I),Q) = £(U7¢,H) .

Because sim(g) is dense in L(u,®,A), for every fe€ L(u,®,A), thereis a
unique element v, € BVQ(A,M) such that V= fu for fesim(d) and the map

f

fr Ve from £L(p,®,A) onto BVQ(A,,u), is continuous. We write, of course,
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fu= Vs for every fe€ L(u,®,A), and call fu the indefinite integral of the function f
with respect to 4 .

To introduce an interesting class of (®,A)-closable additive set functions, we
adopt the following definition. An additive set function p:@- F will be called
d-scattered if the set function Xr ®(|u(X)|), Xe @, is c-additive.

This notion originates from the case when F is a Hilbert space and for any
disjoint sets, X and Y, belonging to @, the values u(X) and pu(Y) are
orthogonal. Such a set function is called orthogonally scattered. It is immediate that,
if p is an orthogonally scattered set function, then the set function X» [u(X)l2 ,
Xeg, isadditive and, if E is a real Hilbert space, then also the converse is true.
Since, however, the converse is not necessarily true in a complex Hilbert space and
o-additivity is built in the notion of a 2-scattered set function, which is convenient for
the purpose of this example, we keep the notions of an orthogonally scattered and a
2-scattered set function distinct. For a systematic treatment of orthogonally scattered

additive set functions, see [49].

PROPOSITION 4.37. Assume that the Young function ® satisfies condition (AQ) .
Let 1:9-E be a ®-scattered additive set function. Denote «(X) = ®(|u(X)|) for
every X € Q. Assume that the measure generated by the set function . is o-finite.

Then the set function u is (®,I1)-closable, L(y,®,9) = [:@(L) and
for every fe L(u,®,9) .

Proof. First we prove (K.2) for € sim(g). So, let

chX

]177

with an arbitrary n=1,2,..., numbers ¢ and pairwise disjoint sets XjEQ,

j=12,.,n. Let ¥ be the Young function complementary to ® . Then
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11 g = sup] jﬂ fodu: g€ sim(@), | , Bl 1]
and

Vo fusTI) = sup{ )

(W(NIBY) : peBy, e,
YEP '

where B7, is the family of all functions #:7- [0,@) such that

Y w(pY)<1.

YEP

Because Vg(-,ﬂ) is a norm in the space BVQ(M,Q) , it suffices to calculate the
supremum over partitions P € II such that every set Xi , 7=1,2,..,n, is equal to the
union of some elements of P . Furthermore, it suffices to take [¢€ B? such that
B(Y) =0, whenever Yan = foreach j=1,2,..,n. Then, given such a f, we put
g= ) gt [\11 f ] Y.
YeP, (V)40

Because, in calculating || f”(z o it suffices to take those functions ¢ € sim(d) which
are obtained in this manner, the equality (K.2) is indeed true.

The equality (K.2) is analogous to, or a generalization of, (K.1). It implies that

the set function p is o-additive, (®,II)-closable and that L(y,®,9) = [:(I)(L) .

It seems difficult to prove the (&®,A)-closability of set functions which are not
in a sense equivalent to ®-scattered ones. None-the-less, the norms Vq) and V(%
could still be helpful. For, if the additive set function px: @- F has finite

®-variation, then the gauge p, defined by

p(X) =V,

q)(lef:A) s

for every X € @, is usually very sub-additive (see Section 2J) and so, in many cases,
Proposition 2.25 applies. Then this gauge can be used instead of the one studied in

Section C.



5. VECTOR VALUED FUNCTIONS AND PRODUCTS

The title practically gives away the content of this chapter. We present first a
Bochner-type integration theory, that is, one based on absolute summability, for
Banach space valued functions. Then we consider direct products of integrating gauges
along with the corresponding Fubini- and Tonelli-type theorems. These two themes
are related in the formulation of the mentioned theorems; the notion of a measurable

function is avoided by stating them in terms of Bochner integrability.

A Let p be a gauge on a nontrivial family, £, of scalar valued functions
on a space . (See Section 2A.)

Let F be a Banach space. To avoid some obvious trivialities, we assume that
E contains a non-zero vector. The convention of writing interchangeably ca = ac , for
every c¢€ F and ascalar a, will be used throughout the chapter.

A function f: Q- E will be called Bochner integrable with respect to p, or,

briefly, p-integrable, if there exist vectors ¢ € F and functions fj el, 7=1.2,..,

such that
[09)
(A.1) L olelp(f) < w
=T A
and
o0
(A.2) flw)=} cf(w),
=
for every we Q for which
Q0
(A.3) Lolel (W] <w.
217

The family of all E-valued functions on @, Bochner integrable with respect
to p, is denoted by L(p,X,E). If the space E happens to be one-dimensional, that
is, just the space of scalars, then, consistently with the notation introduced in Chapter

2, we write L(p,X) = L(p,X,E) .

145
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For any function fe L(p,,E), let

o=t § 1610

where the infimum is taken over all choices of the vectors ¢ € E and the functions
fj €k, j=1,2,.., satisfying condition (A.1), such that the equality (A.2) holds for
every we€ ) for which the inequality (A.3) does.

Clearly, L(p,k,E) is a vector space and sim(X,E) is a vector subspace of it.
(See Section 1D.) Also, it is not difficult to see that ¢ A is a seminorm on L(p,X,E) .
Consequently, we can speak of qp—Cauchy and qp—convergent sequences of functions
from L(p,X,E) .

The p-equivalence class of a function fe€ L(p,X,F) consisting of all functions
g€ L(p,X) such that qp(f—g) =0, is denoted by [f]p . The set {[f]p : fe LpX,E)}
of all p-equivalence classes of functions from L(p,X,F) is denoted by L(p,X,E). Then
L(p,X,E) is a normed space with respect to the linear operations induced by those of
L(p,X,E) and the norm induced by the seminorm ¢ - This norm is still denoted by
the same symbols ¢ ) - |

A function f: Q- E issaid to be p-null if fe L(p,X,E) and qp(f) =0. Asto
the null sets, their definition remains of course the same as in Section 2B. Namely, a
set ZC§ is p-null if its characteristic function is a p-null element of L(p,X) .

The introduced definitions do not differ in form from those concerning scalar

valued functions given in Chapter 2. Because the space F is non-trivial, the
treatment of scalar valued integrable functions presented in Sections 2A-2D is
applicable practically without a change to E-valued functions. This fact was first
‘noted by J. Mikusifski who exploited it, in [50], for his definition of Bochner integrable
functions (in the usual sense). It may be useful to note explicitly that Proposition 2.2
remains valid if by a function is meant an F-valued function and if £(p,X) is replaced
by L(p,X,E) . It implies that a set Zc Q is p-null if and only if there exist functions
fj € L(p,L,E), j=1,2,.., such that

(A-4) Y a(f)<o
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and

L (@) =a.

=1
for every we Z.

The following theorem, which is analogous to Theorem 2.3, is singled out

because of its central importance. Its proof is of course omitted.

THEOREM 5.1. Let the functions fj € L(p,L,E), j=12,.., satisfy condition (A.4).
Then

L@ <o
=1

for p-almost every we Q. Furthermore, if f: Q- E is a function such that

for p-almost every we Q, then fe L(p,X,E) and

n
imgli- 1)

Among the implications of this theorem is that L(p,[,E) is a Banach space.

Also, it may seem that the natural seminorm of the space L(p,X,F) should be
denoted more accurately by ¢ ). E rather than simply by ¢ ) For if F is a subspace of |
a Banach space F and fe L(p,X,E), then also fe L(p,X,F) and qp,F(f) < qp,E(f) .
However, Theorem 5.1 implies that actually %, F( fl=q¢ ), E(f) , and so, the simpler
notation suffices.

The introduced notions are useful perhaps only if the gauge p is integrating.

(See Section 2D.) The proof of the following straightforward proposition is omitted.

PROPOSITION 5.2. The gauge p is integrating if and only if |c|p(f) = ¢ ,o( cf), for

every function f€ X and a vector c€ E.
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B. We maintain the notation of the previous section.

Let us start with two observations. It seems that we would obtain a larger class
of Bochner integrable functions if we called Bochner integrable all functions belonging
to L(g p,C(p,IC),E) rather than those belonging to L(p,X,E) , that is, if we admitted for
fj , j=1,2,..., in (A.2), any functions from £L(p,X) and not merely from & . However,
it is not the case, because Theorem 5.1 clearly implies that L(g p,[(p,iC),E) = L(p,X,E) .
This is an extension of the last statement of Proposition 2.7.

More interestingly, we can look at L(p,K,E) as the projective tensor product of

the spaces F and L{p,[). (See Section 1C.) Formally, we have the following

PROPOSITION 5.3. There is a unique isometric isomorphism of the projective tensor
product, E®L(pX), of the spaces E and L(p,X) onto the space L(p,X,E), that
maps the tensor product, ¢®[f] > of any element, ¢, of E and element, [f] 0 of

L(p,X) to the element [cf] 0 of the space L(p,X,E) .

Proof. Every element, z, of the projective tensor product E®L(p,X) can be written

in the form

(B.1) z=7§ c.® [f].]p,

where the vectors cje E and the functions fje LpkX), j=12,.., satisfy the

condition

o

(B.2) ng le;| qp(f].) <.

Moreover, the norm of 2 in the space FE®L(p,X) 1is equal to the infimum of the
numbers (B.2) subject to the equality (B.1). By Theorem 5.1, any function, f, on
), such that (A.2) holds for every we Q for which (A.3) does, belongs to £L(p,X,E)
and its seminorm, ¢ p( /), is equal to the norm of 2. Therefore, if we let correspond
to z the element, [f]p , of the space L(p,X,E) determined by any such function f,
we obtain an unambiguously defined map of E®L(p,X) into L(p,K,E). Clearly, this
map is a linear isometry. Because, however, every element of the space L(p,(,E) is

the image of an element of E®L(p,k), this map is an isometric isomorphism of the
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spaces E®L(p,X) and L(p,X,E) which, for any c€ E and fe€ L(p,X), maps c®[f]p
o [ef],

The spaces L(p,k) and L(p,k,E) cannot be replaced, in this proposition, by
L(pX) and L(p,k,E), rtespectively, even if the notion of a tensor product were
extended to seminormed spaces. For, any E-valued function that vanishes p-almost
everywhere belongs to L(p,X,E) . Consequently, the space L(p,{,F) may contain
functions that cannot be canonically specified by a sequence of vectors from E and a
sequence of functions from L(p,L) .

Now, let F and @& be‘Banach spaces and let b: ExF - G be a continuous
bilinear map. (See Section 1C.) Let p:X- F be an additive map. Assume that the

gauge p integrates for the map p. (See Section 3A.)

PROPOSITION 5.4. There exists a unique continuous linear map, Byt :L(p,K,E) - G,
such that

(BS) Up’b(cf) = b(C,/J/(f)) )
for any vector c€ E and a function fek.

Proof. By the basic property of projective tensor products, there exists a unique
continuous linear map, £: E®L(p,X) » G, such that Z(c@[f]p) = ble,u(f)) , for every
c€ E and fe L(p,X). Because the vector space spanned by {[f] o’ f€eX} is densein
L(p,X) , ¢ is the unique continuous linear map from E®L(p,X) to G, such that

c®[f] (e,u(f)) , for every ce€ E and feX. Now, for every fe L(p,[,E), let
by b( f) =47, where z is the element of the space E®L(p,X) such that the element
lf ] of L(p,X,E) is the image of z under the isomorphism of Proposition 5.3. By the
definition of the space L(p,k,E) and Proposition 5.3, this defines a unique continuous
: L(pL,E) = G, such that (B.3) holds for every c€ E and every

linear map, pu

p,b
fek.
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Under the assumptions of this proposition, we write
J o od =] st =, 0,

for every function fe€ L(p,X,F). Of course, if a different notation is used for the
bilinear map b, then it is also used in the symbol for integral. So, for example, if we
write b(z,y) = xy, for any z€ E and y€ F, using simple juxtaposition, then we

also write

J o 1=, 0

for every fe L(p,X,E). Or, if the function [ is F-valued and the map g is

E-valued, we denote the integral by

J , =] sud st

C. Let the space Q0 be equal to the Cartesian product of the spaces = and
T. Thatis, @ =2=xT.

If ¢ is afunctionon = and h a function on T, then f= ¢g® will stand for
the function on O such that f(w) = g(é)A(v) , for _evéry w= (&) with £€€Z and
veT. '

Let G be a nontrivial family of functions on the space = and ¥ a nontrivial
family of functions on the space T. Let X={g® :9€ G, hel}.

Let o beagaugeon G and 7 a gaugeon %. By p=o0®r is denoted the

gauge on K such that

for any function f=g¢® with ge§ and he¥. The gauge p is called the direct

product of the gauges ¢ and 7.

PROPOSITION 5.5. If the gauges o and 1 are both integrating, then their direct

product, p= 0®T, too is integrating.
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Proof. Let f=¢g® , geG, he¥. Let ¢ be numbers and f}. € ¥ functions,
= g® = h th
fj 9, hj, g]_EQ', hje?l,] 1?2, , such that

<Y
(C.1) % lelo(f) < o
and
0
flwy =} eflw),
=1 77
for every we Q0 for which
o]

El IC].l lfj(w)l <.

Let ¢ be a continuous linear functional of norm not greater than one on the
space L(0,G) such that |#[g]) al = qa( g)=0o(g), and m a continuous linear
functional of norm not greater than one on the space L(7,%) such that
|m(h)| = ¢ ([A] ) = 7(R) .

Let u=4g)h and U = cjf(gj)h]_, for every j=1,2,.... Then qT(u],) =
le,114g)17(h) < le,lolg)r(h) = lelplf), forevery j=1,2,.., and, by (C.1),

Y

(C.2) j§l qT(uj) <.

Now, for every ve T, such that

(C.3)

Tip-18

. !cjlo(gj)lhj(v)l <o,

let = v be the set of all points £ € = such that

o]

;—Z-:l. le,11g (11 ()] <.
By (5.10) and Proposition 2.2, the set E\Ev is o-null, and, by Theorem 2.3,

lim qo_{h(v)g- i c,h_(v)g,] =0.

- 00 =1 77 J
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Hence, by the continuity of the functional £,

Y ow(v) = u(v)

P=a

for every wveT such that (C.3) holds. However, by (C.2) and Theorem 2.3, (C.3)
holds for T-almost every v€ T . Therefore, by (C.2) and Theorem 2.3,

n
limqr[u— ) u] =0.

) 00 5=1 ]

So, by the continuity of the functional m ,

dghmlh) = mlw) = § m(w)= § cAlg)m(h)
7=1 =1
Consequently,
oD = al)r(h) = 149m0] = § 1e1ots)
]:

because |4 yj)m(h]_)l < qa( g],) qT(hj) = o gj) T(hj) = p( fj) , for every j=1,2,.... Hence,

by Proposition 2.7, the gauge p is integrating.

In many situations, for example when ¢ and ¥ are quasirings of sets and o
and 7 non-negative oc-additive set functions or § and ¥ are vector spaces and o
and 7 seminorms, a simpler direct proof of this proposition, avoiding the duality
considerations, can be given. The proof presented here was suggested by Brian

Jefferies.

D. Let 2,7T,02,6,% and X have the same meaning as in Section C .

PROPOSITION 5.6. Let o be an integrating gauge on G and T an integrating
gauge on K andlet p= o®7 be their direct product.

If gel(o,G) and he L(r,X), then the function f= g®h is p-integrable and
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For every function [€ L(p)X), there exist functions ngC(a,G) and

h]_ e L(r,Y), j=1,2,..., such that

(D.1) E A0 (R) < @

and |

(D.2) flew) = 1 g(Oh(v),

=1

for every €€ Z and veT suchthat

(D.3) L 19(On (o)l < o.
=1

Furthermore,

. imali- L ser) -0

Conversely, if [ is a function on Q for which there exists functions g, € L(0,9)
and hj eLrX), 7=1,2,..., satisfying condition (D.1), such that the equality (D.2)
holds for every £ €= and ve T for which the inequality (D.3) does, then fe L(p,k) .

Proof. By a straightforward application of Proposition 2.1,if ge G, he L(7,X) and
f=¢g®, then feL(p,X) and qp( f) = a(g)qT(h). By a second application of
Proposition 2.1, if g€ L(0,G), he L(r,X), then fe L(p,X) and qp(f) = qa(g)qT(h) .
If feL(pX), then such functions g; € L(0,§) and hj eL(r, ), j=12,.., as
claimed exist trivially because G ¢ L(a,G), ¥ L(1,%), ¢ 0( g)=o(g), for geG; and
qT(h) =7(h), for he¥. The equality (D.4) follows by Proposition 2.1. Conversely,
if such functions g; and hj do exist, then, as we have just noted, the functions
f’_= gj®hj belong to L(p,k), for every j=1,2,..., and, hence, by Proposition 2.1,

J€Lpk) .

COROLLARY 5.7. There is a canonical isometric isomorphism of the space L{p,X)

onto the projective tensor product of the spaces L(0,G) and L(7%) .
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Proof. Every element, ¢, of the projective tensor product of the spaces L(¢,G) and

L(7,%) can be written in the form

0

i= lo),20h],,

=1 !

where the functions g, € L(0,G) and hj e L(rX), j=1,2,..., satisfy condition (D.1).
Moreover, the infimum of the numbers (D.1) over all such representations of ¢ is

equal to the projective tensor product norm of the element ¢.

PROPOSITION 5.8. Let E, F and G be Banach spaces and let b: FxG- Ebea
continuous bilinear map. Let o be a gauge integrating for an additive map v:G- F
and T a gauge integrating for an additive map A:¥H-G. Let p= o®r be their direct
product. Let 1(f) = b(e(g),A(h)), forevery f= g®h suchthat g€ G and heX.

Then w:K-~ E is an additive map and the gauge p integrates for u .

Proof. By Proposition 3.1, there exist a unique continuous linear map v, LoG) = F
that extends v and a unique continuous linear map /\T: L(r,%) » G that extends .
Let ¢: L(0,G)®L(7,¥) = E be the continuous linear map such that é([g]0®[h] 7_) =
b(l/o_(f),/\T(h)), for every g€ L(o,§) and hel(r,¥). Now, given a function
feLl(pk), let t be the element of the tensor product L(oc,§)®L(7,%) that
corresponds to the element [f] 0 of the space L(p,f) under the isomorphism of
Corollary 5.7 and let g p( f)=41t). This defines a continuous linear map
% L(p,X) - E such that up(f) = u(f) , whenever f=¢® with ge§ and he¥.

So, the map p: X - E is indeed additive and the gauge p integrates for it.

EXAMPLE 5.9. Let E, F and G be Banach spaces, b: FxG - FE a continuous
bilinear map. Let & and 7% be o-algebras of sets in the spaces = and T,
respectively. Let v:@-F and A:%- G be o-additive set functions. Let
w(XxY) = b(v(X),A\(Y)), for every Xe€@ and YeZR. Itis known that p is not
necessarily a o-additive set function on the semialgebra P={XxY: Xe @, Ye%};

not even if F'= G 1is a Hilbert space, FE is the space of scalars and & is the inner
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product in F'. Cf. [13] and [58]. However, if

o(g) = sup{u(y’ov,gl) : y’ € F' ||y’|| < 1},

for every g€ sim(g), and
7(h) = sup{o(2’ o\, |h]) : 2" € G’ ||'|| < 1},

for every h e sim(®), then ¢ is a seminorm on sim(g) integrating for v and 7 a
seminorm on sim(7%) integrating for A . (See Section 3F, formula (F.2).) Therefore,
p =087 is a gauge on the family of functions X ={g®h: gesim(9), hesim(R)}

which integrates for u .

E. Let =, T, @, G, ¥ and X have the same meaning as in Section C .
Given a function f on Q and a point £€Z, by f(£-) is denoted the

function wvr f(£,v), veT. The meaning of f(-,v), foragiven veT, is analogous.

PROPOSITION 5.10. Let o be an integrating gauge on G and T an integrating
gaugeon K. Let p=o0®7. Let fe L(p)k) .

Then, for o-almost every £€Z, the function f(&,-) is 7-integrable.
Furthermore, if ¢ is an L(7,¥)-valued function on E such that (€)= [f(¢,-)] , for
o-almost every €€ Z, then the function ¢ is Bochner integrable with respect to o
and q,(0)= (1)

Similarly, for 7-almost every veT, the function f(-,v) is o-integrable.
Furthermore, if ¢ is an L(0,G)-valued function on T such that ¥(v) = [f(-,v)]a, for
T-almost every veT, then the function ¢ is Bochner integrable with respect to T

and g (¥) = ¢,(f) -

Proof. Let ¢ be numbers and gje G and h’,e ¥ functions, j=1,2,..., such that

(£1) 5 161et5)rth) <

and
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(E2) | flew) = 3 eg(en (v

_177

for every £€ = and veT for which

(E.3) El‘ l¢;| igj(€)| Ih].(v)l <.

By Proposition 2.2,

z e l1g,(&)17(k) < w

=
for o-almost every &€ =. Furthermore, if £ € Z is a point such that (E.3) holds,
then f(¢,-) € L(r, %), because (E.1) holds for every ve T for which (E.2) does.

Now, let <p,(§) = cg,(&)[h,]T , for every £€Z. Then ¢, € L(o,§,L(7,%)) and
qa( )= Ic lq (g) ( ) Ic lo(g ?)T(hj) , for every j=12.... Let %, be an

L(7,¥)-valued function on = such that

9]
=) ¢
=17
for every £ € = for which

Z 7,(o¢ Z lel1g(1r(h) < w.

Then, by Theorem 5.1, ¥, € L(o,G,L(t, %)) . So,if (&)= ¢0(§) for o-almost every

£e=, then ¢ too belongs to L{a,G,L(7,%)). The equality qo(cp) = ¢ (f) follows

0
from the definition of the seminorm g, on L(6,6,L(7,%)) and that of the seminorm
g, on L(p,X) .

This proposition already contains all the ingredients necessary to state the

following theorem of Fubini type.

THEOREM 5.11. Let E, F and G be Banach spaces and b: FxG-E a
continvous bilinear map. Let o be a gauge on G integrating for an additive map

v:G-F and 7 a gauge on ¥ integrating for an additive map X:¥- G. Let
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p=097. Let ul(f)=0b(v(g),A(h), for every function f=g®h such that g€ § and
hel.
If feLllpk), then

e ] e =] o0, | f&ura) -

- JT bUE f&omd ), A(dTv)] :

Proof. The existence of the integrals follows from Proposition 5.10. The equalities
(E.4) are obviously true if f= g®h with g€ L(0,G) and he€ L(r,%) . Furthermore, all
terms are linear in f. Propositions 5.4 and 5.10 imply that all terms of (E.4) depend
continuously on f. Because the algebraic temsor product L(o,§)®L(r,%) is
isomorphic to a dense subspace of L(p,X), the equalities (E.4) are valid for every

feLipk) .

F. We still maintain the notation of the previous section and assume that
. 0 is an integrating gauge on ¢ and 7 an integrating gaugeon ¥. So, p=0®7T isan
integrating gauge on X .

We prove a converse to Proposition 5.10, which is a Tonelli-type theorem only

under some additional assumptions.

ASSUMPTION 5.12. Let ZCcQ andlet X be the set of oll points £ € = such that
the set {veT: (&) € Z} is not T-null. If the set X is o-null, then the set Z is

p-null.

The following proposition gives a convenient sufficient condition for Assumption

5.12 to be satisfied.

PROPOSITION 5.13.  If there exists a function he L(r,X) such that h(v)#0, for

every vET, then Assumption 5.12 is satisfied.

Proof. Let ZC Q beaset andlet X be the set of all points £ € = such that the set

{veT:(&v) € Z} isnot 7-null. If the set X is o¢-null, then, by Proposition 2.2,
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there exist numbers 'cj and functions g€ G, j=1,2,.., such that

[0

,21 chla(gj) <o

but

L 15101 -

forevery £€=. Let he L(r,%) be a function such that h(v) #0, for every veT,
and let fj(w) = c]g]_(ﬁ)h(v) , for every w= (5,0) , ¢te=Z, weT, so that

qp(fj) = chl o(gj)qr(h) , forevery j=1,2,... Then

z )<,

=1
but

®
Y olf(w)l =
=1 7
for every we Z. By Proposition 2.2, the set Z is p-null.

PROPOSITION 5.14. Let Assumption 5.12 be satisfied. Let f be a function on Q
such that, for o-almost every € € Z, the function f(£,-) is r-integrable and, if ¢ is
an  L(7,X)-valued function on Z such that (&)= [f(§,~)]7_ , for o-almost every

£ € =, then the function ¢ is Bochner integrable with respect to o .

Then f€ L(pX) .

Proof. Let g; €6 and hj € L(r,X), j=1,2,.., be functions such that

0

2 (0.28) = ) olg)a,(h) < o

and
=°E° 9(&)In]
=1

in the sense of convergence in the space L(7,%), for every £ € Z for which

<Y

(F.1) ) 191, (h) < o

1
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By a modification of the function ¢ and/or f on a set of points &€ = which is
negligible with respect to o, we can achieve that (&) = [f( 5,-)]7, for every point

¢ € = for which the inequality (F.1) holds. Then, given such a ¢, the equality

(F.2) fle) = T g(on (v

holds for 7-almost every (&,v) € Q. Therefore, by Theorem 2.3, e L(p,X) .

If Assumption 5.12 is not satisfied, then the conclusion of this proposition does

not necessarily hold.

EXAMPLE 5.15. Let Z=(0,1], @={(sf:0<s<¢<1} and let ¢ be the
Lebesgue measure on @ . Let T=1(0,1], let % be the family of all finite subsets of T
and, for every Y€ %, let s(Y) be the number of elements in Y .

Let f be the characteristic function of the set {l}xT . Then, for ¢-almost
every £€Z, f(&,-) is the zero-function on T, but the function f does not belong

to L(¢®k,X) , where K={XxY:XeQ,YeR}.

Obviously, the roles of the spaces = and T, and of the structures they carry,
are not symmetric in Assumption 5.12, Proposition 5.13 and Proposition 5.14.
Although, it is quite clear how to formulate analogous assumptions and propositions
with these roles interchanged, for the record we formulate the analogies of Assumption

5.12 and Proposition 5.14.

ASSUMPTION 5.16. Let ZCQ andlet Y be the set of all points veT such that
the set {€€=:(&v) e Z} is mnot o-null. If the set 'Y is 7-null, then the set Z is

p-null.

PROPOSITION 5.17. Let Assumption 5.16 be satisfied. Let f be a function on
such that, for t-almost every ve T, the function f(-,v) is o-integrable and, if ¥ is

an L(0,G)-valued function on T such that ¢(v) = [f(-,v)] for Tt-almost every

o 9
veT, then the function ¥ is Bochner integrable with respectto t .

Then fe L(pk) .



6. SCALAR OPERATORS

The most important applications of integration with respect to Banach space
valued measures undoubtedly arise in the theory of spectral operators. To describe its
central notion, let E be a complex Banach space, BL(E) the algebra of all bounded
linear operators on F and [ the identity operator. A spectral measure is an additive
and multiplicative map P:¢- BL(E), whose domain, &, is an algebra of sets in a
space €0, such that P(Q2) =1I. An operator T € BL(FE) is said to be of scalar type if
there exists a o-additive (in the strong operator topology) spectral measure, P,

whose domain is a o-algebra and a P-integrable function f such that
(*) T-= J fap.
, Q

This notion, due to N. Dunford, extends to arbitrary Banach space the idea of an
operator with diagonalizable matrix on a finite-dimensional space. It proved to be
very fruitful as shows the exposition in Part IIT of the monograph [14]. Many powerful
techniques in which scalar operators play a role are based on the requirements that g
be a o-algebra and that P be o-additive. But precisely these requirements are
responsible for excluding many operators of prime interest from the class of scalar-type
operators.

In this chapter, we present a suggestion for extending this class, [35]. It is
based on the fact that the integral (*) exists if and only if there exist @-simple

functions fj, j=1,2,..., such that
5[ s
[ Pl < w
=1 407

and the equality

holds for every we Q for which

160
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In that case,

dP=oo dP.
jﬂf L]

So, the integral with respect to P can be characterized purely in terms of the
operator-norm convergence. Moreover, to use this characterization as a definition of
the integral with respect to P, it is not necessary to assume that the set function P
be bounded, let alone o-additive, nor that @ be a o-algebra. It suffices to assume

that the seminorm

fell ] faml,

on @-simple functions, be integrating. (See Section 2D.)

Thus, as scalar operators in a wider sense, we propose operators which can be
expressed in the form (*) assuming that P is a spectral measure such that the
mentioned seminorm is indeed integrating. Such operators can also be characterized
intrinsically, that is, without the reference to any particular definition of integral.
Namely, an operator 7T € BL(E) turns out to be scalar in this sense if and only if
there exists a (not necessarily bounded) Boolean algebra of projections belonging to
BL(E) such that the Banach algebra of operators it generates is semisimple and
contains T. However, in contrast with the classical theory, the Gelfand
representations of such a Banach algebra is not necessarily the algebra of all

continuous functions on its structure space but only a dense subalgebra.

A Let E be a complex Banach space. Let BL(E) be the algebra of all
bounded linear operators on E. Then BL(F) is a Banach algebra with respect to the
operator (uniform) norm, defined by ||7]| =sup{|Tz| : |z| < 1,z€ E}, for every
T € BL(F) . The identity operator is denoted by I.

Let @ be a quasialgebra of sets in the space Q. (See Section 1D.) A map
P:Q- BL(E) is said to be multiplicative if P(fg) = P(f)P(g) for every fe€ sim(Q)
and gesim(g). For an additive (see Section 1E) map, P, to be multiplicative it

suffices that P(X N Y) = P(X)P(Y) forevery X€ g and Ye€Q.
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An additive and multiplicative map P:¢- BL(E) such that P(Q2) = I will be
called a BL(E)-valued spectral set function on ¢. If @ happens to be an algebra of
sets, then a spectral set function P: Q- BL(E) is called a spectral measure; see [14],
Definition XV.2.1.

The generality of the theory presented in this chapter is not substantially
increased by the admission of arbitrary spectral set functions instead of spectral
meagsures only. This admission is dictated mainly by convenience in considering the
families of sets which classically occur in integration and spectral theories but are
merely quasialgebras and not algebras. It also allows for the possibility of
distinguishing certain nuances in the presented theory. However, with the exception of
a single remark in the last section, this possibility will not be pursued here.

A spectral set fnction P:0- BL(E) is said to be o-additive if, for every
z€ E, the E-valued set function Xr» P(X)z, Xe€ @, is o-additive. (See Section
1F.) That is to say, o-additivity of spectral set functions is understood in the strong
operator topology of BL(E) .

In virtue of the Stone representation theorem, a set W C BL(E) is a Boolean
algebra of projection operators if and only if there exist an algebra of sets, %, in a
space (0 and a spectral measure, P:7%- BL(E), such that W= {P(X): Xe T} .
Accordingly, a set of operators W C BL(E) is called a Boolean quasialgebra of
projection operators if it is the range of a BL(E)-valued spectral set function, that is,
if there exist a quasialgebra of sets, @, in a space {1 and a spectral set function,
P:Q-BL(E), such that W={P(X): Xeg}.

If WcBL(FE), then by A(W) is denoted the least uniformly closed algebra of
operators which contains W. If W={P(X): Xe€ g} is the range of a spectral set
function P:@- BL(E), we write A(W) = A(P). Clearly, A(P) is then the closure
of the family of operators {P(f) : f € sim(@)} in the space BL(E) .

Recall that, if A is a commutative Banach algebra with unit, then the
structure space, A, of A is the set of all homomorphisms of A onto the field of

complex numbers. For an element T of A, by 7 is denoted the Gelfand transform
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of T; it is the function on A defined by ff\“(h) =h(T), for every he A. Itis
well-known (see e.g. [46], 23B) that sup{| T(R)| : he A} < ||T|| and that the
coarsest topology on A which makes all the functions ]A”, Te A, continuous turns
A into a compact Hausdorff space. Hence the Gelfand transform is a norm-decreasing
homomorphism of the algebra A into the algebra, C(A) , of all complex continuous
functions on A . If the Gelfand transform is injective, then the algebra A is called
semisimple.

Recall that an operator T € BL(E) is called nonsingular if it is invertible in
BL(E) , that is, if there exists an operator S € BL(E) such that S7'= 7S=17. Then
of course §= T 1 is the inverse of each of T'. A full algebra of operators is uniformly
closed algebra of operators which contains the inverse of each of its nonsingular

elements; see [14], Definition XVII.1.1.

LEMMA 6.1. Let @ be a quasialgebra of sets in a space @ andlet P: Q- BL(E) be
a spectral set function.
(i) If fesim(@), then the operator P(f) is nonsingular if and only if the

function [ can be represented in the form
n

(A1) f=Y X,
P

where the n is a natural number, the ¢, are non-zero complex numbers and the X,-

are pair-wise disjoint sets from @, j=1,2,...,n, such that

In that case, (P(f))—1 = P(g) , where

_ 1
9= 721 ¢ XJ
(ii) Let fesim(Q) be a function expressed in the form (A.1) where Xj €g

are pair-wise disjoint sets such that P(X],) #0, for every j=12,..,n, and let
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= sup{lcjl cJj=1,2,..,n} and
d=sup{|| T P : T (12,m)}
T
Then ¢ < ||P(f)|| < 4cd.

(iii) A(P) is a full algebra of operators.

Proof. Let n >1 be an integer. Let X], € § be pair-wise disjoint sets, such that
P(Xj) #0, for every j=1,2,....,n and the sum of the operators P(Xj) , j=1,2,...n,

is equal to . Then the family of operators

n
j;l ch( Aj) ,

with arbitrary complex ¢ = 1,2,...,n, is a closed algebra of operators generated by the

Boolean algebra of projections

where J varies over all subsets of {1,2,...,n} . Then (i) holds by Lemma XVII.2.1
and (ii) by Lemma XVII.2.2 in [14].

To show that A(P) is a full algebra of operators let T be a non-singular
element of A(P). Let fn esim(9), =n=12,.., be functions such that
|| T-P( f -0, as n-ow. Then for all sufficiently large 7, the operator P fn) is
nonsingular and || i (P(fn))_lll - 0. But, by (i), for each such n, there exists a
function g € sim(d) such that (P( fn))_1 = P( gn) . Therefore, Tle AP).

B. With a spectral set function P:@- BL(E), we shall associate the

seminorm pp oOn sim(Q) defined by

(B.1) pplf) = 1Pl

for every f € sim(Q) .
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PROPOSITION 6.2. A set YCQ is pP—null if and only if there exist sets X]_ €g
such that P(X],) =0, forevery j=12,.., and

9]
(B.2) Ycu X..
1 7

Proof. Let Xj € 0 be sets such that P(Xj) =0 forevery j=1,2,... and (B.2) holds.
Let us repeat each set countably many times, arrange the resulting family of sets into a
single sequence and call their characteristic functions fj , j=12,... Then

fj € sim(g) , for every j=1,2,...,

(B.3) ,21 Pp(f) < o

and

(B.4) RUCIEE
=1

for every we Y. So, by Proposition 2.2, the set Y is p P—null.
Conversely, assume that ij sim(@) , j=1,2,.., are functions, satisfying

(B.3), such that (B.4) holds for every we Y. Let

i}
= c, X
J j§1 ik =gk’

with some integer n, >1, numbers ¢

& and pair-wise disjoint sets Xjke a,

k= 1’2"“’";’ for every j=1,2,... By Lemma 6.1, ||P(fj)|l > [cjkl , Wwhenever
P(X;k) # 0. Therefore if we modify each function fj by omitting those sets Xjk,

together with the corresponding numbers Cpo for which P(X]_k) # 0, then (B.4) will
remain satisfied for every w€ Y. But then, Y is covered by the remaining sets Xjk ,

k=120, j=12,...

In view of this proposition, p P—null sets will be called simply P-null.

For a function f on O, let

Il = inf{sup{|f(w)| : we A\Y}: Ye 4y,
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where /¥ is the family of all P-null sets. Then 0< ||| < o. The function f is
said to be P-essentially bounded if [|f| < . In that case, the infimum is actually a
minimum because any subset of the union of countably many P-null sets is P-null.
That is to say, for any P-essentially bounded function f, there exists a P-null set,

Y, such that
I7ll,, = sup{1f(w)] : we Q\ Y} .

Following the custom, we shall call P-null any function f on € such that ||f]] =0.
The P-equivalence class of a function f will be denoted by [f], or by [f] p if the
spectral set function P needs to be indicated. To be sure, [f] is the set of all
functions g on Q such that ||f-gl| =0.

Let £°(P) be the family of all functions f on € such that, for every ¢ >0,
there exists a function g€ sim(g@) for which || f—g”00 < ¢. Then L®(P) is an algebra
under the point-wise operations.

Let L™(P)={[f]: fe L(P)}. Then L™(P) is a Banach algebra with respect
to the operations induced by the operations in the algebra L®(P) and the norm,
I ||00 , induced by the seminorm f»r ||f|| feLP).

The Banach algebra L*(P) is semisimple (see e.g. [46], Theorem 24C).
Actually, if A is the structure space of L*(P), then the Gelfand transform is an
isometric isomorphism of L™(P) onto the whole of C(A) . Moreover, for any function

f€ L%P), the equality

(B.5) {lilT(A):heAt= n {flw): weQ\Y}"
YeN

holds, where ¥ is the family of all P-null sets and the bar indicates the closure in the

complex plane. The set (B.5) is called the P-essential range of the function f.

C. A spectral set function P:¢@- BL(E) will be called closable if the
associated seminorm, B s defined by (B.1) on sim(g) is integrating. Obviously, in

that case, [ integrates for P. Because P is determined by P, we shall write
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L(P) = £(p, sim(Q)) , L(P) = L(g, ,sim(Q)) , 4, = and
P =] S =] jap=] ja, P,

for every fe L(P), omitting the subscript.

PROPOSITION 6.3. Let P: Q- BL(E) be a closable spectral set function.

The equality Hf][oo =0 holds for a function f on Q if and onlyif e L(P) and
(f)=0. Furthermore, L(P)cL®(P) and Il < 1PN, for every function
feL(P).

If fel(P) and g€ L(P) then fge L(P) and P(fg) = P(f)P(g). So, L(P) is
an algebra of functions.

The range of the integration map P:L(P)- BL(E) is equal to A(P). The
Banach algebra A(P) is semisimple. The integration map P: L(P)- A(P) is an
isomorphism of the algebra L(P) onto the algebra A(P) .

If feL(P), then the specirum of the operator T = P(f) is equal to the

P-essential range of the function f.

Proof. If f is a function on € such that ||fl| =0, then by the definitions of the
P-null sets, P-null functions and integral, f€ £(P) and P(f)=0.

Let fe L(P). Let f,- €sim(@), j=1,2,..., be functions, satisfying condition
(B.3), such that

(1) o= §
]___

for every we  for which

(c2) ROIRES

7=1
Then, by Lemma, 6.1,
(€.30) L il <o
=1

By the completeness of the space L®(P), there exists a function g€ L°(P) such that
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(C4) | =1 [f]
=1

in L®(P). Since, by Proposition 6.2, the set of points w € Q, for which the equality
(C.1) does not hold, is P-null, we have ||f—g||00 =0, andso, feL%P). Moreover,

by Lemma 6.1,
n
DELIRI
=1 =
for every n=1,2,... Therefore, by Proposition 2.1 and the continuity of norms,
I, < 12O -

If, moreover, g€ sim(g), then, by Lemma 6.1, P( f]_g) = P( fj)P( g), for every
j=1,2,..., and, by (B.3),

(C.5) Z 17(7,9) < Z PGP <

Hence, fge L(P) and P(fg)=P(f)P(g). But then, we can write (C.5) for any
function g€ L(P). Consequently, by Proposition 2.1, fge€ £(P) and P(fg)=
P(f)P(g) for any fe L(P) and ge L(P).

It is clear, from the definition of the integral, that for any fe L(P), the
operator P(f) belongs to A(P), the closure of the set {P(h): h € sim(@)} . Hence,
to show that {P(h): he L(P)} = A(P), it suffices to show that the set {P(h):he
L(P)} is closed in BL(E) . So, let the operator T be in the closure of this set. Let
hj € L(P) be functions such that || T—P(hj)|| < 277 for every j=1,2,... Let fi=h
and fj = hj - hj_1 , for every j=2,3,.... Then the condition (B.3) is satisfied, and, so
by Proposition 2.1, if f is a function such that (C.1) holds for every we€ Q for which
(C.2) does, then fe L(P) and T= P(f).

It is now obvious that the integration map P: L(P) - A(P) is an isomorphism
of the algebras L(P) and A(P). Because the algebra L(P) is semisimple, being a
dense subalgebra of L®(P), the algebra A(P) too is semisimple.

By Lemma 6.1, the algebra A(P) is full. Therefore, the spectrum of an

operator T belonging to A(P) coincides with its spectrum as an element of this
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algebra. Because of the isomorphism of A(P) and L(P), this spectrum coincides
with the spectrum of the element, [f], of the algebra L(P) such that T= P(f),

which is equal to the essential range of the function f.

D. If P: Q‘—» BL(E) is a closable spectral set function, then by Proposition
6.3, L(P)c L®(P). Clearly, if P is not bounded on the algebra generated by &,
then the integration map is not continuous in the norm of the space L®(P) and its
domain, L(P), is not equal to the whole of L*(P) . This domain is of course dense in

L®(P) and the following proposition implies that the integration map is closed.

PROPOSITION 6.4. A spectral set function P: Q- BL(E) is closable if and only if
there exists an injective map ® : A(P) - L°(P) such that ||®( T)l|00 < |17, for every
Te A(P), and ®(P(f)) =[f], for every fesim(Q). |

If the spectral set function P: Q- BL(E) is indeed closable then such a map @
s unique, its range if equal to »L(P) and the map @ s equ\al to the inverse of the

integration map.

Proof. If such a map ®: A(P) - L®(P) exists, then it is unique and linear because
{P(f) : f € sim(@)} is a dense subspace of A(P). Let then f,- esim(9), j=1,2,..., be

functions satisfying condition (B.3) and let
0]
L f(w)=0
=17
for every w e Q for which (C.2) holds. Let 7€ BL(E) be the operator such that

lim |7~ § P =0.

n— 00 =1

Then of course T € A(P). Because the map @ is norm-decreasing, condition (B.3)
implies that (C.3) holds and, if [g] = ®(T), then (C.4) does. Now, by Proposition
6.2, the set of the points we Q for which (B.4) holds is P-null, and so, [¢]=0.
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Consequently, T'=0 because the map @ isinjective. That is
[09)
L P(f)=0,
i=1 Y

and, by Proposition 2.8, the set function P is closable.
If the set function P is closable, then by Proposition 6.2, such a map

® : A(P) » L°(P) exists: it is the inverse of the integration map.

Let us now mention a sufficient condition for a spectral set function to be
closable. But first a definition:

A spectral set function P: Q- BL(E) is said to be stable if P(Y) =0 for every
P-null set Y which belongs to & .

PROPOSITION 6.5. If @ is an algebra of sets and P : Q- BL(E) a bounded and

stable spectral set function, then P is closable.

Proof. Let [sim(@)]={[f]:fesim(@)}. Because P is stable, there is a map
P:[sim(Q)] - BL(E), unambiguously defined by  P([f]) = P(f), for every
fesim(Q) . Because P is bounded and ¢ is an algebra, by Lemma 1, the map Pis
bounded. Then P has a unique continuous extension onto the whole of L®(P). By
Lemma 1, P and its extension are norm-increasing. Therefore, P so extended has
an inverse, ®, which is norm-decreasing. Because both maps, P and &, are
bounded, the domain of @ is closed and, hence, equal to A(P). So, by Proposition

6.4, the set function P is closable.

COROLLARY 6.6. Let P:Q- BL(E) be a speciral set function such that, for every
T€FE and z° € E', the set function Xv 2’ P(X)z, X€ @, generates a o-additive

measure of finite variation. The the set function P is closable.

Proof. The assumption implies that the additive extension of P onto the algebra of

sets generated by ¢ is bounded and stable.
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Corollary 6.6 implies, in particular, that a o-additive spectral measure whose

domain is a o-algebra of sets is closable.

E. Let us call a Boolean quasialgebra of projections W C BL(E) semisimple

if the Banach algebra, A(W), it generates is semisimple.

PROPOSITION 6.7. A Boolean quasialgebra of projection operators, W C BL(E) , is
semisimple if and only if there ezists a quasialgebra of sets, @, in a space @, and a

closable spectral set function, P: Q- BL(E), such that A(W) = A(P) .

Proof. Let W be semisimple. Let ) be the structure space of the Banach algebra
A(W) . Let us denote by ® the Gelfand transform and put @={®(S):Se W}.
Because we identify sets with their characteristic functions, @ is a quasialgebra of sets
in the space . Let P(®(S))=S5, for every S€ W. This defines a spectral set
function P:@- BL(F) such that the empty set is the only P-null set. Therefore,
L*(P) = C(Q) and the Gelfand transform is clearly a norm-decreasing injective map
from A(P)= A(W) into L™(P) such that ®(P(f)) =[f] for every fe sim(Q). So,
by Proposition 6.4, the spectral set function P is closable.
Conversely, if a closable spectral set function P such that A(W) = A(P)

exists, then, by Proposition 6.3, the Banach algebra A(W) is semisimple.
COROLLARY 6.8. Any bounded Boolean algebra of projections is semisimple.

Proof. By the Stone representation theorem, for any Boolean algebra of operators,
W, there exists an algebra of sets, @, and a spectral set function P: ¢ - BL(E)
such that § is the only P-null set and {P(X): X € g} = W. By Proposition 4.5, the

set function P is closable.

Let us call an operator T € BL(E) scalar in the wider sense if there exists a
semisimple Boolean quasialgebra of operators W C BL(E) such that T e A(W). By

Proposition 4.7, and Proposition 4.3, an operator 7T is scalar in the wider sense if and
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only if there exist a quasialgebra of sets, ¢, in a space {0, a closable spectral set
function P:g- BL(E) and a P-integrable function f such that T = P(f) .

An operator is said to be scalar in the sense of N. Dunford if there exist a
o-algebra of sets, @, in a space 0, a o-additive spectral measure P : Q- BL(E)
and a function fe L(P) such that T=P(f). We may also call such operators
o-scalar. By Corollary 6.6, operators which are scalar in the sense of Dunford are
scalar in the wider sense. Moreover, these operators can be characterized in terms
introduced here.

By a Boolean o-algebra of projection operators is understood a Boolean algebra
of projection operators which contains the strong limit of every monotonic sequence of

its elements.

PROPOSITION 6.9.  An operator T € BL(E) is scalar in the sense of Dunford if and
only if there exists a Boolean o-algebra of projection operators, W C BL(E), such
that T e A(W) and every element of W commutes with every operator from BL(E)

which commutes with T .

Proof. If the operator T € BL(FE) is séa.lar in the sensé of Dunford, then there exist a
o-algebra of sets, g, in a space ©, a o-additive spectral measure P: - BL(E)
and a function fe€ £(P) such that T= P(f). Let ¢ ; be the minimal o-algebra of
sets such that ch 9 and, if P, is the restriction of P to &,, then f€ E(Pf). The

f
range, W={P(X):Xed,}, of the spectral measure P, is then a Boolean
f

o-algebra of projections such that T € A(W) and every elenflent of W commutes
with every operator commuting with T.

Conversely, let W BL(E) be a Boolean o-algebra of projections such that
Te A(W). By the Stone representation theorem there exist a compact space {, an
algebra 7 consisting of its compact and open subsets and a spectral set function
P:%-BL(E) such that W={P(X): Xe B}. Let @ be the o-algebra of sets

generated by B . Because P is in fact o-additive and W is a o-algebra of

operators, the set function P has a strongly o¢-additive extension onto @&, still
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denoted by P, whose range remains equal to W ; see, for example, [30]. Then
P: Q- BL(FE) is a spectral measure such that, by Proposition 4.3, T'= P(f) , for some

function fe€ L(P) .

Operators which are scalar in the wider sense but not scalar in the sense of
Dunford abound. A way of producing a wealth of such operators is indicated by the

following

EXAMPLE 6.10. Let Q=(0,1], 9={(s4:0<s<¢<1}. Let p>1 and
p(X) = (L(X))l/ P for every Xe€Q, where : is the one-dimensional Lebesgue
measure. By Proposition 2.13 and Proposition 2.26, p is an integrating gauge on & .
Let E=L(p,9) .

For every Xe @, let P(X) be the operator of point-wise multiplication by
the characteristic function of the set X. That is, P(X)[u] o= [Xu]p, for every
u€ L(p,9) . Because L(p,0) # LF(:) (see Example 4.16(ii) in Section 4C) the so-defined
spectral set function P:¢- BL(E) is surely not o-additive; indeed, its additive
extension on the algebra of sets generated by @ is not bounded. Nevertheless, P is
closable. Moreover, if n > 1 is an integer and a set X is equal to the union of =
pair-wise disjoint sets, Xk’ k=12,..,n, belonging to ¢, then ||P(X)|| < n(p_l)/p.
In fact, let u be a function belonging to £{(p,d) . Let ¢ be numbers and Y] €4q

sets, j=1,2,..., such that

©

EHQM@<w
and
ww) = }::1 chj(w)

for every we Q for which

¢
L lelY(w)<o.
=T A

Then

0,(Ynx) < } p(¥px) < T E(v),

IN
?TM;)
—
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for every j=1,2,..., and

for every w e 2 for which

Q0

Y ole (Y nX)(w) < o
P A

Therefore, Xu € £(p,d) and ¢ p(Xu) < ple~D/zg p( u) .

Now, let Z be the function on R which is periodic with period 1 and its
restriction to € is equal to the characteristic function of the interval (4,1]. For
every j=1,2,..., let X] be the function wr Z(2j_1w) , weN. Hence, Xj € sim(9)
and ||P(Xj)[| < 2(j_1)(p_1)/p, for every j=1,2,.... Also,if f(w)=w, then

-y 27X (@),
=1

for every we ). Therefore, f€ L(P) and

9l/p
io-1)(p-1)/p _ 1
PO < § 272 21,,,
=1 17
F. This and the next sections are devoted to an example, or, rather, a class

of examples, which is sufficiently rich to display all the features of the presented
theory.

Let G be alocally compact Abelian group and T' its dual group. The value of
a character £ €' on an element z€ G is denoted by (z,£) .

Let 1< p<o andlet E=LP(G), with respect to a fixed Haar measure on
the group G.

Let M(I') be the family of all individual functions on T' which determine
multiplier operators on E. That is, fe #(I') if and only if there exists an operator
Tf € BL(E) such that (T qp)A = f&, for every @€ L2h LP(G) . Here, of course, &

f
denotes the Fourier-Plancherel transform of an element ¢ of L2( Q).
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Functions belonging to M(T') are essentially bounded. In fact, || Al =1l TfH ,
for every fe M(T), where || f|]00 is the essential supremum norm of f with respect
to the Haar measure. The operator Tf depends only on the equivalence class of the
function f. That is, if fe #(T) andif ¢ is a function on T' such that g(¢) = f(¢)
for almost every ¢ ¢ r , relative to the Haar measure, then g€ #(T') and Tg = Tf .

It is well-known that an operator T € BL(E) commutes with all translations of
G if and only if there exists a function fe€ M(T') such that T= Tf. So, {Tf:
f€ H(T)} is a commutative algebra of operators, containing the identity operator,
which is closed in BL(E). Clearly, M#(T') is an algebra of functions and the map
fr Tf , [ € JP(T), is multiplicative and linear.

Let 7°(T') be the family of all sets XcT such that XeJJ(T). Let

P(X) = Ty, forevery Xe (1) .

PROPOSITION 6.11. The family RY(T) s an algebra of sets in T and
PE . 7(T) » B(I*(G)) is a closable spectral set function.

Proof. It follows from the mentioned properties of the map fr Tf , fe€H(T), that
#(T) is an algebra of sets and the set function P = PI’f is spectral. Furthermore, a
set Y CI is P-null if and only if it is null with respect to the Haar measure on I'.
Consequently the Haar measure equivalence classes of functions on I' are the same as
the P-equivalence classes and so are their w-norms. Therefore, L®(P) is a Banach
subspace of L®(T'). Now, A(P) is a closed subalgebra of the Banach algebra
{Tf :feM(T)}. For every Te A(P), let &(T)=[f], where feM(T) isa
function such that 7= Tf. Then @ is an unambiguously defined norm-decreasing
map from A(P) into L®(P) such that ®(P(f))=[f], for every fe€ sim(#(T)).

Therefore, by Proposition 6.4, the set function P is closable.

The usefulness of this proposition depends of course on how rich is the algebra
of sets P(T'). A result of T.A. Gillespie implies that it is rich enough to permit
complete spectral analysis of translation operators. Let us introduce the necessary

relevant notation.
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Let T be the circle group, {z€C: |zl =1}, with its usual topology of a
subset of the complex plane. Connected subsets of T will be called arcs. For an

element z of the group G andanarc ZC T, let

XZ,I={§EI‘: (z,6) € Z} .

Let ICI(I‘) be the family of all sets X P corresponding to arcs ZC T and elements of
z€ G. The classes of sets lCn(I‘), n=2,3,.., are then defined recursively by

requiring that ICn(I‘) consist of all sets XNY such that X € lCn_l(I‘) and Ye ICl(I‘) .

LEMMA 6.12. The inclusion Kn(I‘) CR(T) is valid for every p€ (Lw) and every
n=12... Moreover, for every p€ (lw), there exists a constant Cp > 1 such that
| PE(X)| < CZ, for every Xe€ ICn(I‘) , every n=12..., and every locally compact
Abelian group T .

Proof. For n=1, thisis a simple re-formulation of Lemma 6 of [18]. (See also

Lemma 20.15 in [12].) By induction, the result follows for every n=2,3,... .

Let ]1 be the family of all subsets of R which contains all members of lCl([R)
and all intervals in R and no other sets. The families Jn , n=223,..., are then
defined recursively by requiring that ]n consist of all sets XNY such that X e ]n—l
and YeJ =

If we combine Lemma 6.12 with a classical theorem of M. Riesz (interpreted to
the effect that intervals belong to #(R) and determine a bounded family of multiplier

operators; see e.g. [8], Theorem 6.3.3) we obtain the following

COROLLARY 6.13. The inclusion Jn c P(R) is valid for every p€ (Lw) and every
n=12,.... Moreover, for every pe (1,w), there exists a constant Dp >1 such that

||P§(X)[| < DZ’ forevery XeJ and n=12,...

G. The (total) variation of a function f of bounded variation on R or on
T will be denoted by var(f) . Recall that every function, f, of bounded variation

has a decomposition, f= fl + f2 + f3 , such that the function fl is absolutely
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continuous, f, is continuous and singular (its derivative vanishes almost everywhere)

2
and f3 is a jump-function. If the function f vanishes at a point (or at -») then
there is only one such decomposition with all the three components, f1 R f2 and f3 ,
vanishing at that point. If the continuous singular component, f2, is identically

equal to zero, then the function f is called non-singular.

LEMMA 6.14. Let o, 8 and b be real numbers such that o< . Let u be the
function on R such that uw(¢)=0 for t< a, u(t)=0dt-a) for a<it< B, and
u(t) = b(B-a) for t > B . Then there exist numbers 2 and sets Xj € J2 , j=0,1,2,...,

such that
j;o le,| BRIl < 2D§var(u)
and
jgo c}_Xj( 1) = u(t)

for every teR.

Proof. Because var(u)=|b|(f~a), by Corollary 6.13, the statement holds with
¢.= 277b(B-a), j=0,1.2,..., X, = [B,0) and

j
Xj: {teIR : exp[%@i] efexpsi:m< s< 27r}} nlep),
j=1.2,....

PROPOSITION 6.15. Let f be a real non-singular function of bounded variation on
R such that f{-w)=0. Then f€ £(P|ﬁ) and

(G.1) PR(f) < 3D2var(f) ,
for every pe (1,») .

Proof. Let f= fl + f3 for a function ¢, integrable on R, such that
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teR, and a jump-function f3 vanishing at -w. Then var(f) = var( fl) + var( f3) .

Moreover, there exist numbers cj and intervals Xj, j=1,2,3,..., such that

I =% ex(n),

=1
for every t€R, and

var(f,) = % lel -

=1

There also exist numbers bj and bounded intervals Y] , j=1,2,..., such that, if

for every t€R and j=1,2,..., then

721 var(u ) = ;::1 luj(oo)l < %J:) lg(s)]ds = % var(f,)
and
fl(t) = ]Zz:l Uj(t)

for every teR. Hence, by Lemma 6.14, and Proposition 2.1, f¢€ L(Plﬁ) and the
inequality (G.1) holds.

This proposition points at the richness of the space £(P[ﬁ) . To be sure, this
space also contains functions of bounded variation which do not vanish at -« and
many functions of unbounded variation. In fact, it also contains many functions of
unbounded r-variation, for any r > 1, because already the characteristic functions of
many sets from ]2 are such. (In this context, see [24].) As [(P[ﬁ) c #/(R) , we have

a large class of multiplier operators which are scalar in the wider sense.

LEMMA 6.16. Let r, o, 8 and b be real numbers such that r< a< < r+2n.
Let u be the function on T such that u(expti) =0 for r< t< a, u(expt) = b(i-a)
for a<t< B, and ulexpti) = b(B-a) for B< t< r+2x. Then there exist numbers

¢ and sets X,- € ICz(T) , j= 0,1,2,..., such that
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£ 161 173001 < Crarta
and

=1
for every z€eT .

Proof. Let m be the largest integer such that m(8-a) < 27. Let 7= a+ 2L
Note that var(u) =2|b|(f-a), r< a< f< y< r+2r and m{y-a) = 2r. Hence,
by Lemma 6.12, it suffices to take ¢ = b(s-a) , X, = {expti: f< t< r+27},

-1

¢ = 2 nbm™! and

Xj = {exp(y-1)i :'exp(2j—1mti) €{expsi:0< s< mp}n{expti: a< t< B}
for 7=1,2,....

PROPOSITION 6.17. Let reR andlet f be a real non-singular function of bounded
variation on T such that flexpri)=0. Then f¢€ £(Prff‘) and

PA(f) < 2Cvax(f)

for every p € (1,0) .

Proof. It is analogous to that of Proposition 6.15 only Lemma 6.16 is used instead of

Lemma 6.14.

COROLLARY 6.18. Let z€ G, let u be a non-singular function of bounded
variation on T and let (€)= u({z,€)), for every £€T . Then f€ L(PE) for every

pE (1,00) .

Proof. A power of a character of a group is a character and all characters of T are
powers of a single one, namely the identity function on T . Interpreting G as the
group of characters of T' we see immediately that, for every Y€ ICn(T) , the set
X={¢eT:{z,6)e Y} Delongs to lCn(I“) , n=12,.. . So, Lemma 6.12 and

Proposition 6.17 imply the result.



6G ‘ 180

Now, each element, z, of the group G is interpreted as a function on T - the
character it generates - that is, the function ¢ (z,6), €€ . Then z€ #(T) and

Tz is the operator of translation by z. By Corollary 4.17, z€ £(PF) and
(G2) 7,= | (5 PRAO),

for every z€ G. For p=2, thisis an instance of Stone's theorem (see e.g. [46],
36E).

Some observations about the Stone formula (G.2) could be of interest because
they could possibly have somewhat wider implications. Its proof shows that,
TE l:(;}) ,Kz(l‘)) , for every z€ G, where P=PP with any pe€ (lw). That is to
say, for every z € G, there exist numbers ¢ and sets X,- € K2(F) , j=1,2,..., which

depend of course on z but not on p, such that

Q0
Ll IPRX)| < o,
= j

the equality

@& =} eX(0)

=17

holds for every £ €T and
T =% ¢ PUX),
= e
for every pe€ (1,w). Hence fo; each p€ (lw), the translation operator, T , is
expressed as the sum of the same multiples of the projections PIE(X],) , j=12,...
These projections too are 'the same' for each p, only the space, E=IL?(G), in
which they operate varies with p .

Also the fact that the sets Xj, j=12,.., belong to the class ICQ(I‘) may
possibly be worth noting. The algebra 7%?(I') contains of course also sets of much
greater complexity than those belonging to IC2(I‘) . It seems that it would contribute
considerably to our understanding of multiplier operators to know what kind of sets,
besides those belonging to the classes ICn(F) , n=1.2,.., arein the algebra Z°(T).

The classes Jn , n=12,..., give us some indication in the case I'=R.



7. SUPERPOSITION OF EVOLUTIONS

The main point of this chapter is to present a vector, or operator, version of the
Feynman-Kac formula representing certain perturbations of a given evolution. While
for some evolutions, such as the diffusion semigroup, the formula can be stated in
terms of classical absolutely convergent integrals, for others, notably the Schrodinger
group, the usage of a more general conceptual machinery is inevitable. Needless to say,

the notions introduced in earlier chapters will be used here.

A Let E be a Banach space. The algebra of all bounded linear operators
on F is denoted by BL(E)

The basic ingredient of the abstract Feynman-Kac formula, to be stated in the
next section, is the BL(E)-valued additive set function determined by an evolution in
the space E and a BL(FE)-valued spectral measure. In this section, the conventions
pertaining to these notions are introduced.

Let A be a locally compact Hausdorff space. Although other spaces may be,
and indeed are, of considerable interest, in the examples considered in this chapter, A
will be equal to R? , for some small or unspecified positive integer d. Let B= B(A)
be the o-algebra of Baire sets in A . The B-measurable functions on A will be
called the Baire functions. (See Section 1D.)

Let P:B-BL(E) be a o-additive spectral measure. (See Section 6A.) By
Corollary 6.6, the spectral measure P is closable. (See Section 6C.) If @€ F, by
Py is denoted the FE-valued set function on B such that (Po((B) = P(B)y, for
every BeB. By the assﬁmption, Py is o-additive, for every @€ E. The
integrability with respect to Py is understood in the sense of Proposition 3.13. That
is, a function on A is called (Pyp)-integrable if it satisfies, mutatis mutandis, any of
the equivalent conditions (i), (ii) or (iii) of Proposition 3.13.

Given a Baire function, W, on A, by

P(W) = JA WdP = JA W(z) P(dz)

181
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will be denoted the operator whose domain consists of the elements, ¢, of the space
FE such that the function W is (Py)-integrable and whose value, P(W)g, at any

such element is given by the formula
P(Wo=| Wia)Pdze.

The operator P(W) 1is bounded if and only if the function W 1is P-essentially

bounded, that is, there exists a Baire set, B0 ,

bounded on the complement of B0 . (See Section 6B.) So, P(W) € BL(E) if and only

such that P(B0)=0 and W is

if WeL(P). (See Section 6C.)
For any real numbers ¢ and ¢" suchthat 0< ¢ <", let S(t",t") € BL(E)
be an operator such that
(i) S(t,t) = I, the identity opereator, for every ¢ > 0 ;
(ii) Sty =8"¢")8(¢",t’), for any ¢, t* and ¢ such that
0<t <t"<t; and
(i) the map S: {(t",t’):0< ¢ < t"} - BL(E) is continuous in the strong
operator topology of BL(E) .

Such a map S:{(¢",t):0< ¢ < t"}-BL(E), with properties (i), (ii) and
(iii), is called an evolution, or a propagator, in the space E. If S(i",t") = S(¢"-t",0),
for any 0< ¢ <", then we speak of a continuous semigroup, or a dynamical
propagator, and write without ambiguity S(¢) = 8(£,0) , for every ¢ > 0. Needless to
say, the numbers ¢, ¢*, {,... entering into arguments of an evolution are intuitively
interpreted as instants of time.

Let t>0. For every se€|0,f], let T, be a set of maps v:[0,s] = A to be
called paths. We assume that {v(s) : veT t} =A, for every s€[0,]. To formulate
another assumption, for any se€ [0,f] , let pr is be the natural projection of T , onto
T_. That is, the value, prt’s(v) , of the map pr s at an element, v, of T , is equal
to the restriction, v|[o’s] , of v to the interval [0,s]. We shall assume that
{prt’s(v) TVE Tt} =T, for every se [0, .

Of main interest are the cases in which T .= A[O’t] , or T, consists of all
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continuous paths wv: [0, » A, or ones which are right-continuous at each point of
the interval [0,f) and have a left limit at each point of the interval (0,7 , etc.
Let £t >0. Given an integer k£ >1, sets B],E B and numbers tj,

j=12,....k, such that 0 < t],_1 < t]_ < t forevery j=2,3,....k, let
(A1) Y= {veTi: v(tj) € Bj, J=12,.,k}.

Whenever it is necessary to indicate the parameters on which the set Y depends we
write Y= Y(tl,...,tk;Bl,...,Bk) .
The family of sets (A.1) formed for all choices of k=1,2,..., sets Bj €85 and

numbers tj, j=1,2,....k, such that 0 < t],_ < tjft for every j=23,..,k, is

1
denoted by 7lt. It is classical and comparatively easy to show, that 7Zt is a
semialgebra of sets in the space T . (See Section 1D.)

Now we define the set function M E y -~ BL(E) determined by the evolution S
and the spectral measure P. Namely, if k¥ > 1 is an integer, Bj € B sets and tj

numbers, j=1,2,....,k, such that 0 < tj—l < tj < tfor j=23,...k, and the set Yis
given by (A.1), let

)S(t,,t, )P(B

(A.2) Mt( Y) = S(t,tk)P(B 21

). P(BQ)S(tQ,tl)P(Bl)S(tl,O) .

k k-1

PROPOSITION 7.1.  For every set Y€, , the operator Mt( Y) is defined by (A.2)

unambiguously. The resulting set function M, : 7lt - BL(E) is additive.

Proof. Let Ye z,. If Y is given by (A.1), then Y =0 if and only if Bj =0 for
some j=12,..k. So,let Y#0. If Y= Y(tl’“"tk;Bl""’Bk)’ for some integer
k>1, sets Bj € B and pair-wise different numbers tj, j=12,...,k, and also
Y= Y(sl,...,sg; 01""’06) , for some integer ¢ >1, sets C’m € B and pair-wise
different numbers 8.5 M= 1,2,...,£, then Cm = Bj whenever 5 = tj , Bj =A for
every j=1,2,...,k such that tj# s for every m=1,2,....4, and Cm = A for every
m=1,2,....¢ such that 5. # t; for every j=1,2,...,k. Therefore, property (ii) of an
evolution and the equality P(A) =17 imply that the operator M t(Y) is defined
unambiguously by (A.2).
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To prove the additivity of the set function M s Y/ = BL(E), by Proposition
1.8, it suffices to prove that this set function is 2-additive. However, the 2-additivity
follows immediately from the following general set theoretical fact: If XeZ,, YeZ,
and Ze® , are sets such that YN Z=0 and X=YUZ, then there exist an integer
k>1, sets Aj , B; and Cj, belonging to B, pair-wise different numbers tj,

j=1,2,..k, and an integer m € [1,k] such that
X= {veTt: v(tj)EA],,j: 1.k}, Y= {veTt: v(tj) € B], yi= 1,0k,
7 = {vETt:v(tj) € C’]_,j= 1,....k}
Aj=Bj= C] for every j#m, j=1,2,..k, B_n C’m=(b and AszmU Cm.

It should be noted that the set function M en for some given @€ £, is
usually of more direct interest than M ; itself. To be sure, M » is the FE-valued
function on 7 ’ whose value at any set Y€ 7 ’ is equal to M t( Y.

Let p be a gauge on some quasialgebra ¢ C7, integrating for the restriction of

Mt‘p to g.Let fe L(p,9) . By

J, roia e | (e

t Tt

(M) = (M),
will be denoted the 'integral of the function f with respect to M » ;' that is, the
value, &f), of the continuous linear functional, ¢, on £(p,d) such that
4X) = Mt(X)go, for every Xe€@. (See Section 3A.) We should note though that,
usually, p does not integrate for (the corresponding restriction of) M ;o 80 that the

symbol '(M t) p(f)‘ is meaningless as are other symbols for the 'integral of f with

respect to M ; !

EXAMPLE 7.2. Let o€ F. Let 9C7? ’ be a quasialgebra. Let p be a gauge on &
integrating for the set function My  restricted to 2. Let 0<i <tf<..<
t_g<t, st and W, W,, ..., W _ be Baire functions en A such that the function

[, defined by



for every veT ,» 18 p-integrable. Then

VP(W 1) o P WQ)S(tTtl)P( Wl)S(t 0)p.

n n’ n-1 n— 1’

J Jd (M) = Sttt )POW )S(1 ¢
T, P n

EXAMPLE 7.3. Let pe EF. Let gcC 7Et be a quasialgebra. Let p be a gauge on g
integrating for the set function My:¢-FE. Let 0<s< . Let g = {Zc T :
PTQTS(Z) €@} and p(2)= P(pr;fs(Z)) , forevery Ze g . Assume that the gauge p_
integrates for the set function on M p:d - E. Let g bea p_-integrable function on

Ts, W a Baire function on A and

flv) = Wlw(s))g(pr, (v))

for every ve T . If the function [ is p-integrable, then

J, fa 00 = st Pm [ ga, (100

s
8

B. We maintain the notation of Section A.

Assume that an evolution, 5, in the space F and a spectral measure, P, on
B=B(A) aregiven. Let ¢ be an element of the space F.

Let t > 0. Let : be the Lebesgue measure on the interval [0,f] and £(:) the

family of all (individual) Lebesgue integrable functions on [0,{] . We write, of course,

for every fe L(s).

Let & be a semialgebra of sets in the space T ; such that @ C7% ’ and let p be
a gauge integrating for the restriction of the set function M p o to g. For every
se0,q], let Qs ={Zc T, pr;fs(Z) €g} and let /)s(Z) = p(pr?}S(Z)) , for every
Z€ Qs .
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Let W be a function on [0, x A such that the function 7+ W(ru(r)),
re€ [0,4], is i-integrable for p-almost every ve€ T,. Forevery se [0, , let e be a

function on Ts , to be called the Feynman-Kac functional, such that
K]

(B.1) es(v) = exp{ J 44 r,v(r))dr} ,
0

for every ve T, for which the integral at the right exists.

If e happens to be ps—integrable, let
(B.2) u(s)=JT e (VM(d V).

In particular,

In order to present concisely an intuitive interpretation of w(t), let us extend
the definition of W onto the whole of [00)xA by letting Wi(s,z) = W(t,z), for
every s>t and every z€ A. Assume that, for every ¢ and {¢" such that

0< ¢ <t

"

t

(B.3) T(t",t") = P[epr W(s,-)ds}

v
is a well-defined operator belonging to BL(E) and the resulting map T': {(¢",t"):
0 <t <t"}-BL(E) is an evolution in the space E .

Then u(¢) can be thought of as the element of the space E into which ¢
evolves under simultaneous action of § and T during the time-interval [0,f. In
fact, if the numbers 0 = to <t <..<i < i =1{ represent a partition, 4, of the

n—1
interval [0,] , let us denote

()= T( b )S( b VT b NS b ) e Tl E ) Syt ) TS )6

Z

Furthermore, let



7.4 187 7B

: .
szexp[J’ W(r,«)dr] ,
¢
-1

50 that T(tj—l’tj) = P( Wj) , forevery j=1,2,...,n, and

h(o)= T Walt)),

for every vel ;- Then, by Example 7.2,

Now, if the partition , is sufficiently fine, then we may expect that u (¢) will be

approximately the outcome of the simultaneous action of the evolutions ; and T on
¢ during the time-interval [0,/ . On the other hand, we may also expect that the
integral of h% 'with respect to M tcp' will approximate the integral of e -

Turning these heuristics into a solid argument would of course require an appeal
to a Trotter-Kato type theorem. However, we shall proceed differently. Namely,
assuming that the function e is ps—integrable, for every se€[0,{] , we are going to
present a sufficient condition for the function se u(s), s€][0,], to satisfy a
Duhamel type integral equation which expresses formally the idea of the superposition
of the two evolutions. The condition is stated in terms of (4®p)-integrability. (See

Section 5C.)

So, let

fls,v) = W(s,v)exp{ J: Wir,u( r)»)dr)] ,

for every s€[0,f] and veT, for which the integral at the right exists.

THEOREM 7.4. I, for every- s€[0,f], the function e, is ps—integmble and the

function [ is (1®p)-integrable, then

(B.4) u(t) = S(£0)p+ j; S(t,5) (W5, ))als)ds
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Proof. First note that

J; f(s,v)ds = exp[ J; W(r,v(r))dr)] “l=efv)-1,

for every ve T ; such that f(-,v) € L(s) . Furthermore, by Example 7.3,

. ts0id we = St OGS, ls)
T, p

for every se€ [0, such that f(s,-) € L(p,0) . Therefore, by theorem 5.11,
) - S(0)e= | (efe)-1M{d o=
T, p

_ JT [ Jt f(s,v)ds}Mt(dpv%p:J;HT fls)M(d g ds =

t t

7.4

It should be noted that it may be possible to define u(s) by (B.2), for every

s€[0,f], and to write equation (B.4) independently of whether (B.3) defines an

evolution. Indeed, the initial-value problem
W(t) = P(W(2,-))ult), t > 0; u(0+) = ¢,

may have a solution for some ¢ € E but not for others.

Now, assuming that (B.4) holds for every t€ (O,to), where 0< { < w,

formal differentiation gives that

(B.5) () = A()u(t) + POW(E,-))ult), T € (0,8))
where

A9 = lim 7 Y(S(t+r, ) -9) |

™~ 0

for every ¢ € E such that this limit exists in the sense of convergence in the space E.

Furthermore, (B.4) also implies that #(0+) = ¢.
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So, another, perhaps more conventional, interpretation of wu(¢) is that it is the
value at ¢ of a generalized solution of the initial-value problem consisting of equation

(B.5) and the condition that w(0+) = ¢.

C. Let A be a locally compact Hausdorff space. Let ¢+ X ;0 LE R, bea
continuous group of homeomorphisms of the space A . That is, for every ¢t€R, a
homeomorphism % . A = A is given such that

(i) Eﬁtzztozs,forevery s€R and teR; and
(ii) for every z€ A, the orbit ¢r Tg, te R, of the element z is a
continuous map of R into A .

Let B be the o-algebra of Baire setsin A . Let x be a Baire measureon A .
That is to say, there is a vector lattice, £(x), of functions on Q and a positive linear
functional, s, on L(x) such that its restriction to B,‘§ =BnL(k) is o-additive and
L(k) = £(n,BH) and Bye L(k) for every set BeB and function @€ L(k). (See
Section 3B.) For the sake of simplicity, we assume also that x is o-finite, that is, A
is equal to the union of a sequence of sets belonging to B e

Let 1< p<w and E=L”(k) with the usual norm. (See Section 3C.) To
simplify the exposition, we shall use the standard licence and not distinguish between
elements of the space F and the individual functions on A determining them.

Let S(t)go:gooEt, for every t€R and ¢ € E. Assume that

(i) S(t)pe E, forevery t€R and g€ F;
(ii) for every t€eR, the so defined map FS(t) :E- E is an element of
BL(E) ; and
(iii) for every € E themap ¢+ S(t)p, te€R, is continuous.

So, S:R - BL(FE) is a (continuous) group of operators.

For any set Be B, let P(B) be the operator of point-wise multiplication by
the characteristic function of the set B. Then the map P:B-BL(E) is a
o-additive spectral measure. The integral, P(W), of a Baire function W is the
operator of pointwise multiplication by the function W . So, we may write simply

P(W)=W.
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Forany ¢t >0, let T ; be the space of all continuous maps v: [0,{] - A . For

every z€ A and re[0,f], let
v (N=1_z.
Then, by the assumptions, 7, € T . for every ze A. Foranyset YCT o let
B,={zeA:7 eY}.

If the set Ye Qt is given by (A.1) with some integer £ >1, sets B]_ €B and

numbers tj, j=1,2,...,k, such that 0 < tj_1 < tjs t for every j=2,3,....,k, let

(C.1) Mt(Y) = S(t—tk)P(B )S(t,-¢, . )P(B

E k-1 1) - P(B,)S(4-t ) P(B,)S(1)) .

k

This is of course a version of (A.2) for the case when the evolution S happens to be
time-homogeneous, that is, it is a semigroup.

Let §, bethe o-algebra of sets generated by 7%, .

PROPOSITION 7.5. If Ye St , then BYE B.If Ye 7lt , then Mt(Y) = S(t)P(BY) .
Let e E. If u(Y) =S(t)P(BY)<p, for every Ye St, then p is an E-valued
o-additive set function on 8 ; such that wW(Y)=M t( Yo, forevery Ye .

Proof. Because B, e B for every Ye 2, and B is a o-algebra, it follows that

B, e B for every YE€S ) The equality M t( Y) = S(t)P(B,) can be checked by a

v
direct inspection for any Y€ ’llt . Then the last statement is obvious.
Let @€ E and let us keep the notation of Proposition 7.5. Because the set

function p is o-additive, Proposition 3.13 is applicable. Let |¢’ox| be the

variation of the set function ¢’op, for any ¢’ € E’ . Let

p(f)=sup{ L f1d] ¢ oul = 0" € B, 0] < 1},
t

for every f € sim(% t) . Then, byb Proposition 3.13, the seminorm p integrates for (the

linear extension of) .
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EXAMPLE 7.6. Let 0 < i < t2 <<t <<t let W17 W2"“’Wk be Baire

functions on A and let

(the multiplication is point-wise) determines an element of the space E. Moreover,

k
fdu:[cpll W oy ]oz ,

whenever the function f is in fact integrable.

PROPOSITION 7.7. Let W be a function on [0,f]xA such that the function

T W(’I‘,Erl‘) , T€[0,q, isintegrable for k-almost every z€ A . Let
, .
(C.2) Vt,W(z) = exp[ JO W(T,E_rz)dr] ,

for every ze A such that the integral on the right exists. Then the function e, is
p-integrable if and only if the function Vt WP determines an element of the space E.

If the function e, is indeed p-integrable, then
J,, edomtd, = (v, ooz,
t
Proof. When the integral in (C.2) exists in the sense of Riemann, then the statement
follows easily from Example 7.6. So, the statement is valid for all functions that are

k-almost everywhere limits of functions for which the integral in (C.2) exists in the

sense of Riemann.

The special case when A =[Rd, for some integer d>1, and X is the

fundamental solution of the dynamical system of differential equations 2= a(z),
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where a:R?-R? is a mapping with components 015005000 is of a particular
interest. For any £ er? , the function ¢+ X txo , t€R, is then the solution of this
system passing through 2 at ¢t=0. In this case, the infinitesimal generator of the
semigroup S is the differential operator
d
A= ]‘22:]. ¢, 3% .

If the function ¢ is smooth enough and
u(t,z) = Vt,W(Etx)‘p(Etz) ,
forevery ¢ >0 and z€ RY , then w is a solution of the problem

gitt =]§1 aj3%+ Wu,t>0 ,:I:E[Rd; w(0+,7) = p(z) , z€R .

The case of the Feynman-Kac formula suggested in this section admits many
variants. None-the-less the set function M , it gives rise to can be considered rather
'degenerate'. More complex cases are obtained by introducing another parameter.

For every ye[0,1], let tr Z}"t/ , teR, be a group of homeomorphisms of the
space A . Assume that the map (z,y,)» E!{z, of the space Ax[0,1]xR into A, is
continuous.

Let E=ILP(k®:), where k®: is the tensor product of a o-finite Baire
measure on A and the Lebesgue measure on [0,1] . For a function ¢ on Ax[0,1]

and t€R, let

(S(De)(zy) = (Zizy)

for every z€ A and ye€[0,1]. Assume that, for every @€ E and teR, the
function S(f)¢ determines again an element of E, that the resulting map
S(t): E» E is an operator belonging to BL(E) and, finally, the so defined map
tr S(t), t >0, is a continuous group of operators.

Let t>0 andlet T . have the same meaning as before. Let

-y
7, N=51z,

z,y
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forevery z€ A, y€[0,1] and re[0,f]. Foraset YCT,, let B%’,: {z: Yy € v}.
Let pe E. Forevery YeS§,, let (YY) be the element of the space £ such
that '

(S0 V)(zy) = By(z)e(zy) ,

for k-almost every z€ A and every ye[0,1]. It is then a matter of direct

calculation that pu(Y) = Mt( V), forevery Ye Qt .

D. Let d > 1 be an integer. We shall specialize the situation of Sections A
and B by taking the d-dimensional arithmetic Euclidean space, [Rd, for A and the
space of all scalar valued o-additive set functions on the o-algebra, B= B([Rd) , of all
Baire sets in R? for E. Because every element of F hag finite and o-additive
variation, we use the standard conventions about integration with respect to elements
of F mentioned in Section 3F. Namely, we note that the variation, ||, of an
element, ¢, of the space E is a gauge on B which integrates for ¢, denote
L(p) = L(]¢]) and do not show the gauge, |¢|, in symbols for integral with respect
to ¢ . The norm, ||¢||, of an element, ¢, of the space E is the total variation of
¢, that is, the number || ([Rd) .

The Lebesgue measure on R is denoted by A. Identifying the elements of
Ll(/\) with their indefinite integrals, we identify the space Ll()\) with a subspace of
E consisting of those elements which are A-absolutely continuous.

Given a set B€ B, let P(B) be the operator of restriction to the set B. That
is, (P(B)p)(X)=¢(BnX), for every set XeB and every @€ E. So, on the
subspace Ll(/\) of E, the operator P(B) acts as point-wise multiplication by the
characteristic function of the set B. For every Be€ B, the operator P(B) is an
element of BL(FE) and the map P B - BL(E) is a o-additive spectral measure.

Let D be a strictly positive real number and let

py(ta) = (47Dt) *exp(-| 31 >/4D1) ,
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for every t >0 and ze€ R . (|z| stands for the usual Euclidean norm of an element
z of R .)
Let S(0) =1 and

(500)(B) = | az de p(to-y)eldy) ,

for every t>0, BeB and. g€ E. Then the set function S(¢)¢, that is,
Bw (S(8))(B), BeB, is an element of the space E. For every ¢ >0, the
operator S(t), thatis, ¢wr S(t)p, pe FE, is an element of BL(E). Finally, the
resulting map ¢~ S(¢), t€[0], is a continuous semigroup, S: [0,0] » BL(E), of
operators.

The semigroup S can be interpreted as a mathematical description of isotropic
and homogeneous diffusion in R? with the diffusion coefficient D. It is called the
Poisson semigroup. Its infinitesimal generator is the (closure of the) operator DA,
where A is the Laplacian in RY.

Given a ¢t >0, let T, be the set of all continuous paths wv: [0, - A .
Because S is a semigroup, the formula (A.2), defining the set function M,: T,
- BL(E) , takes the form (C.1), for every set Y€ ’lt given by (A.1) with some integer
k>1, sets Bj € B and numbers tj , §7=1,2,....k, such that 0 < tj_1 < t;- <t, for
each j=23,..,k.

Let ¢ € E be a non-negative measure. Let

0 A1) = IM( V)il = (M{V)Q)RY),

for every Ye ’Ilt . Then Py is a non-negative o-additive set function on 7% y and so,
it generates a measure in the space Tt' This fact, dating back to N. Wiener, is
classical; see, for example, [11], Theorem VIIL.2.2. If ¢ is a probability measure on
R? , then Py is called the d-dimensional Wiener measﬁre of variance 2D per unit of
time with initial distribution ¢ . (See Example 4.33.)

Now, if ¢ is an arbitrary element of the space E, then p= Plol is a gauge

on 7lt which integrates for ¢ .
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Let W be a Baire function on [0, » RY. Mark Kac noted, see [26],Chapter IV,
that, if the function 7~ W(ru(r)), re [0, , is Riemann integrable in [0,¢, for

p-almost every ve T,, then the Feynman-Kac functional,

4
et(v) = exp{ J; W(r,v))dr} , VE Tt ,

is p-measurable on T . Consequently, if e , 1 also bounded then it is p-integrable.
This happens, for example, when W(r,z) = W(0,3) , for every r€[0,f] and z€ le,
and the function W(0,-) is bounded above and continuous on the complement of a set
of capacity zero in IRd, because the set of paths veT y that avoid a given set of
capacity zero has the Wiener measure equal to zero.

Now, if e , is indeed p-integrable, for every ¢ > 0, the element

(D.1) ) =] e(o(d e
T p
t
of the space FE belongs to Ll(/\) , for every ¢ € E. Let us abuse the notation and
denote by zv u(t,z), z€ R? , the density of w(#). In terms of densities, the integral

equation (B.4) can be re-written in the form

1
(D.2)  u(to) :J 4 Pplte-y)e(dy) +j J 2 Pplt=5,3-y) Wis,y)ul(s,y)dyds
R 0“R
for z€R? and ¢ > 0. This equation represents the initial-value problem

u(t,z) = DAu(t,z) + W(t,z)u(i,z) , ¢ >0, z€ RY
(D.3)

lim J uw(t,z)dz= o(B), BeB.
»0+“B

If d>2, itis easy to produce functions W such that u(¢) is well-defined by
(D.1) for every ¢ >0, but, for many € E, the integral equation (D.2) does not
have a solution. Then the problem (D.3) does not have a solution either. For
example, W(i,z) = ~Izl_d, t>0, ze A, £#0, issuch a function. Stﬂl, u(?) has

a perfectly good physical interpretation. (See Section OC.)
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E. Let d >1 be an integer. We take, again, A = RY. Let E=IL%()),
where A is the Lebesgue measure in RY. Elements of the space E and functions on
R? representing them will not be distinguished. The norm of an element, ¢, of E
will be denoted by [|¢]| .

For any Be B= B(IRd) , let P(B) be the operator of point-wise multiplication
by the characteristic function of the set B. That is, P(B)y= By, for every p€ E.
Then P:B- BL(FE) is a o-additive spectral measure.

Let m be a strictly positive number. Let S(0) =1 and, for every teR,

t+0, let S(¢) € BL(E) be the operator such that

(S(t)plz) = [Tﬂsfi]%dfmd w(y)exp[—g‘—it Ix-,yIQ]dy,

for every z¢€ R? and every e 'n L2()\) . The root is determined from the branch
that assigns positive real values to positive real numbers. It is well-known, and can
easily be shown using the Plancherel theorem, say, that such an operator S(¢) exists,
for every t€R, is unique and the resulting map ¢~ S(¢), t€R, is a unitary group
of operators. It is called the Schrodinger group. The infinitesimal generator of the

Schrodinger group, S:R - BL(E), is (the closure of) the operator

A=5=A,

i
2m
where A is the Laplacian on RY.

Let #20. Let T, be the set of all continuous paths v: [0,t] - RY. Let the
set function M ) Y ) BL(E) be defined by the formula

Mt( Y) = S(t—tk)P(Bk)S(t -1, JP(B

- ) ... P(B,)S(t,t,)P(B))S(,) ,

for every set

Y={veT:ut) € B, j=12..4},

where k>1 is an integer, the sets B}, belong to- B and the numbers t]_,

j=1,2,...,k, satisfy the conditions 0 < tj_ < t,-f t for every j=2,3,....,k. Let ¢ be

1
an element of the space E.
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Our aim is to produce a gauge on 2, which integrates for the set function
M,p . Actually, a suggestion for producing such a gauge is presented in Example 4.33,
because the construction exhibited there for d=1 can be easily adapted for arbitrary
d . However, we present now another construction.

By a special partition of Tt we shall understand any %t—partition, ?,
obtained in the following manner. (See Section 1D.) Assume that k>1 is an
integer, /z] are B-partitions of R? and t,- are numbers, j=0,1,...,k, such that
=0, tj~1
of all sets of the form

< tj, for every j=1,2,...,k, and h=1. The partition 7 then consists

Y= Y(to,tl,...,tk;BO,Bl,...,Bk) ={ve T,: v(tj) € Bj,j =0,1,...,k},

with arbitrary sets B}, belonging to the partition /4] , for every j=0,1,....k. We say
that the partition 7 is determined by the numbers tj and partitions %] ,
7=0,1,....,k . The set of all special partitions of T y will be denoted by T .

Our construction uses the fact, proved in the following proposition, that the set
function M » has finite 2-variation with respect to the set of partitions I'. (See

Section 4A.)

PROPOSITION 7.8. For every special partition, P, we have 1)2(M t<p,7’;T t) = H(,ollQ.

Consequently, 112(Mt<p,I‘;Tt) = ||<p||2 .

Proof. Let the partition 7 be determined by the numbers tj and the B-partitions
/27‘ , J=0,1,....;k. Because the operators S(t—tj) and S(tftj—l) are unitary and /] is
a B-partition of [Rd, we have
. 2 _ . 2
(7RG ICARTNS N - 017 R N 17/ O (CNRNURNUIY: N - I D)

Be
7

for any sets B,€ #, £=01,.,5-1, and any j=1,2,..,k. Moreover, because S(t)

is a unitary operator and is a B-partition of RY ,
0

lll® = 104X ) = LI Y(i5B,))ell” .
0
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Therefore,

2 2
o= T IVl = 0, (M P1T)

Now, let px be a non-negative real-valued o-additive set function on B such
that w(B) =0 if and only if M(B) =0 and /.L(le) =1. Let ¢ be the d-dimensional
Wiener measure of variance one, say, per unit of time with initial distribution #. (See
Section D.)

Given a partition Pe ', let

for every X ¢ Z,, putting, by convention, {XnY)/(Y) =0, whenever ¢(Y)=0. By
Proposition 2.13, the set function op is an integrating gauge on Z,, forevery Pel.
So, if P is a non-empty subset of T', by Proposition 2.14, the set function o,

defined by
o(X) =sup{o5(X) : P€ P},

for every Xe? ,» 18 an integrating gauge on %, .

By Proposition 7.8, however we choose P, the equality o(T t) = ”(p”2 holds.
Moreover, the gauge ¢ is monotonic. (See Section 2G.) We can choose P so that
the inequality ||M t(X)<p|l2 < o(X) holds for every Xe 7% - To do that it suffices to
take P =T . However, much more economical choices of the set P are possible. In
fact, there are countable subsets of ' which can be chosen for such a P .

Having made such a choice of P, let p(X) = (a(X))‘2L , for every Xe€ 7Zt.
Then, by Proposition 2.26, the gauge p integrates for the set function M -

It may be interesting to note that there does not necessarily exist a
non-negative o-additive set function, o, on % , such that the gauge ot integrates
for the set function M - In fact, we have the following -proposition, in which d=1,

due to Brian Jefferies, which implies that 1)2(M t(p,l'[(’k t);T t) =w, forsome g€ E.
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PROPOSITION 7.9. Let @ be the semialgebra in the space RxR consisting of all sets
of the form AxB with A€B and BeB. Let ¢(z)= exp(—%(1+i)x2) , for every
zeR. Let v(AxB)=P(B)S(1)P(A)y, for every A€eB and BeB. Then
B THOR=R) =

Proof. For any A€ B and Be B, we have

1 L
ax Bt =gz | | jA oz, )exp(~4i(a,-1,)Vexp(4i(z,-2,)2)olz,da dz, da

L I ex (i(la?—xx)) dzl dz, = & I exp(-iz —iz2)dx‘2d
Pz I B D e e T 1527 Apyz y-

The Cauchy-Schwarz inequality implies that

2 2
I J J exp(—ixy—éa?)d:vdy \ < /\(B)J ‘ J exp(-izy- %:I:Z)dz) dy.
BYA B A
Now, for every n =0,1,2,..., let a, =2mn+ 7/3 and
C = {(z,y) :zeR,yeR, |zy-2mn| < 7/3, y = an} .

Then 0< z<1 and cos{zy) >4, forevery (z,y) € Cn, S0
] ] et 1iiaaty | 2 s epl-naaB),

whenever A€ B, BeB, AxBCcC Cn , n=0,1,2,... Consequently,

7—5” J exp(-izy- 422 dxdy' > 1 exp(-1)(A(4))2\(B)
and, hence,

(E.1) A= B)I* > =L (\(4))°A(B),

for any sets A€ B and Be B suchthat AxBCcC Cn , n=0,1,2,...
If B is sufficiently small interval centered around a point y > a, then there
exists an interval, A, of length arbitrarily close to 27/3y such that AxBcC C ,

n=0,1,2,.... Moreover, for every n=0,1,2,..., the set C’n contains a pair-wise
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disjoint family, Jn , of such sets, AxB, which can be chosen so that

AxBEJn(/\(A))2/\(B) >J‘: [%]zdy_'z_n.

n

Because the sets C., n=0,1,2,.., are pair-wise disjoint, by (E.1), the 2-variation,

112(1/,H(Q);IR xR) , of the set function » is not less than

ex87(r—1 720 {E [g_?yr]?dy_ Q'n} =,

n
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