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SOJY.[E OPEN PROBLEMS m MATHEMATICAL RELATIVITY 

Robert Bartnik 

Theoretical general :relativity has developed to such an extent that over the 

next few decades we should expect rigorous mathematical arguments to replace 

many of the formal calculations and heuristic of the past. 

intuition 

will yield new insights for both disciplines, and it is in the hope of stimulating 

this process that this list was conceived. Thus, the basic criteria were that 

questions should admit a clear mathematical formulation, and be of interest 

both mathematically and physically. Of course, my own interests and tastes 

played a large part in the selection process, so there are many topics which are 

not represented here. In apology I can only say that our subject is too broad, and 

my knowledge too limited, for me to dare to venture any farther afield than I 

have already done. 

The questions vary from the banal, which may already lie solved, implicitly 

or explicitly, in the literature, to the impossible. The references are intended to 

be representative only - much more is known about some of the questions than 

I am able to indicate here. 

I would like to particularly thank the following for their contributions and 

comments: L. Andersson, G. Bunting, P. Chrusciel, C. Clarke, H. Friedrich, J. 

Isenberg, R P. A. C. Newman and N. 0 Murchadha. I would also like to thank 

D. Christodoulou, G. Huisken, S. Klainerman, V. Moncrief and S.-T. Yau for 

many discussions. 

Apparent Horizons 

A dosed oriented space-like 2-surface in a spacetime determines two future 

null vector fields, normal to the surface. If the future evolutions of the surface 
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along these directions are both area-non-increasing, the surface is future 

trapped. This is a condition on the null mean curvatures k±, and if one of them 

is zero, then the surface is an apparent horizon. If M is a spacelike 

hypersurface with extrinsic curvature (second fundamental form) K = CK;j), 

the apparent horizon condition for L c M leads to the equation 

where k = (kab) is the second fundamental form of 2: c M. In particular, an 

apparent horizon in a time symmetric (i.e. K;j = 0) spacelike hypersurface is a 

minimal surface. The weak energy condition [HE] implies that a time 

symmetric (more generally, maximal, tr1:K = 0) M has non-negative scalar 

curvature . 

., Given an asymptotically flat (AF) initial data set (M,g,K) and a (future) 

trapped surface L (i.e. tr:E(K+k) ~ 0), 

(a) show there is a (smooth, spherical) apparent horizon outside 2:. 

(b) show there is an apparent horizon inside :E. 

If M is time symmetric then it should be possible to deduce these results from 

known results about minimal surfaces [SU;MSY;PJ;SS;FCS]. 

® As the previous question indicates, we understand the behaviour of 

apparent horizons mainly by analogy with the behaviour of minimal surfaces. 

To what extent is this analogy valid? Unlike the area functional and minimal 

surfaces, there is no known functional for which the apparent horizon equations 

arise as the Euler-Lagrange equations. Does the "second variation" formula for 

apparent horizons mean anything? (cf. stability for minimal surfaces). 

" Prove there is an AF vacuum initial data set, diffeomorphic to R3, which 

contains an apparent horizon. (P. C. attributes this to Ladyzhenskaya). There 
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are numerical examples [MS], constructed by evolving axially-symmetric, time 

symmetric initial data. 

• Find an AF metric on R3 with zero scalar curvature and admitting a 

minimal 2-sphere, or prove there is no such metric. This is the previous 

question, but requiring a time-symmetric initial data set. Can the 2-sphere be a 

stable minimal surface? One motivation for this question is the quasi-local mass 

definition [BR6], restricted to scalar-flat metrics. (It may be possible to do this by 

gluing a small mass Schwarzschild metric onto a neighbourhood of a point of a 

scalar-flat metric on sa, and then perturbing the metric back to scalar-flat, but 

this has possible problems with the Sobolev constant). 

• Does an apparent horizon persist under the Einstein evolution? This is 

probably false, but I don't know of an explicit counterexample. An argument 

giving spacetime conditions under which a trapped surface can be indefinitely 

extended to a spacelike 3-cylinder of trapped surfaces, of non-increasing area, is 

given in [IW2]. 

• · Let· g = <p40 be a conformally flat, AF metric, with non-negative scalar 

curvature, so dcp ~ 0. Find conditions on cp which ensure g has no horizon. 

(The relation between the mass and size of a star in a conformally flat metric 

has been explored in [BMOM]). 

• Let M be a 3-manifold, AF with non-negative scalar curvature, and let 

:E c M be a stable minimal2-sphere. Prove the Penrose inequality [PRl] 

area(:E) ~ l61t (mass)2 

where mass is the ADM mass of M. This would give an upper bound on the 

area of an apparent horizon in a time-symmetric data set. Find a generalisation 
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of this inequality to initial data sets which are not time-symmetric. (The 

stability assumption here is necessary, cf. [BN1,2;Gi]. Proofs have been given 

under various restrictive assumptions, such as the existence of Geroch-type 

foliations [JP,JJ], and global conditions on the spacetime generated by M [LV2]. 

See also [TP], which shows an analogous inequality based on the Penrose 

quasi-local mass.) 

Initial Data Sets 

An initial data set (M,g,K) is a Riemannian manifold (M,g) with a 

symmetric 2-tensor K = (Kab) satisfYing the constraint equations 

2T00 = R(g) + (trK)2 - IIKII2 

TOi = gjkKij lk - (trK)i . 

Initial data sets may be constructed by first specifying the conformal data (Yah• 

J..cd, 't), where 'Yah is a Riemannian metric, A_cd is a traceless, divergence-free, 

symmetric tensor, and 't is a function, and then solving the Lichnerowicz/ 

Choquet-Bruhat!York (LCBY) system [CBY;OMY] (vacuum for simplicity); 

= 2f m6V 't 3'1' b 

for (<p,Wa), <p > 0, where LWcd = VcW d + V dWc- 2f3'Ycdvewe is the conformal 

Killing operator. The initial data set (gab• Ked) 

then satisfies the (vacuum) constraint equations with mean curvature 't = trK. 

If 't is constant and 'Yah is a metric on a compact manifold, then the LCBY 

system has been shown to be solvable [CBl;OMY;IJ]. 
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• Determine conditions on (Yab• A,cd, 't) which ensure the LCBY system is 

solvable, forM compact and 't non-constant (the constant-'t argument should 

generalise if I Vlog't I is sufficiently small). Examples of spacetimes without 

constant mean curvature (CMC) Cauchy surfaces [BR5;Br;WD], and numerical 

work with cosmological models undergoing inflation, show that it is necessary 

to consider initial data with non-constant mean curvature 't. 

• Describe suitable asymptotic conditions which enable the conformal method 

to be used to construct initial data sets on an asymptotically hyperbolic manifold 

(eg. a CMC hypersurface meeting ~+). Such initial data sets are called 

hyperboloidal. 

• Characterise those hyperboloidal initial data arising from a spacetime with 

a smooth conformal null infinity. Describe a class of LCBY data (Yab• A,cd, 't) 

which can be used to construct such hyperboloidal initial data. 

• Classify the various kinds of smoothness properties which hyperboloidal 

initial data may have at (a possibly generalised) conformal infinity. In 

particular, find the weakest conditions under which a proof of positivity of the 

Bondi mass can be completed (cf [BR2;CP2;0Ml] for the AF case). 

• Can the . space of (globally hyperbolic, vacuum) Einstein metrics on V = 

RxM3 have more than one connected component? Gromov-Lawson [GL] have 

shown that the space of positive scalar curvature metrics on S7 does have more 

than one component (in fact, there are infinitely many components [CR]). It is 

known [CBM] that the mass function on 'f'JTI. (the set of maximal AF initial data 

sets satisfying the conditions of the positive mass theorem [BR6]) has only one 

smooth critical point, at R3. This suggests there is only one component in the 

space of AF spacetimes admitting a maximal Cauchy surface. What is needed 

here is some compactness/Palais-Smale condition for the mass function on 'U" 'JTI.. 
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Uniquen.E!§S)Rigiclity Thoore:ms (static and stationary metrics) 

A surprising feature of the Einstein equations is the restrictions it places on 

solutions satisfying apparently non-restrictive conditions. The classical 

example of this is Birkoffs theorem: a spherically symmetric vacuum metric is 

necessarily Schwarzschild. Other examples are the Israel-Robinson 

uniqueness theorem for Schwarzschild, recently given a particularly elegant 

and general proof by Bunting and Masood-ul-Alam [IWl;RDl;BMuA], the 

uniqueness of the Kerr-Newman spacetime [CaB1,2;RD2;BG;MP], and the 

Eschenburg-Yau splitting theorem [YS;EJH;Ga2;NR;BEMG]. 

~ What conditions on the stress-energy tensor are needed to show that a 

static, AF metric is necessarily spherically symmetric? For perfect fluid 

stress-energy, this is the conjecture that a static star is spherically symmetric. 

For constant density, this follows from [BMuA], see also [MuA]. 

.. Find a "good" local characterisation of the Kerr solution amongst 

stationary metrics (preferably independent of the slicing used). Several 

characterisations of Schwarzschild are known: spacelike slices conformally flat, 

or spherically symmetric, or I VV I is a function of the lapse V [RDl ;IVvH 

,. Suppose (Mi,gi,Ki), i=l ,2, are disjoint Cauchy surfaces in an AF (vacuum) 

spacetime, which are isometric (Le. there is a map ~p:M1-?M2 , such that <p*g2 = 

g1 , l([l*K2 = K1). Show that the spacetime is stationary (admits a timelike Killing 

vector field). For compact Cauchy surfaces, this follows easily from the 

Eschenburg-Yau splitting theorem, but positive mass makes it impossible to 

construct a globally maximising timelike line in the AF case. A result for 

analytic metrics, periodic at null infinity, is shown in [GS]. An affirmative 

answer to this question for vacuum Einstein would be strong evidence against 

the existence ofbound state solutions (geons [BH]). 
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'" Give a general discussion of the possible types of singularities which may 

occur for solutions to the static and stationary vacuum Einstein equations, 

starting with a description of the possible singularities of the spacelike slices. 

Since such metrics cannot arise from smooth initial data, this is not a question 

directly about cosmic censorship, but more about the geometry of the 

static/stationary vacuum equations. The detailed analysis of the Curzon metric 

by Scott and Szekeres [88] indicates that the behaviour can be quite surprising. 

"' Recently it has been shown numerically that the static, spherically 

symmetric Einstein-Yang-Mills (EYM) equations have non-singular, AF 

solutions [BM]. This raises many interesting questions, for example: 

(i) prove existence of the static spherically symmetric EYM solutions; 

(ii) show there is no static spherical solution with non-zero electric field; 

(iii) analyse the time dependent spherically symmetric equations, analogous to 

the analysis of the spherically symmetric Einstein-scalar field equations in 

[CD2]; 

(iv) find axially symmetric static or stationary solutions generalising the 

Kerr-Newman solution; 

(v) find an EYM generalisation of the Majumdar-Papetrou superposition of 

extremal RN solutions [HH]; 

(vi) show that a static black hole solution of EYM must be Reissner-Nordstr!llm 

(An EYM black hole has no YM hair [YP;GE]). 

Approximations 

Motivated by the need to make predictions about real physical phenomena 

such as the solar system, millisecond binary pulsars, gravitational waves, 

colliding stars, etc., there has been a lot of work devoted to constructing metrics 

which approximately satisfy the Einstein equations. This work consists of both 

numerical computation of the Einstein evolution, and the many asymptotic 

expansion/linearisation/matching techniques. The reader is referred to survey 
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papers in the literature (eg. [SBFl ,2;DT]) for details of current work; here I will 

restrict myself to outlining the problems. 

• Prove any result of the form: 

Conjecture: Let ge be an "approximate solut~on" of the (vacuum) Einstein 

equations (i.e. IIRic(ge)ll :s; e, in some suitable norm). Then there is a metric g 

such that Ric(g) = 0 and Ug-gell :S: e . 

This question was also suggested by Ehlers [EJ]. Such a result (assuming 

the norms 11-11 are sufficiently general) would be of fundamental importance, 

since it would provide a good way to evaluate approximate/asymptotic and 

numerical solutions. Typical applications are described in the following 

questions. 

• Show that a solution of the linearised Einstein equations (linearised about 

Minkowski space) is close to a (non-flat!) exact solution. A global result here 

would give a new proof of the result of [CK2] on global existence of small data, 

radiating solutions. 

• Asymptotic expansion methods develop series solutions in a small 

parameter (c-L~O is post-Newtonian, G~O is post-Minkowskian, cf. [FS;BD; 

BlL;MTW]). Although there is general agreement that these expansions give 

realistic results for situations of physical interest, there is certainly doubt about 

their range of validity - a major cause for concern is the reliance on the De 

Dondeur (harmonic) gauge condition [CB2]. Show precise conditions under 

which the post-Newtonian and post-Minkowskian expansions converge, or at 

least approximate, a global solution. It may be necessary to work with a 

non-flat background metric (cf. the gauge source functions of Friedrich [FH2]). 
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• Prove the existence of a limit in which solutions of the Einstein equations 

reduce to Newtonian spacetimes. (A careful expansion analysis in the limit 

with matter sources going to zero has been made by Futamase and Schutz [FS], 

see also [CCBN]). 

• Find a simple, usable approximation scheme which allows one to 

determine (accurately) the gravitational radiation produced by an isolated 

astrophysical system. In particular, prove the quadrupole radiation formula. 

Explicit exact radiative solutions are rare: the best available are the boost­

symmetric spacetimes [BJ], which however have singularities on ~+ and zero 

ADM mass, but do provide explicit smooth metrics near parts of~+. 

• Show that test particles (very small, but finite, bodies) move on spacetime 

geodesics. This is a famous problem, and there has been extensive investigation 

of asymptotic expansions- see the discussion in [EJ]. 

• In what sense does a Regge spacetime [RT],[BrL] - a piecewise linear (PL) 

manifold with PL metric (=leglengths) - approximate a smooth vacuum 

spacetime? A similar question applies to the spacetimes constructed by 

numerical relativity. In [CMS] (see also [FFLR]) it is shown that various 

curvature measures (including the Riemannian Einstein-Hilbert action), 

defined combinatorially as distributions from PL decompositions of a fixed 

Riemannian manifold, converge, in an average fashion only, to the 

corresponding smooth curvature measures. It is not clear that this is the type of 

convergence that is natural here, since the spacetime is generally not given 

apriori, but is to be "constructed" from the Regge scheme. In any case [CMS] 

says nothing about the convergence of the Ricci tensor. 

• A problem encountered in numerical relativity is that of ensuring that the 

constraint equations are preserved by the evolution [SJ]. Morally this problem 
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arises because a lattice formulation does not naturally encode the 

diffeomorphism invariance of the equations. Devise a reasonable scheme which 

can be shown to preserve the constraints (cf. [DS]). This may also be thought of 

as a step towards showing convergence of some numerical scheme to a (long 

time) solution of the Einstein equations. 

Maximal and Prescribed Mean Curvature Surfaces 

The basic elliptic a priori estimates of [BRl ,3,4;GC1] reduce the questions of 

existence and regularity of maximal (and CMC) hypersurfaces to questions 

about the existence of coordinates satisfying weak uniformity conditions. 

However, the satisfaction of these conditions requires knowledge about the 

long-time behaviour of the spacetime. Since failure of the uniform interior 

condition of [BRl] in particular implies the interior metric is undergoing 

unbounded change in some sense, it has been argued that the existence 

theorems may be turned around to form a "singularity theorem" [COMB],[BR5]. 

Much more work is needed to understand the conditions. 

'" Maximal Cauchy surfaces are known to be unique if the timelike 

convergence condition (TCC) is satisfied [BF,COMB], or if the spacetime admits 

a timelike Killing vector. There is an unsatisfactory gap between these two 

conditions, which includes the dominant energy condition. Prove a uniqueness 

theorem for maximal surfaces, assuming only DE. 

" Generalise the estimates of [BRl] to show the existence of a CMC 

hypersurface asymptotic to a given cut of ~+ in an AF spacetime. What are the 

weakest asymptotic conditions on ~ + for which this holds? A complete 

description of the CMC hypersurfaces in Minkowski space is given by [TA;CT]. 

" Let V be an AF spacetime, having a Cauchy surface without horizons. 

Show there is a maximal Cauchy hypersurface in V. (The point is we have no 
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coordinate conditions, but the known obstructions to existence of maximal 

surfaces [Br;WD; BR5] are absent). 

<> Show that a maximal surface in a boost-type domain [COM] is necessarily 

AF and must coincide with the maximal slices which can be constructed by 

[BRl; COMB]. (This is a non-flat generalisation of the Cheng-Yau Bernstein 

theorem [CY]). 

Causality and Singularities 

"' Is there a timelike geodesically complete, inextendible Lorentz manifold 

satisfying an energy condition and having a partial Cauchy surface which 

contains a trapped surface? This must be acausal: the possibilities are 

:restricted [TF]. 

" Show that a weak Cauchy surface (i.e. a pointwise limit of a sequence of 

Cauchy surfaces) in a globally hyperbolic spacetime satisfying suitable energy 

conditions, cannot contain an inextendible null geodesic. This is motivated by 

the regularity of variationally maximal surfaces [BR3]: such hypersurfaces are 

smooth and strictly spacelike, except on null geodesics which are inextendible 

and contained entirely within the hypersurface. 

,. A spacetime satisfies condition (G) if there is a point whose domain of 

influence meets every inextendible timelike curve [Gel;Gal;BR5]. Show that if 

condition (G) fails or there is a "hidden infinity" [BR5] in a cosmological 

spacetime V satisfying TCC, then there is a trapped surface in V. This would 

give a proof of 

Conjecture: Let V be a cosmological spacetime satisfying the timelike 

convergence condition, Then either V is timelike geodesically incomplete or V 

splits as IRxM isometrically (and thus Vis static). 
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If V contains a timelike line, then this is the Eschenburg-Yau splitting 

theorem. 

• Prove a singularity theorem assuming the dominant energy condition 

rather than the timelike convergence condition. The DE condition is the most 

natural energy condition from a physical standpoint [HE], but unfortunately 

TCC seems to be the most useful from the standpoint of proving singularity 

theorems. 

• If gab e Cl,l then the curvature tensor is L~ , and the initial value problem 

(IVP) for geodesics has a unique solution. Apparently, Cl,l is essentially the 

weakest condition for uniqueness to hold [HP]. However, length maximising 

timelike curves will exist if the metric is merely co, and these will be o,a 
(O<a.<l) if the metric is co,a. Is a maximising geodesic unique in this case? Is 

there a physical interpretation of non-uniqueness of the IVP? In particular, 

should a metric for which uniqueness fails for the IVP for timelike geodesics, be 

considered singular? 

Initial Value Problem (Cosmic Censorship) 

Everyone seems to have their own version of what "cosmic censorship" 

means. Metaphysically, the aim is to show that the Einstein equations are 

"physically reasonable". Since there are already exact solutions with closed 

timelike lines (eg Godel, NUT), we make a restriction: consider only globally 

hyperbolic spacetimes (ie. solutions of the IVP). This excludes solutions with 

gross causality violations, but still leaves some singular possibilities. The 

Hawking-Penrose singularity theorems [HE] show that singularities (i.e. 

timelike geodesic incompleteness, Cauchy horizons) are to be expected in 

general, so the problem reduces to showing that these are physically acceptable. 

The usual statement is then that a typical observer does not see a singularity 

(but observers heading for oblivion may be permitted a glimpse at the 
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unthinkable - this is weak CC). Technically, seeing a singularity involves 

crossing a Cauchy horizon, but this viewpoint is not common when discussing 

the AF question [ME]. Of course, this discussion supposes we have agreed what 

constitutes a singularity, but this is not obvious - see the questions on 

existence/uniqueness for the IVP for geodesics and the vacuum equations. 

There have been many attempts to prove CC by showing that singularities 

satisfying certain conditions are not naked. Although some information can be 

gained from these approaches, this line of argument seems to be avoiding the 

real issue, which is showing that the "certain conditions" are in fact satisfied by 

solutions of the Einstein IVP. This amounts to proving long-time estimates for 

the evolution equations. 

"' Show a long~time existence theorem for the vacuum AF Einstein equations 

in the maximal slicing gauge [ME]. For nearly flat initial data this is major 

work of Christodoulou-Klainerman [CK2]. For large data this would imply the 

absence of globally naked singularities and that any singularities formed would 

be "shielded" from the maximal surface evolution by a maximal surface barrier 

analogous to that found in the Schwarzschild and Kerr solutions [ES]. 

Christodoulou has proved comprehensive results about spherically symmetric 

spacetimes with dust [DCl] and massless scalar field [DC2]. One line of attack 

is to first consider axially symmetric spacetimes, where the vacuum Einstein 

equations reduce to a coupled Einstein-harmonic map system [KSMH]. 

"' Determine conditions on AF initial data which ensure that the null infinity 

of the resulting solution of the IVP is sufficiently regular that the Penrose 

extended manifold exists, with at least C3 metric so the peeling theorem holds 

[PRl]. Friedrich has shown that sufficiently small hyperboloidal initial data, 

satisfying a system of "conformal constraint equations", generates a smooth ~+ 

which extends to a smooth t+ [FH3]. 

Estimates for the Hnearised equations [CKl ;PS;SB] indicate that the decay 
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rate of the data near tO is important. Finite energy is not enough to provide 

estimates consistent with peeling [CKl;HL], whilst the conformal method [CBC; 

CD2] gives solutions which necessarily satisfy peeling, but must have faster 

decay at to. The results we have for the full vacuum Einstein equations 

[FH2,3;CK2] appear consistent with these linear results. 

• Give an exact "purely radiative spacetime", i.e. a solution to the Einstein 

vacuum equations which has complete smooth ~±, regular i±, and positive mass, 

or show the existence of such a spacetime. One method is to show the existence 

of time-symmetric initial data sets which are arbitrarily close to flat and are 

exactly equal to Schwarzschild near infinity, and then apply results of Friedrich 

[FH3]. For Einstein-Maxwell this has been carried out by [CW] (this also works 

for Einstein-Yang-Mills). This is also motivated by the above question about the 

regularity of ~+. 

• Find the weakest possible regularity for a vacuum metric [CC;HKM;KT]. 

As observed by G. Huisken, the Ricci tensor is defined distributionally when the 

metric satisfies merely g,g-le L00 , Clge L2, so a metric satisfying only these 

regularity conditions could conceivably satisfy the (distributional) vacuum 

Einstein equations. There are a number of problems of interpretation here, not 

least of which is deciding whether such a metric should be considered singular. 

Since the coordinates in which the metric is given originally are not restricted, 

there is the problem of determining the optimal coordinates (="best 

differentiable structure"). Results on the regularity of variational maximal 

surfaces [BR3] may be useful here. The analogy is the use of harmonic 

coordinates in Riemannian geometry, which fails in the Lorentzian case since 

the regularity theory cannot generalise. 

• By analogy with the IVP for geodesics, there may be regularity conditions 

for the vacuum Einstein IVP which guarantee existence of a solution, but not 
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uniqueness [CBY] (see the previous question). Should such a (globally 

hyperbolic!) spacetime be considered singular? Is there an example of (smooth) 

initial data whose vacuum evolution develops a singularity, but which can be 

extended, non-uniquely but still satisfying global hyperbolicity, beyond this 

singularity? This would imply that the maximal Cauchy extension is not 

unique in general and depends on the function space in which the IVP is posed. 

" Show long-time (trK-1-±oo) existence in the CMC slicing gauge for the 

cosmological spacetime vacuum equations (this is the compact Cauchy surface 

version of a previous question). For Gowdy spacetimes (1['2 symmetry) this is 

Moncrief [Jiv'IVl]. Singularities where trK-1-±co are called crushing, or of big 

bang/crunch type [GC]. Note there is a (non-vacuum) cosmological spacetime 

which does not admit constant mean curvature Cauchy surfaces [BR5]. 

" Prove that every globally hyperbolic, maximally extended spacetime 

solution of the Einstein o:r Einstein-Maxwell equations on V = RxS3 contains a 

maximal hype:rsurface (and also both a big bang and big crunch). Are there any 

vacuum or Einstein-Maxwell solutions on Rx83 which cannot be foliated by CMC 

hypersurfaces? (This is a restatement of the previous question). Special case: 

Prove this result for the spatially homogeneous solutions (Bianchi IX) . 

., Show that, in an appropriate sense, the set of spacetime metrics which are 

(smoothly?, distributionally?) extendible across Cauchy horizons are "measure 

zero" in the set of all spacetimes ([ME;Ml], generally asked about spacetimes 

with compact Cauchy surfaces). Taub-NUT [MC] is the classic example of a 

spacetime with a very unpleasant, but smooth, Cauchy surface, and which 

would be branded "non-generic" by such a result. 

"' Fi.nd an exact solution of the Einstein equations which represents two 

orbiting bodies. Is the 2-body system unstable in Einstein gravity? This is 
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probably the most embaiTassing indictment of our (lack of) understanding of the 

Einstein equations. See eg. [DP] for an asymptotic analysis. 

" Determine the class of spacetinnes which are, in an appropriately defined 

sense, asymptotically velocity dominated near the singularity [BKL;ELS]. 

'" Show that the only solution of the vacuum Robinson-Trautman equations 

on S2xR with mass > 0, is the Schwarzschild metric [RA;SB2;LPPS]. Can a 

similar theorem for the Einstein-Maxwell RT equations be shown? 

.. Physical and linearisation arguments suggest that a perturbation of the 

Schwarzscrilld (and Kerr) solution decays exponentially (black holes a:re stable); 

see Chandresekhar [Ch] for a comprehensive review. Prove this (cf. [CD1,3] for 

the spherically symmetric dust and scalar field equations). 

" Show that a cosmological spacetime with CMC initial data having positive 

Ricci 3-curvature, has an evolution which preserves Ricci positivity (S.T. Yau). 

Quasi-Local Mass 

The obvious generalisation of the Newtonian mass of a body is not useful in 

Einstein gravity, since it does not detect energy in the vacuum field. The 

problem of defining the total energy of an isolated system was essentially settled 

in [ADM], but the coiTect definition of the energy content of a bounded region in 

spacetime is still not settled. A number of candidates have been suggested 

[HS;PR2;LV1 ;BR6], but for none of these has it been possible so far to verify all 

the properties one would like a quasi-local mass definition to have [ED]. The 

payoffs from a good definition would be considerable: a precise measure of 

gravitational binding energy, the energy content of gravitational waves, .... 
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" Find a sensible notion of quasi-local mass which appears in non-trivial 

theorems such as; If a 3-dimensional region with volume V has QL-mass ;::: 

M 0(V, ... ), then any spacetime containing this region must have a trapped 

surface and thus a black hole. 

"' Show the set 'f 'JTI, of AF 3-manifolds which satisfy the conditions of the 

positive mass theorem [SY1,2;WE] has some weak compactness property, eg. a 

sequence {Mk} with bounded mass and bounded geometry has a convergent 

subsequence (cf. [0M2] and these proceedings). What regularity might we 

expect in the limit manifold? 

" Let Q c (M,g) be a bounded region in a 'f 'JTI, manifold, with connected 

boundary. Show there is another 'f 'l1'b manifold (M* ,g*) ::> Q, isometrically, 

such that (M*,g*) is static outside 0 (cf. [CW]). This is part of the static metric 

conjecture of [BR6], which further conjectures that (M* ,g*) has least ADM 

mass amongst all those 'f 'JTI, extensions of Q having no horizon outside Q. 

'" Construct a proof of the positive mass theorem, based on Ge:roch's foliation 

by 2-spheres idea [Ge2]. There are several variations of this argument [JK;JP; 

LV2], but these aU :require the existence of a foliation with special properties­

the (highly non-trivial) problem then being that of showing the existence of such 

foliations. Recently existence results have been given for the inverse mean 

curvature flow near spatial infinity [CG2;HG;UJ] and for foliations near infinity 

by constant mean curvature ("round") 2-spheres [HY]. 

"' Show the Bartnik quasi-local mass [BR6] is strictly positive for non-flat 

data. Show that the Penrose quasi-local mass is non-negative on reasonable 

data (there are examples [TP] with negative mass). 

.. Explain the relation between the various definitions of quasi-local mass. 
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