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GRAVITATION WITH GAUSS BONNET TERMS 

Yvonn~ Cho~t-Bruhat 

Abstract We study general properties of the partial differential equations 

for generalized gravity arising from the Lovelock Lagrangian. 

I - Introduction 

The low energy limit of supersymmetric string action leads to an effec-

tive Lagrangian which contains, in addition to the usual scalar curvature, 

polynomial terms in the Riemann curvature tensor; these terms are identi-

cally zero if the base manifold is of dimension four. The corresponding 

field equations are second order partial differential equations for the 

metric tensor if the Lagrangian was formed with the so called Gauss-Bonnet 

combination , that is if the polynomial of order p was of the type 

/\1/\2. · · A2p-1A2p L(p)= F _, 
"-t.l-1! 2 ... ~-'-2p-1[).2p 

which, if the manifold has dimension 2p, corresponds to a closed form which 

represents the Euler class of the manifold (up to a constant factor). The 

equations are non linear even for the second derivatives if the Lagrangian 

contains a Riemann curvature term of order p > 1 . Various interesting 

results are already known for these field equations. First it is obvious 

that at flat space their first variation is identical whith the variation 

of Einstein equations. It has also been proved (Boulware aild Deser) that 

they have the same plane wave solutions than Einstein equations. The same 

authors have constructed spherically symmetric solutions and studied their 

stability. Kerner has used these equations in a five dimensionnal Kaluza 

Klein context as a model for non linear electromagnetism. In the case p=2 

the characteristics have been studied by Aragone . Other results pertinent 

to particular cases have also been obtained. 
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In this article we give some general properties of the generic solutions 

of the system of non linear partial differential equations, deduced from 

the Lagrangian with Gauss-Bonnet terms : we show the splitting of the equa-

tions like in ordinary gravity , between constraints and evolution, and 

show that at least in the analytic case the evolution preserves the cons-

traints. We determine the wave fronts ; they are no more tangent to the 

light cone and not even to a second order cone , neither probably in gene-

ral to a convex cone even if the polynomial terms in Riemann curvature are 

coupled with the ordinary Einstein tensor through multiplication by a small 

constant : the wave cone of the Einstein equations consists in fact of D 

copies of the light cone of the metric , and by perturbation it becomes a 

cone of order 2D which may be non convex and non real. Existence of solu-

tions of the Cauchy problem are not known without analyticity hypothesis on 

the data. 

In a second part we give some general results about high frequency 

waves. 

II - Equations 

Let V bead-dimensional C00 manifold, with a metric g of hyperbolic si-

gnature (-, +, +, .. +).This metric is said to represent gravitation with 

Gauss-Bonnet terms if it satisfies the system of partial differential 

equations 

Af3 
"' 

0 (2-1) 

where the KP are constants, the completely antisymmetric 

Kronecker tensor, and R"'~'~l\tJ. the Riemann curvature tensor of g. The sum is 

indeed finite : all terms with 2p + 1 > d are identically zero; for d = 4 

the only non zero terms are for p = 1. For arbitrary d the term in p = 1 is 

proportional to the Einstein tensor 
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- 4 (R~ - ~ ~~ R) - 4 S~. - ~ 2 0~ - ~ 

while the term with p = 0 is the so called cosmological term. 

To make appear a coupling constant, eventually small, between the usual 

Einstein equations in dimension d. with possibly a non zero cosmological 

constant, and the new Gauss-Bonnet terms, we rescale (2-1) to write it 

under the form 

S~ + A g~ + X B~ 0 (2-2) 

with, P < d/2 being some positive integer 

p 

B~ 2: k l )\1 .. )\2p 
R 

~1~2 

"' 
- p "' ~1 .. ~2p )\1 )\2 

p=l 
Rl\ l\ 

2p-1 2p 

We have, by the symmetries of the Riemann tensor 

the equations (2-2) are, in local coordinates, a system of d(d+l)/2 second 

order partial differential equations for the d(d+l)/2 unknowns g"'~· 

These equations are invariant by diffeomorphisms of V : in fact the 

lagrangian itself is invariant by these diffeomorphisms, which implies, for 

any choice of the constant.s X and kP, the d identities 

0 (2-3) 

as can be checked directly. 

III - Cauchy problem. Constraints. 

The equations (2-2) are, like the equations of ordinary General Relati-

vity both an under determined system and an over determined one : their 
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characteristic determinant is identically zero at most of rank d(d+l)/2 -

d = d(d-1)/2 due to (2-3) on the one hand, and on the other hand the 

unknowns and their first derivatives cannot be given arbitrarily on a d-1 

dimensional submanifold of V : the Cauchy data must satisfy constraints. 

To make a geometric analysis of the Cauchy problem we use, like in ordi­

nary gravity, a (d-1)+1 decomposition of the metric and, in the case consi­

dered here, of the full riemann tensor. 

Let U = S x I be a local slicing of an open set U c V by d-1 dimensional 

space like manifolds St = S x {t}. The metric reads, in adapted coordinates 

x0 = t, x1 coordinates on S 

If the shift ~ is zero (choice always possible) a simple calculation 

gives the identities 

-k k K.k K k Rijh Rij h + Kih - Khj (3-1-a) - J i 

1 
rj Kjh) - Kih - '\7. (3-1-b) 

0!. 1 

0 
1 j 1-

"' - - -d Kih + Kij Kh - \l. ah (3-1-c) oh 0!. 0 0!. 1 

where '\7 and RiJhk are the riemannian covariant derivative and curvature 

tensor of the metric g ~ (gij) induced on St by g ~ (g~~ , and K = (Kij) is 

the extrinsic curvature of St, that is 

We remark on the 

nowhere and that the 

appears only in Rioh 0 

mined on a slice st 

formulas 

1 
- -a gl. J 

20!. 0 

(3-1) that the derivative o~ 0 

(3-2) 

0!. appears 

derivative 00 Ki J ' therefore the derivative ()2 
gij ' 00 

As a consequence the quantities A~ and A~ are deter-

by the values on st of the first derivatives of the 



57 

metric, they give constraints on the Cauchy data, namely in the coordinates 

we have adopted : 

p 

s~ + 1\ g~ + x 
p=2 

p 

Ro o j2p-lj2p 
1 2p-1 1 2p 

xL 2 p kp e,ilooi2p Ro 0 oj2 Ro 0 j3j4 •• Ro 0 j2p-lj2p 

p=2 Jzo oJ2p 1 1 1 2 1 31 4 1 2p-1 1 2p 

lve know from Einstein's equations that 

s~ -

Using (3-1) the other terms in A~ and a A~ can also be expressed in 

terms only of the geometric elements gt and Kt on St. 

The intrinsic Cauchy data on a slice S0 for gravitation with Gauss­

Bonnet terms are like for usual gravity a metric and a symmetric 2-tensor 

on S0 , satisfying the constraints, 

A_u_ 0 "hamiltonian" constraint 

(AH) 0 "momentum" constraint. 

An analytic solution of the equations Aij = 0 on U = S x I which satis-

fies the constraints on 80 satisfies the equations A"'13 0 in a neighbor-

hood of 80 , for any analytic choice of lapse (and shift if we introduce it) 

due to the identities (1-3) which are then a first order homogeneous system 

of the Cauchy Kovalevski type for the d quantities A~. 

The same is true if, instead of AiJ = 0, we consider the equations 
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1 A A~ 
- i j - d-2 gi j "' 

0 

IV - Evolution. Analytic case. 

The equations A1 J= 0, or A1 J= 0 are, when the lapse is given as well as 

the shift (here taken to be zero) a system of non linear d(d-1)/2 partial 

differential equations for the unknown ghk" It results from §3, as already 

remarked by Aragone that they are linear in the second derivatives o~ 0 ghk" 

They are of the Cauchy Kovalevski type in a neighborhood in S x IR of the 

manifold 8 0 = S x {0}, for the Cauchy data g and K, if they can be solved 

with respect to the 8~ 0 ghk' that is if the determinant of the coefficients 

of these derivatives is non zero. 

We denote by ~ equality modulo the addition of terms which contain no 

second derivatives o~ 0 ghk. We have 

with 

X~~ 
1 J 

1 hk 2 --X .. a ghk 
- 2a2 1 J oo 

The system A1 J = 0 is of the Cauchy-Kovalevski type, for the unknown 

g1 J and an arbitrarily given at: if the determinant of the matrix M with 

elements (a capital index is a pair of ordered indices) 
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is non identically zero. 

We have, ll denoting the unit matrix and D d(d-1)/2, 

and 

with 

al sr 
J 

yJ 
I 

a2 
EI 1 I 2 

J1J2 

det M 

det (ll + xY) 

tr Y = &k l)i 
k 

p 

2: «p 
p=2 

(_l )o det (ll + xY) 
l20l2) 

yh~ xu 1 g.em 
- d-2 gij >J 

(2p)2 t/3 .. .e2p R rn3m4 
m3 .. m2p .e3.e4 

ll J2 (tr Y) 2 yhk yij YI -
Il ij hk 2 

det Y 

xij .em 

R.e .e 
2p-1 2p 

m2p-1 rn2p 

aq is a polynomial in the components R1 jk.e of the Riemann tensor of g which 

can be expressed on 80 , using (3-1), in terms of the Cauchy data g and K. 

Theorem Let (S,g,K) be an analytic initial data set, satisfying the 

constraints and such that det(ll + :X Y) 8 7 0. There exists an analytic space 
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time (V,g) taking these initial data and solution of the equations of 

stringy gravitation with Gauss-Bonnet terms. 

The (analytic) lapse is arbitrary to different choices of lapse 

correspond locally isometric space times. 

Proof The Cauchy-Kovalevski theorem. 

Remark if X, or if K and the Riemann tensor of g Jl are small enough then 

det(fi + X Y) 5 7 0. 

V - Characteristics as possible wave fronts. 

In order to study possible propagation of Gauss-Bonnet gravity, and even 

tually get rid of the analyticity hypothesis in the solution of the Cauchy 

problem, we now look for the possible significant discontinuities of the 

second derivatives of the metric across a d-1 dimensional submanifold 5 of 

a given space time (V,g) solution of the equations of Gauss-Bonnet gravity. 

Such hypersurfaces are called wave fronts. 

We know (cf Lichnerowicz 11 ) that the significant discontinuities of the 

second derivatives of the metric - that is those which cannot be removed by 

a C2 by pieces change of coordinates - are the discontinuities in o~ 0 gij 

if S has local equation x0 = constant. The calculations made in the pre­

vious paragraph show that these discontinuities can occur across S if and 

only if 

0 

In arbitrary coordinates, where the equation of S is f(x"') 

condition for S to be a wave front reads 

(5-1) 

0, the 

where aq is an invariant polynomial of order (P-l)q in the tensor p, pro­

jection on S of the Riemann tensor. It can be seen using the expression of 
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p and the antisymrnetry of the E tensor that aq is only a polynomial of 

order 2q in n. We find for instance when P = 2 

c s"' 13 n n 
"' 13 

(using n"' n"' - 1) 

(result found by Aragone10 ) 

and a 2 is of the form, 1vi th C, C0 , C1 , C2 numbers depending on d 

which, using antisymmetries and n"' n"' 

degree L1 in n. 

- 1, reduces to a polynomial of 

We obtain the equation for the wave fronts by replacing n"' n10 in aq by 

a"' r a10 r 

g"~-' a" r a~-'r 

and we see that the hypersurface S, f constant can be a wave front if 

where bq(vf) is an homogeneous polynomial of degree 2q in vf, whose 

coefficients vanish when the curvature tensor vanishes. 

The wave front cone at a point of V, is a cone in the cotangent space, 

obtained by replacing ol\f by a covariant vector l:;,l\, of degree 2D. By taking 

the parameter X small - or the curvature small - it is possible to insure 

that this cone remains in a region close to the null cone of the metric, 

using the property that this null cone is convex (cf 12), however there is 

no reason to consider that the product of the null cone and the cone 

gA~ ~l\ ~~-X b1 (~) = 0 approximates the full cone C. 
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VI - Harmonic coordinates. 

Coordinates are harmonic if the metric satisfies the conditions 

0 (6-1) 

It is well known that 

og) (6-2) 

where H~~ depends only on the metric and its first derivative. We set 

(6-3) 

and 

(6-4) 

where we do not truncate B~~ by the use of (6-1). 

We deduce from 
~(h) 

the conservation identities that a solution of A~ ~ 0 

satisfies the homogeneous wave equations in Fie : 

On the other hand a hyperbolic metric g~~ 
~(h) 

solution of AOI. 13 

satisfies the constraints, on S0 (x0 = O) satisfies also 

oo Fr.lxo=O 0 

We deduce from this remark 

(6-5) 

0 which 

(6-6) 

Proposition A solution of Aih~ 

and 

0 which satisfies the constraints on S0 
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0 (6-7) 

satisfies FA= 0 in all the future of 8 0 , determined by the isotropic cone 

of the metric, under only mild regularity hypothesis (as necessary for the 

uniqueness theorem for the wave equations), and hence satisfies A~P = 0. 

In contradiction with A~P = 0, the system 
~(h) 

A~ P = 0 is of the Cauchy-

Kovalevski type. Its characteristic determinant is non zero except on a 

cone, the characteristic cone. 

However this cone is not the light cone the elements of the characte-

ristic determinant are 

(6-8) 

where rows and columns are numbered by ordered pairs of indices (013), (pa-). 

Proposition (cf 12) The characteristic determinant of the system 

is, with C d-d(d+l)/2 

det p(h) 

~(h) 

A"" P 0 (6-9) 

where ~ is the polynomial giving the wave front cone determined in the 

previous paragraph. 

Writing the Gauss-Bonnet gravity in harmonic coordinates as A~h~ = 0 

introduces the isotropic cone as a spurious wave front cone, but preserves 

the true one. 
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Without further information on this cone : reality, simplicity, conve­

xity, it is not easy to give more results on the general Cauchy problem for 

the classical system of partial differential equations of Gauss-Bonnet 

gravity. 

VII - Shocks and High frequency waves. 

The equations of gravitation with Gauss-Bonnet terms are fully non 

linear ; as such they offer a ne1• challenge to the specialists in partial 

differential equations, in particular ~he study of shock waves as well as -

the determination of high frequency waves by asymptotic expansion could be 

untractable . However the non linear terms have a remarquable property , a 

consequence of which is the result obtained by Boulware and Deser that 

gravitational plane waves are also solution of the equations with Gauss­

Bonnet terms . We now give this remarkable property in its full generality. 

Theorem L If the Riemann tensor is of the pure radiative form , then the 

Gauss Bonnet correction in the equations A~~ = 0 is identically zero . 

Proof : The Riemann tensor is called purely radiative if it reads 

(Lichnerowicz 1961) 

The result follows from the antisymmetries of the Kronecker tensor . 

The theorem 1 shows that if we try to determine shocks as solutions 

which admit discontinuities in the first derivatives of the metric across a 

hypersurface S we shall indeed find equations which do not contain the 

meaningless square of the measure &(S) . Unfortunately these equations 

still appear to contain in general the product of o(S) by a function which 

is discontinuous across S . This is not defined , but it has been shown in 

special cases that such products in fact do not occur21 and the study of 

the generic case remains to be done . We shall not pursue this way here , 
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but instead we shall give some results about high frequency waves : it is a 

more flexible subject and perhaps more interesting physically in this 

context , 

A metric g is said to represent an high frequency wave if it depends on 

the point x of the manifold V with two different scales it is defined 

through a mapping from V x R into the space of metrics on V , 

(x , ~ ) K g(x , E ) , x E V , ~ E R 

and by replacing E by the product w ~(x) , where w is a large parameter and 

~ is a scalar function on V . With this hypothesis the partial derivatives 

of the components of g in local coordinates are given by , with obvious 

notations , 

g'O<.f3 

and maxe appear , by choice of a large enough w , a rapid variation of g in 

the direction n transversal to the submanifolds ~ = constant , called 

submanifolds of constant phase , or sometimes wave fronts 

We then look for a solution of the system of partial differential equa­

tions under the form of a formal series in inverse powers of w . When we 

report formally this series in the equations we obtain another formal 

series in these inverse powers and we say that we have an asymptotic 

solution of order p if all coefficients of powers of w vanish up to the 

coefficient of w-P . An asymptotic solution is also an approximate solution 

if the remainder satisfies appropriate boundedness conditions . 

There are several possible choices , already in general relativity, to 

look for these asymptotic expansions starting from a metric independant of 

w called a background , and perturbating it either with terms of order w- 2 

(cf 13, 16) or by terms of order w- 1 which induce a "back reaction" (cf 14, 

15) : in this case the background metric cannot be a solution of the vacuum 

Einstein equations. In the case of the equations with Gauss Bonnet terms 

the situation is enriched by the presence of the coupling constant . We 

shall present below some results which take advantage of this possibility . 
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We consider the case where the coupling constant between the usual 

Einstein tensor and the Gauss Bonnet terms is of order w- 1 , for simplicity 

in writing we take only the quadratic polynomial in the Riemann curvature : 

the results are essentially the same if higher order terms are also 

considered . The equations read 

We look for a solution which is a perturbation of order w- 2 of some 

given metric g called background , independant of w 

g~~(x , w ~(x)) 

We suppose that h and k are uniformly bounded independently of w as well 

as their first and second derivatives with respect to the variables x and 

~ ~ ~. so that this expansion is meaningfull, as well as the ones we shall 

now compute. 

We first deduce from the above formula 

We find for the Christoffel symbols 

where 

which gives for the Riemann tensor 
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where r is of t;he purely radiative form defined previously : its components 

beeing raised or lowered with the background metric we have 

The Ricci tensor is then given by 

where underlines quantities are relative to the background metric g_ and r 0,f3 

is given by 

We deduce from these expressions that the Gauss Bonnet equations admit 

the expansion , whose coefficients of powers of w are uniformly bounded, 

To obtain this formula we have used the theorem 1 which shows that the 

quadratic term in the radiative part r vanishes identically. We see that if 

the high frequency wave is to satisfy the equations Aaf'= 0 at the first 

order of approximation in w- 1 then we must have 

0 or equivalently, B~f' + r~f' 0 

These equations are identical with the equations obtained in ordinary 

Einstein gravity when looking for high frequency waves at zero order in w 

from known results in this case (cf 18) we deduce the following 

Theorem 2. The high frequency wave is a significant perturbation of the 

background metric, solution of order zero in w of the Einstein equations 

with a Gauss-Bonnet perturbation of order -1 in w if and only if 
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1. The background metric is a solution of the vacuum Einstein equations 

R~~ ~ 0, and the wave fronts are null hypersurfaces of this metric, 

2. The perturbation h~p satisfies the relations 

0 with h 

Note a perturbation is called significant if it cannot be made to 

vanish by a high frequency change of coordinates of the same type as the 

wave itself. 

Radiative coordinates. We have denoted by "radiative" coordinates in which 

the wave fronts q>(x) = constant are the hypersurfaces x 0 = constant. In 

such coordinates the above results read: 

0 0 

We now look for the conditions which insure that our high frequency wave 

is a solution of the equations up to the order w- 2 • They will give us as 

usual in these problems propagation equations for the first order pertur­

bation h. 

The coefficients of the term in w- 1 in each equation is the sum of a 

term coming from the pure Einstein tensor and a term coming from the Gauss 

Bonnet correction. The first term has already been determined in previous 

works (cf 17, in particular in radiative coordinates, it has been 

found that for the Ricci tensor these coefficients split between linear 

differential operators in the significant part of the perturbation hij 

1 
and terms R0 ~ which contain the non significant part h~~ . 

We shall now compute the Gauss Bonnet term. Due to the theorem 1 it will 
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be of the form 

E· .... R R + 2E· · · · · R r. 

The first term of the sum is independent of wp, it must vanish if we 

want the perturbation to be uniformly bounded in w. We compute the second 

term in radiative coordinates. 

We deduce from the values of g and n in radiative coordinates that all 

components of r~~A~ are zero, except those which contain two zero indices 

which are given by: 

from this result we deduce that, for a perturbation satisfying the theorem 

2, all the components of r~~A~ are zero except those which contain only one 

zero index, situated moreover in a bottom position, and then given by : 

r hk 
Oi 

We deduce from these facts that if we set 

- 2 € 

we have in radiative coordinates 

r hk R ~1~2 
0 i -11 12 

hence 

0 ®.! 0 

®: 
J 

Eli j 
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The equations satisfied by the significant part hij of the perturbation 

read 

0 (P) 

We shall enunciate as a theorem the results we have just obtained. 

Theorem 3. For a general background metric g, a high frequency wave solu-

tion to order zero in w of the Einstein equations with Gauss Bonnet terms 

(coupling constant x = w- 1 ) is also solution to order w- 1 if 

1. The background metric annuls the Gauss Bonnet term. 

2. The significant part of the perturbation hij satisfies the system of 

differential equations (P), called propagation equations. these are linear 

differential equations of the first order in h'ij which contain both a 

derivation in the direction of the "light ray" n and a derivation with 

respect to the supplementary variable ~ = wp. 

The fact that the derivative h"i.i does appear in the propagation equa­

tion shows that signals will be, in the case of a generic background, dis-

torted along their propagation (cf 19) the wave fronts ~(x) = constant will 

not be exceptionnal in the sense of Lax and Boillat (cf 20). 

Many developments can originate from this general study. But some idea 

of physical applications would be useful! both to motivate the effort and 

to guide the researcher. Physical situations where these partial differen-

tial equations could be relevant are considered by R. Kerner and colla-

borators (cf 8, 9, 22). 
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