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ON THE ENERGY OF THE 

GRAVITATIONAL FIELD AT SPATIAL INFINITY 

Piotr T. Chrusciett 

Abstract: Different frameworks for defining energy at spatial infinity are reviewed. 

Some new results concerning the definitional uniqueness of energy-momentum are 

presented. 

L INTRODUCTION 

There have long been at least five different frameworks which allow to define 

energy and momentum at spatial infinity, but it is only recently that one has been 

able to answer the question, can one define global gravitational energy in a 

unambiguous way. The aim of this paper is to review the known and present some 

new results about the definitional uniqueness of energy-momentum in each of these 

frameworks. The approaches discussed here can be naturally divided into two groups, 

the first in which a Cauchy surface is the fundamental object one deals with, the 

second in which a four dimensional space-time is the starting point of the analysis. 

The problems arising in three dimensions, discussed in chapter 2, are much better 

understood because in that case one can ignore our lack of knowledge of the long time 

behaviour of solutions of Einstein equations. In the Cauchy setting one can uniquely 

define a number m and an 0(3) vector pi which are usually called energy and 

momentum. Unfortunately our understanding of the four dimensional picture, 

discussed in chapter 3, is far from being complete. In the natural four dimensional 

coordinate framework we present two sets of conditions under which definitional 

uniqueness of a four-vector p/1 can be established. It should be stressed that one 
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would like .to be able to prove uniqueness under weaker conditions. We also present a 

condition under which the ambiguities in the Ashtekar-Hansen structure of spatial 

infinity can be analyzed, but the general case for this definition still remains an open 

problem. 

In this paper we shall not attempt to derive (whatever this means) the various 

expressions which are used to define energy-momentum, the reader is referred to 

[As3] [BOM] [Fa] for a satisfactory analysis of this issue in the ADM spirit, to [Kil] 

[Ki2] [ Chl] [ Ch2] for more fancy four-dimensional symplectic methods. In this paper 

we shall be concerned with spatial infinity - the reader interested in energy at null 

infinity is referred to the review papers by Trautman [Tr], Goldberg [Go], and 

Ashtekar [As4], which also contain many references to early work on problems 

relevant to spatial infinity. 

2. THE 3+ 1 APPROACH 

As noted in the introduction, this is the approach in which the most complete 

results have been obtained. We shall distinguish between the ADM coordinate 

approach and Geroch's attempt to geometrize the ADM ideas. 

2.1 The ADM Framework 

In this framework ([ADM], cf. also [As3] [AG] [RT] [BOM]) one assumes the 

existence of preferred asymptotically flat coordinate systems in which the metric has 

some decay properties towards the flat metric as r goes to infinity. More precisely, 

one considers coordinate systems defined on IR3\K, where K is conditionally 

compact (Le. open and its closure is compact), in whichl 

(2.1.1) ~ -1/2) !J = ( -3/2) g .. - u .. = , ukg1.J. o r , 
lJ lJ 

1 f = O(r 0:) if If I :S C(l+r) 0: for some 0 :S C £ IR ; f = o(r 0:) if lim r -af = 0 , at infinity 
or at the origin, whichever case occurs being usually obvious from the context, r(x) = 
{.E())2} l/2 . The signature is -+++ . 
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and the metric is uniformly elliptic in IR3\K : 

for some c E IR+\ {0} . One then defines 

(2.1.2) Po= lim -161 ,h (g.k .-g .. l )dSk 
1f Js(R) 1 ,1 II,' 

and the limit is taken as R goes to infinity. We have: 

PROPOSITION 2.1.1: ([Ba] [Ch2] [OM] [So~) Under (2.1.1) the integral (2.1.2) 

converges to a finite value. 

PROPOSITION 2.1.2: ([Ba] [Ch2]) The integral (2.1.2) is an invariant in the class of 

coordinate systems satisfying (2.1.1). 

The decay of the metric g .. - b .. = o(r-112) is the best possible [DvSJ2. 
lJ IJ 

Proposition 2.1.2 is a consequence of the following 11 asymptotic symmetries lemma11 , 

which shows the strong rigidity of the structure underlying (2.1.1): 

PROPOSITION 2.1.3: ( [ Ba] [ Ch2]) All C1 coordinate transformations3 preserving 

(2.1.1) are of the form 

If one moreover requires 

g .. = 15 .. +h .. ( e,c.o) r -l + o(r-1), {).g .. = hk .. ( (),cp)r - 2 + o(r - 2), 
lJ lJ lJ ' k lJ lJ 

then (i must be of the form4 

2 It has been pointed out to the author by J. Bicak that this has probably been first observed by 
M0ller. 

3 It can be shown that if y(x) is c 1 and the matrices g representing the metric are ck in 

both x and y coordinate systems, than y(x) must be Ck+ 1 . 

4 This can be established using proposition 2.1.3 and the methods of [Ch2]. 
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Let us note that due to the constraint equation 

3 .. 2 IJ, v 
R(g) = K1JK.. - K + l61r11 , J1. = T n· n 

IJ jl.V ' 

the condition 3R(g) E L 1 will be satisfied if K.. E L 2(1R\K) (finite 11 kinetic energy11 

lJ 

of the gravitational field) and if 11 E L 1(1R3\K) , where !J. is the matter density (finite 

amount of matter). These conditions are sufficient to ensure that the integrals 

i l · 1 ~ KijdS p = liD- .. 
R--+oo S1r S(R) J 

converge and transform as an vector under the transformations of proposition 

2.1.3. if the matter current / = Ti belongs to L1(1R3\K) . Proposition 2.1.2 and 

the above remarks imply that in the class of metrics for which there exist coordinate 

systems satisfying (2.1.1) one can in an invariant way define the two numbers p0 , 

I pI = {E(pi)2} 1/ 2 , and the number 

(cf. [Ba] [BM] [Ch3] [OM] where it is shown that the square root makes sense under 

the weak conditions considered here if the dominant energy condition holds), which we 

shall call the mass of a three-dimensional asymptotically flat end. Let us note that 

that one can also meaningfully speak of infinite mass under certain conditions, the 

interested reader is referred to [Ch3]. 

2.2 The Geroch Approach. 

At the heart of Geroch1s description of spatial infinity [Gel] [Ge2] is the 

observation, that if one applies the inversion xi --+ yi = xi/r(x) 2 to an asymptotically 

flat metric in the sense of the previous section one will obtain 
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so that the metric g .. = r(y) 4g .. is continuous at the origin. Geroch considers the set 
lJ lJ 

..Jt = M U {i0} , where i0 is a point (say the origin of the coordinates yi) and 

describes the asymptotics of the metric g in terms of local properties - in a 

neighbourhood of the origin - of the metric g. In order to do this one needs to 

introduce some structure on ..Jt . There is a standard one point compactification 

topology with which ..Jt can be equipped, the simplest way of defining a differentiable 

structure on ..Jt is to declare the coordinates yi we just have introduced by inversion 

to be smooth, but there is no uniqueness in this structure: one can perform a 

coordinate transformation of the type considered in Proposition 2.1.3, 

xi -t ~i =xi+ O(r1- 0), and then define yi = x.ijr2(x). One has yi = yi + O(r(y)l+a) 

which is a differentiable transformation, but not in general C2. One can include such 

coordinate transformations in the basic structure by enlarging the atlas on ..Jt in a 

way which we describe below, but are these all ambiguities that arise? The following 

example, due to B. Schmidt, shows that there can be non-uniqueness of C1 structure 

when considering metrics which are merely continuous. The standard flat metric 

on IR2 

expressed in terms of coordinates 

(2.2.2) r = p , cp = w - en a p , 0 < a < 1 , 

takes the form 

(2.2.3) 

In "rectangular" coordinates x1 = r coscp, x2 = r sincp, the metric (2.2.3) is of the form 

d 2- { c 0( a-1 )} dxid_j- dxidxj s - u .. + en r x-- g.. ' 
D D 
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and the coefficients g.. are continuous at the origin since o: - 1 < 0 . It is easy to 
lJ 

check that the functions g .. are smooth for r > 0 and that the transformation (2.2.2) 
lJ 

is continuous, smooth for r > 0 , however it is not C1 on IR2 : the derivatives 

&yi/&xj, where y1 = rcos\li, y2 = rsin\li, are bounded but have no limit at p = 0. It 

follows from this example that the requirement of continuity of a metric may be 

compatible with many differentiable structures (we just have exhibited a one 

parameter family of them). As will be discussed below, the addition of the 

requirement of HOlder continuity of the metric together with an associated condition 

on the rate of blow-up of its derivatives fixes the Cl,a structure of Jlt uniquely. 

Before presenting our results in detail some terminology will be needed. Let f be a 

function defined in a neighbourhood 0 of the origin in . We shall say that f 

is of class Ak a , k :::: 1 , a E ( 0,1] , if there exists a constant C such that 
' 

(2.2.4) I 8.f(x)-8.f(O) I ::; Cra, ... , 18. . f(x) I ::; Cra:+l-f, 2::; e::; k, 
1 1 11 .. 1e 

f will be said of class 1\ if f E Ak,l and if the limits 

(2.2.5) lim r -l( 8.f(rrt) 
I_, 0 1 

8.f(O)), ... , lim rk- 28. 8. f(rn) 
1 r_,o '1 .. 1k 

exist, where D. is any unit vector. A pair ( Jlt,i0) will be called an 

manifold if Jlt is equipped with an atlas in which the transition functions are of 

Ak,a(Ak) class, i0 being the point where the derivatives are allowed to blow up. We 

shall say that a function f is of class B1 if f satisfies 
c, a: 

On an A1 manifold one can define 
<,a 

tensors, e ::; k-1 , Le. tensors the 

components of which are Be, a: in local charts. Analogously Be functions and tensors 

are defined by the requirement that the following limits as r tends to zero 

lim r- 1{f(rn)- f(O)}, ... , lim /-18. f(ril.) 
lg 

exist and are finite. Following Geroch [Gel] [Ge2] we define: 
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DEFINITION: A three dimensional lliemannian manifold (M,g) will be called 

asymptotically flat if there exists an Ak,a(Ak) manifold .J( = M U {i0} , k ~ 2 , with 

a Bk-1,i8k_1) metric g and a conformal diffeomorphi~m w: M-; .Jt\{i0} , such 

that the conformal factor n defined by g = n-2w*g can be extended to a function 

n : .Jt-) IR+ U {0} satisfying 

n > 0 on .Jt\ {io}, n(io) = 0, 

VO E Ak-1,a( .Jt ,io)(Ak-1 ( .Jt ,io) ), 

v avbn(io) = 2gab(io). 

In [Ch4] the following has been proved: 

PROPOSITION 2.2.1: A Bk_1 a conformal structure on an Ak a( .J( ,i0) manifold, 
' ' 

a E (0,1), k ~ 3 , defines the Ak differentiable structure uniquely. ,a 

PROPOSITION 2.2.2: A Bk_1 ( .Jt ,i0) conformal structure on a three dimensional 

manifold .Jt defines uniquely a three parameter family of Ak( .Jt ,i0) differentiable 

structures. Two inequivalent structures differ by a transformation of the form 

(2.2.6) 

where d is a constant vector. 

Proposition 2.2.2 implies in particular the existence of a three parameter family of 

inequivalent conformal completions of an asymptotically flat (in the sense of section 

2.1) Riemannian manifold. Let us derive an expression for the ADM mass in the 

conformal framework. It is convenient to start with the Ashtekar-Hansen formula for 

the ADM mass ([AH], cf. also section 3.2, equation (3.2,8)): 

(2.2.7) 0 - 1" 1 T 3 4R i j d2S i - i/ d2S - . 0 dO d p - 1m S1r r OiO.n n , n - x r , - sm cp, 
r-;oo S(r) J 

which holds if (2.1.1) holds and if one moreover assumes 

(2.2.8) 
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From the Codazzi-Mainardi equations and the decay conditions on the metric and on 

the energy-momentum tensor one has 

( ) o 1 10 f 3 3R i jd2S - 1 1' f 3(3R 3R /4) i jd2S 2.2.9 p = 8 1m r .. n n - 8 1m r ,_ .. - g ... n n 0 

7l' r-;oo S IJ 7r r-;oo S lJ IJ 
r r 

The formula for the transformation of the Ricci tensor under conformal changes of the 

metric yields 

R lR R- lR- ,.-lvun ln-2l 12-, .. - -4 g .. = .. - -4 g .. + ~" y. v .~" - -23L g .. 
lJ lJ lJ lJ l J lJ 

(we have dropped the superscript 3 on the Ricci tensor since no confusion is likely to 

occur), so that after performing an inversion yi = xir(xr2 , setting n = r(y)2 , one 

obtains 

(2.2.10) 0 - 1 . f -1 - 1-- -1-- 1 -2 - 2- -i j p - -16 11m n (R .. - 4-Rg .. + n v.v.n- -2n 1Vf21 g .. )V nds , 
1r d-; 0 s d lJ lJ l J lJ 

where S d denotes either a coordinate ball r(y) = d or a geodesic ball (with respect to 

the metric g ) of radius d . The convergence of the integral (2.2.10) and its 

independence upon the choice of n in the appropriate class can be either derived in 

the conformal framework making use of proposition 2.2.1, or follows directly from the 

results of the previous section. A formula for p. can be derived by inversion in a 
l 

straightforward manner. Let us finally note the following propositions: 

PROPOSITION 2.2.3: Let be two A 
k,a 

conformal 

completions, o: E k 2: 2 , of an asymptotically three dimensional 

Riemannian manifold (M,g) . 

between .At1 and .At2 . 

There exists an Ak conformal diffeomorphism ,a 

PROPOSITION 2.2.4: A Bk-l (.At ,i0) , k 2: 2 , asymptotically flat metric on a 

manifold .At defines uniquely a three parameter family of inequivalent Ak 

differentiable structures on .At. 
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Remark: Proposition 2.2.3 and 2.2.4 improve one order of differentiability the 

results of propositions 2.2.1 and 2.2.2 when a preferred (physical) metric is singled out. 

It should be noted that the proof of propositions 2.2.3-4 is considerable simpler than 

the proof of 2.2.1-2. 

Proof: We shall prove proposition 2.2.3, proposition 2.2.4 can be established in a 

similar way. In local A2,ao charts {xi} , {yi} in neighbourhoods of i 1 and i2 we 

have 

1 - 1 d id j_ { 1 (' )- 0( (' ) &)}d )d j r. - 1 ( ) ) j 0( ( )2+0:) g -g .. X X - g .. 0 1- f X X X, ~~ 1 -g .. 0 X X+ f X , 
IJ IJ IJ 

and performing linear coordinate transformations if necessary we have 

1 2 g .. (0) =g .. (0) = 
IJ lJ 

Th . . i _j i/ ( )2 i _i i/ ( )2 . t . e mverswns x ...; x = x r x , y ...; y· = y r y g1ve wo 

asymptotically flat coordinate systems for the physical metric g, and the result 

follows proposition 2.1.3. 

This last proof clearly illustrates that the results about the coordinate 

structure, as in the previous section, are equivalent to results about Geroch's 

completions - in particular propositions 2.3.1 and 2.3.2 may be used to prove 

proposition 2.1.3 by reversing the argument of the last proof. 

3. THE FOUR DIMENSIONAL APPROACH 

We shall start this chapter with the natural coordinate approach which goes 

back to Einstein [Ei] and Klein [Kl]. A fundamental contribution to this formulation 

is due to von Freud [vF]. 

3.1 The Einstein-von Freud definition of energy-momentum. 

In this approach one assumes that in a neighbourhood of the slice t = 0 there 

exists a four-dimensional coordinate system {xf.i} , xf.i E nx , in which the metric 

satisfies 
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(3.1.1) 

(3.1.2) 

(cf. [Ch3][0M]). If a > 1/2 one defines 

(3.1.3) 

where xJ.t is any vector field of the form xJ.t = yJ.t + O(r -a), yll, = 0. Under (3.1.1) v 

and (3.1.2) when a>1/2 (3.1.3) reduces to (2.1.2)-(2.1.3) so that the integrals 

converge as noted in section 2.1. Because of the unpleasant transformation properties 

of the integrand of (3.1.3) the number m2 = -'fja(JP r}J (3 could a priori assume quite 

arbitrary values (cf. e.g. [DvS]), it turns out that under some hypotheses which we 

present below one can establish rigidity of the structure associated with (3.1.1), 

allowing to deduce that m is uniquely defined by the four-dimensional asymptotic 

structure of the space-time. Let us note the following result [Ch5]: 

PROPOSITION 3.1.1: Let { xll} = n , {yll} = n be two coordinate systems, suppose 
X y 

that (3.1.1) holds throughout !1 and !1 with some constants C , C , a E (0,1] , 
X y X y 

suppose that the slices x0 = const. and y0 = const. are spacelike submanifolds, let n 
X 

and n contain boost- type domains: 
y 

n J n~ R T := {yll: r(y) ?: R ' ly0 1 ~ 8 r(y) + T } 
y y' y' y y y y 

(T and T are allowed to be equal to plus infinity)5. Let F denote the coordinate 
X y 

transformation yll = ~ll(xa), wherever defined, le~ N; = {xll : x0 = 0 , r(x) ?: R}. 

5 The subscripts x and y in T R etc. do not denote a pointwise dependence of the 
x, y, 

constants T and R but are meant to indicate that the constant in question is associated with 
X y 

the coordinate system {~} or {y/l}. 



19 

If 

then N~ is the graph of a Lorentz transformation and a slowly growing term: 

(3.1.4) yf.l = A~xv + (f.l(x), I (v,pl :S Cr-a, I (v,a,81 :S Cr-1-a, 

[(Ill :::; Cr1-a if 0 < a< 1, I (Ill :::; Cfn(r) if a= 1. 

Remark: If one assumes that the equalities 

(3.1.5) 

hold throughout n and n ' it is simple to show that 
X y 

(3.1.6) 

Outline of the Proof: The idea of the proof is to use the transformation laws of the 

connection interpreted as a set of differential equations for the functions y(x) 

(3.1. 7) 

to obtain a priori estimates on the behaviour of &ylljfJxa and EPylljfJxafJx.B. The 

first step of the proof is to show that r(y(x)) goes to infinity as r(x) does. Next one 

shows that 

(3.1.8) c -lr(x) :::; r(y(x)) for x E N~ . 

The proof of (3.1.8) involves consideration of Riemannian distance with respect to a 

rather unnatural supplementary metric one introduces on the hypersurface x0 = 0 -

this is a technical trick and the author believes there exists a more natural argument 

which leads to this inequality. One notes that (3.1.7) and (3.1.8) imply an alternative: 
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either the derivatives {)yfl / 8x01 are uniformly bounded or the sum of their squares 

uniformly tends to infinity as r(x) does. If the derivatives are bounded the final 

result follows in a straightforward manner from (3.1.7)-(3.1.8), and to prove that they 

cannot blow to infinity one shows that there exists at least one curve extending to 

infinity along which the derivatives remain bounded. One checks that if there exists a 

spacelike curve in space-time which is well behaved in both coordinate systems, i.e. if 

there exist constant vectors , rfy such that 

(3.1.9) xll = rf_s + o(s), yfJ = rf_s + o(s), dx/1-/ds = rf_ + o(l) , dyp,/ds = rf_ + o(l), 
X y X y 

then all derivatives {)y/J / 8xa tend to finite limits along this curve as s goes to 

infinity in virtue of (3.1.7) and (3.1.8). The obvious idea for a candidate curve is to 

consider geodesics (but maybe a simpler choice exists?) and one is therefore led to ask 

how do spacelike geodesics behave asymptotically. The estimates (3.1.9) are 

established in the appendix B of [Ch5] for spacelike geodesics which remain 

simultaneously in some x and some y coordinates boost-type domains - this last 

step requires the introduction of the hypothesis that the x and y coordinates cover 

at least some boost-type domain. To complete the proof one shows that under the 

hypotheses above there exists at least one geodesic which lies both in an x and a y 

boost-type domain. 

Proposition 3.1.1 allows us to prove a reasonably satisfactory result about the 

definitional uniqueness of m for vacuum space-times: 

PROPOSITION :U.2: Let (M,g) be a vacuum space-time, let {y11} be a coordinate 

system on M covering some boost- type domain n~ R T , T E ( -oo,oo] , let ( 3. L 1) 
y' y' y y 

hold in f!~ R T with some constants C E IR+ , 01 E ( 1 /2,1] . Let be a spacelike 
y' y' y 

submanifold of M, Nx C Sl~ R T , 
y' y' y 

{xi} on Nx, {xi}) N~ ={xi: r(x) 
X 

extrinsic curvature tensor Kij satisfy 

and suppose that there exists a coordinate system 

~ R } , such that the induced metric g.. and the 
X ~ 



I c I < c -a I"' "' I < c -a-5 g .. - o .. _ r , ... , u .... u. g .. _ · r , 
!J lJ 11 '5 !J 

ij - 0!- 1 3 ij - 0!- 4 I K I ::; Cr · , ... , I 8. . . . . K I ::; Cr . 
11 14 

Then the invariant mass of N is 
X 

to the invariant mass of the slice y0=0 . 

Proof: A simple extension of the boost theorem [COM] shows that one can construct a 

four dimensional coordinate system { x.U} covering some boost type domain in which 

(3.1.1) holds. Proposition 3.1.1 implies that the coordinate transformation yfl(xa:) is 

a boost plus a "supertranslation", and it is well-known (cf. e.g. [Ch3]) that such 

transformations leave m invariant. 

The hypotheses of proposition 3.1.1 consist of: 

hl) a condition on the largeness of the coordinate system { x.U}, 

h2) a condition on the largeness of the "reference'' coordinate system {y.U}, 

h3) a condition on the asymptotic behaviour of the metric in the respective 

domains of definition of COOrdinates X and y , !] and f'! , 
X y 

h4) a condition on the way the slice x0 = 0 is embedded in 

As is shown in the proof of proposition 3.1.2, the boost-type domain condition is not 

too restrictive when dealing with vacuum asymptotically flat metrics. We also know 

from the boost theorem [COM] that (3.1.1) will hold in boost-type domains with slope 

B < L In the non-vacuum case no boost theorem is available, so that no result along 

the lines of proposition 3.1.2 has been established. Hypotheses hl) and h4) appear to 

be superfluous in the sense that one would expect them to follow from asymptotic 

flatness. Let us show that in the 1 + 1 dimensional case the asymptotic symmetries 

theorem is valid under much weaker assumptions: 

PROPOSITION 3.1.3: Let dimM = 1 + 1 , let {x11} = nx c IR2 , {y11} = ny c IR2 be 

two coordinate systems on M, let .P denote the coordinate transformation 

y11 = qi.U(xa) , wherever defined. Let the slices x0 = 0, y0 = const. be spacelike, suppose 



22 

that there exists a constant C such that (3.1.1) holds for x E N~ = {x0 = 0 , 

r(x) 2: R} c &\ and for E <!)(N~) . There exists a Lorentz matrix and a 

constant C' such that (3.1.4) holds for x EN~. 

Proof: Let t := , t := , x := x1 , y := y1 . The curve x -> yll( t=O,x) has infinite 

proper length therefore multiplying yll by minus one if necessary we can assume that 

the limit as x goes to infinity of y( t=O,x) is plus infinity. Let E = £nD , 

D := {"E(fJ/1/8x(1) 2} 112 . From (3.1.7) we have 

(3.1.11) 

where 

Let r X be the straight line {x0 = 0 'x1 = 8 ' s E [so,x1]} . We have 

E(O,x1)- E(O,s0) = J f dxG- J f' dya. r a r a 
X X 

The first integral is clearly finite whatever x1. To evaluate the second let us note 

that lemma 1 of [Ch5] r can be parametrized by y = 
X 

so that 

1Jr f~dyal:::: Jr lf0(dt/dy) +f~l dy1 . 

X X 

Since is spacelike we have I dt / dy I :::: C in virtue of our hypotheses so that the 

last integral is also finite whatever x1 , therefore E is bounded and (3.1.4) follows 

from lemma 3 of [ Ch5] . 

Returning to four dimensions, let us write the condition N~ c nx in the form 

(3.1.12) 
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There exists a condition similar in spirit to (3.1.12) whose geometric meaning is a 

little more obscure and which allows to weaken hl) and relax h2)6 . 

Proposition 3.1.4: Let { xtJ.} = n and {ytJ.} = n be two coordinate systems, let iJ) 
X y 

denote the coordinate transformation ytt = TtJ.(xa) , wherever defined. Suppose that 

N~ = {x0 = 0 , r(x) 2: R} c nx and that for xa EN~, yf-l E T(N~) (3.1.1) holds with 

some constant7 C, and assume that r(y(x)) goes to infinity as r(x) does8. If 

(3.1.13) 

there exists a Lorentz matrix A~ such that (3.1.4) holds on N~. 

Proof: Suppose that the derivatives a:l I Ox a are not uniformly bounded on N~ ' 

therefore by proposition 2 of [Ch5] we have, for r 2': r0 , IDt/fJtl 2': C1r(x)i1', 

E I fJt/ fJxi I 2': C2r(x)O!, where t := x0 , t(xi) := y0 (t = 0 , xi). Consider any integral 

curve rx
0 

c N~ of grad(t) parametrized by the distance parameter s starting at x0 , 

let ni = dxi/ds = gradi(t)/lgrad(t)l . Along r we have dt/ds = nigrad.(t) = xo l 

lgrad(t) 2: C'rl+a which implies t(s) 2: es + t(O), in particular r cannot stay 
0 xo 

within a ball of finite coordinate radius R and thus r(s) tends to infinity as s does. 

Let x be any point lying on r . From g . .xixj 2: c E(Xi)2 we have 
XQ !J X 

t(x) = t(x0) + f r dt/ ds ds 

xo 

2: t(x0) + Jr c'rads = t(x0) 

xo 

2': t(x0) + Jr c'cY2radr/du du 

xo 
> 2 ( 1 +a 1 +a) ( ) _ c r - r0 + t x0 , 

6 The proof of this proposition is due to R. Geroch. 

7 It is not assumed that (3.1.1) holds throughout n and n . 
X y 

8 cf. aiso lemma 2 of (Ch5] . 
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u being any parameter along r , and for sufficiently large r(x) one has t(x) ~ 
xo 

c"r1+ 01(x) which contradicts (3.1.13) therefore all the derivatives ayJ-tj&01 remain 

bounded and the result follows from lemma 3 of [Ch5] . 

Let us note that for sufficiently large r(y) the function y0 is equivalent to the 

Lorentzian distance d(y) from the point {ytt} to the hypersurface y0 == 0 : 

On the other hand for r(x) > r 1 , for some r1 , r(x) is equivalent to the Riemannian 

distance a(x) on N~ from some fixed point x0 E N~ to x E N~: 

These remarks shed some light on the geometric content of the condition (3.1.13) . 

3.2 The Ashteka:r-Hansen Approach 

The relationship between the Ashtekar-Hansen approach and the coordinate 

approach of Section 3.1 is similar to the one between the Geroch and the ADM 

approach: one replaces some coordinate conditions in "exterior regions" by coordinate 

conditions in the vicinity of a point (differential geometry). While, however, the 

Geroch approach is entirely equivalent to the ADM one, nothing is known about 

generic existence of space-times satisfying the Ashtekar-Hansen (AH) conditions. 

The AH requirements turn out to be satisfied by the Kerr family of metrics, so that 

the whole framework is not vacuous, moreover the conditions given by these authors 

contain a useful knowledge about the global structure of space-time very difficult to 

capture in terms of coordinate systems of the previous section, so that there is little 

doubt that the AH conditions deserve some attention. The most important still 

unsolved problem of the Ashtekar-Hansen approach is the potential lack of uniqueness 

of their structure, In this section we present a condition under which the AH 

completions of a space-time turn out to be quasi-unique. 
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The AH conditions are essentially the requirement that the metric be better 

behaved, in local coordinates in a neighbourhood of ''spatial infinity" conformally 

transformed to a point, than what one obtains by a straightforward Lorentzian 

inversion, applied to metrics as considered in the previous section: in terms of 

coordinates , a metric of the form (3.Ll) defined 

on a boost-type domain with slope () smaller than one takes the form 

(3.2.1) 

with h,uv defined on a "l . 
V\ 1 . 

B,R-

and C( B) will generically blow up to infinity as (} goes to 1 . If g,uv is the Kerr 

metric and if the coordinates are carefully chosen ( cf. [AH]) one obtains a metric 

defined in with 

(3.2.2) 

with some constant C , but it seems that one cannot avoid a blow up of the first 

derivatives of the metric as one approaches the light cone of i0 = {yf.l = 0} : 

(3.2.3) 

with cl and c2 being, say, monotonically increasing functions from [0,1) to lit 
which tend to infinity in a reasonably mild way as one tends to 1: if we define, for 

0 < 1'/ < 1 ' 

we have, in the Schwarzschild case (cf. [Ch6]) 

(3.2.4) 
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with some constant c . Proceeding in the spirit of Ashtekar and Hansen we shall say 

that a space-time (M,g) is asymptotically flat if there exists a triple (.At ,.?,i0) , 

called a completion of (M,g) , such that 

and 

1) .At= M u {i0} 

2) there exists no timelike curve in .At from any point in M to i0 , 

3) there exists a coordinate system in M covering at least a wedge 

W l,f., oO, such that i0 = {ytt=O} and in which (3.2.2)- (3.2.4) hold9, 

In M the metric g is conformal to -a, g .. = n-2 -a. , and in the 
" lJ <?lJ 

4) 

coordinate system as in point 3) n satisfies 

with some constant C . Ashtekar and Hansen also assume that for all 1171 < 1 the 

limits 

(3.2.5) lim h /3(t = r1J,r,O,rp)/r, lim a h p{t=rrJ,r,O,rp), lim a a.Jl p(t=r1],r,O,rp)r, 
r-; 0 a r-; 0 It a r-; 0 It a 

exist and are finite. One can in an obvious way formalize along ~he lines of section 2.2 

the structures described above, we shall leave this as an easy exercise to the reader. It 

is natural to consider two completions as equivalent if the appropriate coordinate 

systems in the vicinity of i0 are related to each oterh via a transformation of the form 

with A~ - a Lorentz matrix , (tt - bounded and appropriately differentiable. Two 

completions will be called almost equivalent if they differ by a coordinate 

transformation of the form 

9 The ultimate motivation for (3.2.4) is, that it is satisfied by the completions of the Kerr metrics, 
and that this condition allows to prove theorem 3.2.2. 



27 

eft- a constant vector. A completion (.At ,.?,i0) will be called geodesically regular if 

for every spacelike geodesic r of the physical metric g ·extending up to i0 there 

exists numbers B(r) < 1 and s0 E R such that for all yf.t(s) E r and s :::: s0 we 

havelO 

(3.2.6) r(y(s)) ~ B(r)ly0(s)l. 

In [Ch6] the following has been proved: 

PROPOSITION 3.2.1: Every completion of a Kerr metric is geodesically regular. 

The above is one of the motivations for the introduction of the notion of geodesic 

regularity. We also have [Ch6]11: 

THEOREM 3.2.2: Let (M,g) admit a geodesically regular completion (.At ,.?,i0 ) . 

Then all completions of (M,g) are geodesically regular and almost equivalent. 

From Theorem 3.2.2. and the results of [As2] it follows: 

THEOREM 3.2.3: Let (.At ,.?,i0) be a geodesically regular completion of a space-time 

(M,g). The total energy-momentum of (M,g) is a uniquely defined four vector at i0 . 

Let us for completeness recall a simple derivation (cf. [Ch3]) of the Ashtekar-Hahsen 

formula for the four-momentum. Simple algebra leads to the identity 

where x"' is any constant coefficients vector, d denotes exterior differentiation, and 

we have assumed that (3.1.1) and 

10 This condition could be violated by spacelike geodesics which are asymptotically tangent to the 
light cone of i0 . 

11 cf. [Ch6] for more general results if (3.2.4) is not assumed to hold. 
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I gttv,o:,BI :::: C( 1 +r r 2- o: 

hold. If one also assumes that (3.1.2) holds then R o:,8J1V may be replaced by the 

o:,8 ( -2-f) ( -1-2a) Weyl tensor C JlV with a supplementary 0 r · term added to 0 r . 

When integrated over a sphere r(x) = const the left hand side of (3.2.7) gives zero by 

Stokes theorem and the limit of the second term at the right hand side of ( 3.2. 7) gives 

327rp xll so that if 2a > 1 we have 
tt 

The double dual identity for the Weyl tensor 

gives the Ashtekar-Hansen formula: 

3.3 The Background Metric formulation. 

The idea of using a background metric to define energy-momentum goes back 

to Rosen ( cf. [Ro] and references therein) and seems to have been rediscovered more or 

less independently by several authors ([AD] [Chl] [Fr] [GPP] [Ka] [NAS] [Sor]). The 

idea is to replace ( 3.1.3) by 

(3.3.1) 

where f A.p is a background metric, a bar denotes covariant differentiation with 

respect to the background and xtt is a Killing vector of the background metric. It 

seems that in the asymptotically flat case the most natural thing to ask is that the 

background metric ft.tv be equal to the Minkowski metric r;/-LV in the coordinate 

system in which (3.1.1) holds, so that one is in fact back in the situation of section 3.1, 

gaining however the flexibility of using non-asymptotically Minkowskian coordinate 
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systems in actual computations. (3.3.1) can also be used to define energy in 

non-asymptotically flat space-times ([AD] [AM] [Ch1] [HT] [DrS]), one should 

however bear in mind that the expression (3.3.1) is potentially background-dependent. 

For this reason a definition of energy via (3.3.1) for a given set of boundary conditions 

should be implemented by a proof of background independence, in the appropxiate 

class of backgrounds singled out by the boundary conditions. In this respect the 

analysis of [AD] or [HT] is far from being complete, the numbers one obtains in the 

asymptotically anti-de Sitter space-times can be potentially as meaningless as pf.t 

calculated for asymptotically Minkowskian space-times in coordinate systems in which 

gf.tl/ tends to hf.tl/ as r -l/2 ( cf. [DvS] [Ch3] [OM]). 

Returning to Minkowski space-time, it appears natural to admit in (3.3.1) any 

background for which, in a coordinate system in which the physical metric satisfies 

(3.1.1), the background metric also satisfies (3.1.1) (cf. also [Pe] for a similar approach 

at null infinity). Let us note the following: 

PROPOSITION 3.3.1: Let nx c IRn+l , n :::: 1 , be connected and simply connected, 

let ff.tv be a flat metric defined on nx satisfying (3.1.1), suppose that 

N~ = {x0 = 0, r(x) :::: R} c nx. There exist functions za: nx-+ IRn+l satisfying (3.1.4) 

along N~12 such that 

Proof: Let x0 E nx , let ea(x0) be any orthonormal frame at x0 , define ea(x) as 

the parallel transport of ea(x0) along any curve from x0 to x . By simple 

connectedness of n and by flatness of f the tetrads ea are well defined and 
X f.tl/ 

covariantly constant. This implies in particular 

(3.3.2) [e ,eb] = ve eb - v e = 0 ' 
a a eb a 

12 If [! () R T C [! then (3.1.4) will hold in [! R T . 
' ' X cp, ' 
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where e are vector fields dual to ea . Define the functions za as solutions of the 
a 

equations 

( 3.3.3) 

The integrability conditions of (3.3.3) are satisfied by (3.3.2). (3.3.3) shows that 

in particular det( fJza / 8x/J) 2 = -det f1.w ofo 0 so that the transformation za(x/J) is a 

diffeomorphism. Let us show that the tetrads ea are of the form 

Since the frame is covariantly constant we have 

(3.3.5) 

L ""aa ( ) et e = ~e /Je/1 . 3.3.5 gives 

so that by Appendix A of [Ch5], e has a finite angle-independent limit at infinity, in 

particular all the coefficients ea are bounded. (3.3.5) and Appendix A of [Ch5] imply 
jJ 

(3.3.4), a simple analysis of (3.3.3) and (3.3.4) yields (3.L4). 

Proposition 3.3.1 implies that p(X) is background independent for a; > 

in the class of backgrounds described above: in the coordinate system given by 

proposition 3.3.1 we have 

p(X) = 1 i m - 3-1 xl1 tPf3'Y /\p ( (Jl/ - f(J11 )dS 
R--;oo 167r jr(x)=R Al!ft'f/ r;ArJ g ,p ,p 0!/3 

t=O 

(go-vlp = (g0"11-f(J11)IP = g(J11,p-fo-v,p + 11 f(g-f) 11 terms which are O(r-l-20!) and 

which will give no contribution in the limit if 0! > 1/2) , the term involving 

derivatives of f(JV is the negative of the four momentum of the flat metric f which 
JlV 
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proposition 3.3.1. It should be emphasized that the family of admissible backgrounds, 

as introduced above, is potentially dependent upon the choice of the coordinates one 

started with, to free oneself from those one can make appeal to the results of section 

3.1. 
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