175

A SURVEY OF THE WEYL METRICS

Susan M. Scott

1. INTRODUCTION

Hermann Weyl derived his class of metrics in 1917, just one
year after Einstein had presented his now-celebrated general theory
of relativity to the world. With the passing of some seventy years
since that initial flurry, it is perhaps time to pause and assess
what progress has been made with respect to the Weyl metrics.
Exactly what is known about them, and what still remains to be done?

From about twenty—five years ago, an interest in the Heyl
metrics dewve loped, particularly as exterior solutions in
astrophysical problems [1] and as possible final states of
gravitational collapse [21,[3]. However, in addition to being of
relevance to physics, they are also of interest =simply because they
present us with the rare opportunity of explicitly determining and
investigating a large class of relativistic metrics.

The MWeyl metrice are, in principle, all ‘known’ =since there
exists a precise algorithm for generating them from an infinite set
of MNewtonian potential functions. This procedure is given in
Section 2. In practice, however, the global structure of only a few
such solutions is well understood, and it see;s that much work and
new insights will be required if this situation is to change.

The member of the MWeyl class which is simplest to obtain is the

Curzon metric (see Section 2). Yet, despite the ease with which it
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is generated, its source structure and global structure remained a
mystery until the papers by Scott & Szekeres [41,[5] (see also Scott
[B]) appeared in 1986. Due to space considerations, their findings
will not be summarised here, but nonetheless form an integral part
of this sub ject.

Since the Schwarzschild solution belongs to the HWeyl class, the
gquestion naturally arises as to how it is generated. This question
is investigated and answered in Section 3, and ultimately, of
course, involves a change from MWeyl coordinates to the standard
Schwarzschild coordinates. Finding the relationship between the two
coordinate systems is facilitated by a consideration of the general
form of gravitational equipotentials of the Weyl metrics.

The Schwarzschild solution is a special member of the subclass
of the MWeyl metrics known as the Zipoy—%oorhees metrics. These
metrice form the main focus of this survey and are discussed in
Sections 4,5 & 6. In Section 4, the metrics are specified and new
coordinates, more suited to their geometry, are chosen to replace
the original Weyl coordinates. The problem of finding sources for
these metrics is discussed in Section 5, and the possibility of
performing extensions is considered in Section B&.

Some general properties of the Weyl metrics are given in
Section 7, and in particular, the relationship between an arbitrary
Weyl metric and its generating HNewtonian potential is examined. The
gquestion of how flat space is generated within this framework is
fully investigated, and at the end of this section, there is a list
of some related open problems.

In Section 8, a brief history of the static two—body problem of
general relativity is presented, including the early controversy

over the two-particle Curzon solution, as well as some much more
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recent developments. Section 9 gives a short description of a new
mathematical approach to the stationary, axisymmetric, vacuum space—
times. It is hoped that this approach will eventually offer new
insight into some of the unanswered guestions related to the Weyl
metrics.

The survey concludes with Section 18, which consists of a small
but new ohservation by the author regarding ring singularities
occurring in Weyl metrics. Before proceeding, it only remains to
point out that the aim of this survey was to be as comprehensive as
possible within the given space constraints. There are, of course,

certain omissions, for which the author spologizes in adwvance.

2. THE WEYL METRICS

Using cylindrical coordinates (r,z,¥) where r > 8, z € R and
Bg¥<Lean (with Y =08 and Y =20 identified), the =static,
axisymmetric, wvacuum solutions of Einstein’s field equations are

given by the Weyl metrics [7],[8] (see alsoc Synge [91)
(2.1) ds? = - e dt? + 2PN (dr? + dz?) + r? 72> dy?

where Alr,z) and v(r,z) are solutions of the eguations

2.2) e F Az Fria. =@
and
2.3 v = riap? - 2%, Yz = 2rdprdz

If a solution A of (2.2) is found, then (2.3) can be integrated
to find ». In fact, (2.2) is recognized as béing simply the Laplace
equation in cylindrical coordinates for a Y—independent function. We
thus have a straightforward method of ©obtaining static,

axisymmetric, vacuum, general relativistic fields. Namely choose an
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appropriate Newtonian gravitational field, and then integrate {(2.3).
An obwvious choice is the gravitational field produced by a
spherically symmetric mass distribution with total mass m, which is

located at the origin of the cylindrical coordinate system. So

(2.4) A= - mR where R = r< + z
and
(2.5) v = - m?r2,s 2R*

This is the so-called Curzon metric [18]. Although generated by the
Newtonian mass monopole, it is not equivalent +to the Schwarzschild
metric, which as is well—known (Birkhoff’s Theorem [113), is the

unigque spherically symmetric, vacuum solution of general relativity.

3. THE SCHWARZSCHILD SOLUTION

The Schwarzschild solution is, in fact, generated by the
Newtonian potential of a constant density line mass (or rod) with
total mass m and length 2m , which is located along the z—axis with

mid-point at the origin. So for this important example we have

Ry + Ry — 2m

(3.1) A= 1.2 In
Ry + Ry + Zm
where
(3.2 Ry = [r2 + (z — m)2:|1f2 and Ro = [r2 + (z + m)2]1/2
and
(R; + R2)? ~ 4m?
(3.3 » = 1.2 In

4 RyRa

Nalvely, one might have been tempted to meke the simple

coordinate transformation

(3.4) R = r< + z . tan 8 = r/z
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from the cylindrical system (r,z,¥) used by keyl (Weyl coordinates),
to a spherical system (R,8,%). However, this will not cast the
metric into the familiar Schwarzschild form, since under such a
coordinate transformation the rod maps to the portion of axis
specified by B8 =8, B{R{m and B8 =n, B¢ R m So instead
of producing the customary point mass, the line mass persists.

In fact, any coordinate system which is one—to-one with the
cartesian system (x,y,z) on an open neighbourhood of the rod, can be
ruled out for the same reason. R different type of coordinate
transformation is needed here, and the key to finding it lies in the
following observation.

For the KWeyl metrics (2.1, (2.2) & (2.3), the 3-metric 39«5 B

3g*P (a,p = 1,2,3) induced on the hypersurface t = constant is given

by
(3.5) 2gupdxdx® = 2N (dr? & dz2) + r? o7 gy?

where x! = r, %2 = z, %xZ = ¥, Now it can be shown that

(3.8) 35“ﬁ EAI«ﬁ = 33“3 BVEBV« e = @

Thus e™ is an analogue of the Newtonian potential XA, and the
surfaces on which it is constant may be thought of as gravitational
equipotentials.

For the Schwarzschild potential A given by (3.1),

e™ = constant

= Ry + Rz = ¢ {a constant)
These gravitational equipotentials are, of course, just the

2-surfaces p = constant, where p is the radial coordinate normally

used for the Schwarzschild metric. From the metric component
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the function plc) is readily determined to be
pic) = 1.2 (c + 2m) ,
and with a little more effort, the coordinate transformation

p =172 (R; + Ry + 2m)
(3.7)
cos 8 = 12m (Ra — Ry}
is found to be the one which casts the Schwarzschild metric into its

familiar form
(3.8)
ds? = - (1 - 2m/p) dt? + (1 - 2mp) " ldp? + p2(dB2 + =in’B d¥?)

We note that this transformation from Vit,r,z,W) coordinates to
{t,p,8,%) coordinates, is a one—to—one mapping of the entire region
surrounding (but not including) the line mass, onto the exterior
Schwarzschild solution p > 2m. This is not really very surprising,

since the Weyl metrics are static.

4. THE ZIPOY-YOORHEES METRICS
The Schwarzschild solution falls naturally into the subclass of
Weyl metrics generated by the MNewtonian potential of a constant
denzity line mass (or rod) with total mass m and length 2%, which is
located along the z—axis with mid-point at the origin. So we have
Ry + Ry — 24
4.1) A =12 mL In —

Ry + Ry + 20
where

4.2) Ry = [r?2 4+ (z - 0Z]V2 and Ry = [r? + (z + 07|12

and
(Ry + Ry)2 - 442
(4.3 v = 1.2 (md? 1n

4 RyRy
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This metric was first derived by Bach and MWeyl [121, and is
occasionally referred to as simply ‘the metric of Bach and Weyl’.
Howewer, it has since been discussed and investigated to a wvarying
extent by numerous authors [131,0443,045%1,0161,0171,0181,019], and
is more commonly referred to as the Yoorhees metric or the Zipoy-
Yoorhees metric after two of them.

In fact the papers of Zipoy [14] and VYoorhees [181 are
particularly interesting, and warrant some further discussion here.
There is a common philosophy underpinning both, namely that the
coordinate system chosen to express a particular Heyl metric (A,v),
should be adspted to the symmetries of the source (or mass
distribution) giving rise to the MNewtonian potential A. So for the
line metrics (4.1), (4.2) & (4.3), an obvious choice is the prolate

spheroidal coordinate system (u,8) defined implicitly by
(4.4) r =& zinh u cos B z = & cosh usin 8 ,

where u 38 and - W2 8 { W2 .

If we further define the coordinate x by x = cosh u, where
% 2 1, then the coordinates (x,8) form an orthogonal system whose
level curves x = constant and 8 = constant are confocal ellipses
and hyperbolaz respectively, with foci at r =8, =z = + &4,- 4
(x =1, 8 =+ W2,- N/2). These coordinates are illustrated in
Figure 1.

If we further define the coordinate p by p = &x, where p 2 4,

then in (t,p,8,%) coordinates the metric becomes

de? = — e di? + 20N (g2 — 1259028 [dp?/(p? - 42 + d8?]
(4.5)
+ g2 (p2 - 42) cos28 dg¥?
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where
p -4
(4.6) A= 1.2 mL In
p o+ L
and
p: - 42
(4.7) v = 12 (m)? In

p2 - 42sin%8

The gravitational equipotentials e = constant, now have the
particularly simple form p = constant (p > &), confirming that
prolate spheroidal coordinates are indeed well suited +to the given
source. For the Schwarzschild solution (L = m), the metric assumes
its usual form (3.8) by a straightforward change inte (t,p”,87,%)

coordinates, where

4.8 p’ =p+m and g8’ = 2 - 8

FIGURE 1. R graph
showing the relationship
between cylindrical
coordinates (r,z) and
prolate spheroidal
coordinates (x,8).
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5. POSSIBELE SOURCES FOR THE ZIPOY-VYOORHEES METRICS

By examining the behaviour of a particular invariant of the
Riemann tensor as x = 1%, Zipoy concludes that in all but the
Schwarzschild case, » = 1 is comprised of curvature singularities.
Howewer, this conclusion is slightly incorrect, since if m& > 2,
the invariant does in fact tend to zero as x = 1 is approached along
either the positive z—axis or the negative z-axis (if wA = 2, it
tends to a finite, positive walue).

The proper distance from %o > 1 to x = 1 along the spacelike
geodesics given by 8 = B, t,¥ constants, is found to be finite for
all values of m’t . Timelike geodesics given by 8 = B, ¥ constant
reach x = 1 in both finite coordinate time and finite proper time
for all walues of m’L . However it is interesting to note that the
circumference of the circles given by 8 = B, t,x constants becomes
infinite as x = 1* for mwA > 1, and zero for wmL < 1.

Yoorhees proposed the following method for determining the
geometry of the sources for these metrics. Assuming that all the
rods are of equal mass m, but hawve wvarying length 24, it is possible
to determine the relationship xi(x,8), Bix,8) between the prolate
spheroidal coordinates (x,8) used For the Schwarzschild solution,
and those (%,8) used for the solution generated by the rod of length
2L .

It is then a straightforward matter to find p’ix,8), 87(x,8),
where (p’,87) are the standard Schwarzschild coordinates given by
(4.8). Figure 2 shows how the rod x = 1 transforms under this change

to Schwarzschild coordinates.
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FIGURE 2. The rod of mass m and length 20 (x = 1)
depicted in Schwarzschild coordinates (p”,8%).

It is noted that for solutions with m4 > 1, the singular
region (x = 1) does not cover the entire surface p’ = 2m, and indeed
no curvature singularity is encountered along the axis of symmetry
as p’ = 2m*. However, consider the spacelike geodesic which in (x,8)
coordinates is given by t = constant, 8 = N2, and extends from
x =1, 8 =1/2 out to x =+ w, 8 = W2,

In Schwarzschild coordinates it lies along the axis of symmetry
87 = B, and extends from p’ =2m, 8" =@ out to p’ = +w, B8’ = B,
But the point (p’ = 2m, 8" = B) corresponds to the point (xg > 1,
8 = m2) in (x,8) coordinates. So what happens to the piece of
geodesic lying between xo and x =1 ?

The answer is, that it maps onto the cap which is missing from

the top of the sphere p’ =2m in Figure 2 (iii)! This is an
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undesirable feature, and since there are further problems associated
with these source representations, we conclude that the method of
Yoorhees yields only a wvery rough approximation to the source
structure. The true geometry of the sources for the Zipoy—Voorhees

metrics remains an open problem.

= POSSIBLE EXTENSIONS OF THE ZIPOY-YOORHEES METRICS

In a more recent paper by Papadopoulos, Stewart % Witten [2081,
it iz pointed out that the Zipoy-Yoorhees metrics form the static
limit of the Tomimatsu-Sato family of solutions [211,[22]. It is
also noted that apart from the Schwarzschild solution (L = m), all
metrics in the class are of Petrov type D on the axis of symmetry,
and type I (or general) elsewhere. But perhaps the major revelation
of the paper, concerns the ‘north pole’ x =1, 8 = Y2 and ‘south
pole’ x =1, 8 = - W72 in solutions with m7L 3 2.

In keeping with the spirit of Zipoy and Yoorhees, the metric is
expressed in prolate spheroidal coordinates. Then using a complex
null tetrad tm,m,L,k), the Weyl tetrad components Yo, Wi, Y2, W3, ¥4
are calculated ¥y =8 & W3 = 8). For solutions with w4 3 2,
Yo, Y2 & ¥4 are infinite along x =1, - -2 < 8 < 2, confirming
that the rod x = 1 minus its endpoints f(or poles) is indeed
comprized of curvature singularities. However, the value of sach of
Yo, ¥2 & W4 at the north and south poles, is found to vary according
to the direction of approach to the pole.

The north and south poles are thus the locations of directional
singularities. In an attempt to unwrap this directional behaviour, a
polar—type coordinate system based on the north pole is introduced.

However, the attempt is wunsuccessful, because the coordinate
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transformation maps the pole to a point. To successfully unwrap the
directionality, it will certainly be necessary to use a coordinate
transformation mapping the pole to a higher—dimensional surface.

It can be shown that timelike geodesics lying along the axis of
symmetry (x > 1, 8 = W72) reach the north pole in finite proper
time. Since no curvature singularity is encountered there, it is
argued that an extension of the space—time is necessary. Rs a first

step towards providing one, an extension of the 2-dimensional ‘space

—time’ spanned by the time coordinate t and the axis of symmetry
(x »1, 8 = W’2) is successfully performed.

If msL (3 2) is an integer, the extension is analytic. If
n<mA<n+1, where n is an integer (n 3} 2), the extension is C"
— an analytic extension is not possible in such cases. An exténsiﬁn
of the full d-dimensional space-time through the north pole f(or
likewise the south pole), has yet to be found. It is clear however,
that the ability to perform such an extension, will be intimately
tied to the ability to unwrap the directionality which is present at

the poles.

7. SOME GENERAL PROPERTIES OF THE WEYL METRICS
From the preceeding discussion of the Zipoy-Yoorhees metrics,
and our earlier comments regarding the Curzon and Schwarzschild

metrics, it is apparent that:

3n genencl, ithere iv no convvedpondence belween the geometny of the

wounce fon o Ueyl melnic, and ithe geometny of ihe Newlonion wounce
Is it at least true then, that every MWeyl metric (2.1) is

generated by a unigue MNewtonian potential Alr,z) ? At a superficial
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level, the answer to this question is, of course, ‘yes’. Since the
Weyl metric coefficient ggo is — egA, it is clear that two different
Newtonian potentials A;0(r,z) and A3(r,z), will certainly generate
Weyl metrics which look different.

There is a possibility however, that if the second Weyl metric
iz expressed in a different coordinate system (%,r,z,%), it could
assume the same form as the first metric still expressed in Weyl
coordinates. That is, different A3 and As might generate the same
metric simply expressed in different coordinates. But does this
actually happen in practice ?

The answer lies in an interesting paper by Gautreau & Hoffman
[231. They set themselves the task of finding all Newtonian
potentials Alr,z) which generate flat space. Obviously A = 0 is one

such potential, giving rise as it does +to flat space expressed in

cylindrical coordinates
(7.1 ds? = - dt? + dr? + dz? + r? d¥?

Now the Newtonian potential of a constant density line mass of

infinite extent, lying along the entire z-axis, is given by
(7.2) A =20 Inr ,

where o > @ is the mass per unit length. If the Riemann tensor
components are calculated for this subclass of the Weyl metrics, it
is readily seen that they all vanish for the case o = 12 ( > 8).
So A = In r is another potential which generates flat space.

It can be shown that there are precisely two other such

potentials, namely

(7.3 a=t2In[{rZ+2z2 +2z], a=12In[{r?+z2 -z].
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They correspond to the Newtonian potentials of semi-infinite line
masses of constant density 172, lying along the entire positive
z—axis and entire negative z-axis respectively. 5o with four
distinct Newtonian potentials which generate flat space, we conclude
that:

Thene ie nol o abnict 1-1 convedpondence belmween the Ueyl metnica
ond thein genenrcting Newlonion polenticle Ailn,3).

However, some questions naturally arise here. For instance, how
special is the case of flat space in this context ? In other words,
is it true, in general, that a Weyl metric is generated by more than
one potential ? If not, then what is the class of exceptions ?
Also, can a strict 1-1 correspondence be obtained by restricting the
generating Newtonian potentials, to those corresponding to mass
distributions of finite extent ? At the present time, all of these

questions remain unanswered.

g. THE TWO-PARTICLE CURZON SOLUTION

No survey of the Weyl metrics would be complete without
mentioning the two—-particle Curzon solution, which as the name
suggests, was first found by Curzon [24] (and later by Silberstein
[251). This solution is generated by the Newtonian potential Alr,z)
of two particles (point masses) of mass my and mz . ©Obviously, for
the mass configuration to be axisymmetric, the two particles must
both lie along the z—axis at z; and z, respectively (z; < z3). So we
have
(8.1 A= - my/pPy — ma/pa
where

8.2) pg = [r2 + {z — 21)2]1/2 and p» =.[r2.+ (z - 22)2]‘/2
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and
v = - 12 r? [m12/p14 + m223p24]
8.3 2 mymy r2 4 (z - z1)lz — z2)
+ -1 .
(zp — 24072 Pip2

Silberstein claimed that the existence of a static solution
consisting only of  two point masses surrounded by vacuum, indicated
the incorrectness of the general theory of relativity. Two masses at
rest in vacuum should gravitate! FEinstein [26] countered that the
two-particle solution is not a purely wvacuum solution, and provided
the  following argument. Consider a small circle given by
t = constant, z = constant (zy < z < z3), r = constant, where r is
small. If we take the circumference C and radius R of this circle,

it is found that in the limit as R -» 8%,
CR - 2me? where v = v(@,z) .

Now for zj € z € za, »(8,z) # @8 and so C-/R does not approach 2n
as R » @%. Hence the space—time violates the condition of elementary
flatness on the section of axis between the +two particles,
suggesting the existence of a “strut”. This would explain the static
nature of the solution.

However, in 1968, some thirty—two years after Einstein’s paper
on this subject, Szekeres [27] demonstrated that static, two-body
solutions do exist in general relativity. In his solutions, at least
one of the two point masses is endowed with a multipole mass
structure, which allows equilibrium to be achieved withowut the need
for an intervening strut. The simplest example is that of a pure
mass monopole (a Curzon particle) balanced by a  mass

monopole—dipole, where the mass of each particle (as represented by
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the monopole moment) is positive.

Rnother major contribution to this sub ject came guite recently,
in 1982. Using a technique to generate stationary solutions from
static ones, Dietz and Hoenselaers (28] cbtained Ffrom the
two-particle Curzon solution, a stationary, axisymmetric solution
representing two particles precisely balanced by their spin-spin
interaction. Their solution is also a purely vacuum sclution, with
no strut required.

The source structure for the two—particle Curzon sclution is
still wunknown. From Section 2, we know that although the Curzon
metric (2.4) & (2.5) is generated by the MNewtonian mass monopole,
the Curzon solution is not the unique, spherically symmetric, wvacuum
solution of general relativity. The source for the Curzon sdlution
iz a ring singularity with finite radius and infinite circumference,
and the space—time has a double—sheeted topology inside the ring.

So without further investigation, there is no reason to expect
that the source for the two—particle Curzon solution simply consists
of two point masses joined by a strut. The source structure is
probably considerably more complicated, and the space-time may sven
be extendible. A first step towards resclving these issues would
presumakly be to look for directional behaviour at the two particle

locations : (r =8, z4) and (r =8, z3) .

9. RECENT MATHEMATICAL DEVELOPMENTS

In a recent paper by MWoodhouse & Mason [29]1, the ideas
presented in an earlier paper by Ward [38] are developed into a
geometric correspondence between the stationary, axisymmetric wvacuum
space—times and particular complex analytic objects — holomorphic

vector bundles on a non-Hausdorff Riemann surface (twistor space).
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Rs a result, the solutions to the Ernst equations on space—time can
be described in terms of certain free holomorphic functions on
regions in the Riemann sphere (or on parts of the twistor space).

The paper discusses the effect of the action of the Geroch
group on these free holomorphic functions, and also the conditions
on them implied by global properties such as axis regularity and
asymptotic flatness. Unfortunately, the construction is, at present,
tied +to the wuse of MWeyl coordinates, so that aspects of the
singularity-source structure and global structure which aré obscured
by the use of Weyl coordinates, are difficult to address in this new
framework also.

Mevertheless, +the construction is geometric, and it should
therefore be possible to articulate it independently of the choice
of such coordinates. The study of singularities would then perhaps
be reducible to the study of singularities of holomorphic functions.
VHDwever, further work needs to be done before these ideas are able
to contribute to the study of the singularities occurring in the

Weyl metrics.

18. RING SINGULARITIES

Perhaps the most appropriate way to conclude a survey, is to
add a small, but new observation on the given subject - in this case
the Weyl metrics. This particular observation will concern ring
singularities (that is, rings comprised of curvature singularities),
occurring in the hypersurfaces t = constant of the Weyl space—times.
These rings are known to be a common feature throughout the entire
Weyl class.

That the Meyl metrics should exhibit singularities in the form

of rings is not really wery surprising, since all metrics in the
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class are axisymmetric. So if a curvature singularity occurs at the
point (ra, zo, Yol in the hypersurface t = constant (rg # B), then a
curvature singularity occurs at every point (rg, zg, ¥), uwhere
BgY¥<ar,., In other words, (rgo, zo) is a ring singularity.

What past investigators have found rather more surpriszing, is
that these rings may have an infinite circumference. If, in
addition, the ring singularity can be reached from the axis of
symmetry via a finite number of spacelike geodesics, each having
finite proper length, then we are, indeed, confronted by a highly
counter—intuitive phenomenon — namely, a ring having finite radius,
but infinite circumference!

The Curzon metric provides us with the most well-known example.
Although, in MWeyl coordinates, the Curzon singularity appears as a
point fat R = B) exhibiting highly directional behaviour, a change
to the new coordinates constructed by Scott & Szekeres, unwraps the
point to include, amongst other things, a ring singularity with
finite radius and infinite circumference.

When past investigators of Weyl metrics have happened across an
example of this phenomenon, they have tended to regard it as an
exceptional case. However, the simple argument which follows, will
indicate that for ring singularities with finite radius occurring in
Weyl metrics, the generic case is that the circumference of the ring
is infinite, not finite. We note that the standard Weyl coordinates
(t,r,z,¥) will be used in what follows, although the argument could
proceed equally well in any other coordinate system (t,x,y,"¥).

Suppose that in a Meyl space—-time, a curvature singularity
occurs at the point p = (tg, ro # 8, zg, Yo). WKe assume that p can
be reached from the axis of symmetry by a C° curve ¥, which consists

of a finite number of spacelike geodesics, each having finite proper
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length. So irg, 2zo), B ¢ ¥ < 2N, is a ring singularity with finite
radius, which occurs in every hypersurface t = constant.

Mow it will generally be true, that A = — o at the curvature
singularity p. This means that A =~ — @ as p is approached from any
direction. So if we consider the circle given by (r = constant, zgl,

where B < r < rq , then its circumference Cr is found to be
(18.1) Cp = 2mr ™™,

and it is readily seen that as r > rg , G = +w .

The details have been omitted here, but the argument can be
made rigorous. We note that the fact that the ring singularity has a
finite radius is not used to show that it has an infinite
circumference. In other words, a ring singularity with an infinite
radius would also have an infinite circumference, but this is not
very surprising after all. It only remains to find a physical
explanation of this strange phenomenon. How can a ring singularity

with finite radius have an infinite circumference ?
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