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A SURVEY OF THE 1-lEYL 1'1ETRICS 

Susan M. Scott 

1, INTRODUCTION 

Hermann Weyl derived his class of metrics in 1917, just one 

year after E i nst.e in had presented his now-eel eb,-ated general ·theory 

of re l at i '-' i ty to the world. With the passing of some seventy years 

s i. nee that initial f ll1rry, it is perhaps time to pause and assess 

what progress has been made with respect to the Weyl metrics. 

Exaci:.ly what is known elbout them, -::~nd what still rem.:.d.ns to be done? 

From about twenty-five years ago, an inten:!'st in the Wey l 

metr i cs developed, part i cuI ar l y as exterior sol ut. ions in 

astrophysical problems [1] and as possible final states of 

gr·avitational collapse [2], [3]. Hoo.uever,, in addition to being of 

relevance to physics, they <l1re also of interest simply because the!:J 

present us with the rare opportunity of explicitly determining and 

investigating a large class of relati\)istic metr-ics. 

The Weyl metr·ics are, in principle,, all 'known' since there 

exists a p;-·ecise algorithm for generating them from an infinite set 

of Newtonian potential functions. This procedure is given in 

Section 2. In practice, however, the global structure of only a few 

such solutions is well understood, and it seems that much work and 

new insights will be required if this situation is to change. 

The member of the Weyl class which is simplest to obtain is the 

Curzon metric (see Section 2). Yet, despite the ease with which it 
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is generated, its source structure and global structure remained a 

mystery until the papers by Scott & Szekeres [4],[5] (see also Scott 

[6]) appeared in 1986. Due to space considerations, their findings 

will not be summarised here, but nonetheless form an integral part 

of this subject. 

Since the Schwarzschild solution belongs to the Weyl class, the 

question naturally arises as to how 

is investigated and answered in 

it is generated. This question 

Section 3, and ultimately, of 

Weyl coordinates to the standard course, involves a change from 

Schwarzschild coordinates. Finding the relationship between the two 

coordinate systems is facilitated by a consideration of the general 

form of gravitational equipotentials of the Weyl metrics. 

The Schwarzschild solution is a special member of the subclass 

of the Weyl metrics known as the Zipoy-Voorhees metrics. These 

metrics form the main focus of this survey and are discussed in 

Sections 4,5 & 6. In Section 4, the metrics are specified and new 

coordinates, more suited to their geometry, are chosen to replace 

the original Weyl coordinates. The problem of finding sources for 

these metrics is discussed in Section 5, and the possibility of 

performing extensions is considered in Section 6. 

Some general properties of the Weyl metrics are given in 

Section 7, and in particular, the relationship between an arbitrary 

Weyl metric and its generating Newtonian potential is examined. The 

question of how flat space is generated within this framework is 

fully investigated, and at the end of this section, there is a list 

of some related open problems. 

In Section 8, a brief history of the static two-body problem of 

general relativity is presented, including the early controversy 

over the two-particle Curzon solution, as well as some much more 
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recent developments. Section 9 gives a short description of a new 

mathematical approach to the start. ionaq:J.• ax isymmet.r ic., vacuum space

times. It is hoped that this app!~oach will eventw~.lly of·f"er new 

insight into some of the unanswered questions related to the Weyl 

metrics. 

The survey cone l udes with Section 10_, which consists of a small 

but new observation by the author regarding ring singularities 

occurring in Weyl metrics. Before proceeding, it only remains to 

point out th<=lt the aim of this survey was to be as comprehensive as 

possible within the given space constraints. There are_, of course_, 

certain omissions, for which the author apologizes in advance. 

2. THE WEYL 11ETRICS 

Using cylindrical coordinates (r,z_,lf) where r ~ 0_, z E IR and 

0 ~ If' < 2lt (with I? = 0 and tf = 2lt i.dent if ied) .• the static, 

axisymmetric, vacuum solutions of Einst.ein's field equations are 

given by the Wey! metr ics [7]_, [8] (see also Synge [9]) 

where .\(r .• z) and 'b>(r _, z) are solutions of the equations 

(2.2) 

and 

(2.3) 

0 

If a solution A of (2.2) is found, then (2.3) can be integrated 

to find "'· In fact_, (2.2) is recognized as being simply the Laplace 

equation i.n cylindrical coordinates ·for a tf-independent function. We 

thus have a straightforward method of obtaining static, 

axisymmetric, vacuum, general relativistic fields. Namely choose an 
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appropriate Newtonian gravitational field·' and then integrate ( 2. 3) . 

An obvious choice is the gravitational field produced by a 

spherically symmetric mass distribution with total mass m, which is 

located at the origin of the cylindrical coordinate system. So 

R 

This is the so-called Curzon metric [10]. Although generated by the 

Newtonian mass monopo 1 e ·' it is not eqL! iva lent to the Schwarzsch i. 1 d 

metric_, which as is well-known (Birkhoff's Theorem [11]), i.s the 

unique spherically symmetric_, vacuum solution of general re lat i.vi ty. 

3. THE SCHI.JARZSCHILD SOLUTION 

The Schwa.rzsch i l cl solution is·' in fact, generated by the 

Newtonian potential of a constant density line mass (or rod) with 

total mass m and lr<mgth 2m .• tuh i ch i. s located along the z-ax i. s with 

mid-point at the origin. So for this important example we have 

(3.1) 

(3.2) 

and 

(3.3) 

Na.'ive 

..,;; 

one might 

coordinate transformation 

(3.4) R 

V"2 ln 

i/2 ln 

have 

and 

(Ri + R2) 2 - 4m2 

4 R1R2 

been tempted to make the simple 

tan a 
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coordinates)_, 

to a i cal system ( R, 8 _,If') • Howe vel-·' this w i ll noit cast the 

metric into the fami 1 iar Schwa>-zschi id form, since under such .::~ 

cooi-dinate transfm-mation the rod maps to ~t.he portion of axis 

specified 6 = 0 .• ' ana 

In ·f a.ct._, any coordinate system which is one-t.o-one u.e i th the 

cartesian S!:o!Stem ( x, y _, z) on an open ne :i 9hbourhood of t.he rod·' c<m be 

r·uled out for the same reason. A different type of coordinate 

tr.ansfcwmati•::m is needed hel-e, a.nd the key .to -finding it ! ies in the 

fol Xowi.ng observad;ion. 

by 

(3.5) 

(3.6) 

Thus 

For the 1.>-le!:Jl metrics (2.D .• (2.2) & (2.3), the 3-metric 

t ~ constant is given 

ap, Now it can be shown that 

0 

is an analogue of the Newton i ,atn potential ,'l.._,. a.nd the 

surfaces on which it. is constant may be t.hought of as gra<.;itati.onal 

equ ipo·tent ials. 

For the Schwarzschild potent.ial :<.given by (3.1)_, 

e/' constant 

These are, of course_, just the 

2-sui-f aces p = constant, where p is the rad i a.l coordinate normally 

used fo•- the Schwarzsch i ld met.r ic. From the metric component 
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the function p(c) is r~adily determined to be 

p(c) ~ 1/2 (c + 2m) _, 

and with .a I ittle more ef"fort, the coordinate transformat-ion 

is found to be the one which casts the Schwarzsch i id metl~ ic into its 

fami I i.ar form 

(3o8) 

ds 2 = - (1 - 2m/p) 

We note tha.t this tra.nsformation from (t_,l-_,z_,'f') coO!-dinates to 

( t ·' p ·' B .• 'f) coo1-d i nates·' is a one-t.o-one mapping of the ent. i r·e region 

sur-rounding (but. not including) the l i.ne mass_, onto the il:!'J:d:.!'!'rior 

Schwarzschild solution p >2m" This is not reedly ';et'Y Sl-'rprising, 

since the 

4. THE ZIPOY-VOORHEES 1"'1ETRICS 

The Schwarzschi ld solution falls nah.1rally into the subclass of 

met.rics generated by the Newtonian potential of' a constant 

dens i 1:-'::J l i ne mass (or rod) with total mass m and 1 ength 2.!t._, which is 

located .:~. the 

(4.1) 

where 

[r2 + 

(4.3) 

z-axis with mid-point at ·the origin. 

)._ 1--''2 m/.!t ln 

(z _ .!U2]u2 

R1 + R2 2Jl 

R1 + R2 + 2Jl 

and R2 ~ [r2 + 

(Ri + R2) 2 - 4il.2 

4 R1R2 

(z 

So we have 

+ .IU2]1/2 
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This metric was first derived by Bach and Weyl [12], and is 

occasionally referred to as simply 'the metric of Bach and Weyl'. 

However, it has since been discussed and investigated to a varying 

extent by numerous authors [13J,[14J,[15J,[16J,[17J,[l8J,[19J, and 

is more commonly referred to as the Voorhees metric or the Zipoy

Voorhees metric after two of them. 

In fact the papers of Zipoy [14] and Voorhees [18] are 

particularly interesting, and warrant some further discussion here. 

There is a common philosophy underpinning both, namely that the 

coordinate system chosen to express a particular Weyl metric (A,~), 

should be adapted to the symmetries of the source (or mass 

distribution) giving rise to the Newtonian potential A. So for the 

line metrics (4.1), (4.2) & (4.3), an obvious choice is the prolate 

spheroidal coordinate system (u,8) defined implicitly by 

(4.4) r = ~ sinh u cos 8 z = ~ cosh u sin 8 

where u f 0 and - K/2 ~ 8 ~ K/2 . 

If we further define the coordinate x by x = cosh u, where 

x f 1, then the coordinates (x,8) form an orthogonal system whose 

level curves x =constant and 8 =constant are confocal ellipses 

and hyperbolas respectively, with foci at 

(x = 1, 8 = + K/2,- K/2). These coordinates 

Figure 1. 

r = 0, z = + ~,- ~ 

are i 11 ustrl!!..±.e.J:L- in 

If we further define the coordinate p by p = ~x, where p f ~. 

then in (t,p,B,~) coordinates the metric becomes 

(4.5) 
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(4.6) 
.P + Jt 

and 

(4.7) 1/2 (m/.lt) 2 ln 

The graY i tat i om:\ 1 equ i pot.ent i a l s • constant, now have the 

particularly simple form p ~constant (p > Jl.), confio-ming that 

j':wo late 

(4.8) 

'""''"'"',..'"'ida l coor'd i nates an:~ indeed we l i sLli ted to the given 

.P + m and A' -~ 

FIGURE 1. A 
the relationship 

between cy l. indr iced 
coordinates (r,z) and 
prolate spheroidal 
coordinates (x,B). 
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5. POSSIBLE SOURCES FOR THE ZIPOY-VOORHEES METRICS 

By examining the behaviour of a particular invariant of the 

Riemann tensor as x ~ 1+, Zipoy concludes that in all but the 

Schwarzschild case, x = 1 is comprised of curvature singularities. 

However, this conclusion is slightly incorrect, since if m/~ > 2, 

the invariant does in fact tend to zero as x = 1 is approached along 

either the positive z-axis or the negative z-axis (if m/~ - 2, it 

tends to a finite, positive value). 

The proper distance from x 0 > 1 to x = 1 along the spacelike 

geodesics given by 

all values of m/~ • 

B = 0, t,~ constants, is found to be finite for 

Timelike geodesics given by B • 0, ~constant 

reach x - 1 in both finite coordinate time and finite proper time 

for all values of m/~ However it is interesting to note that the 

circumference of the circles given by B • 0, t,x constants becomes 

infinite as x ~ 1+ for m/~ > 1, and zero for m/~ < 1. 

Voorhees proposed the following method for determining the 

seometry of the sources for these metrics. Assuming that all the 

rods are of equal mass m, but have varying length ~. it is possible 

to determine the relationship x(x,B), B(x,B) between the prolate 

~pheroidal coordinates (x,B) used for the Schwarzschild solution, 

and those (x,B) used for the solution generated by the rod of length 

a. 

It is then a straightforward matter to find p'(x,B), B'(x,B), 

where (p',B') are the standard Schwarzschild coordinates given by 

(4.8). Figure 2 shows how the rod x - 1 transforms under this change 

to Schwarzschild coordinates. 



0 < m/1. < 1 

184 

-'l = 111 

Schwarzsch i ld 
solution 

I 
si"-1\"l~r 

:Hu··f!4ce, 
/~

/ 
:to, e~ -·~rf:t 

m/Jt > :l 

FIGURE 2. The rod of mass m and length 21. (x ~ 1) 
depicted in Schwarzsch ild coon:Hnates ·· .• EF). 

It is noted that for solutions ttoith m/Jl > 1, the singular 

n~g ion ( x ~ 1) does not cover the ent lire sur·f ace p' = 2m., a.ncl indeed 

no curvature singularity is encountered along the axis of symmetry 

asp'-~ However .• consider the space l ike ic which in (x,S) 

com-dinates i.s given by t = constant., B l'l:/2.. and extends from 

x 1, B • IT/2 out to x - + ro, 8 • IT/2. 

In Schwarzschi ld coordinates it lies along the axis of symmetu-y 

B' = 0, and extends fr·om p' = 2m, B' • 0 out to p' = + rJ:J., 8' 0. 

But the point ' = 2m, 6' = 0) corresponds to the point (x 0 > 1 .• 

f:l = 11:/2) in ( x, 8) coordinates. So wha·t happens to the piece of 

geodesic lying between x 0 and x = 1 '? 

The answer is, that it maps onto the cap which is missing from 

the top of the sphere p' = 2m in Figur·e 2 (iii)! This is an 
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Lmdes irab le feature., and since thet~e are ·hu-ther problems assoc iatecl 

with these source representa:t ions·' we cone I ude that the method of 

Voorhees yields on l !::l a veq:J ~~a ugh approximation to the ;;:ource 

str·ucture. The true geometry of the sour·ces for t.he Zipoy-Voorhees 

met;r i cs remains an open problem. 

6. POSSIBLE EXTENSIONS OF THE ZIPOY-VOORHEES METRICS 

In a more recent pape1~ by Papadopoulos, Stewart. & Witten [20]_, 

it is pointed out that the Zipoy-Voor·hees metr ics form the static 

limit of· the Tomimatsu-Sato family of solutions [21].,[22]. It i;;: 

also noted that apart from the Schwarzsch i l d solution (.!t ~ m) ·' all 

metr ics in the class are of Petrov t.ype D on the ax is of symmetry, 

and type I (or general) elsewhere. But perhaps the major revelation 

of the paper·' concerns the 'north pole' x ~ 1, B ~ ff/2 and 'south 

pole' x = 1 .• 8 = - Jl/2 in solutions with m/.ll ll: 2. 

In keeping with the spirit of Zipoy and Voorhees, the metric is 

expressed in prolate spheroidal coordinates. Then using a complex 

null tetrad (m,m.,.ll.,k) .• the Weyl tetrad components '+'0 .• 11-' 1 , '-P 2 , IP3 , 't'4 

are calculated ('t'1 = 0 & '+'3 = 0). For solutions with m/.ll ll: 2 .• 

tt' 0 , '+':2 & 'P4 are infinite along x = 1 .• - JV2 < fl < JV2.. confirming 

that the rod x = 1 minus its endpoints (or poles) is indeed 

comprised of curvature singularities. However, the value of each of 

'1" 0 ., '-P2 & 'P 4 at the nort.h and south po !es.. is found to vary according 

to the direction of approach to the pole. 

The north and south poles are thus the locations of directional 

sin!:JI.illarit:i.es. In an attempt to unwrap this directional behaviow~_, a 

polar-type coordinate system based on the north pole is i ntrodllced. 

However_, the .attempt is unsuccessful_, because the coordinate 
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transformation maps the pole to a point. To successfully unwrap the 

directionality, it will certainly be necessary to use a coordinate 

transformation mappin9 the pole to a higher-dimensional surface. 

It can be shown that timelike ics lying along the axis of 

symmetry (x > 1, e ~ il/2) reach the 1101'th pole in finite proper 

time. S i nee no curvature singularity is encoLmtered ther·e ·' it is 

argued ·that an extension of the space-time is necessary. As a first 

step towards p;'ov i ding one .• an extension of the 2-d i mens ion a l 'space 

-time' spanned by the time coordinate t and the axis of symmetry 

(x > 1P 6 ~ rV2) is successfully performed. 

If m/.ll (~ 2) is an int.eger .• the extension is analyt.ic. If 

n < m/.Jt < n + 1_, where n is an integer (n ;; 2)., the extension i.s c~ 

an analytic extension is not possible in such cases. An extension 

of the full 4-dimensional space-time thl~ough the nol-th pole (or 

li il<.ewise the south pole) .• has yet to be found. H. is clea1' however_, 

that t.he ability t.o perform such an extension, w:i ll be intimately 

tied to the ability to unwrap the clir·ectionality which is present at 

the poles. 

7. SOME GENERAL PROPERTIES OF THE WEYL METRICS 

From the ing discussion of the Zipoy-Voorhees metrics .• 

and our earlier· comments regarding the Curzon and SchlUarzsch:ild 

metr i cs .• it is apparent that.: 

3n ~t, ~ .-l-4 n-o co->J,.i"i,e:~~ ~-~ .t.l\€. o1 -U\e 

-4<:>1-"'1.-oe ~· o llJe~" !l'~c, oro-<l. .tl\e ~\1· ~ .t.J.e Jlfe11~ ~...,e 

~· ~ u ..\.,.,j_ 9"'~-e,d.. 

Is it at least true then, that every Weyl metric (2"1) is 

generated by a unique Newtonian potential ,\.(r,z) '? At a superficial 
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level.. the answer to this question is·' o·f course·' 'yes' , S i nee the 

V.Jeyl metric coefficient g 00 is - e 2 ·"-_, it is clear that two differen"t; 

Newtonian potentials ,\i(r_,z) and A2(r_,z), will cert.:;.inly generate 

Weyl metrics which look different. 

There is a possibility however_, that if the second Weyl metric 

is expressed in a different coordinate system (~.~.i •• l, it could 

assume the sam!!' form as the first metric still expi-essed in Wey l 

coordinates. That is, different A1 and A2 might generate the same 

metric simply expressed in different coordinates. But does this 

acto..lally happen in practice ? 

The answer lies in an inte!-est ing paper by Gautreau & Hoffman 

[ 23] . They set themse 1 ves ·the task of finding all Newtonian 

potentials A.(r .• z) which generate flat space. Obviously .\_ ~ 0 is one 

such potential .• 9 i. vi. ng rise as it does to flat space expressed in 

cylindrical coordinates 

Now the Newtonian potential of a constant density l line mass o-f 

infinite extent, lying along the entire z-axis., is given b'::f 

(7.2) A. = 2cr In r , 

where cr > 0 is the mass per unit length. If the Riemann tensor 

components are calculated for this subclass of the Weyl metrics .• it 

is readily seen that the!:! all vanish for the case c; = l/2 (r > 0). 

So A = ln r is another potential which generates flat space. 

It. can be shown that there are precisely two other such 

potentials, namely 

(7.3) 
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They correspond to the Newtonian potentials of semi- i nf in it,e 1 i ne 

masses of constant density 1/2_, lying along the entke posit:ive 

z-axis and entire negative z-axis respectively. So with four 

d i st :i net Newtonian potentials which gener.';l.te flat space, we cone l ude 

that: 

~!\~-<A~ o .,._t.,'1-i.r----t :1-1 ~~ ~e-t,~ . .:tJ'...e ll.l~ ~ 

on-~ ..tl\~ ~'""9 Jliew.-t~ poten..t~Vl-'le A.(..,.,-'$-) • 

However, some questions na.t.uraclly ar·isl:!" here. For instance_, how 

special is the case of flat space in t.h is context ? In othe1- words, 

is it true, in general_, that a ~>ley l met.r :i c is by more than 

one potentia 1 ? If not .• then •nhat is the c 1 ass of exceptions ? 

Also_, can a str i.ct t-1 con·espondence be obtained by l'estr i.ct ing the 

generating Newtonian potentials_, to those cornC"spond i ng to mass 

d i str i but ions of finite extent ? At the present time, all of· these 

questions remain unanswered. 

8. THE T!;~O-PARTICLE CURZON SOLUT:IOH 

No survey of the Wey l metr ics wol! ld be camp lete without 

mentioning the two-particle O.JI'Zon solution_, which as the name 

suggests_, was first found by Curzon [24J (and latet' by Silberstein 

[ 25] ) . This solution is gener·ated by the Newtonian poten't i a l A. ( r ·' z) 

of t.wo pa.rt ic les (point masses) of mass m1 and m2 • Obviously, for 

the mass configuration to be axisymmetric, the two particles must 

both lie along the z-axis at z 1 and z2 respectively (z1 < z2), So we 

have 

(8.1) 

where 

(8.2) and 
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and 

""" 
- 1/2 r 2 [m1 2 /pz 4 2 4] + m2 /p2 

(8o3) 2 ffi1ffi2 [r> + (z-zt)(z - z2) 

'] + -
(z2 - Z1 ) 2 P1P2 

Silberstein claimed that the ex:i::;:tence of a static solution 

consisting only of . two point masses surrounded vacuum.. indicated 

the incorrectness of the gene1~a1 the(wy of relativity. Two masses at 

rest in vacuum should gravitate! Einstein [26] countered that the 

two-particle solution is not a pure ~uu~ solution, and provided 

the following argument. Consider a small circle 

t ~ constant, z 

small. If we take the circumference C and radius R of this circle, 

it is found that in the limit as R-<> 0+., 

where 

Now for z 1 < z < z 2 ., -v(0, z) 'I" 0 and so C/R does not approach 2!1: 

as R-» 0"'. Hence ·the space-time violates the condition of elementary 

on the sect ion of axis between t.he.- two part i c l es, 

suggesting the existence of a ''·stl~ut". This would explain t.he static 

nature of the solution. 

However, in 1968 .• some thirty-two years after E:inste in's paper 

on this subject, Szekeres [27] demonstrated that static, two-body 

solutions do exist in general relativity. In his solutions, at least 

one of the two point masses is endowed with a multipole mass 

structure·' which allows equ i l i br i um to be achieved ll!lli thout the need 

for an intervening strut. The simplest example is that of a pure 

mass monopole (a Curzon part ide) balanced by a 

monopole-dipole, where the mass of each particle (as represented by 
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the monopole moment) is positive. 

Another major contribution to this subject came quite recently, 

in 1982. Using a technique to generate stationary solutions from 

static ones, Dietz and Hoenselaers [28] obtained from the 

two-particle Curzon solution, a stationary, axisymmetric solution 

representing two particles precisely balanced by their spin-spin 

interaction. Their solution is also a purely vacuum solution, with 

no strut required. 

The source structure for the two-particle Curzon solution is 

still unknown. From Section 2, we know that although the Curzon 

metric (2.4) & (2.5) is generated by the Newtonian mass monopole, 

the Curzon solution is not the unique, spherically symmetric, vacuum 

solution of general relativity. The source for the Curzon solution 

is a ring singularity with finite radius and infinite circumference, 

and the space-time has a double-sheeted topology inside the ring. 

So without further investigation, there is no reason to expect 

that the source for the two-particle Curzon solution simply consists 

of two point masses joined by a strut. The source structure is 

probably considerably more complicated, and the space-time may even 

be extendible. A first step towards resolving these issues would 

presumably be to look for directional behaviour at the two particle 

locations : (r • 0, z1) and (r- 0, z2) . 

9. RECENT MATHEMATICAL DEVELOPMENTS 

In a recent paper by Woodhouse & Mason [29], the ideas 

presented in an earlier paper by Ward [30] are developed into a 

geometric correspondence between the stationary, axisymmetric vacuum 

space-times and particular complex analytic objects - holomorphic 

vector bundles on a non-Hausdorff Riemann surface (twister space). 



191 

f:ls a result_, the solutions to the Ernst equa.tions on space-time can 

be described in terms of certain free holomorphic functions on 

regions in the Riemann sphere (or on parts of the twistor space)" 

The paper discusses the effect of the action of the Geroch 

group on these free ho l omorph i c funct i oms .• and also the cond it. i oms 

on t.hem imp 1 i ecl by global properties such as axis reg•.d a.r i ty and 

asymptotic flatness. Unfortunately_, the construct ion is, at present, 

t. i ed to the use of Weyl coord i na."~es _, so that aspects of the 

singular i ty/soLlrce strLicture and global structure which ar·e obscured 

by the use of Weyl coordinates, are difficult to address in this new 

framework also. 

l'leve,~the less_, the construct ion is geometr i.e_, and it should 

therefore be possible to art.iculate it independently of the choice 

of such coordinates" The study of singularities would then perhaps 

be reducible to the study of singularities of holomorphic functions. 

However, further work needs to be done before these ideas are able 

to contribute to the study of the singularities occurring in the 

Weyl metrics. 

10. RING SINGULARITIES 

Perhaps the most appropriate way to cone lude a survey_, i.s to 

add a small.. but new observation on the 9 i ven subject - in this case 

the Weyl metrics. This particular obset~vation wi i l concern r·ing 

singularities (that is, rings comprised of curvature singularities)_, 

occurring in the hypersurfaces t = constant of the Weyl space-times. 

These rings are known to be a common feature throughout the entire 

Weyl class. 

That t.he 1.--leyl met.rics should exhibit singLdarities in the form 

of rings is not really very surprising_, since all metrics in the 
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c I ass are axisymmetric. So if a CL!rvature s i ngl! 1 ar i t.y occurs at the 

point ( r 0.• z 0? 'f 0) in t.he hyper surf ace t ~ constant ( r 0 "" en' then a 

curvature singularity occurs a.t every point ( r cH z 0 , 'f), where 

that 

What past investigators 

these rings may have 

have found rather more si.-u'pr ising_, 

an infinite circumference" If, 

is 

in 

addition, the ~- i ng singular' i ty c,':J.n be l-eached fr·om the axis of 

symme·try via a finite number of spacelike geodesics .• each having 

finite proper length .• then we ai-e ·' indeed_, confn:mted by a high 1 y 

counter-intuitive phenomenon 

but infinite circumference! 

namely_, a ring having finite radius_, 

The Curzon metric provides us 11.1 i th the most we ll-knmun example. 

Although, in Wey l coordinates .• the Curzon s i ngu 1 ar i ty appears a:s a 

point (at R - 0) exhibiting h ly directional behavioul-, a change 

to the new coordinates cons·tructed by Scott & Szekeres_, unwraps the 

point to inch.1de .• a.mongst other things_, a ring singularity with 

finite radius and infinite c ir·c~mrference" 

i..Jhen past investigators of Wey 1 metr i cs have happened a.cr-oss an 

example of t.h is phenomenon, they ha.ve t.ended to regard it as an 

exceptional cas.e. However_, the simple ar·gument u;hich follows .• will 

indicate that for ring singularities with finite radius occurring in 

Weyl metrics, the generic case is that the circumference of the ring 

is i!ILl-f ir111 i te ·' not ,.; in i te. We note that the standard Wey l coO!'d i nates 

(t,r_,z_,IP) wi 11 be used in what follows_. although the argument could 

eq•.1ally well in an':i other coordinate system (t_,x_,y,IP)" 

Suppose that in a Weyl ::zpace-time, a curvature singularity 

occurs at the point p (t 0 .• r 0 "" 0, z 0 , IP 0 ). We assume that p can 

be reached from the axis of S!:jmmetry by a C0 curve ·)j' ·' which cons :i sts 

of a ·finite nllmber of space 1 ike geodesics, each having f i.n i te proper 
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length. So (r 0 , zc.)_, 0 \ If'< 2JT_, is a ring singularity wit.h finite 

~~ad ius_, which occtlrs in e<,;ery hypersurf ace t. constant, 

Now it will generally be true, that A m at the curvature 

s i ngLll ar i ty p. This means t.hat A -> - m as p is approached from any 

direct.ion. So if we consider the circle given by (r ~ constant_, :z: 0 )_, 

where 0 < r < r 0 , then its circum·ference Cr is found to be 

and it. is readily seen that as r .... ro ' 
c,, ..... +w 

The details have been omitted here, but the argument can be 

made rigorous. We note that. the fact that the ring singularity has a 

finite radius is not used to show that it has an infinite 

circumference. In other words_, a ring singularity with an infinite 

radius would also have an infinite circumference_, but this is not 

very surprising after all. It only remains to find a physicai 

explanation of this strange phenomenon. HD~ can a ring singularity 

with finite radius have an infinite circumference ? 
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