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PREFACE

The following notes represent a course of lectures
delivered at the Australian National University in the second
semester of 1982 as part of the mathematics honours programme .
Most of the material contained in the notes is standard although
a few new refinements and variations are included. The course
consisted of twenty six one-hour lectures and this sufficed
to present about ninety five per cent of the content of the

notes.

I am indebted to Mayda Shahinian of the University
of New South Wales for typing a first draft of part of these
notes and to Helen Daish of the Australian National University

for typing the final draft.



1.1. Introduction.

Continuous one-parameter semigroups of bounded
operators occur in many bran;heé of mathematics, both pure and
applied. The calculus of functions of one real variable can be
formulated in terms of the translation semigroup, solutions of
the equations connected with classical phenomena such as heat
propagation are described by semigroups, and one—parameter
. groups and semigroups also describe the dynamics of quantum
mechanical systems. Although semigroups occur in many other
areas the development and scope of the general theory covered
in this chapter is well illustrated by the foregoing examples.

Hence we begin with a brief discussion of each of them.

The semigroup of right translations on COGR) , the
continuous functions over the real line which vanish at infinity,

is defined by
f € CO(]R) — Stf € CO(]R) .
where
(Stf)(x) = f(x-t)

Thus one has the semigroup property

and



where I 1is the identity operator. Moreover S is strongly
continuous, i.e.,

Lim |ls £ - £l =0, fFeCm ,

>0+
where |+|| / indicates the supremum norm. Infinitesimally the
action of this semigroup is left differentiation and globally S
corresponds in some sense to the exponential of the differentiation
operator, e.g., if f is analytic

n .0
- df
(Stf)(x) =7 (-t) x)

n! n
n=0 dx

Alternatively, the passage from the infinitesimal action -d dx

to the semigroup S can be described as integration,
w -d
(Stf)(x) = f(x-t) = It ds EEJf(X"S)

Thus this example illustrates how differentiation,
integration, and approximation theory, underlie the general theory

of one-parameter semigroups.

An alternative way of describing the translates
Stf of a function f € COGR) are as solutions of the first-order

partial differential equation

in CO@RQ) , and this is the natural way of viewing the second



example, the heat semigroup.

The heat equation

2

of _9°f

e (x, t) = ——E-(x, t)
ox

descpribes the infinitesimal change with time t of the spatial
heat distribution of an idealized one-dimensional rod. If

f € COGR) describes the initial heat distribution,

f(x) = f(x, 0) , of the infinitely long rod then at time t it

is described by the solution th € COGR) of the above equation,

2
£(x, t) = (T £)(x) = (um)’%f’_"w day e (xY) /U'tf(y) .

Again T = {Tt} is a strongly continuous semigroup of bounded

=0
operators acting on COGR) , with T0 = I and once more this
semigroup corresponds to exponentiation of the operator —32/8x2
describing the infinitesimal heat flow, e.g., if f is analytic
n 20

t 9
;1-'———% f(X) .

9x

(r£) G = ]
nz0
Thus solution of the heat equation can be viewed as construction

of the semigroup from its infinitesimal action.

The translation semigroup and heat semigroup may be
integrated on other function spaces such as PR) , p €1, ],
but there are also interesting evolution equations in more general

spaces than function spaces. For example the theory of quantum



mechanics can be phrased in terms of observables A, B, C,
which are bounded operators on a Hilbert space H and the change
(A, t) — At of these observables with time is given by the

Heisenberg equation of motion

BAt
'a_t— = l[HAt"AtH) N
where H 1is a self-adjoint operator, the Hamiltonian, and A_ = A .

0

Formally the solution of this equation is

A, = U, AU
t t -t

where Ut describes the solution of the Schrodinger equation

el

?czzint

on the Hilbert space H , i.e., wt = Utwo . Thus the evolution
of the quantum mechanical observables is described by a semigroup
At = StA acting on the space of all bounded operators jg(H) on

H . The infinitesimal action of the semigroup is given by
A +— §(A) = i(HA-AH)

and solution of the Heisenberg equations of motion again corresponds

to 'exponentiation' of this action.

The general problem of semigroup theory is to study

differential equations of the form



da
€ + Ha, =0
51: t

under a variety of circumstances, to establish criteria for
existence of solutions, to develop constructive methods of solution,
and to analyze stability properties of the solutions. Each of

these aspects will be discussed in this chapter. Formally the
solution is always at = exp{—tH}a and the key problem is to

define the exponential of the infinitesimal operator H . But

there are also several important subsidiary factors to consider.

The translation semigroup and the quantum-mechanical
semigroup, which were briefly sketched above, both extend to one-
parameter groups which are isometric, e.g., HStme = [|£ll, for
all f € COGR . The heat semigroup cannot be extended in this
manner but it is nevertheless contractive, i.e., ||th||oo = [I£l,, -
In the context of dynamics these conditions of isometry and
contraction are connected with conservation laws, e.g., the
contractive property of the heat equation reflects the fact that
no heat is created in the isolated system, but it can dissipate.
Continuity properties are also important. The translation semi-
group is strongly continuous on any of the spaces COGR) or

IP(R) with p € [1, ©) but this is certainly not the case on

ﬂwﬂR) . Nevertheless one has the residual continuity property
2im _ fim e
0+ (Stf, g) = 0+ | dx(Stf)(x)g(x)

"

[7 dax £(x)g(x) = (£, g)



for all f € LwGR) and g ¢ LlGR) . Since L° 1is the dual of
Ll this corresponds to weak®-continuity, i.e., weak continuity
with respect to the predual. Similarly the heat semigroup is
only weak®-continuous on Lwﬂm and the quantum-mechanical semi-
group is weak®-continuous on % (H) . Finally each of these semi-
groups is positive in a natural sense; the translation semigroup
and the heat semigroup map positive functions into positive
functions, and the quantum-mechanical semigroup maps positive
operators into positive operators. Again this form of positivity

can often be interpreted in terms of physical conservation laws.

Motivated by these examples we concentrate in this
chapter on strongly continuous contraction semigroups and partially
describe the theory of weak®*-continuous semigroups and groups of

isometries. In Chapter 2 we examine positive semigroups.



1.2. Semigroups and Generators.

Let B be a complex Banach space and B* its dual.
We denote elements of B by a, b, ¢, ... and elements of B¥
by f, g, h, ... . Moreover we use (f, a) to denote the value
of £f on a and H'H to denote the norm on B and also the

dual norm on B¥% , i.e.,
£l = sup{lf(a)] s llall =1} .

A semigroup S on B is defined to be a family
S t €Ry S, € %(B) of bounded linear operators on B which

satisfy

where I denotes the identity operator on B .

This notion of semigroup is not of great interest unless
one imposes some further hypothesis of continuity. There are a
variety of possible forms of continuity. Let us first consider

continuity at the origin.

The strongest possible requirement would be uniform

continuity, i.e.,

2im ||st - I =0,
>0+

where the operator norm is defined in the usual manner



Is, - 11 = sup{lis,a - all 5 llall =1} .

But this is a very restrictive assumption. It can be established
that a semigroup is uniformly continuous at the origin if, and

only if, there exists a bounded operator H such that

= exp{—tH}

n
(—t? 1o

S, =I+ ) -

t n=1l
(see Exercise 1.2.1). This is of limited interest in applications.
Nevertheless we occasionally use uniformly continuous matrix

semigroups for illustrative purposes.

A weaker continuity requirement is strong continuity

at the origin, i.e.,

2im H(st -I)all =0

>0+
for all a € B . Semigroups with this property are usually called
Co—semigroups and we adopt this notation throughout the sequel.
The heat semigroup on COGR) is a semigroup of this type. Note
that if S 1is a CO—Semigroup then it follows from the principle

of uniform boundedness (see Exercise 1.2.2) that

s Il = we

for some M > 1 and some finite w > inf (t_l QogHSt“) . In
>0

particular this implies that strong continuity of S at the origin

is equivalent to strong continuity at all t = 0 . This follows



10.

from the easy estimate

A

(s, -8 )all = lIs ]l I (s,-1)al

IA

Me“S|| (s,-Dall -

Moreover it establishes that the analysis of a general Co—semigroup
can be reduced to the analysis of an M-bounded Co—semigroup, i.e.,
a semigroup satisfying
<
sl = .
This reduction is effected by replacing St by Ste_wt . The

case M =1 is of particular importance.

A Co—semigroup S for which each St is contractive,

i.eos

sl =1, t

v
o

is called a Co—semigroup of contractions. The foregoing discussion
of boundedness properties indicates that the theory of contractive
semigroups is very close to the general theory. Nevertheless there
are some significant differences which lead to complications if

M > 1 and there are a number of techniques which are only applicable
to the contractive case M =1, w =0 . Consequently fof
simplicity of exposition and diversity of method we restrict the

ensuing discussion to contraction semigroups.

Before proceeding to the detailed discussion of CO—

semigroups we note that there are other weaker forms of continuity
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which are of interest. One continuity hypothesis, which is
natural from the mathematical point of view, is weak continuity

at the origin. By this we mean

(%) %im (£, s.a) = (£, a)
0+
for all a € B, and all f € B* . But here an unexpected

simplification occurs; every weakly continuous semigroup is
automatically strongly continuous (see Exercise 1.2.3).
Alternatively one could make the weaker hypothesis that (%) is
valid for all a € B and all f in some 'large' subspace of

B* . In particular if B has a predual, i.e., if B is the

dual of a Banach space Bsx , then one could suppose that (%) holds
for all a € B and all f € By . This hypothesis is referred to
as weak*-continuity and a semigroup that satisfies it is called

a Cg—semigroup. This notation is appropriate because it follows
by duality that each Cg—semigroup on B 1is the dual of a CO—
semigroup acting on the predual Bz . Hence many facets of the
theory of Cé—semigroups can be deduced by duality from the CO—case.
The group of translations acting on ﬁmGR; dx) 1is an example of

a Cg—group which is not a Co—group; it is the dual of the C_-group

0
of translations acting on LlGR; dx) . We consider the basic

theory of Cg—semigroups of contractions in Section 1.6.

The most important concept in the theory of continuous
semigroups is that of the (infinitesimal) generator. This generator
is defined as the (right) derivative of the semigroup at the origin

where the sense in which the derivative is taken is dictated by the
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continuity hypothesis. In particular the generator of a CO—
semigroup is defined as the strong derivative. The detailed

definition is as follows.

If S is a CO—semigroup on the Banach space B the
(infinitesimal) generator of S is defined as the linear operator
H on B whose domain D(H) consists of those a € B for which
there exists a b € B with the property that

bim | (t-s,)
>0+ T

a - b” =0 .
If a € D(H) the action of H 1is defined by

Ha = b .

Note that the semigroup property of S automatically

implies StD(H) Cc D(H) and
HSta = StHa

for all a € D(H) and t = 0 . Moreover one has the differential

equation

-— a = -HSta = —StHa

for each a € D(H) , where the strong derivative dSt/dt is

defined by

t _ _ %im (St+h-st}
at h=0 h a
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whenever the limit exists. It also follows that S and H are

connected by the integral equation
- t - _ [t
Sta -a = - IO ds SSHa = IO ds HSSa

for each a € D(H) . The integrals, both here and throughout the

sequel, are understood as B-valued Riemann integrals.

We now derive the basic properties of generators

and their resolvents.

Recall that the resolvent set v(H) of an operator
H on B is the set A € T for which AI - H has a bounded
inverse, the spectrum o(H) of H is the complement of r(H) in
C, and if A € r(H) then (7\I-H)_l is called the resolvent of

H .

PROPOSITION 1.2.1. Let S be a Co-semigroup of contractions on

the Banach space B with generator H .

It follows that
1. H <s norm closed, norm densely defined,
2. If ReX < 0 the range R(AI-H) of AI - H satisfies
R(AI-H) = B
and for a € D(H)
[(A1-B)all = |Rer| [All

3. If Rel < 0 the resolvent of H <s given by the
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Laplace transform

(AI-0)ta = - f: ds eASSSa , a €B.

In particular o(H) ¢ {A ; ReX = 0} .

Proof. Since Rel < 0 we may define a bounded operator RX(H)

on B by

A

oo s
R,(H)a = - fO ds e""S_a , a €B.

Explicitly one has

IR (all = [ as &R s a

IA

5 as &R pa) < [rer] Lal

IA

But for each a € B one also has

As (S -3

-1 o
-t fO ds e s s+t)a

-1
t(1-s )R\ (Ma

—t_l f: ds exs(l—e_xt)ssa-t'l fg ds ek(s_t)SSa

t__’6+ )\R)\(H)a - a

where both integrals converge in norm. This last conclusion uses
the strong continuity of S and the Lebesgue dominated theorem.

It follows that RA(H)a € D(H) and
(XI-H)RA(H)a =a .

In particular
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R(AI-H) = B .
But since
StRX(H) = R>\(H)St
and RA(H) is bounded one finds that

(AI—H)RA(H)a = RA(H)(XI—H)a = a

—_

for a € D(H) . Hence A € r(H) and

O1-m7t = R, (H)

But boundedness of ()\I—H)_l implies that AI - H , and hence H ,
is norm closed. Moreover the explicit estimate for ”RA(H)aH
derived at the beginning of the proof immediately gives the desired

lower bound on [[(AI-H)a| .

Finally a = —an(H)a € D(H) for all a € B and

—DS(

4]
I
o}
I

=n f: ds e SS—I)a

S -s

[, ds e {s —IJa — 0

0 s n-o
n

by another application of strong continuity and the Lebesgue

dominated convergence theorem. Thus D(H) is norm dense. []

This result has two simple implications which we often

use in the sequel without further comment. First the proposition
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implies that for each o > 0 generators satisfy
(*) [(1+am)all = flall , a € D(H)

But it immediately follows that the gemerator H of a Co-semigroup

S has no proper extension satisfying (*), i.e., generators are in

this sense maximal. To deduce this suppose H extends H and also
satisfies (*) then for a € D(H) set b = (I+uﬁ)a . But there is

an a' € D(H) such that b = (I+aH)a' , by Condition 2 of Proposition
1.2.1, and hence (I+aﬁ)(a—a') = 0 , because H extends H . Thus

a = a' by (%) and H=H. The second implication gives a
chavacterization of a core of H . Recall that a subset D of the
domain D(X) of an operator X is called a core of X if for each

a € D(X) there is a sequence a, € D such that Han - all 0 and
HXan - Xal| +0 as n ~+ e . Inparticular if X is closed then D

is a core if, and only if, the norm closure XID , of X restricted

to D, is equal to X . It follows that a subset D c D(H) <s a core
for the gemerator H if, and only <if, (AI-H)D <s norm dense in B
for some A\ with Reh <0 , or for all X with Rel < 0 . Clearly

if D is a core R(AI-H)D = B by Proposition 1.2.1. Conversely if H
denotes the closure of H|, and R(XI—ﬁ) = B one again concludes that

A = H by use of (%).

A slight variation of the argument used to prove
Proposition 1.2.1 also provides the following slightly less evident

criterion for a core of a generator.

COROLLARY 1.2.2. Let S be a Co—semigroup of contractions on the
Banach space B with gemerator H and let D be a subset of the
domain D(H) of H which is norm dense and invariant under S ,

t.e., S.a €D for all a €D and t= 0.

It follows that D is a core for H .



Proof. Let H denote the closure of H p - By the above

remarks it suffices to prove that R(AI-H) = B for some A with

ReA < 0 . But for a € D one can choose Riemann approximants
N Asi
Iy@ =- 1 e s als;, -s;)
i=1 i
N Asi
IfOI-ba) = - ] e S, (AI-Wa(s,,-s;)
i=1 1
which converge simultaneously to (XI—H)_la and a . Now

ZN(a) € D because of the invariance of D under S and

(AI-H) ZN(a) = ZN((M-H)a) .

Thus Zn(a) > (AI—H)-la and (AI-H) ZN(a) * a . Therefore

D ¢ R(AI-H) . But ()\I—H)_l is bounded and hence R(Al—ﬁ) is

norm closed. Thus R(AI—ﬁ) = D by the norm density of D . !]
Exercises.
1.2.1. Prove that if a semigroup S is uniformly continuous

then there exists a bounded operator H such that

Hint: For small s > 0 the operator

- Los oo
Hy = s~ [gats,
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is invertible, with bounded inverse, and

(I-St)HS/t = (I—SS)Ht/s :

1.2.2. Prove that a weakly continuous semigroup S must

satisfy

Is, Il = we®"

for some M > 1 and some finite w = inf(t—l KogHStH) .

t=0
Hint: Use the uniform boundedness principle for small t and
the semigroup property for large t .
1.2.3. Verify that if Re z > 0 then

2
-V -(x-y)
t = (5,£)(x) = (umez) /2 [ a% e /”tzf(y)

defines a C,-semigroup on COGRv) satisfying

5o = [ ke )7

1.2.4. Prove that weak and strong continuity of a semi-

group S are equivalent.

Hint: The weak generator HW of a weakly continuous semigroup

S is defined by

(f, Hwa) = 2im (f, (I—St)a)/t

t>0+
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with D[Hw) the set of a for which the limit exists for all
f € B* . Adapt the argument used in the proof of Proposition 1.2.1
to deduce that D(Hw) is weakly dense and hence, by the Hahn-

Banach theorem, strongly dense. Finally use
(£, a-s,a) = [t as (£, S_H a)
’ t 0 > Ts'w
to prove strong continuity for all a € D(Hw]

1.2.5. Prove that the generator H and weak generator H

of a Co—semigroup S coincide.

Hint: Adapt the proof of Proposition 1.2.1 to deduce that H 2-Hw .

1.2.6. If H is the generator of a C_-semigroup prove that

0

D(H) = N D(H")
n=zl

is norm dense.

Hint: For each a define a, by

{oo] .
a = IO dt f(t)SE/ a
n
where f 1is a positive, infinitely often differentiable, function
with compact support in (0, ®) and with total integral one. Then

a ¢ D_(H) and Han -all >0 as n >,



20.

1.2.7. Let S denote the heat semigroup on LpﬁRV) R

—(x—y)Q/

-V
(5,8) (0 = (umt) /2 [d%y e ey .

Prove that the generator of S is the closure of the restriction

of the Laplacian

2

2 z )
i=1 8x.2
i

to the infinitely often differentiable functions in LpﬁRV)

Hint: Use Corollary 1.2.2.



1.3. Generators and Semigroups.

Proposition 1.2.1 states necessary conditions for

an operator to generate a C.-semigroup of contractions. Next

0
we examine sufficient conditions and also study the construction

of a semigroup from its generator.

The problem of characterizing a generator H is
equivalent to the problem of proving existence and uniqueness of

global solutions of a differential equation

dat
—— + H = =
Er at o, at a
for all a in a suitable Banach space B . Formally the solution

of the differential equation is

a, = exp{-tH}a

and the difficulty is to give an appropriate definition of the
exponential. Various algorithms and approximation techniques are

of use. For example the algorithm

exp{-tx} = 2im (1+tx/n) O
n-—>o

for the numerical exponential can be extended to an operator relation
if the (pseudo-) resolvent (I+oLH)_l has suitable properties for

small positive a .

It should perhaps be emphasized that in applications

21.
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the Banach space B is not necessarily specified in advance.
Typically one might encounter a differential equation of the above
type for functions over some measure space but without
specification of a particular norm. Thus the problem consists of
choosing the norm and reinterpreting the operator H such that

an appropriate solution can be found.

The first basic result which characterizes

generators is the following:

THEOREM 1.3.1. (Hille-Yosida). Let H be an operator on the

Banach space B . The following conditions are equivalent:

1. H <s the infinitesimal generator of a Co-semigroup of

econtractions S ,
2. H <s norm closed, norm densely defined:
R(I+oH) = B
for all o >0 (or for one OL=OL0>0) :

I (T+a)all = |lall

for all a € D(H) and all o >0 (or for all

o € (0, ocO]) .

If these conditions are satisfied

2im ||S,a - (I+tH/n) Mal = 0
_—

for all a € B, uniformly for t in any finite interval of [0, «) .
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Proof. 1 =2. This follows from Proposition 1.2.1, it

suffices to set A = -1/a .

2 =>1. Assume R(I+aoH] = B and [(I+oH)all = |la]] for all
a € D(H) and o € (0, ao] . Thus (I+aOH)_l is a bounded
operator with norm one. First we extend this conclusion to all

o € (uo/z, aO] and then by iteration to all a € (0, aoj .

If o € (uo X aO] then

n
o N  (o-a
_ (o 0 -n-1
Re s o) I [ (e
n=0
converges in norm to a bounded operator R . But for a € D(H) one

has RNa € D(H) and a simple rearrangement argument proves that
H(I+aH)RNa - all 0 and HRN(I+aH)a -all >0 as N+ . Since H
is norm closed it follows that R = (I+0LH)_l and then |[R| =1 by

the bound |[[(I+aH)al = |la] .

The remainder of the proof consists of establishing

that the strong limit of the operators
-n
rn(t) = (I+tH/n)

exists as n > « and that it defines a Co—semigroup of contractions

with generator H . ©Note that for n sufficiently large

-1
I

t/n < a, and |(I+aH)

0 =1 for all o relevant to the remainder

of the proof.

As a preliminary to studying the above limit we note

that if a € D(H)
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H(I+aH)_la - all u“(I+aH)—lHaH

A

alHal] — 0 .
o0+

Since D(H) is dense one concludes that (I+OLH)—l converges

strongly to the identity as o = 0+ . This has several implications.

First if for a € B one defines

a = (I+8/n) %a
n

then an € D(HQ) and a is norm convergent to a . Thus D(HQ)

is dense. Second if a € D(H) then a, converges to a and Han

also converges to Ha . Thus D(HQ} is a core for H . Third

rn(t) is strongly convergent to the identity as t >0 .

Next one claculates that drn(t)/dt is bounded for

t > 0 and, more specifically,

dr (t)
n

_ -n-1
——d_'t— = H(I+tH/n) .

Combining these facts one calculates that if a ¢ D(H2]

then

2im fz_e(ﬂsil-{rn(s)rm(t—s)a}

r (t)a - r (t)a
n m €0+ ds

_ o3 t-€ ' _ a V(o
= iig+ [ as {rn(s)rm(t s)a rn(s)rm(t s)a}

= 2im [T %dsr (s)r (t-s) {—H(I+sH/n)-la + H(I+(t-s)H/m)-la}
€0+ n m

S

ds &;—I%?J(I+sH/n)_n_l(I+(t-s)H/m)—m-lH2a .

1l
—
o ot



25.

This immediately yields the estimate

e (©)a -z (t)all = = (+3)u2a)

Thus {rn(t)a}nzl is a Cauchy sequence which is norm convergent,
uniformly for t in any finite interval of [0, ®) . But since
D(Hz] is norm dense, and Hrn(t)” =1 forall n=1,2, ...,
it follows that {Pn(t)}nzl is strongly convergent, uniformly
for t in any finite interval of [0, ) . If § = {St}tzo
denotes the strong limit one readily deduces that SO =1,

t € Ry — 5, € (B) is strongly continuous, and ”St” =1.

To establish the semigroup property we use the combinatoric

identity

xnhm(x—y)ym_l ]

x
3
)
«
=1
"
TN =1=]

m=1

Hence for a € D(Hz) one calculates that

n
T (Test/n) P (aE/n) T ™ (T4 (st H/n) T x

m=1

rn(s)rn(t)a - rn(s+t)a
X {(I+sH/n)'l(I+tH/n)'l - (I+(s+t)H/n)'1}a

3 -n+m-1 -m st 2

Y (T+sH/n) ™ (Theh/n) (T+(s+0)H/m) ™" Shla
m=1 n

n

Therefore

e (s)r (ta - v _(s+t)all = ZE i
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In the limit n - © one finds

and the semigroup property follows from the density of D(Hz)

and the contractivity of S .
It remains to identify the generator of § .

Again one calculates for a € D(H2)

-1 o5 1
£ 7 (T+tH/n) " ((I+tH/n) T-I)a + Ha
m=0

t_l(rn(t)-l]a + Ha

- ::;- ((z+tH/n) ™-1)Ha

[ f=}

m=1

t = T -p.2
) Z z (I+tH/n) pH a
n~ m=1 p=1

Consequently

t(n+l) ||H2a”
n

It e (t)-T)a + Hall = 22

and in the limit n =+ @
It (s,-Da + Hall = tlu’all .
Thus if H denotes the generator of S then

Ha = Ha

for all a ¢ D(H2) . But D[H2) is a core for H and hence

is an extension of H . This, however implies that (I+aﬁ)_l

>
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is an extension of (I-l-OLH)_l for all small o > 0 . Since the
latter operator is everywhere defined it is not possible that

A

H is a strict extension of H . Therefore # = H . []

There are a number of possible variations of the
Hille-Yosida theorem. It follows from Condition 1 of the theorem
that H is norm closed but for the implication 2 = 1 it is not
necessary to assume the closedness since it follows from the other
hypotheses of Condition 2. For example if a, € D(H) ,

Han - all +0 , and ”Han - bll * 0 then there is a c¢ such that
(I+aH)c = a + ab ,
by the range condition, and consequently
le - anH = ”(I+aH)[c—an)” -0,
by the lower bound. Hence ¢ =a , b =Ha , and H is norm

closed. This redundancy will reoccur, without comment, in several

of the subsequent statements.

The Hille-Yosida theorem can also be rephrased as a
criterion for an operator to be a pre-generator, i.e., a closable

operator whose closure is a generator.

THEOREM 1.3.2. Let H be a norm densely defined operator on the

Banach space B and assume that
(z+am)all = llal

for all a € D(H) and all o € (0, aO] » for some oy > 0.
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It follows that H is norm closable and the following

conditions are equivalent:

1. The closure H of H <s the generator of a
Co-semigroup of contractions,
2. R(I+aH) = B

for one a € (0, ayl , where the bar denotes

norm closure.

Proof. If a € D(H) , HanH + 0 , and HHan—bH + 0, then H is
norm closable if, and only if, b = 0 . Now suppose a' € D(H)

and b' = Ha' then

H(I+aH)(an+aa')H > ”an + oa'l

for a € €0, aOJ . Therefore taking the limit over n and

subsequently dividing by 0o one finds
Ib +a' +ob']l = [la'll .
Hence
la® + bl = fla*ll .

But D(H) is norm dense and so for each € > 0 one can choose
a' such that [Ib +a'll <€ and lla'll 2 lIbll . Therefore

bl <€ and b =0 .

Next suppose a_ € D(H) , Han -all >0, and

IIHan - Hal| = 0 then
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l(I+aH)al = %im ”(I+otH)anI|
n—)oo
= Lim lla_|l = [lall .
nig anl a

Moreover if ¢ € B and one chooses c, € R(I+0H) such that

lec. = cll 0 then ¢ = (I+aH)a  for some a € D(H) and
n n n n

”cn - Cm” H(I+uH)(an—am]H

v

la - al .

Therefore a must be a convergent sequence. But

I\

a—l{”(I+GH)(an—am}H +lla, - am”}

oMo, - eyl + lla - 2}

It -a )

and consequently Han is also convergent. Hence if Han -all > o
then a € D(H) and HHan - Hall > 0 because H is norm closable.

Thus
¢ = (I+oH)a
and this establishes that
R(I+aH) = R(I+oH)

Therefore Conditions 1 and 2 are equivalent by the Hille-Yosida

theorem. E

Remark 1.3.3. Results analogous to Theorem 1.3.1 and 1.3.2 are

valid for general Co—semigroups. For example if one replaces the
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lower bound in Condition 2 of Theorem 1.31 by the set of lower

bounds

(%) [[(memal = v -0 all , aen(), n=1,2,3,

for all o € 0, w] and repeats the proof of 2 = 1 then the new

bounds give the estimates
”rn(t)” < M(1-ow) "

and one readily concludes that H generates a CO—semigroup S

satisfying

wt
<
s, = me" .

Conversely if S satisfies these bounds then the lower bounds (%)

follow from the Laplace transforms
-n_ _ 1 ¢® n -t
(I+oH) "a = fo dt t'e 'S @ .

Remark 1.3.4. If S is a Co—semigroup with generator H it is

customary to write

This is justified by the definition of the generator and also by
the construction of Theorem 1.3.1. Moreover if H is bounded
St coincides with exp{-tH} defined as a uniformly convergent

power series.



The Hille-Yosida theorem can be reformulated in a
much neater manner: H <s the generator of a Co—semigroup of
contractions if, and only if, (I+0cI-I)_l 18 a bounded contraction
operator for all sufficiently small positive o, . Nevertheless
it is useful to identify explicitly the two pieces of information
which are contained in the statement that (I+0LH)—l is a

bounded contraction operator, the range condition
R(I+oH) = B ,
and the lower bounds
I(+a)all = |lall , a € D(H)

These latter lower bounds can often be re-expressed in quite
different terms. They are related to the maximum principle when
applied to differential operators and to a spectral property for
operators on Hilbert space. In the next section we discuss the
interpretation of these bounds as a criterion of dissipation. But
for the present we adopt the terminology that the operator H 1is

norm-dissipative if
(T+am)all = |lall

for all a € D(H) and all small o > 0

The following example illustrates this concept for

elliptic differential operators.

Example 1.3.5.  (The Laplace Operator). ©Let B = CO@RV] , the

space of continuous functions over R~ which vanish at infinity,

31.
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equipped with the usual supremum norm. The Laplace operator

2

-V is defined on CgﬁRv] , the twice continuously differentiable

functions in CO@RV) , by

V% = -

II.MC
S5}
o)

AN
.

and one has the obvious identity
QlY?IQ - V2|a|2 = (—V25)a + 5[—V2a)

Therefore if o > 0

I[l—aVQ]a|2 = la|? + o®|V%a|? + a[-VQQ}a + aé(—vga)
= |a|? + a?|v2al? + 2u|Y§|2 - av?lal?
> [a]? - ov?|a]? .

Now if |a| has a maximum at x = g then the maximum principle

states that x+— —VQla(x)l2 is non-negative at x = X, .

Therefore the preceding estimate establishes that

I (1-av?)all?

v

| (1-07)a () 12

la(xg) 1% = llall?

v

i.e., the Laplace operator is | ¢|| -dissipative. A similar
conclusion is true for more general elliptic operators by the

same calculation. ]

Now let us examine operators on Hilbert space. In
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this case one has

| (T+ar)al|?

lall® + o®lKall® + a(Ha, a) + a(a, Ha)

lal? + o®lHall® + 20 Re(a, Ha)
Therefore H is norm-dissipative if, and only if,

Re(a, Ha) = 0

for all a € D(H) . But under certain quite general circumstances
these latter conditions are equivalent to a spectral property of
H . For example if H is bounded and normal, i.e., if H
commutes with its adjoint H¥* , these conditions are equivaient

to
Re o(H) = 0 .

This follows by a numerical range argument. Define the numerical

range W(H) of H by
W(H) = {(a, Ha) ; a € D(H)} .

If H is bounded then the Hausdorff-Stone theorem establishes

that W(H) is convex. If, moreover, H 1is normal then the closure
W(H) of W(H) coincides with the convex closure of O(H)

Therefore in this latter case Re W(H) = 0 if, and only if,

Re 0(H) 2 0 . This conclusion can be extended to unbounded

generators of normal semigroups.

Example 1.3.6.  (Normal Semigroups). Let § = {s be a

t}tEO

Co—semigroup acting on a Hilbert space H . The adjoints
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S = {S*

t}t>0 form a weakly, hence strongly (Exercise 1.2.3),

continuous semigroup called the adjoint semigroup. The semigroup
S is defined to be mormal if SS and Si commute for all

s, t > 0 and self-adjoint if St = Si for all t > 0 . DNote

that ”St” = IS: and hence S and S* are simultaneously
contractive. Moreover if H generates S then the adjoint H#

of H generates S*% (Exercise 1.3.4).

If S +is contractive then Re o(H) =2 0 and if

S 1s normal it is contractive if, and only if, Re o(H) = 0 .

The first statement was established in Proposition
1.2.1. Moreover if H is bounded it is normal if, and only if,
S is normal and the second statement follows from the discussion
preceding the example. The case of unbounded H can now be
deduced by an approximation technique based on the functional

analysis of generators.

If Re 0(H) = 0 then (I+ocH)—l is a well-defined

bounded operator for all o = 0 . Consequently the operators

H, = H(T+an)™d = ot (I-(Trom) ™)

are bounded. But if S is normal it follows that Ha is normal

and the uniformly continuous semigroups Si = exp{—tHa} are also

normal. Moreover it follows from the identity
-1 -1 -1
AM(I+ar) I - Hy = (I+aX) “(AI-H)(I+aH)

that if A € r(H) then A(I+oA)™" € p(H ) , unless A = -u



Therefore P(Ha) contains the open left hand plane, Re O[Ha) =0,
and s* is contractive by the preceding argument for bounded

generators. Finally the formula

o ol d .o
sia - s,a= [ ar I Sie S(1onyed
1 o -1
=t [y dr sy, S(l_)\)t(L(IH}LH) )Ha

with a € D(H) , and the fact that (I+0cH)-l I as o =+ 0 (see
the proof of Theorem 1.3.1), establish that Si converges strongly

to St . Hence S is contractive.

Note that if St = exp{-tH} 1is contractive then
Re 0(H) = 0 but the converse is not necessarily true if S is

not normal. For example if

0 0
H =
1 0
then O0(H) = 0 but
_tH 1 0
St:e =
-t l)
and ”St” >1 for all t #0 . []

Throughout this section we have examined criteria
for an operator H on a Banach space B to be the generator of
a Co—semigroup of contractions. More generally one can ask

whether a given operator H has extensions which are generators,
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and then try to classify all such extensions. Unfortunately the
theory of extensions is poorly developed except for specific
examples, or for the special case of norm-dissipative operators
on Hilbert space. This Hilbert space theory can be briefly

described as follows.

Assume H is a norm closed, norm densely defined,
norm-dissipative, operator on the Hilbert space H and for small

o > 0 define
Ha = R(I+oH)

It follows by a simple variation of the argument used in the proof
of Theorem 1.3.2 that Ha is a closed subspace of H . Now if

H =H +then H is the generator of a C_ -contraction semigroup

o 0

by the Hille-Yosida theorem. Therefore we consider the situation
Ha # H and try to construct extensions of H which generate

contraction semigroups.

It is useful to introduce the spaces
D, = DQ(H) = Hi' which measure the extent to which the range
spaces R(I+0H) fail to equal H . The Da are called deficiency
spaces and the first key ébservation is that the dimension of Da
is independent of o . This dimension is called the défieieney

index of H . To prove the independence statement one first

remarks that

I(AT+H)all = Allall



for all a € D(H) and all sufficiently large A > 0 because H

is norm-diss

projection o

ll(z-

Therefore if b € Dl

(-2, , ol =

where the la

Consequently

But this imp

ipative. Next define Ea as the orthogonal

nto Da and note that

EJbl = swp |, (I+aH)a)|/”(I+aH)aH :
a€D(H)

/A then

sup |(b, (uI+H)a)|/H(uI+H)aH
a€D(H)

IA

sup  {|(b, (AT+m)a)| + |p-A| |(b, a)l}/u<ux+ﬁ)an
a€D(H)

(=217, )1w

IA

st estimate uses the norm dissipativity of H .

(- )Eqll = |a—B|/B :

lies that

I

1By - Egll = I(1-EJEg - Eg(1-E )

IA

]a—B|/B + [a—8|/a .

Thus if @ > 0 is in a sufficiently small open interval around B

one has ”Ea

Therefore Da

- BB” < 1 which is equivalent to E, = EB .

and DB have the same dimension. But since

B > 0 was arbitrary the general independence statement follows

immediately.

The second crucial observation is that D(H) N Da = {o}

37.
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for each 0 > 0 . This is established by noting that if

a € D(H) N Da then (a, (I+aH)a) = 0 and

(a, Ha) - -uaf|2/a .

But H is norm-dissipative, hence Re(a, Ha) 20 , and a =0 .

Now one can construct generator extensions of H by
iteration of the following procedure for the simplest case that

the deficiency index is one.

Assume Da is one-dimensional. Then define Ha by

p(H,) = D(H) ® D, and
Ha(a+b) = Ha + b/a

for o € D(H) and b € Du . If a+b=0 onehas a=0=>»
because D(H) N Da = {0} . Therefore Ha = 0 = b/o. and

Ha(a+b) =0, i.e., the operator Ha is linear. But

Re((atb), H (ath)] = Re((atb), (Ha+tb/o))

Re(a, Ha) + HbHQ/a + Re(b, (I+oH)a)/o

v

Re(a, Ha) = 0

where we have used b € Du . Thus Ha is norm-dissipative.

3 3 J-
Finally if c¢ € R(I+aHa) then

(e, [I+aHa)(a+b)] = (¢, (I+aH)a) + 2(c, b) = 0

L
for a € D(H) and b € Du . But R(I+oH) = Ha and b € Ha .

Therefore ¢ = 0 . Thus to summarize O > 0+ Ha is a one-
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parameter family of norm densely defined, norm-dissipative,
operators with R[I+aHa) = H . Hence the Ha are norm closed
and each Ha generates a Co—semigroup of contractions by the

Hille-Yosida theorem.

The above construction generalizes quite easily.
If D has dimension n > 1 one first chooses a one-dimensional

o
(1) . (1)
DOL c D(H) ® DOL

i

subspace Da and defines Ha by D(Hu)

and
Ha(a+b) = a + b/a

(1)

for all a € D(H) and b € Da It then follows as above that

Ha is norm-dissipative and the corresponding deficiency space is

NED

given by Dq(Ha) = Da(H) N

Thus the deficiency index is
reduced by one. Iteration of this procedure then produces a
family of extensions of H which generate contraction semigroups.
If n is finite, or countably infinite, this iterative procedure

is straightforward. In the general case it is necessary to appeal

to complete induction.

Although the foregoing method allows the construction
of some generator extensions, in the Hilbert space context, it
does not give all possible extensions. A complete classification
of such extensions is only known for the even more special cases

of symmetric operators,
Im(a, Ha) = 0 , a € D(H) ,

or anti-symmetric operators,
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Re(a, Ha) = 0 , a € D(H) .

These particular cases will be discussed in greater detail in

Chapter 2.

Example 1.3.7. Define H = di/ , on the twice continuously
dx

differentiable functions with compact support in (0, ®@) . Then

H is a symmetric norm-dissipative operator on L2(0, ») because
_(® af . 2
(f, HE) = fo dx Ia;(x)l

for all f € D(H) . But the deficiency index of H is one because

4
R(I+a2H) consists of multiples of the function fa where
fu(X) = expi-x/a} .

Hence the above construction gives a one-parameter family of norm-

dissipative extensions Ha of H satisfying the range condition

R(1+oH ) = 17(0, =) . But
-1
(3, (x)-a fa(x))|xzo =0,

where 9 denotes the right derivative. Therefore the family of

extensions of —dj/ ° to the twice differentiable functions
dx

f ¢ LQ(O, ©) with
-1
(3£ (x)-a f(x))|x=0 =0

must also satisfy the range condition. But these extensions, which



we also denote by Hu , are also symmetric and norm dissipative

because
-1 2 00 daf 2
(£, Hy£) = o 7 [£(0)[% + [o ax |51
for all f € D[Hu) . Hence the Hu are pre-generators of
contraction semigroups s% . This construction omits, however,

two extensions which formally correspond to the values o = 0 and
0 = % 3 the first is related to Dirichlet boundary conditions

£(0) = 0 and the second to Neumann boundary conditions 3£(0) = 0 .

Exercises.

1.3.1. If H generates the Co~semigroup S prove that

2im HSta - exp{—tH(I+aH)_l}aH =0

o0+
and

2im HSta - exp{—t(l—ss]/s}aﬂ =0 .

S0+
Hint: See Example 1.3.6.
1.3.2. Complete the proof of Remark 1.3.3 that a norm closed,

norm densely defined, operator generates a C_-semigroup S

0
satisfying ”St” < M explwt} if, and only if,

R(I+oH) = B
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and
I(z+am)al = ¥ (1-0w)all , a €D(H") ,

for all small o > 0

1.3.3. Let A be a bounded open subset of R’ . Define the

2 on the twice continuously differentiable

Laplace operator H = -V
functions with compact support in A . Prove that H is norm-

dissipative on LP(A) for all p € [1, =) .

1.3.4. Let S = exp{-tH} be a Co-semigroup on a reflexive
Banach space, i.e., B = (B¥*)® . Prove that the adjoints

S* = {S:}t>0 define a C.-semigroup, the adjoint semigroup, with

0

generator H®* , the adjoint of H .
Hint: Use Exercises 1.2.4 and 1.2.5 together with the definition
D(H*) = {f ; £ €B*, |(£, H)| sclall , a €D}
(H*f, a) = (£, Ha) for £ € D(H®) , | a € D(H)
1.3.5. Consider the Laplacian H = -v? defined on the infinitely
often differentiable functions in L2@Rv] which vanish in a

neighbourhood of the origin. Prove that the deficiency index d(H)

of H satisfies

d(H) = 2 if v=1
d(H) = 1 if v=2, 3
d(H) =0 if v=uy



1.4. Norm-dissipative Operators.

The Hille-Yosida theorem establishes that norm-

dissipativity of a generator H , i.e., the condition-
[(T+amall = flaf , a € D(H) ,

for small o > 0 , is an infinitesimal reflection of contractivity
of the associated semigroup. Next we discuss a reformulation of

dissipativity which corresponds to a more geometric interpretation
of contractivity. This reformulation is the Banach space analogue

of the condition
Re(a, Ha) =2 0 , a € D(H) ,

which characterizes dissipative operators H on Hilbert space.

The semigroup S is contractive if, and only if,
it maps the unit sphere, {a ; Jla]] = 1} , into the unit ball,
Bl ={a; Jlal =1} . Thus the change S,a - a of an element
a must be toward the interior of the ball of radius |lall . To
describe this last geometric idea in a quantitative manner it is

necessary to introduce the notion of a tangent functional.
An element fa € B* is defined to be a norm-tangent

functional at a if

Il = llall + Re(£,, b-a

for all b € B . Geometrically each such functional describes a
hyperplane tangent to the graph of b€éB + |b|| = 0 at the

point a . The functional fa divides the space into two sets

L3.
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E_ = {b; Re(f,, b) 20} and I_={b; Re(f_, b) =0} . The
fipst set can be interpreted as the b which are directed toward
the exterior of the ball {b ; [bll = llall} and the second set
the b which are directed toward the interior. Hence the
geometric rephrasing of contractivity of S given in the last

paragraph can be quantitatively expressed as

Re(f,, S,a-a) =0,

a

i.e., the change Sta - a of a is toward the interior of the
ball. Indeed this property follows directly from the definition

of the tangent functional fa R

Re(fa, Sta-a) < HStaH - Jall =0 .

Thus if H is the generator of the Co—contraction semigroup S
one concludes that
. Ha) = Qim Re[fa, a—Sta]/t >0

20+
for all a € D(H) and all norm-tangent functionals fa at a .
This is the alternative reformulation of norm-dissipatdvity of
H ; equivalence with the original formulation is provided by the

following.

THEOREM 1.4.1. Let H be an operator on the Banach space B .

The following conditions are equivalent:

. (") l(1+am)all = |lall
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for all a € D(H) and all o >0 (for all small

o> 0),

2. Re(f_, Ha) = 0

for one non-zero norm-tangent functional at each

a € D(H) .

Moreover if H is norm densely defined these conditions are

equivalent to the following:

3. Re(£_, Ha) 2 0

for all norm-tangent functionals £ at each

a € D(H)

The proof uses an alternative characterization of
norm-tangent functional which can be used to establish the

existence of such functionals.

LEMMA 1.4.2. For f € B* the following conditions are

equivalent:
1. £ <s a norm-tangent functional at a ,
2. [(£, D) = bl , b¢B,
and
(f, a) = |af .

Hence for each a € B\ {0} there exists a non-zero norm-tangent

functional.
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Proof. 1=2. Condition 1 states that

(*) Ibll = llall + Re(£, b-a) .

Thus replacing b by Aeleb one finds

Iol = 2im {lall f, + e (¢, b-afy)}
= Re eie(f, b) .
Hence |(£, b)| = |bll . But setting b = 0 in (%) one also obtains
(£, a) = |lal and therefore (£, a) = llal .
2 = 1. Successively applying the two relations of

Condition 2 one has

\

IIbll = Re(£, b)

Re(f, a) + Re(f, b-a)

llall + Re(f, b-a) .

Finally the Hahn-Banach theorem states that

if p s a real-valued function over B satisfying
p(a+b) = p(a) + p(b) , a, b €B,
p(Aa) = Ap(a) ) A=0, ac¢€B

and £ 1is a linear functional over a subsvace C C B such
that |(£, ¢)| = p(c) for c € C then there exists a linear
extension F of £ to B such that |F(a)| =p(a) for all

a € B . Therefore choosine p(*) = |l*l , C = aj; rech,



and setting (f, Aa) = Allali , one can find a linear extension F
to B satisfying |F(b)| = |b]] and F(a) = (f, a) = |lall . Hence
F is a non-zero norm-tangent functional at a by Condition 2 of

the lemma. []

Proof of Theorem 1.4.1. 1' = 2. Set b = Ha and for each
sufficiently small o choose a norm-tangent functional g, at

the point a + ab . Then from Condition 1

I\

EY

lla + ab]|

)

Re(ga, a+ab]

Re(ga, a) + o Re(ga, b)

IA

Re(gu, a) + allb|l .

Now the unit ball of B* is weakly® compact by the Alaoglu-
Birkhoff theorem, i.e., for every net fd € B* with ”fa” =1
there is a subset f,r which converges to an f € B* in the
sense that (fa" a) + (£, a) for all a € B . Hence one

deduces from the foregoing inequality that

llall = %2im {Re(ga,, a) +a'lb]l}
1]
a'>0
= Re(g, a)
where g 1is the weak® limit of the subset Byt - Now since

”gaH = 1 one has |g|l] =1 and then

Re(g, a) = llgll llall = llall .

u7.
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Hence

(g, a) = llall .

This proves that g 1is a norm-tangent functional at a .

one also has

lall = Re(ga, a) +a Re(ga’ b)

IA

lall + o Re(g, b)

and hence in the limit o' = O one obtains
0 = Re(g, b) = Re(g, Ha) ,
i.e., Condition 2 is satisfied.

2= 1. Let f be a norm-tangent functional at

satisfying
Re(f, Ha) = 0 .

Then

llall

Re(f, a)

IA

Re(f, a+oHa)

1A

Il (T+aH)al|

for all o >0 .

1=1". This is evident.

But

a € D(H)



Finally 3 = 2 and it remains to prove 1 = 3 under

the assumption that D(H) is norm dense.

Now if a, b € D(H) and f 1is a non-zero norm-

tangent functional at a one has

Therefore

I (I-aH)al| = |lall-o Re(f, Ha)

\

Re(£, Ha) = %im sup (Ha”—!l(I-OLH)aII}/OL

But

a0+

[(I-aH)all = |la + ob]| + allb + Hall

IA

[[(1+aH) (a+ob)| + oflb + Hall

lall + 2alb + Hall + o2i[Hb]|

I\

for all sufficiently small o > 0 by Condition 1. Therefore by

combination of these results

But since D(H)

Re(f, Ha) = -2||b + Ha| .

is norm dense we may choose b arbitrarily

close to -Ha and deduce that

Re(f, Ha) = 0 ,

i.e., Condition 3 is satisfied. L]

Example 1.4.3.

with its dual.

Let H be a Hilbert space and hence identifiable

If a, b €H then

49,
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|(a, B)| = llall Iill

with equality if, and only if, a = A\b for some A € T . Therefore
a/”a“ is the unique norm-tangent functional at a € H and
Theorem 1.4.1 states that an operator H is norm-dissipative if,

and only if,
Re(a, Ha) = 0

for all a € D(H) . This is the characterization used in

Section 1.3. E

Example 1.4.4. 1If B = tP(X; du) with p € (1, ©) then there is

a unique norm-tangent functional at each f € B given by

(Iflp-l arg f) Hfﬂg_l where arg f(x) = f(x)/|f(x)| if [£(x)] # 0
and arg f(x) = 0 if If(x)| =0 . If p=1 this gives the tangent
functional arg f , but this is not unique if £ = 0 on a set Y of
non-zero measure. In this case g + arg £ , where g has support in

Y and |g| =1 , is also a tangent functional. [

Theorem 1.4.1 allows an immediate reformulation of the

Hille-Yosida theorem which is often more convenient for applications.

THEOREM 1.4.5.  (Lumer and Phillips). Let H be an operator on

the Banach space B . The following conditions are equivalent:

1. H <s the generator of a Co—contraction semigroup S ,

2. H 1is (norm closed), norm densely defined
R(I+0H) = B

for all o >0 (or for an o > 0) and



Re(f,, Ha) 2 0

for one norm-tangent functional f, at each

a € D(H)

The alternative characterization of norm-dissipativity
provided by Theorem 1.4.1 also allows an easy proof of a version
of the Hille-Yosida theorem in which the range condition

R(I+oH) = B does not occur explicitly.

THEOREM 1.4.6. Let H be an operator on the Banach space B and

consider the following conditions:

1. H is norm densely defined with norm densely defined

adjoint H* and both H and H% are norm dissipative,

2. H <s norm closable and its closure H generates a
C,-con traction semigroup.

Then 1 = 2 and if B s reflexive 2 = 1.

Proof. 1=2. Suppose R(I+H) is not norm dense in B . The

Hahn-Banach theorem then implies the existence of a non-zero

f € B* such that (f, (I+H)a) = 0 for all a € D(H) . Therefore
|(£, HaY| = [(£, a)| = |IE]| llall

and hence f € D(H®*) . Moreover since D(H) is norm dense
(I+H*)f = 0 . Thus if b € B** is a norm-tangent functional at

f € B* one has

(b, H*) = -(b, £) = -|I£]|
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which contradicts the norm-dissipativity of H¥* . Hence
R(I+H) is norm dense and the desired implication follows from

Theorem 1.3.

Next assume B 1is reflexive and consider the

converse.

2 =1, If H generates the C_ -contraction semigroup S

0
then H* generates the Co—contraction semigroup S¥* (see

Exercise 1.3.4). Hence Condition 1 follows from the Hille-

Yosida theorem applied to S and S* . {:

Of course the drawback of this criterion is that one
has to specifically identify the adjoint H* before it is

applicable.

Finally we illustrate the notion of norm-dissipativity

with two examples of matrices acting on finite-dimensional spaces.

Example 1.4.7.  (Matrix Semigroups). Let x = [xl, Xps oo xn)
denote an element of the finite-dimensional space ¢ . Further
let H = (Hij) be a complex-valued n X n matrix acting on ¢t

and 8, = exp{-tH} , t = 0 , the corresponding matrix semigroup.

The space " can be equipped with various norms
which are all equivalent in the topological sense. But S can be
contractive with respect to one norm without being contractive
with respect to an equivalent norm. Nevertheless if a norm is
given then S 1is contractive if, and only if, H 1is dissipative.

Dissipativity with respect to the 2~ and Ql-norms is particularly



easy to describe because of the simple geometry of the corresponding
balls. We will not pursue, however, the geometric aspects but

proceed analytically.

. 0 n
Define the £ -norm on T by

Il = max |x.|
1<i<n

It follows that St = exp{-tH} <s 2 -contractive if, and only if,

(%) ReH.. - )} |H..| =0
ii 541 13
for all i =1, 2, ..., n . This is established as follows. For

i fixed choose x suth that x, =1, =x. = —ﬁl./|H..| if j#£1
1 J 1] 1]
and H,. # 0 , and x. =0 if j# 1 and H.. = 0 . Next choose
1] J 1]

f= (fl, cees fn) such that fi = 1 and fj =0 If j# i . Then
f 1is a norm-tangent functional at x and

Re(f, Hx)=Re H . - .Z' IHijl

J#1
Thus (#*) is necessary for S to be 2 -contractive. Conversely let
x be a non-zero element of L° and choose i such that ]xil = |le
for all j #1i . Set £, = x./bml and f. =0 if j#1i . It
i i/t j

follows that f 1is a norm-tangent functional at x and

"

Re(f, Hx) lxll Re Hii + Re j;zti Hijgixj /[Xil

v

R Re H,. - H..|}|-
|X1| [e i j;i | 13')

. (o]
Thus (*) is sufficient for H +to be £ -dissipative and S +to be
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[ee]
£ -contractive.

Next if

[Taerl=}

%1

Il = .

i=1

denotes the Ql-norm it follows by duality that St = expl-tH}
is Rl—contractive if, and only if, the adjoint semigroup

o ) . o . o

S; = expl-tH*} is & -contractive. Thus S_t = expi-tH} <is

2L-contractive if, and only if,

Finally one can equip ¢ with the 2P-norms

Il = @1 Ixilp)l/p

for 1< p< ® and consider Qp—contractivity. If S is both

Ql— and % -contractive it follows by abstract interpolation that
S is lp—contractive for all p € [1, ®] . This conclusion can,
however, be reached by explicit estimate. For example if p = 2

then x/”xH2 is the unique tangent functional at x and

"
0~

Re(x, Hx) [lx.|2 Re H,, + N Hi.gix.)
i=1 U F g1 1

v

i J#i

121 [lxi'2 Re Hy; - ) 'Hij|(lxi‘2+lxj|2)/2]



i
[Ilael=]

(g1 (R by = T (g lelg, 1))

i=1 j#i

where we have used the Cauchy-Schwarz inequality. Thus combination
of the conditions for 2%- and Qm—contractivity imply that H is
22-dissipative. A similar argument using the Minkowski inequality
establishes that Rt and Rm—contractivity imply that H is

Rp—dissipative.

If p#1 or <« the Qp-dissipative conditions cannot
be expressed in any particularly practical terms of the matrix
element Hij . Nevertheless if H is self-adjoint, i.e., if
H = H* , then Qw—contractivity of S implies Ql—contractivity by
duality and Kp—contractivity, p € (1, ) , by interpolation.

Thus a self-adjoint matrix semigroup is 2P _contractive for all

p € [1, ®1 if, and only if, (*) s valid. More generally if H
is normal, i.e., if HH¥* = H*H , then QQ—dissipativity is implied
by ll— or Rm—dissipativity. This will be established in the next

example. []

Example 1.4.8. (Normal matrix semigroups). Let 8, = exp{-tH}
denote the matrix semigroup of Exmaple 1.4.7. We first argue that

if the conditions

(%) Re H,, - ) |H

=0, i=1,2, ..., n

for lmlcontractivity are valid then Re A Z 0 for all eigenvalues A

of H . This follows by noting that if (H-AI)x = 0 then
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Hii - A Ixi| = Ijgi - Hijxj‘
= H,. .
1, gl bl

where i has been chosen such that Ixi| = lxj| for j#1.

Thus if x is non-zero the conditions (*) imply that

H.. - A\| < Re H,,
11 il

and hence Re A = 0 . Consequently Example 1.3.6 implies that

if S 4is a normal matrix semigroup then 2 -contractivity implies
22-00ntractivity and hence, by interpolation or by explicit
estimation, it implies Qp—contractivity for all p € [2, «] .
Similarly if S is a normal matrix semigroup then Zl—contractivity
implies Zz—contractivity,,and hence Qp-contractivity for all

p € [1, 2] . ]

Exercises.

1.4.1. Let H be the generator of a Co—semigroup of
contractions. Prove that the operators Ha = H(I+aH)_l .

o = 0 , are norm-dissipative.

1.4.2. Prove that if H is an invertible norm-dissipative

operator on a Hilbert space then H_l is norm-dissipative.

1.4.3. Prove that the closure of a norm densely defined,

norm-dissipative, operator is norm-dissipative.



1.5. Cg-semigroups.

If the Banach space B is the dual of a Banach space
B* > the pre-dual of B , then it is of interest to study families

of bounded operators S = {St}t>0 with the semigroup property

S S, =8 which are weak®-continuous in the sense that
s t S+t
1. 2im (Stf, a) = (f, a)
>0+

for all f € B and a € B, ,
2. zim (5,5, &) = (5,%, a)

for all t>0, all a € B+ , and all families £y

such that

2im (fa’ a) = (f, a)
o

Such families are called Cg—semigroups. The simplest example is

translations on ﬁwGR) which has pre-dual LlGR)

Our first aim is to show that if S is a Cg—semigroup

there exists an adjoint semigroup S, on B, such that

(Stf, a) = (f, S*ta} .

The weak®-continuity of S then implies the weak, and hence strong,

ofs
w

continuity of S, , i.e., the CO

semigroup S 1is the adjoint of a
Co—semigroup S, - This explains the name Cg-semigroup. In the
sequel we demonstrate that much of the foregoing theory of

Co—semigroups can be carried over to the Cg—semigroups by duality
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arguments.

We begin by recalling a number of standard

definitions.
A family fu € B is weak®-convergent if there is
an f € B such that

2im (fa’ a] = (f, a)
o

for all a € B, , and a set D ¢ B is weak®-closed if each weak®-
convergent family fu € D has a limit f € D . Alternatively a
set D S_B is weak®-dense if each f € B can be approximated by
fa € D in the weak®-sense, i.e.,

2im [fa’ a) = (£, a)
o

for all a € B* .

Next an operator H on B is weak®-densely defined
if its domain D(H) is weak®-dense in B and it is weak®-weak®-

closed if fa € D(H) and

gim (£,, a) = (£, @)

o

2im (Hfa’ a) = (g, a) ,
o

for all a € B* , imply that f € D(H) and g = Hf . Moreover H
is weak®-weak®-closable if it has a weak®*-weak®*-closed extension or,
equivalently, if fu € D(H) and (fa’ a) +~0 , (Hfu’ a) - (g, a) ,

for all a € B, , imply that g =0 .



The basic duality properties of operators rely upon
two versions of the bipolar theorem. Specifically if A 4s a

weak*-closed sbuspace of B and one defines

A = {a €B,; (f,a)=0 forall feAl},

i
A7 ={feB ; (f,a)=0 forall ac€A}

44
then A=A . Similarly <f A, <s a closed subspace of B,
and
4
A, ={f €B; (f,a)=0 forall a €A},
1L L
A, ={a€B; (f,a)=0 forall f¢ AL
11
then A, = A, . Both these statements are a consequence of the

Hahn-Banach theorem. Consider, for example, the second statement.

: A4
It follows by definition that A, ¢ A, . Next define

p over B, by

p(a) = inf{lla - ¢l ;3 c €A},

then p(a) = 0 for all a € A, but p(a) #0 for a ¢ A, .
Moreover p satisfies the hypotheses of the Hahn-Banach theorem

cited in Section 1.4. Hence for a € A, and b ¢ A, one has
p(a+\b) = #Ap(b*a/A) = [A|p(b)

where the + and - signs correspond to positive and negative A

respectively. Next introduce C as the subspace spanned by A*

59.



60.
and b and define a linear functional f over C by
(£, a+\b) = Ap(b)

for a € A* . One has |(f, c)| = p(c) for c € C and hence,
by the Hahn-Banach theorem, there exists a linear extension F
of f to B, satisfying |F(a)| = p(a) for all a € By . Since
p(a) = |la]l it follows that F € B and since F(a) = 0 for all
J— 3
a € A, one also concludes that F € A, . Finally
al 4
F(b) = (£, b) = p(b) # 0 and hence b 4 A, . Thus A; cCA, .

and the two sets must be identical.

LEMMA 1.5.1. Let B be a Banach space with a predual B, and

H an operator on B .

The following conditions are equivalent:
1. H 1is weak®-densely defined and weak*-weak*-closed,

2. H 4s the adjoint of a norm densely defined, norm

closed, operator H, on B, .

If these conditions are fulfilled and H <& bounded

then || = [[Hl .

Proof. 1 = 2. Consider B X B equipped with the norm

(le12+1gl2)¥ ana B, x B, with the norm

(g, gl

%
lta, DI (“a”2+Hb“2)2 . These two spaces are then in duality

through the relation

((£, g), (a, B)) = (£, a) + (g, b)



Next introduce the graph G(H) of H in B X B as the subspace
G(H) = {(f, HE) ; £ € D(H)} .

i 1
Thus the orthogonal complement G(H) of G(H) in B, x B,

consists of the pairs (a, b) which satisfy
(£, a) + (Hf, b) = 0

for all £ € D(H) . Now define

€
G = {(—b, a) 3 (a, b) € G(H) } .

Then G is the graph of an operator H, on B, . This follows

W

because if (0, a) € G the orthogonality relation gives
(f,a)=0,

for all £ € D(H) , and a = 0 because D(H) is weak®-dense.

4
But G(H) , and G , are norm closed by definition and hence H,

is norm closed. Finally, if H, is not norm densely defined there

must exist a non-zero element of G_L of the form (-f, 0) . Thus
(o, £) € G(H)J“L. But since H is weak®-weak®-closed G(H) is

a weak¥®-closed subspace and G(H)J"L= G(H) , by the first version
of the bipolar theorem cited above. Hence (0, f) € G(H) . This,
however, contradicts the linearity of H and consequently

D(H*) must be norm dense.

2 = 1. The proof is identical but B, replaces B , H,
replaces H , etc., and one uses the second version of the bipolar

theorem.
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Finally the equality of the norms for bounded

operators follows because

lall = sup{|(Hf, a)] ; f€B, ac¢ B*}
= Sup{l(f, H*a)l ; T €B s, a € B*]’ = “H.l".“ B D
If S = {St}tzo is a Cg-semigroup on B then the St

are everywhere defined and weak®*-weak¥*-closed, by the second
continuity hypothesis. Hence Lemma 1.5.1 establishes the

existence of an adjoint semigroup S, = {S*t}t>0 on B, such that

(Stf, a) = (£, S*ta] R
for all f € B and a € B, . Moreover,
Is, Il = s,

But weak®-continuity of S is equivalent to weak, and hence strong,
continuity of S, . Thus S, is a Co-semigroup and in general
satisfies bounds of the form Hs*t“ < M expiwt} . Hence the Cg-
semigroup S satisfies similar bounds. Now by exploiting the
Hille-Yosida theorem for the Co—semigroup S, and the duality

properties of Lemma 1.5.1 one can obtain a Hille-Yosida theorem for
ofs

the C0

semigroup S . But first we must define the generator of

S .

If S is a Cg-semigroup its generator H is defined

as the weak®-derivative of S at the origin. Explicitly D(H)

consists of those f € B for which there is a g € B such that
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the limits

(g, a) = Lim ((I-St)f, a) / t
t>0+
exist for all a € B* and the action of H is then given by
Hf = g . Note that if K 1is the generator of the CO—semigroup

S, on B, , which is adjoint to S , then

«

(Hf, a)

gim  ((1-s )£, a) [ ¢

>0+

2im (£, (1-S,,.)a) / t = (f, Ka)
>0+ "t /

for all £ € D(H) and a € D(K) . This demonstrates that the
adjoint K* , of K , extends H but part of the proof of the

following result is to show that in fact K* = H .

THEOREM 1.5.2. Let B be a Banach space with a predual B,

and H an operator on B . The following conditions are equivalent:

1. H <s the infinitesimal generator of a Cg—semigroup

of contractions,
2. H <s weak*-densely defined, weak*-weak*-closed,
R(I+0H) = B
for all o > 0 (or for one o = oy > 0) , and

[CT+al) £l = |I£]|

for all £ € D(H) and all o >0 (or for all

a € <0, uoj) .



6k,

Proof. 1= 2. The proof of this implication follows the

reasoning used to establish Proposition 1.2.1.

First for o > 0 one can define a bounded operator

Ra(H) on B by
(R,(1E, &) = [{ at S CIENEY

and since S is contractive one has the bound

|lR0L(H)|| =1.

But a weak®-version of the calculation used in the proof of

Proposition 1.2.1 demonstrates that
-1
Ru(H)lz (I+oH) ~ .

Hence

"
=

R(I+aH)

and

[I¢T+aH) £l

A%

£l

for all f € D(H) . But Ra(H)f € D(H) for all f € B and

® -t
2im (R_(H)f, a 2im dt e (S .f, a
o>0+ ( @ ) o0+ jo ( ot ” )

(£, a)

for all a € B* by weak®-continuity of S and the Lebesgue
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dominated convergence theorem. Thus D(H) is weak®*-dense.

Finally suppose fB € D(H) and

(£, a)

it

£im (f R a)
8 B

2im ((I+aH)fB, a) = (g, a)
B

for all a € B* . Then

(£, a) = Lim (Ra(H)(I+aH)fB, a)

B

(RG(H)g, a)

for all a € B* by another application of the Lebesgue dominated
convergence theorem. Thus (I+0H) , and hence H , is weak®-weak®-

closed.

2=1. It follows from Lemma 1.5.1 that H is the adjoint
of a norm densely defined, norm closed, operator H, on B* .

But for o > 0 and a € D(H)

sup{|(£, (T+aHy)a)| ; £ € D(H) , €] =< 1}

lI(T+oH,)al

sup{ | ((T+aH)f, a) 3 £ € D(H) , ||| = 1}
Thus since [[(I+aH)f|| = ||f]] and R(I+aH) = B one concludes that

I(1+an)all = sup{|(g, a)| ; el = 1}
lall
i.e., H, 1is norm-dissipative.

Next suppose there is an f € B such that
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(£, (I+aH,)a) = 0
for all a € D(H,) . But then
(£, Hga) = -(£, a)fa
is continuous in a . Hence f € D(H) and
((I+oH)f, a) = 0

for all a € D(H,) . Since D(H,) is norm demse it follows that
(I+0H)f = 0 and then f = 0 because H is norm-dissipative.

Hence R(I+0H,) = B .

Finally we can apply the Hille-Yosida theorem to

deduce that H, generates a C -semigroup of contractions 8§, on

0
B* . Then the adjoint semigroup S on B is a Cg—semigroup of

contractions. But if K denotes the generator of this latter

semigroup then by Laplace transformation

((z+ox) ™%, a) = (£, (I+uﬁ*)”la)

for all £ € B and a € B, . Thus (140"t = (Tea)™h

i.e., K =H is the generator of S . []

There is also a pre-generator version of the foregoing

theovem. If H is weak®-densely defined and weak®-weak®*-closable

E

then its weak*-closure H generates a CO

semigroup of contractions
if, and only if, H is norm-dissipative and R(I+oH) is weak®-

dense in B for all sufficiently small o > 0 .

Finally we remark that a result analogous to Theorem



1.5.2 can be obtained for a general Cg—semigroup. The norm-
dissipativity which is characteristic of contraction semigroups
is replaced by a family of lower bounds of the type described in

Remark 1.3.3.

Exercises.

1.5.1. Let g@(H) denote the algebra of all bounded operators
on the Hilbert space H and QT?H) the Banach space of trace class

operators, with the norm
1
T €JH) Tl = Te((T*#1)?)

Prove that JL(H) is the dual of U(H) with the duality

(T, B) > Tr(TB)

1.5.2. Let S be a Cg—semigroup on the Banach space B

with generator H . Prove that f € D(H) if, and only if,

Sup H(I—S )fa/é < 4o,
O<t<l t

Hint: The unit ball of B is weakly%-compact by the Alaoglu—

Birkhoff theorem.

1.5.3. Let S be a Cg—semigroup with generator H and
define BO C B as the norm closure of D(H) . Prove that
SBO E-BO and that the restriction of S to BO is a CO—

semigroup.
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1.6. Analytic Vectors.

In the previous sections we examined various methods
of constructing a contraction semigroup from the resolvent of
its generator. Next we analyze the possibility of a direct
construction based on an operator extension of the numerical

algorithms

y (-t)" o0

exp{—tx} T
=0 ™

Lim (l— Ex)n .

n-e n

The problem with this new construction is that it is not applicable
to all Co—semigroups, or contraction semigroups, although it is
applicable to all Cofgroups. The basic new concept is that of an

analytic element.

If H is an operator on a Banach space B an element

a € B is defined to be an (entire) analytic element for H if

a € n oY)
n=l

and the function

t? n
n=0 ~°
has a non-zero (infinite) radius of convergence. It is not at
all evident that an operator possesses analytic elements but

this is indeed the case



if H 1is the generator of a strongly continuous group (a Co—group).
In fact one can explicitly construct a norm dense set of entire

analytic elements by the following regularization procedure.

Let S = {St}tER be a Co—group with generator H

and to each a € B associate the sequence a, defined by

Since HStH:SM exp{w|t|} for some M =1 and w =0 the integral

is well defined. Moreover

a -a=m ff; dt e (St/na—a)

and it follows from strong continuity and the Lebesgue dominated
convergence theorem that a ~ converges uniformly to a . But since
H 1is norm closed one may argue recursively that a € D(Hm) for

all m=1, 2, ... and
2
m_ -k m d" -t
Ha = ff; dt{(—n) ;;a-e St/na

2
St/n

(-n)mﬂ-% ff; dt Hm(t)e_t a

where Hm is the usual Hermite function. Thus

2 2
llean112 < anN"lMQ[I‘fm dt H_(t)e™" e“’ltlJ llaf®

2 2
< %My y? ff; dt e2w|t[e-t ffw dtle(t)l e Ha”2
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where we have used the Cauchy-Schwarz inequality. Using the

normalization properties of the Hermite functions,

2
00 2 -t _ .m_ %
[, at le(t)] e = 2'mim®
one finally deduces that
m 2 2 w2 m+1l 2m
|1 anH <= Me 2 n m!

Hence a, is an entire analytic element for H and the set of

such elements is norm dense.

Despite this positive result the generator of the
semigroup of left translations on CO[O, ©)) has no non-zero
analytic elements. The action of this semigroup is given by
(Stf}(x) = f(x-t) if =2t ,and 0 if x <t . It follows that
for f to be an analytic element it must vanish with all its
(right) derivatives at the origin but it must also be analytic in
a strip about the right half axis. Thus f = 0 . Nevertheless
the translation group acting on COGR) does have dense sets of
analytic elements and a function is analytic for this group if,

and only if, it is an analytic function in the usual sense.

Now we consider the construction of a semigroup
through analytic elements and for simplicity we again restrict the

discussion to contraction semigroups.

PROPOSITION 1.6.1. Let H be a norm closed operator on a

Banach space B . Suppose that

1. H possesses a norm dense set of analytic elements,



2. H <s norm-dissipative.

It follows that H is the generator of a Co—semigroup

of contractions.

Proof. Let a be an analytic element for H . Thus there is

a ta > 0 such that

n
Sta = Z (zﬁ) H'a
n=0 :
converges uniformly for |tf <t . Moreover for +t fixed in

this range Sta is again an analytic element for H and one can
define SS(Sta) for suitably small s . Calculation with norm

convergent power series then establishes that
sp(82) = 5,2

for all s, t satisfying |s]| + lt] < t, - Next we examine

properties of the function t € (-ta, ta)r—+ ”StaH .

First one has

llis,al - lisall| = lls,a - s_al

by the triangle inequality. But another power series estimation
of the right hand side then establishes that t Pﬁ-HStaH is

continuous. Second for 0 < h < t < ta one has
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IS, _pall = “S—h(s’ca) ”

Gl [ O]

Y

sl

where we have used the assumed norm-dissipativity of H . But
this estimate implies that t € {0, ta) — HSta” is decreasing

and hence
<
Is.all = llall

for 0 = t< ta . This contractive estimate now allows one to

extend the definition of Sta toall t=0 .
Since H is closed Sta € D(H) and
HSta = St(Ha)
Therefore

s all = lIs (Ha)]l = |lHall

for 0< t< ta . Iteration of this argument establishes that
if 0< t< ta then Sta is an analytic element for S with
associated radius of convergence equal to t, - Thus it is possible

to iterate the definition of S_t
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for 0<s , t<t  and consequently deduce that HStaH < Jall
for all 0 < t < 2ta . Repeating this argument one defines

Sta for all t = 0 by

Sta = {St/ana

where n 1is chosen so that n > t/ta . It is then easy to

establish that this definition is independent of the choice of n ,
Ss(sta} - Ss+ta ’
for all s, t >0,
s all = llal
for all t > 0 , and

2im HSta -all =o0.
>0

Therefore, since the analytic elements are assumed to be norm dense,

S extends by continuity to a Co—semigroup of contractions on B . []

The foregoing result readily extends to Co—groups of

contractions. But if S = {St R is a group of contractions with
80 = I then S 1is automatically isometric because
= < <
lall = lIs_8.all = lIs.all = llall .

Second if S 1is also strongly continuous then are

Sy F {S:t}tzo

both CO—Semigroups of isometries. But
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(1-s
-t
St——t—-a+b

CANN

t

and hence the generator of S+ is minus the generator of S_ .
Combining these observations with Proposition 1.4.1 and the
construction of analytic elements described prior to the propositon

one obtains the following.

THEOREM 1.6.2. Let H be an operator on the Banach space B .

The following conditions are equivalent:

1. H is the infinitesimal generator of a C,-group of

isometries of B .

2. H <s norm closed; H possesses a norm dense
set of analytic elements =*H are both norm-

dissipative.

Proof. 1 = 2. The entire analytic elements for H are dense by
the construction preceding Proposition 1.6.1. The rest of the

properties of H follow from the Hille-Yosida theorem.

2 =1, This follows by successively applying Proposition 1.6.1
to #H and then using the above observation that a group

St = exp{-tH} of contractions is automatically isometric. f]

One can also give a Cg—version of Proposition 1.6.1
and then deduce a weak®-version of Theorem 1.6.2. Since the second

result is deduced by the same argument given above we will merely

prove the analogue of Proposition 1.6.2.
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PROPOSITION 1.6.3. Let B be a Banach space with a predual B,

«w

and H a weak*-weak*-closed operator on B, . Suppose

1. the unit ball of the set of analytic elements for

H is weak*-dense in the unit ball of B ,
2. H s norm-dissipative.

It follows that H <s the generator of a Cg—semigroup

of contractions.

Proof.  Let Ba C B denote the norm closure of the subspace of
all analytic elements for H and let Ha denote the restriction
of H to Ba . It follows immediately that Ha is norm closed
and hence by Proposition 1.6.1 it generates a Co-semigroup S of
contractions on Ba . In particular Ha is norm-dissipative and

R(I+oH_ ) = B_ for all o >0 .
a a

Now by Condition 1 we may choose for each f € B a
family fB € Ba such that fB converges to f in the weak®-sense
and ”fS“ < |Ifll . But it follows from the foregoing argument that

there exist gg € D(Ha] C€ D(H) such that fB = (I+0LH)gB and
leglh = Il (zran )egll = Niegh < lell .

Thus {”88”} is uniformly bounded. But the unit ball in B is
weak®*-compact, by the Alaoglu-Birkhoff theorem, and hence one may
choose a weak*-convergent subfamily gB' of gg - Let g denote
its limit. Then gg1 -+ g and fB' = (I+aHa)gB, > f where

both limits are in the weak®*-sense.
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But H is weak®-weak®-closed and so H is weak®*-weak®-closable
and its closure Eg is both norm-dissipative and satisfies the
range condition R(I+a§é) =B for o >0 . Therefore ﬁ;
generates a Cg-semigroup S by Theorem 1.5.2. But H is a norm

dissipative extension of Ha and since the latter is a generator

one must have H = ﬁ; . [:

We conclude this section with a Hilbert space example.

Example 1.6.4. Consider the criteria of Theorems 1.3.1 and 1.6.2
for a Co-group of isometries on a Hilbert space H . Norm-

dissipativity of #*H is equivalent to
Re(a, Ha) = 0
for all a € D(H) . Setting H = iK this becomes
(a, Ka) = (Ka, a)

for all a € D(K) , i.e., K must be a symmetric operator. Thus
Theorems 1.3.1 and 1.6.2 state that H 1is the generator of a
Co—group of isometries if, and only if, H = iK where K is a

densely defined, closed, symmetric operator satisfying
either R(I+iok) = H , o €R {0}

or K possesses a dense set of

analytic elements.

The first of these conditions is the usual criterion

for self-adjointness of K . Hence one can conclude from this



argument that a densely defined, closed, symmetric opperator is
self-adjoint if, and only if, it possesses a dense set of analytic

elements.

If these conditions are satisfied then the associated
operators St = exp{—iKt} form a unitary group, e.g., Si = S—t «
Both the unitary group and the generator can be represented by
spectral theory as direct integrals of multiplication operators.

In particular there exists a family of projection valued

probability measures E over R such that

(as 5.5) = [T, a(a, EQIB)

for all a, b € H and

(a, kb) = [°_d(a, E(O)bIA

for all a € H , and b € D(K) , where the domain of K is defined

by

D(K) = {b ; f°_°°° d(b, E()\)b))\z < +oo} . ]

In the Hilbert space context one can further elaborate
the extension theory mentioned at the end of Section 1.3. Thus
given a symmetric operator K one tries to construct self-adjoint
extensions. This construction is a repetition of the procedure
outlined in Section 1.3. Both #iK must be extended to generators
iKl , -iK, , of contraction semigroup, St . But these semigroups

2

determine a Co—group of isometries, by St = S: if t =0 and

77.
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St = S; if t <0, if, and only if, Kl + K2 = 0 . To obtain

this latter relation it is imperative that the deficiency indices

of *K are identical.

Exercises.

1.6.1. An element a € B is defined to be bounded for H

if a € D(Hn) for all n =1 and

%l = ="all

for some r = 0 . Prove that if H 1is the generator of the

Co—semigroup S and a is bounded for H then

Ha = 5 ] (I—St)na/n
n=l

for r»t =1.

Hint: Use (I-S)a = [{ ds S.Ha -
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1.7.  Holomorphic Semigroups.

Among the many semigroups which occur in applications
one class is very common, the holomorphic semigroups. Roughly
speaking these are the semigroups t = 0 Fﬁ-St 61}(5) which
can be continued holomorphically into a sector of the complex plane
containing the positive axis. Among these semigroups one can also
identify a subclass analogous to the M-bounded semigroups, i.e.,
the semigroups satisfying a bound of the form “St“ < M . This
subclass consists of holomorphic semigroups which are uniformly
bounded within appropriate subsectors of the sector of holomorphy.
For example if H 1is a positive self-adjoint operator on the
Hilbert space H and St = exp{-tH} 1is the corresponding semigroup
then a € H— Sta € H extends to a vector valued function

holomorphic in the right half plane satisfying

s all = lIsg, Lall = llal

Re z

for all z € € with Rez >0 . Thus S is a bounded holomorphic

semigroup with the right half plane as region of holomorphy.

The general definition of these semigroups is as

follows.

DEFINITION 1.7.1. 4 Co—semigroup S on the Banach space B is
called a holomorphic semigroup if for some © € (0, w/2] one has

the following properties:

1. t=z 0+ Se is the restriction to the positive real

axis of a holomorphic operator function
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z € Ae 8 ¢ y(B) where Ae = {z ; |Arg z| < 0},

1% At
for all z,, 2, € Ae 5
3. 2im HSZa -all =0
zéAe,z+O

for all a € B .

If additionally S is uniformly bounded in A6
1

for each 0 <'Gl<:6 then S is called a bounded holomorphic

semigroup.

There are a variety of ways of characterizing
holomorphic semigroups and the following theorem presents two
characterizations in terms of the derivative of t St and
the derivatives of the powers (I+0LH)—n of the resolvent

(I+uH)_l .

THEOREM 1.7.2. Let S, = exp{-tH} be a Co-semigroup on the

Banach space B . The following conditions are equivalent:
1. S s a (bounded) holomorphic semigroup,
2. there is a C > 0 such that

HHStH <ct™d

for all 0<t=1 (forall t=0),



3. there is a C > 0 such that

—(n+l)” < C(an)—l

|H(T+aH)

for 0<o0=1, non=1, and n=1, 2,

(for o>0 and n=1, 2, ... .)

N.B. In the above formulation the parenthetic conditions should
be read simultaneously to give a characterization of bounded

holomorphic semigroups. Their omission covers the general case.

Proof. 1 =2. Assume S has a holomorphic extension to
Ae = {z ; |Arg z| < 8} . Since S is continuous it follows from
the principle of uniform boundedness that there exists an Ml such

that HSZH =M forall z €A, N{z; |z| =2} where

1 61
0 < Gl < 6 . But by Cauchy's integral representation
-d -1 4
HS, = —5S_ = (2mi)™ [, dz —2—
tdr t ¢, ¥ )2

with ¢, = {z; |z - t|

1 Sin Slt} . Consequently

M
1
sl = 53579

1
Lt

for all 0 <t =<1 . Moreover if ”Sz“ is uniformly bounded in

AG the same argument establishes the estimate for all t > 0 .
1

2 = 3, Since S is a Co-semigroup there exist constants

M=1 and w = 0 such that
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w.t
Cle'l
(*) lEs Il < =
But
H(zran)” ) = (a7t [; at e tHs

and hence
-t (1-ow. )
- - -1 -1
|H( T+aH) (o+1)) oyt f‘; at %t c, 1
C n
= | = s 0<ow, <1
no, l—uwl 1

IA
(@]
’__‘J
—~—
'l—‘
—
=]

no l—wl/n

C
s_lll

no, —wl

Where the second inequality follows from mna = 1 and the third

-X . .
follows because x > (l—wl/x) is decreasing.

Note that in the bounded case (%) is valid with
w. = 0 and then the required bound follows for all o > 0 .

1

3= 2. It follows directly from Condition 3 and Remark 1.3.3

that
s T -n -1
fus, || = gim [H(T+=H) | =ct .
t n
n-—>o
2 = 1. This implication can be established by a variety

of arguments which begin with a power series definition. We will



briefly sketch the sequence of ideas.

First let z = t + is with |s| < t/Ce and

0< t=1. Then one can define SZ by the norm convergent power
series
(-is)" n
s = ) — (ms_, )" .
L T
z 5, n t/n

Second one calculates that SZD(H) C D(H) and

for all a € D(H) . Thus

I(s,-T)all = |z] lual

and consequently

2im || (SZ—I]aH =0
z+0
for all a € D(H) . But then the same conclusion is valid for

all a € B because D(H) is norm dense.

Third if O0< t =<1, a € D(H) , and
Zl’ 22, zl + 22 are in the domain of definition of SZ , the

foregoing identification of the derivative gives

d

— i8S S
dt [ tzl

tzQ_St(zl+z2)Ja =0 .

Thus integrating and using strong continuity at the origin

one finds

83.
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But D(H) is norm dense and hence

Finally one must extend the definition of SZ to the region
AG ={z3; Rez>0 |Arg z| < 6} where Tan 6 = 1/Ce . This
is achieved by first remarking that each =z € Ae can be decomposed

in the form z = 2z, + 2z, + ... + z_ with =z, € A, and Re z, =1.
1 2 n i 0 i

Then one defines

There is, however, a problem of consistency since the
decomposition of z is clearly not unique. But consistency

is easily established by use of the semigroup property in the
restricted region. The semigroup property for the larger region

then follows by definition.

In the bounded case this last argument is
superfluous because SZ can be defined for all =z € AG by the
power series expansion and this also establishes that HSZH is
uniformly bounded in Ae for each 0 < Gl <0 . [

1
There are alternative characterizations of

holomorphic semigroups in terms of spectral properties of the

generator and resolvent bounds. Typically one has the following
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criterion for a bounded holomorphic semigroup.

THEOREM 1.7.3. Let Sy = exp{-tH} be a Co-semigroup on the Banach

space B .

The following conditions are equivalent:
1. S is a bounded holomorphic semigroup,

2. there is a 6 > 0 such that

o(H) fZ_Kﬂ = {z ; |Arg z| Sg——e}

where o(H) denotes the spectrum of H . Moreover

n(zI-H)'lH < Ml/d6 (z)
1

for all z € é\Z% > where 0<=6, <86,

2 71

del(z) = inf{|w-z| ; w € ATT }

779
and M, can depend on el .
Proof. 1 = 2. Suppose z=>8_ is holomorphic in the sector
Ae = {z ; |Arg z| < 8} . Next consider the Co—semigroups
S;':J = exp{-twH} where w = exp{ia} and 0 < |a|] < 8 . The

generator of s" is wH and hence o(wH) ¢ {z 5 Re z = O} , by
Proposition 1.2.1. Therefore o(H) C {z 5 |Arg z| < g— - 6} .

Moreover, since there is an M, such that HSZH =M for
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w €A where 0 =< 6. < 0 , one must have
Ol 1
H(AI-wH)'lH = Hf: dt eXtSwH =M /IRe Al
t 1
whenever Re A < 0 . Consequently

(217 = Ml/de (2)
1

2 =1. The detailed proof of this implication is rather
protracted, although completely straightforward. Again we only

sketch the outlines.

First let T be a wedge shaped contour lying in the
resolvent set r(H) of H with asymptotes Arg z = 163—62)
where 0 = 62 < 91 and for =z € AG define S by

s, = (2mi)~t [p ax SMPor-mt .

By Cauchy's theorem the integral is independent of the particular
contour chosen and one can use this freedom of choice, together
with the resolvent bounds, to deduce that z € AGF**HSZH is

uniformly bounded.

Second one calculates that S satisfies the semigroup

property SZ Sz =8 by choosing F2 outside I, and noting

1 %2 112 1

that
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A 2 +ALZ -1
=2 1717%2%2 -1
s, 8, = ()™ [, [, dAjdx, e (A, 1-H) (x,1-H)
1 %2 1072
" eAlzl+A222 N N
= ()™ [ [ooand, (A, 1-0) 7" - (A,1-0) }
271
Az, +z
= r)™ [Lane (2 2)(M-H)'l .

Here we have used the obvious resolvent identity, Cauchy's theorem,

and Fubini's theorem.

Third one notes that if a € D(H)

(1-s,)a = C2m)™" [, ax exz{x‘lz - (AI-H)‘l}a
= -Cm)™ [Lan M Or-n) ha
z>0 0

when the last conclusion follows from the resolvent bound and the

Lebesgue dominated convergence theorem.

Finally one identifies H as the generator of § by
careful calculation of the derivative of S . This again requires

Cauchy's theorem. {]

One simple explicit example of a bounded holomorphic
semigroup is the semigroup S generated by the Laplacian on

Lp@Rv) . This semigroup is holomorphic in the sector ATr and its

/2

action is given by

2/,
(Sza)(x) = (umz)™V/? [ a% e~ (xY) /Lza(y)
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Note that if p = 2 then

ls,all, = Isg, jall, = llall,

Re z

since S, = exp{-zH} where H is self-adjoint. Moreover 38

has a boundary value as Re z > 0 Dbecause

) SitH
iig ”Ss+ita - e all = 0.
But if p =1
Y -v/2 —yQ/uz v/2
sl = J ylma)™ 2V 2] = (J2] re o)

for Re z > 0 , and a similar result is true for p = * . Thus
in these latter cases HSZH + o as =z approaches the imaginary

axis, away from the origin, and S does not have a boundary value.

Exercises 1.7.1.

1. Let S be a self-adjoint contraction semigroup on
a Hilbert space H . Prove that S is holomorphic for  Re z > 0

and that HSZH < 1 in this sector.
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1.8.  Convergence of Semigroups

In the preceding sections we examined the existence
and construction of various classes of semigroup and next we
analyze their stability properties. First we consider convergence
properties and use these to extend the foregoing results on

semigroup construction.

Let S(n)

be a sequence of Co-semigroups on a Banach
(n)

space B and assume that EN

converges strongly to St , for

each t = 0 . Since the product of strongly convergent sequences

is strongly convergent the St must satisfy the semigroup property
SS =38 for all s, t =0

St st , and of course S_ =1 . Nevertheless
=3

0

S = {St}t>0 is not necessarily a Co—semigroup because of a possible

lack of continuity. The simplest example of this phenomenon is

given by the numerical semigroups Sin) = e-rlt acting on € . The
limit S satisfies SO = I, and St =0 if t >0 ; it is clearly

discontinuous. Thus it is of interest to establish conditions for
stability of CO—semigroups under strong convergence and to identify

stability criteria in terms of the generators.

Although the strong limit S of the sequence S(n)

often fails to be a CO—Semigroup on the whole Banach space B it is

possible that its restriction to a Banach subspace B is a Co—semigroup.

0
(n)

For example if B = BO ®C and St

=T, @e_nt , where T is a

fixed CO—Semigroup on B then the limit S is discontinuous

O b
for a rather trivial reason; on the subspace BO one has continuity,

because S = T , and the discontinuity only occurs in the extra
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dimension. Thus it is of some interest to broaden the discussion
of stability of convergence by attempting to identify subspaces

of continuity for the limit semigroup.

We begin the analysis by first establishing that
semigroup convergence is equivalent to convergence of the resolvents

of the generators. For simplicity we consider contraction semigroups.

PROPOSITION 1.8.1. Let s{™ = exp{-tH } be a sequence of

CO-semigroups of contractions on the Banach space B and let
Sy = exp{-tH} be a Co-semigroup of contractions acting on a Banach

subspace BO cB.

The following four conditions are equivalent:

1(1') Lim "[sin)-stJa" =0

n—->xo

for all a € BO and all t = 0 (uniformly for

t in finite intervals of [0, «)) ,

2(21) tim "[(I+aﬁn)'l-(1+uH)'l)a“ =0

n—)OO

for all a € B0 and for some o > 0 (uniformly for

o in finite intervals of [0, «)) .

Clearly 1' = 1 and 2' = 2. The proof that 2 = 2'

involves two arguments. First one uses the Neumann series

(I+OLHn)—l = [%.?,J OZO [ajo)n(h%l{n)—n-l i

which is convergent for o > u0/2 , to prove that resolvent



convergence for o = 0, implies resolvent convergence for all

0

o > ao/2 , and hence by iteration for all o > 0 . Second one

extimates from the Laplace transform relation

-1
-1 _ -1 ¢ -0 “t.(n)
(I+aHn) a =aq fO dt e St a

that
[[ () ™ (rv0) o] < 2(0y-0,)a3 el

for 0 >0, > 0 . Hence the convergence is uniform for o in

finite intervals by a standard equicontinuity argument.
Next we argue that 1= 2 = 1°'

1=2. By Laplace transfcrmation one has

“[(I+aHn)_l - (I+aH)_l]a

“f: dt e—t(séz)_sat a

1A

fg at &7t

‘ (séfcl)-sat} a“

0

—
n=~o

where the last conclusion follows from the Lebesgue dominated

convergence theorem.

2 = 1'. Since the semigroups under discussion are all
contractive on BO it suffices to prove their convergence on a
norm dense subspace of BO . We will repeat the tactic used in
the construction of S in Theorem 1.3.1 and work on the norm
dense subspace D(Hz) . Now D(HQ) = R((I+uH)-2) for a >0 .

Moreover if a € BO then

(sfc“) -st)(1+o¢H)'2a = A,(Cn) + Bin) + cfcn)

where

91.
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A S*(cn) (I+GH)—1_(I+0LHn)-l)(I+OLH)-la >

(n) _ -1¢.(n) -1
B~ = (z+oH )77 (s -s,) (I+oH) "a ,
and
(n) _ -1 -1 -1
¢’ = [[I+aHn) -(I+aH) }(I+aH) s.a -

Let us estimate each of these terms. First

“Ain)” =< “[[I+aHn)—l-(I+aH)_lJ(I+aH)_la“

0 .

e
n:oo

Second

(n)
“Ct

= I+0H 'l-(I+aH)'l (I+aH)‘ls a
n t

But using H(I+aHn]—lH <1 and H(I+aH)_lH = 1 one readily

derives the equicontinuity relation

Jot? - <) = o5y s el

1 2
(n) (n) . .
and hence A and C converge to zero uniformly for t 1in
any finite interval of [0, ®) . It remains to examine B(n) .

For this we use the integral representation
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(n) _ rt d .(n) -1 -1
By = [y ds 3787 (1+oH ) S, _g(ItoH) "a
= o™ f7as sén){(1+aﬂn)'l - (o) s, _a .

Thus

™) <o 15 e

{(I+aHn]'l - (I+aH)'l}st_Sa

n=o

where the last conclusion follows from the Lebesgue dominated

convergence theorem. But for tl > t2 one has

g(m) _ () _

t t

t
-1 1 (n) -1 -1
o as s " {(1+oH - (I+aH)7}s,  a
1 2 ft2 s {(zvosy) t

-8

—I)a .

t
r ot f02 ds Sén){(l+aHn)—l - (I+ocH)"l}st
2 2

—S(Stl—t

Therefore

—I)a,

|

and the convergence is again uniform for t in any finite interval

“ {Bi’ll)'Bin)Nl < 2@'1{ (ty-t ) llall + “ (S‘Cft

2 2

of [0, ).

Combining these conclusions we see that

2im
n—)O)

(Sin)—St)b“ =0

for all b € D(HQJ , and consequently for all b ¢ BO . Moreover



oL,

the convergence is uniform for t in finite intervals of

[0, =) . []

Although Proposition 1.8.1 could be viewed as a
criterion for strong convergence of semigroups it does have two
distinct drawbacks. First it gives an indirect link between
semigroup convergence and convergence of the generators, because
it concerns convergence of their resolvents. Second it assumes
that the 1limit of the resolvents is the resolvent of a generator
of‘a Co—semigroup, at least on a subspace. The next theorem
avoids both these disadvantages and relates semigroup convergence

directly to graph convergence of the generators. This latter

notion is introduced as follows.

If Hn is a sequence of operators on the Banach space
B then the graphs G(Hn] of Hn are defined as subspaces of

B x B by
G[Hn) = {{a, Hna} s a € D(Hn)} .
Now consider all sequences a_ € D(H } such that
n n

fim lla_ -all =0, fm|Ha -Db| =0
n nn
n-o n->c0
for some pair {a, b} € B x B . The pairs {a, b} obtained in
this way form a subspace G of B x B and we introduce the
notation D(G) for the set of a such that {a, b} € G for
some b . Similarly R(G) is the set of b such that

{a, b} € G for some a . Moreover we write



G = 2im G(H_)
n
n-—>co
In general G 1is not the graph of an operator but if there
exists an operator H on the Banach space B , or on a Banach
subspace BO , such that G = G(H) then H is called the
graph limit of the H . Clearly in this case D(G) =D(H) and

R(G) = R(H) .

The next result demonstrates that this kind of
convergence is appropriate for the characterization of semigroup

convergence.

THEOREM 1.8.2.  Let s{™ = exp{-tH_ } be a sequence of Com

semigroups of contractions on the Banach space B and define the
subspaces G, CBxB

G, = ﬁiﬁ 6(z+oH )

The following conditions are equivalent:

1. There exists a Banach subspace BO of B and a

Co-semigroup S on Bo such that

2im “(sin)—st)a =0

n-

for all a € BO and t > 0 , uniformly for t 1in any

finite interval of [0, =) ,

2.  There exists a Banach subspace BO of B such that

95.
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B, = fa; {a, b} €6, forsome D € B}

o
"

{b; f{a, b} €c, for some a € BO}

for some o > 0 , where the bar denotes norm closure.

If these conditions are satisfied then S is a
contraction semigroup on BO > Gy 18 the graph of I + aH

where H 1is the generator of S , and Bo = D(Ga) = R(G,) -

Proof. 1 = 2. It follows from strong convergence that
“S all = 2im )Sin)a < |lall
t oo

for all a € BO and hence S is a contraction semigroup on BO .

Let H denote the generator of S then

2im
n-r>o

=0

‘(1+aﬁn)"la - (T+am) ta

for all a ¢ BO by Proposition 1.8.1. Thus if a = (I+aHn]_la
one has
. -1

2im |la_ - (I+aH) "aff = 0

neo 1
and

(I+aH ]a =a.
n’"n

Consequently {(I+aH)—la, a} € G . This demonstrates Condition 2

and gives the identification of G, , D(G,) , and r(c,)



2 = 1. Define G to be the set of pairs {a, b} ¢ BO x BO
such that there exists a sequence a € D(Hn) with the property
that a >~ a , and Hnan b ,as n+®®, To prove that G is
the graph of an operator on BO we must demonstrate that a = 0
implies b = 0 . But suppose a = 0 and for an arbitrary pair

{a', b'} € G choose a' ¢ D(H ) such that a' - a' , and
n n n

Hnaé - Db' , as n > o ., Then

laCat+b) + u2b'H

1"

Lim H(I+aHn)(an+aaé)H

v

2im Han + aaﬁ“ = alla'| .
n-co

Dividing by o and taking the limit o - 0 one obtains
b +a'll = lla'] .

But this inequality is true for all a' € D(G) . Moreover
D(G) = D(Ga) and hence D(G) is norm dense in BO , by assumption.
Therefore one must have b = 0 and consequently G is the graph
of a norm densely defined operator H on BO .
Now Ga = G(I+aH) and it follows by limiting that
[(I+aH)all = |la]] for all a € D(H) = D(Ga) . The same inequality
then extends to the closure H of H and it readily follows that
R(I+oH) is norm closed. But R(I+oH) = RlGa) = BO and hence H

is the generator of a Co—semigroup of contractions S by the Hille-

97.

Yosida theorem. Now if a =+ a and b = (I+aH )a + (I+oH)a = b then
n n n’“n

“[[Iﬂan)_l - (I+aﬁ)_l)b“

| (zrom )2 oop ) + (2 -a)

IA

b~ bl + lla - all -
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Since R(I+aH) = B it follows that (I+dHn]_la + (I+oal)'a  for

0

all a € B and S(n) converges to S by Proposition 1.8.1.
But the resolvent convergence also implies that Ga is closed

and hence H = H . ]

In Theorem 1.8.2 there is not necessarily any unique

(n)

or natural subspace BO of convergence, e.g., if S converges
to S on BO and Bl c BO is an S-invariant subspace of BO

(n) B

then S converges to S g o°n
1

1 Of course the largest

possible subspace of convergence is determined by the closure of

(n)
p(e,) . If s

converges strongly to S on BO it follows
from the argument used to prove 1 = 2 in Theorem 1.8.2 that

Ga = G(I+aH) where H is the generator of S . Thus

D(Ga] = D(H) and in particular one has the following.

COROLLARY 1.8.3. Adopt the assumption of Theorem 1.8.2. The

following conditions are equivalent

1. There exists a Co—semigroup S on B such that

“[sin)-st}a

in any finite interval of [0, =) .

+ 0 for all a € B, uniformly for t

2. D(Gu) and R(Ga) are norm dense in B for some

o>0.

Proposition 1.8.1, Theorem 1.8.2, and Corollary 1.8.3,
have a variety of uses. The latter results give a clear
delineation of the infinitesimal properties which characterize

semigroup convergence. But unfortunately these properties are
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often difficult to verify in particular examples. There is,
however, one situation in which the first result is easily

applicable.

PROPOSITION 1.8.4.  Let '™ = expl-th } be Cy-semigroups of

contractions on the Banach space B and s, = exp{-tH} a

similar semigroup on the Banach subspace BO .

If there exists a core D of H such that D C D(Hn)

for all n or, more generally,

DcU { n D(Hn)}

n=m
and 1f

Lim H(Hn-H)aH =0

n—>o
for all a € D, then

2im “{sin)-stJa =0

n->e

for all a ¢ BO s untformly for t in finite intervals of [0, ) .

In particular H <s the graph limit of Ho.

Proof. If o > 0 the set R, = {(1+oH)a ; a € D} is norm
dense in BO because D 1is a core of H and R(I+oH) = BO . But

for b = (I+aH)a with a € D one has

n

[y ™ - oot

”(I+aHn)'l(H-Hn)a

IA

I (-t )al



100.

and hence (I+aHn)?lb converges strongly to (I+aH)-lb for all

(n)b to Sb now follows from

b € BO . The convergence of S
Proposition 1.8.1 . The identification of H as the graph limit

of the Hn is a consequence of Corollary 1.8.3. {j

There are two general corollaries of this last result
which are useful throughout semigroup theory and which we have
already partly exploited in Example 1.3.6. These corollaries
concern the approximation of a given semigroup by a family of

semigroups with bounded generators.

First let

HS = (l—e_SH)/s

where Ss = exp{-sH} is assumed to be a contraction semigroup. It
is evident that the HS are bounded but they also generate
contraction semigroups because

-tH
s
e

etSS/s

-t/s
= e

<1.
Moreover

2im|| (H_-H)al|| = 0
bin| (1-t)a|
for all a € D(H) by definition. Hence Proposition 1.8.4 implies
that

[e—tH_e—t(l—e_SH)/s)aH

(%) gin |
s0

=0
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for all a € B uniformly for t in compact intervals of [0, )

Second let

faxy
1}

H(T+sH) T

{1 - (I+sH)_l}/s .
Again HS is bounded and exp{-tHS} is a contraction semigroup
because

l™ - o t/s| ETs 3

=1

where the last estimate uses H(I+sH)_l” <1 . But

2im H(HS—H)a” =0
s+0

for all a € D(H) because (I+SH)—1 converges strongly to the
identity as s tends to zero. This was established in the pfoof
of Theorem 1.3.1. Thus the assumptions of Proposition 1.8.4 are
satisfied by exp{-tH} and exp{—tHs} and hence

2im ”[e-tH-e—tH(l+SH)—l]a” =0

s+0

for all a € B, uniformly for t in finite intervals of

[0, =) .

The algorithms (*) and (**) give two methods of
approximating a given Co—semigroup of contractions. The first of

these was proposed by Hille and the second by Yosida. Consequently
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we refer to the semigroups exp{—t(I-SS)/s} as the Hille
approximants and exp{-‘tH(I+sH)_l/ s} as the Yosida approximants

of S, = exp{-tH} .

The Hille and Yosida approximants have many
applications. The following example describes the connection
between Taylor's series expansion, the Stone-Welerstrass theorem,

and the Hille approximants of the semigroup of right translations.

Example 1.8.5. Let B = CO(O, ©) , the continuous functions on
[0, ©) which vanish at infinity, equipped with the supremum norm

and let S denote the Co-semigroup of right translations

(5,5) (x) = £Gx+t)

If Sih) = exp{-t(I—Sh)/h} denotes the Hille approximants then
f(x+t) = 2im (Sih)f)(x+t)
h->0
- gim ] /(A7) (o
h0 n=0 ™
where
A Mgl x) = | (s, -1)PF| ()
h 7 Pn %
e K
= ] (- ", £(x+kn)

k=0

and the limit is uniform for x € [0, ») and t in any finite
interval of [0, ©) . This is a generalization of Taylor's theorem.

But setting x = 0 one also deduces that for each € > 0 one can
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choose N such that

J 1 n|,(n)
() - 7 = (/) aME|(0)] < €
n! h
n=0
uniformly for t in any finite interval [0, tO] . This is an
explicit version of the Stone-Weierstrass theorem. ]

Alternatively these approximation techniques can be
applied in a variety of ways to differential operators. The
following example illustrates a typical problem of statistical
mechanics, the independence of the thermodynamic limit from the
choice of boundary conditions. In statistical mechanics one
describes systems confined to a finite region of the appropriate
phase space, e.g., a bounded subset A CIR3 , and then attempts to
calculate bulk properties, e.g., properties such as the specific
heat per unit volume. For sufficiently large systems these
properties should be insensitive to the size and any boundary

effects.

Example 1.8.6. Let B = L2@Rv) and let H denote the usual

self-adjoint Laplacian. Thus

p(H) = {£; £ et’®") , [ a% p |E()|? < + «}

and

-V/2

(Hf)(x) = —Vif(x) = (2m) f dvp pzz’(p)eipX

where f denotes the Fourier transform. The operator H generates

the semigroup of contractions which solves the heat equation
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of (x,t) _ 2
—s T fo(x, t)
2 (Y . . . . .
on L @R ) . The action of this semigroup is given by

2
(s,8) ) = ey ™2 [ aVy oY) /”tf(y) .

It is well known, and easily verified, that the space
of infinitely often differentiable functions with compact support

forms a core D of H .

Next for each bounded open set A C Ry let HA
denote any positive self-adjoint extension of H restricted to the
infinitely often differentiable functions with support in A
There are many such extensions corresponding to different choices of
boundary conditions for the Laplace operator on the boundary o\  of
L . Some of these will be discussed explicitly in Section 1.11.
But if An is any increasing sequence such that any open bounded
set 0 1is contained in An for n sufficiently large then

< 2l )

m

by definition. Hence

-tH
A
[e n-e_tH}f“ =0

Lim

n->
for all f € B , uniformly for t in finite intervals of [0, «) ,
by a direct application of Proposition 1.8.4. Consequently the

net of contraction semigroups A+ exp{—tHA} converges strongly



to s = exp{-tH} . []

The Hille and Yosida approximants are just particular
examples of a much broader class. If t €ZR+'—+ F(t) E.Q(B) is

a family of contraction operators satisfying

2im [[{(I-F(t))/t - H}lall = ©
0

for all a in a core D of H then t - exp{-t(I-F(s))/s} is a

family of contraction semigroups and

2im H(St—exp{—t(I—F(s))/s})aH =0
s+0

for all a € B , uniformly for t in finite intervals of [0, ®) .

This is again a direct corollary of Proposition 1.8.4. Next we
examine an alternative set of approximations of S by powers
F(t/n)rl . The first basic estimate which relates the power
approximations to the foregoing exponential approximations is

provided by the following lemma.

LEMMA 1.8.7. Let A be a bounded operator on the Banach space

B with |A] =1 .

It follows that

“(e'n(I-A)-An)a” < /ol (1-8)a
for all n =1, 2, 3,

Proof. One estimates

105.
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IA

m
e IR _pn o) < ™ 7 2 [[(a™-a)al

m!
m=0

1A
o
[}
=)
=)
—_
>
5
3
=
N
o

IA

m
”(I—A)a”e_n go %T |n-m|
m=>

IA

/n||(1-A)all

where the last estimate follows from a straightforward application

of the Cauchy Schwarz inequality. [:

Combination of this estimate with the previous
convergence theorems then leads to the following product formula,

which generalizes the construction of the Hille-Yosida theorem.

THEOREM 1.8.8. Let S _ = exp{-tH} be a C,-semigroup of
contractions and t 62R+ > F(t) €fe(B) a family of contractions

operators on the Banach space B . Further assume that

2im |[{(I-F(t))/t - H}a|| = 0
>0+

for all a in a core D of H.

It follows that

2im “{e—tH - F(t/n)n}a“ =0

N>
for all a € B uniformly for t in finite intervals of [0, =)

Proof. First it follows from Proposition 1.8.4 that
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2im ”(eth—e‘t(I_F(S))/S)a“ =0
s>0+

for all a € B , uniformly for t in finite intervals. Therefore

%im ” (e—‘tH_e—n( I-F(t/n) )] a”

n—)OO

=0

uniformly for t in finite intervals. But Lemma 1.8.7 gives the

estimate

I (e'n(I'F(t/n)) - Fe/m)Mall = (/v (1-F(t/n))all/ (t/n)

and for a € D, the core of H , the right hand side converges to
zero uniformly for t in finite intervals. Since D(H) is norm
dense the desired result follows from combination of these two

estimates. []

Product formulae of the type described by the theorem
have a wide variety of applications. As a first illustration we
again consider the semigroup of right translations and the Stone-

Weierstrass theorem.

Example 1.8.9.  Adopt the notation and assumptions of Example 1.8.5.

Next for 0 < A < 1 set

F(t) = (1-0)1I + Xst/k

in Theorem 1.8.8. Clearly the hypotheses of the theorem are valid

and one has

gin | (s¢-(-n1ers , 1)Ma = o .

>
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Therefore if f € CO(O, )

n
F(xtt) = fim § e (1-0)TAME (x4 2
- n nA
n-e m=0
and the limit is uniform for x € [0, ©) and t in any finite

interval of [0, ®) . Thus for f € Cb(O, 1) one deduces that

£(t) = %im ) “cmu—t)"‘t“'mf(m/n)

n>° m=0
uniformly for t € [0, 1] . This is Bernstein's version of the

Stone-Weierstrass theorem. []

As a second, completely different, application of the
product formula we derive an approximation procedure for the semi-
group generated by the Dirichlet Laplacian. This example is of
some importance because it provides the operator theoretic structure
behind the Wiener integral, i.e., the functional integration

description of the heat equation.

Example 1.8.10. Let S denote the Co-semigroup generated by the
Laplacian H = —V2 on LQﬁRv] . Furthermore identify L2(A) as

the subspace of LQGRV) formed by the functions with support in the
bounded open set A CIRY , Now define HA as the restriction of H
to the twice continuously differentiable with support in the interior
of A . Since H 1is norm closed in LzﬁRv) its restriction HA is
norm closable in LQﬁRv] and we also use HA to denote the closure.
One can establish that HA is a positive self-adjoint operator on

L2(A) and it corresponds to the Laplacian with Dirichlet boundary
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conditions, i.e., £ € D(H) implies that f = 0 on the boundary
of M at least in some distributional sense. Further details
about this Laplacian and others corresponding to different boundary

conditions will be given in Section 1.11.
Now consider the family of operators on LQ(A) defined

by

F(t) = XpS,

where X7 denotes multiplication by the characteristic function of
the set A . If f € LQ(A) is twice continuously differentiable

with support in A one has

21 -F(t))/t - =0 .
Lin [{(z-FCe)) /e HyJE| = o

But these f form a core for HA and hence Theorem 1.8.8 is

applicable. Thus

i e ™ - (e mPe] =

for all f ¢ L2(A) uniformly for t in finite intervals of [0, «)

Note that from the explicit form of S one has
-tH/nyn _ (4mty-nv/2
(™M) 0 = (9

-nf Gy ) P4 (v ) e 0¥ / wt

fA dyl oo IA dyn e f(yn).

These results extend directly to the corresponding semigroups on
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on LP(A) , and LPGRV) , and they provide a proof that the
Dirichlet semigroup is positive, i.e., it maps positive functions

into positive functions. 1:

Theorem 1.8.8 can also be applied to semigroups whose

generators are sums of generators.

Let St = exp{—tH} and Tt = exp{—tK} be two
Co—semigroups of contractions and assume that H + K is a norm
closable operator whose closure H+ K generates a Co—semigroup
U . A slight extension of the argument preceding Proposition 1.3.4
demonstrates that H + K is dissipative and then the closure

H + K is also dissipative. Thus U is contractive.

Now we choose Ft = StTt and D = D(H+K) . One

readily checks that the assumptions of Theorem 1.8.8 are satisfied

for F and U . Consequently

. n _
Lim (Ut_(st/nTt/n) )a =0

n-—>co

for all a € B . This relation is called the Trotter product

formula. A second possible choice of F is

F(t) = (I+tH)_l(I+tK)_l

and this leads to the product formula

gim | (Ut-(1+tH/n)'l(I+t1</n)’l)a|| =0 .
n—+-"o
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Exercises.

1.8.1. Let H =~ be a uniformly bounded sequence of bounded
operators. Prove that the graph limit of Hn exists if, and

only if, Hn converges strongly.

1.8.2. Let H ~ be a sequence of operators for which the
graph limit H exists and Pn a sequence of bounded operators
which converges strongly to P . Prove that H + P is the graph

limit of H_ + P_ .
n n
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1.9. Perturbation Theory

The next aspect of stability that we describe is
stability of a semigroup under perturbations of its generator.
Let H be the generator of a Co—semigroup of contractions on
the Banach space B and P a linear operator on B . Our aim
is to describe conditions on P which ensure that H + P also
generates a Co—semigroup of contractions. In applications the
perturbation P is often an unbounded operator and fhe notion

of relatively bounded operator is useful.

Let H and P be linear operators on a Banach
space. Then P is defined to be relatively bounded with respect
to H , or H-relatively bounded, if the following two conditions

are satisfied:

1. D(P)

v

D(H)

2. lrall

IA

allall + BliHall
for all a € D(H) and some o, B >0 .

The greatest lower bound of the B for which this last relation
is valid is called the relative bound of P with respect to H ,

or the H-bound.
The key result concerning relative bounded perturbations

of generators of contraction semigroups is the following:

THEOREM 1.9.1. Let s _ = exp{-tH} be a C -semigroup of contractions

on the Banach space B and assume P 1is H-relatively bounded with



H-bound BO < 1.

If P, or H+ P, is norm-dissipative then H + P

generates a Co—semigroup of contractions.

Proof.  First note that it follows from Theorems 1.3.1 and 1.4.1
that D(H) 1is norm dense and Re(fa, Ha) =2 0 for all tangent
functionals fa at a € D(H) . Second since D(H) € D(P) the
latter set is norm dense. Hence if P is norm-dissipative

Re(fa, Pa) =z 0 for all tangent functionals at a € D(H) by
Theorem 1l.4.1. Therefore Re(fa, (H+AP)a) 20 for all XA =0 and
H + AP is norm-dissipative. Alternatively if H + P is norm-

dissipative then Re[fa(H+P)a) =2 0 and

Re(f,, (H¥AP)a) = (1-MRe(f_, Ha) + ARe (£, (HtP)a)

v
o

for 0= A =1. Thus in both cases H + AP is norm-dissipative

for O

I\
>
IA
I—l

Next we exploit the relative bound.

Let us assume that
IPall < aflall + BlHal|

for all a € D(H) where 0 >0 and B < 1 . Therefore

[xpCz+am) ~tal

IA

alxczeam tall + gll (1-(zerm) ) all

IN

(a+2B8)|lall

113.
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where we have used ”(I+XH)_1“ <1 . Thus if 0= Al < (23)_l

one may choose XO > 0 such that Al(dk+28) <1 for 0< A< AO

and then the operator PA = )\J_>\P(I+>\H)—l is bounded with

HPA“ < 1. Hence I+ P, hasa bounded inverse. But

(zr (B P)) = (1+Py) (T+AHD

and since R(I+AH) = B one has

R(1+A(#2, P)) = R(1+Py)

'D((1+PX)'1]-= B .

Therefore H + AlP is the generator of a Co—semigroup of contractions

by Theorem 1.3.5.

To continue the proof we remark that

Ipall = llall + 8] (H+>\1P)a” + B, lIpall

and since Al = (26)—l one has

Ipall < 2allall + 28] (41, P)al]

We may now choose 0 = AQ = (4(3)“l and repeat the above argument
to deduce that H + (A1+X2)P is the generator of a Co—semigroup
of contractions. Iteration of this argument n times proves that
H + AP is a generator for all 0 = A< (1—2_n)/8 . Choosing n

sufficiently large, but finite, one obtains the desired result. []



Next we examine a more restricted class of perturbations.

If St = exp{-tH} is a Co—semigroup and P is a linear operator,
on the Banach space B , then P is called a Phillips perturbation

of § if the following three conditions are satisfied:
1. P is closed.

2. For each t > 0 one has StBED(P) and PSt has

bounded closure.
3. 5t s, < 4.

Note that if S is a group then each Phillips
perturbation P of S is automatically bounded because
P = [PSt)S_t for each t > 0 . More generally, for semigroups,
P is relatively bounded. To see this consider the case that §

is a contraction semigroup. Consequently

Or+) e = f: at e_AtSta

for each a € B and X > 0 . But one also has
I/7 at e *ps a| = ”a“[ 1% at ||ps || + ||ps “/xJ
0 o | 0 t Sl

for any 0< 8 <1 . Since P is closed a simple Riemann
approximation argument establishes that (AI+H)‘la € D(p) ,

i.e., D(H) ¢ D(P) , and

P(AT+H) 14 = f‘g dt e"hpsta .

115.
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Therefore setting b = (AI+H)-la and using the foregoing estimate

one finds

A

lebll = ||f at e tPSta“

= N0l [ e esqfrsgl

< (/\I!b!]+IIHb|I)[ 13 at ||Pst||+nps(s”[>\J

Thus P is H-relatively bounded. Moreover choosing § +to be small
and )\ to be large one sees that P has H-bound zero. The same
conclusion is indeed valid for a general Co—semigroup but one must

use the bound ||S.| =M exp{wt} and take A >w .

el
Theorem 1.9.1 can now be strengthened for the class

of Phillips perturbations.

THEOREM 1.9.2. Let S _ = exp{-tH} be a C -semigroup of
contractions on the Banach space B and P a Phillips perturbation
of S .

If P, or H+P, is norm-dissipative then H + P

generates a Co-semigroup of contractions s¥ . Moreover
fa=sa+ (-1 § dt, ... at
t t 1

n>1 0=t =t <...5t.=t
n~ n-1

for all a € B, where the integrals exist in the norm topology and

define a series of bounded operators which converges in norm



uniformly for t in any finite interval of the form (e, 1/¢)

where 0 <e< 1.

Proof. The first statement of the theorem follows from Theorem
1.8.1 and the foregoing observation that a Phillips perturbation
P of H is H-relatively bounded with H-bound zero.

Now consider the perturbation series for SP . It

follows from the definition of a Phillips perturbation that each

term is well defined as a bounded operator and is strongly

continuous for t > 0 . But if Sin) denotes the n-th term then
s - S, sin) = (-1) [f as st_spsén'l)
Hence, by iteration,
s < 5+ o
where
g(t) = || £6) = [es || ,
the % denotes the convolution product, and fn* denotes the

n-fold convolution of f with itself.
Now let us examine bounds on f .

Since § is contractive f is non-increasing and

the integral

w At
I, = [, at e"TE(D)

117.
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is finite for each A > 0 . Moreover IA >0 as A >,

But for 0 < s < t one has £(t) = £(t-s) and hence
2[eMe(e)] = (e E(r-s)re™)?
Therefore

t[e- tf(t)]% < fz/Q ds [e_X(t_s)f(t—s)+e-AS]

<

= IA + 1/X .

Consequently for A sufficiently large
[7 at e Mr(r) = 172

and
At /L2
£(t) = & /247 .

Moreover since S is contractive there is an M > 0 such that
o -\t
fo at e A g(t) =M, g(t) = r/1e>‘t/t2

for this same range of large A .
Next we examine the propagation of these bounds.

Suppose two positive integrable functions fl R f2 s

on [0, ®) satisfy

o -t At [2
[oat e E(E) =M, £.(t) = Me A2
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Then

ol At o 0 -\t il -A
IO dt e (fl"fQ)(t) fo dt e "°f, () fo ds e Sf2(s)

IA

M1M2 = 8MlM2 .

Moreover

[fl:':fQ)(t) < eAt fg ds (ex(t_s)fl(t—s)) (e_)\sfz(s))

M M
= e>\t IE/Q ds ——~£—§ e_ASf (s) + eAt E/? ds e_k(t_s)fl(t—s) —%—
(t-s) S
At /2
= 8MlM2e /é .

Thus the bounds propagate.

Combining the foregoing estimates one concludes that

A

f: at e Mg # 27(r) < w2t

and

% /
g # £ (1) = uert 2

Consequently the perturbation series for SP is majorized in norm

by the series

§ouertone? < ouelt /2
n=0

and this immediately implies the convergence statements for the

perturbation series.
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It remains to prove that SP is a Co-semigroup

with generator H + P .
First strong continuity at the origin follows from
the integrability of t +— ”PSt” at the origin and the

straightforward estimate

A

|(sE-s)al = T J at, ... At |‘Pstl—t2|l

n=1 0=t _=...=t_=t
n 1

P e - ol

IA

3 15 es s )"tat -

n=1

Second note that SP satisfies the integral equation

P _ t P
s, =8, - [y ds S _PS_
and hence
P P P ftl P
st s- =58 s - ds S, PSS
7ty o, 0 ty-s st
t t
2 P 1 P
=S - [ “ass ps. - [ T ds s, _PS.S
t e, 0 t +tyms s 0 t)-s st

t
P 1 P PP
Stl+t2 +Jo as Stl-SP{Ss+t - S$5¢ } :

Thus the family of operator-valued functions

A ETE, () = sﬁpsip - ipﬂ
1 15 175
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is entire analytic, in the norm topology, and satisfies the

homogeneous integral equations
_ t
Fo) = A [ ds s, _PF (V) .

It then follows from Taylor's series that Ft(k) =0, i.e., the

semigroup property

is valid.

Finally let K denote the generator of SP . For A

sufficiently large one has

A ™ = 7 at e_AtSE )

But using the integral equation for SP one finds

At o t . At P
S, = [, dt [y ds e™s PS_

-1
(AI+K) s

f: dt e

A As_P

t o0 -
S, P Jydse S

O+ - [y at e

(AI+H) T - OI+) TP+ 7T .

This establishes that

(ANI+H+P)(AT+K) L = T .

But
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(AL+H+P) = (T+P(AT+H) ) (AT+H)

and
leazsm) ™t < f: at e—kt”PSt“ <1

for )\ sufficiently large. Therefore (AI+H+P) is invertible

with bounded inverse. Consequently

(AI+H+P) T = 1+t
and
K=H+P. []

Remark 1.9.3. One can obtain an analogue of Theorem 1.9.2 without
assuming that S is contractive or P norm-dissipative. If

S = exp{-tH} Zs a C

. -semigroup and P a Phillips perturbation

0
of S then H + P generates a Co—semigroup s¥ which can be
defined by the perturbation series of Theorem 1.9.2. The proof of
this generalization is very similar to the above proof but the

estimates necessary for the convergence of the series are slightly

more onerous because of the growth of ”Stu .

Example 1.9.4. Let B = LP@RV) and let S be the semigroup

generated by the Laplacian, i.e.,
(5.8) (x) = (ny*£) ()

where



2
ut(x) = (uﬂt)_v/Qexp{%Er

Next let V be a multiplication operator

(VE) (%) = V(x)f(x)

where V € Lq@RV) and q@ >V/2 , q=p . Then by successively

applying HGlder's and Young's inequalities

IA

Vs Fll, = MVl gl * ],

IA

(R

where p_l = q t + r s T +1=s3s + p— , and

l=p,q, r, s <o, But

-1
o, = ex/DE) | ovrza
Thus ”Vst"p is integrable at the origin and V is a Phillips

perturbation of S .

Exercises.

1.9.1. Let P Dbe relatively bounded with respect to H
with H-bound less than one. Prove that H + P is closable if,
and only if, H is closable and in this case the closures have

the same domain.

1.9.2. If P 1is relatively bounded with respect to H with
H-bound B < 1 prove that P is relatively bounded with respect

H+ P with HtP-bound B(1-8)" T .

123.
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1.9.3. Let H be the generator of a Co—contraction
semigroup on a Banach space B and suppose P is relatively

bounded with respect to H . Prove that if A > 0 then

-1

”P(XI+H)-1” <o)+ 2B .

Moreover if B is a Hilbert space

HP(XI+H)—1H <t

Hint: In the Hilbert space case use norm-dissipativity to prove

that

lozsmal? = A2all? + [Hal? .

1.9.4. If a € LQ@RSJ has partial derivatives in LQﬁRs)

prove that

fdsx |a(x)‘2/ o S fdsx lVa(x)I2 .
|%|
. %
Hint: Calculate V|x|%a(x)

1.9.5. Let H denote the Laplacian on LP@Rv) and X,

the operator of multiplication by the characteristic function of

S(n)

the open bounded set A c R’ . Define to be the CO—

semigroup generated by the perturbed Laplacian Hn = H + n(I—XA)

Prove that S(n)

converges strongly on LP(A) to the semigroup
generated by the Laplacian with Dirichlet boundary conditions, as

n >,



1.10. Comparison of Semigroups.

In perturbation theory one starts from a semigroup S
and an operator P , which is "small" with respect to the generator
H of 8§ , and then constructs a perturbed semigroup sP , with
generator H + P , which is '"close" to S. The notions of
"smallness" of the perturbation and "closeness" of the semigroups

are intimately related. In particular one can estimate from the

identity
_gP .ot 4 (P
S¢ ~ 8¢ T fo ds 35 (St—sss)
_rt p
=[5 ds sY__P s
that

”St - Si“ = 0(t) ,
as t >0, if P is bounded, or
[(se-s2)e] = oco

for all a € D(H) , as t >0 , if P is relatively bounded with

respect to H . Our aim is to prove converses to these statements.

We now begin with two semigroups satisfying the

)

125,

estimate (*) , or (%*) , and attempt to prove that the corresponding

generators differ by a bounded, or a relatively bounded, perturbation.

The difficulty is that these converse statements are not valid for

general CO

-semigroups. Nevertheless they are valid for Cg—semigroups,
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with some slight qualification, and hence for Co—semigroups on
reflexive Banach spaces. In general another phenomenon of
intertwining of generators has to be taken into account. We will
discuss this after describing the basic results on Cg—semigroups,

and their corollaries.

THEOREM 1.10.1. Let S and T be two Cg—semigroups on the
Banach space B with generators H and K , respectively. The

following conditions are equivalent:
1. ]|st - Tt” = 0(t) as t >~ O+,

2. D(H) = D(K) and XK = H + P where P <s a bounded

operator from the morm closure D(H) of D(H) to B .

Proof. 1=2. Condition 1 states that there are constants N ,

§ > 0 such that

”st - Tt" < Nt

for 0<t< 6 . Now for f € D(H) consider the one-parameter
family £, = (St~Tt]f/t €B . Onehas [f| =Nl for 0=t<3
But the unit ball of B is compact in the weak*-topology, by the

Alaoglu-Birkhoff theorem, and hence there exists a subnet ft which
o

is weak®*-convergent, as ta + 0+ , to a limit g . Now if K, .and

T*t denote the adjoints of K and Tt , on B* , which exist by

Lemma 1.5.1, one has
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f(K.a) 2im f[{I—T*t )a]/ta
o o

%im ([I—Sta}f)(a)/ta + 2§m fta(a)

f

(HE)(a) + gla)

for all a € D(K,) and £ € D(H) . Since the right hand side is
continuous in a , and since D(K,) 1is norm-dense in B, , one

concludes that f € D(K) and hence D(H) € D(K) . But reversing
the roles of S and T in this argument gives D(K) € D(H) and

hence D(H) = D(K) . Furthermore the foregoing identity gives
Kf = Hf + g .

But |lgll = N[If|l and hence K - H extends by closure to a bounded

operator P from D(H) to B , with ||P|| = N .

2 =1. If f € D(H) then sz € D(H) and

((St—Tt)f)(a) = fg ds (Tt_SPSSf)(a) .

Therefore

]

IA

t
——

IA

182 = Tell = ellEl sup{j,_(|l fIsg]l 5 o =

i

0(t)

as t - 0+ because ”St”’ “T = M exp{wt} for suitable

il
M, w=0 . ]

Note that in the proof of 1 = 2 one establishes that

the perturbation P satisfies the estimate
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IIpll = s s, - T |/t -
sup s, - 74|

But in the proof of 2 = 1 one has the converse estimate

Sup ||s, - T.||/t = ||P||M2 .
sup |5, - Tl

Thus if S and T are contraction semigroups, or more generally

if |Is Tl = explwt} for some w = 0 , then

el 17l

II?ll = sup ||s, - T.|/t -
Sup |5, - T/

The magnitude of the perturbation is measured by the "distance"

“St - Tt“/% between the semigroups for small t .

The difficulty in interpreting Condition 2 of
Theorem 1.10.1 as a perturbation result is that the perturbation
P=K-H is only defined on the weak¥*-dense domain D(H)
Although it is bounded as an operator from the norm closure of D(H)
to B it is not clear that it has a bounded extension from B to
B . This is the case, however, if D(H) is norm dense. In
particular this follows if B is reflexive because then the norm
topology and weak*-topology coincide. Therefore Theorem 1.10.1 has

the following corollary.

COROLLARY 1.10.2. Let S and T be two Co—semigroups on the
reflexive Banach space B with generators H and K respectively.

The following conditions are equivalent:

I sy - Ty = o8) 5 as t >0+,
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2. There is a bounded operator P on B such that

K=H-P.

Reflexivity of B means that B¥% = B, and hence
weak*-continuity is equivalent to weak, or strong continuity.

Therefore Cg-semigroups are C_-semigroups and this result follows

0
from Theorem 1.10.1. But it is not generally true without
reflexivity. Before giving a counterexample and discussing the

new phenomenon which arises we will, however, describe the

relative boundedness version of Theorem 1.10.1.

THEOREM 1.10.3. Let S and T be two Cg-semigroups on the
Banach space B with generators H and K , respectively. The

following conditions are equivalent:
I (-1 Jf] = o) as t o+, forall £ e€pw) ,
2. K>H+P
where D(P) = D(H) and
IP£ll = all£ll + bllne|

for all £ € D(H) and some a, b >0 .

Proof. 1 = 2. First remark that f € D(H) if, and only if,

I-8_Jf|| = 0(t) at t -+ 0+ , by Exercise 1.5.2. But then since
t

IA

|-l = (s el + [ (s-r e = oo

one must have D(H) € D(K) and one can define P by D(P) = D(H)

(Kl
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and P = K- H.

Next note that H and K are both weak®-closed, and
hence strongly closed, and consider the graph

G(H) = {(f, HE) ; £ € D(H)} equipped with the norm
£, wE = [I£Il + IIHEN .

The graph G(H) 1is a closed subspace of B x B and the mapping
(f, Hf) — Kf is a linear operator from G(H) into B . But this
operator is closed, because if (fn, an) converges in G(H) and
Kf ~ converges in B then “fn - f| >0, and ”Kfn -g| >0, for
some f, g € B and g = Kf since K is closed. Therefore the
mapping is bounded by the closed graph theorem, i.e., there is a

constant ¢ > 0 such that

el < c(l€l+lngll) -

Consequently
Ipgll = [(k-B)E]]
< c||f]| + (e+l)|HE] .
2 = 1. If £ € D(H) then S.f € D(H) ¢ D(K) and
((s,-1)£) (@) = [§ ds (T _PS_)(2)
for all a € B, . Therefore

(ot e = v Sup |7e_gf (asselals )

=t s e 5] (allel+bllnel)
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But ”St”’ “Tt” < M exp{wt} for suitable M, w = 0 and hence
(-1 ]| = o)
as t ~ 0+ for each f € D(H) . []

The analogues of Theorems 1.10.1 and 1.10.3 are not
true for general Co—semigroups because of another effect which is

illustrated by the following example.

Example 1.10.4. Let B = COGR) be the continuous functions on
the real line which vanish at infinity, equipped with the usual

supremum norm, and let S denote the Co-group of translations,

(8,£)(x) = £(x-t)

for £ € B and t €R . Thus the generator H of S is the
operator of differentiation with domain the differentiable functions
f € COGR) whose derivatives f' are also in COGR) . Next let

M be the operator of multiplication by a bounded function m which
is non-differentiable at some points but is uniformly Holder

continuous in the sense that

IA

lm(x)—m(y)l c|x—y|

for some c . Define W by W = exp{iM} and T by Tt = WS,EW_l .

Since

((St—Tt)f)(x) = (1-exp{i(m(x)-m(x-t))}) £(x-t)

one has the estimate
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ISy = Tell = eltl

But the generator K of T is given by K = WHW-l and
D(K) # D(H) because m is chosen to be non-differentiable. In
fact one can choose m to be non-differentiable at a dense set

of points and then one obtains the extreme case D(H) N D(K) = {o} .

Note that the same construction on L*(R) does not
lead to a similar conclusion because the domain of the differentiation
operator which generates translations is much larger and contains

functions which are not continuously differentiable. [:

The infinitesimal comparison of Co—groups which are
close together can be explained by a combination of a perturbation
and a twist of the type occurring in Example 1.10.4. It is possible
that this is also true for Co—semigroups but the following proof
does use the group property in an essential way. It also broadens

the comparison criterion.

THEOREM 1.10.5. Let S and T be two C - or Cg-groups on the
Banach space B with generators H and K, respectively and let

0<a<1. The following conditions are equivalent:
g q
1. ||s, - T ]| = o(t") as t=~o0,

2. there exist bounded operators P , W , such that W

has a bounded inverse,

K = w(H+P)w'l
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and

Hst - WS w'l” =0(t*) as t-o.

t

Proof. 1=2. Define

=
1"
B

r
jO ds TSS_S

where r is chosen sufficiently small that [|I - W|| < 1 ,
and hence W has a bounded inverse. This is possible by Condition 1.

Next introduce

o gl
U = WOTWS .

One then has the identity
L -1 h -1 (r+h
(1-0)fn = obid™ [P as TS __ - (onw) [T as T8

which implies the existence of the strong, or weak®-, limit
P = fin (I-U)/h
0 !
and gives the identification
P=wl(I-Ts )
7 -p :

Thus P is bounded. Next remark that

(-1 )Wajt = W(T-s )aft + w(1-U)s aft .

But the right hand side converges for all a € D(H) in the limit
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t >0 . Hence Wa € D(K) and
KWa = W(H+P)a .

Similarly if a € D(K) then W—la € D(H) and

W ika = (H+P)W_la .

Thus D(K) = WD(H) and

K = W(HP)W T .
Finally one has

-1 -1
S, - WSW T = (s,-T.) + (T WS, W )

But t > WStW_l is the group with generator

and hence
-1y _
|z, - ws | = oce)
by perturbation theory, e.g., by Theorem 1.9.2. Thus

”St - wstw'l”

I\

I8, - Tl + [T, - ws

o(t%) + o(t) = oft%) .

2 = 1. Define Q _weW ' then H = w‘l(K+Q)w and wWeW T

is the group generated by K + Q . Thus
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“Tt - wstw‘l” = 0(t)

as t > 0 by another application of perturbation theory. But

S, - T, = (st-wstw"l) - (wstw"l~Tt)
and hence
I8, - Tl = [Is; - wstw'l“ + ”wstw'l -1
= 0(t™) + o(t) = o(tY) . M
Exercises.
1.10.1. Prove that if § and T are two C,-, or cg—,
semigroups with
||st - Tt” = o(t)

as t > 0+ then S =T.
1.10.2. If § isa Cy-or Cg—semigroup prove that S is

uniformly continuous if, and only if, there exist €, § > 0 such

that

"I - st” <1l-¢€, 0O<t<3$

1.10.3. If S and T are two CO- or Cg-groups with generators

H and K prove that there exist el, 61 > 0 such that
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S, T - Il =1-c¢€
t -t

10 0<tx< 61 .

if, and only if, there exist €55 62 > 0 and bounded operators

P, W, such that W has a bounded inverse K = W(H+P)W_l and
s, ws w"l-1||<1-e 0<t<d
t -t - 2 2

Hint: Follow the proof of Theorem 1.10.5. Note that Exercise

1.10.2 follows by setting T =1 .
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