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PREFACE 

The following notes represent a course of lectures 

delivered at the Australian National University in the second 

semester of 1982 as part of the mathematics honours programme. 

Most of the material contained in the notes is standard although 

a fe10J new refinements and variations are included. The course 

consisted of twenty six one-hour lectures and this sufficed 

to present about ninety five per cent of the content of the 

notes. 

I am indebted to Mayda Shahinian of the University 

of New South Wales for typing a first draft of part of these 

notes and to Helen Daish of the Australian National University 

for typing the final draft. 
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1.1. Introduction. 

Continuous one-parameter semigroups of bounded 

operators occur in many branches of mathematics, both pure and 

applied. The calculus of functions of one real variable can be 

formulated in terms of the translation semigroup, solutions of 

the equations connected with classical phenomena such as heat 

propagation are described by semigroups, and one-parameter 

groups and semigroups also describe the dynamics of quantum 

mechanical systems. Although semigroups occur in many other 

areas the development and scope of the general theory covered 

in this chapter is well illustrated by the foregoing examples. 

Hence we begin with a brief discussion of each of them. 

The semigroup of right translations on Co (IR) , the 

continuous functions over the real line '"hich vanish at infinity, 

is defined by 

where 

Thus one has the semigroup property 

s, t > 0 

and 



where I is the identity operator. Moreover S is strongly 

continuous, i.e., 

'urn 
t-+O+ 

lis f - fll t 00 
o , 

where 11 0 11 00 indicates the supremum norm. Infinitesimally the 

action of this semigroup is left differentiation and globally S 

corresponds in some sense to the exponential of the differentiation 

operator, e.g., if f is analytic 

L (~~)n dnf(x) 

n:::O dxn 

Alternatively, the passage from the infinitesimal action 

to the semigroup S can be described as integration, 

= fdSCdd)f(X-S). 
t s 

-d dx 

Thus this example illustrates how differentiation, 

integration, and approximation theory, underlie the general theory 

of one-parameter semigroups. 

An alternative way of describing the translates 

Stf of a function f E CoOR) are as solutions of the first-order 

partial differential equation 

in CoQR2) , and this is the natural way of viewing the second 

3. 
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example, the heat semigroup. 

The heat equation 

Clf 
at (x, t) 

describes the infinitesimal change with time t of the spatial 

heat distribution of an idealized one-dimensional rod. If 

f E Co(~) describes the initial heat distribution, 

f(x) ::: f(x, 0) , of the infinitely long rod then at time t it 

is described by the solution \f E Co (~) of the above equation, 

f(x, t) -.%( e-eX-y)2!ttt_-f. (y) (1+ 'ITt) " _00 dy 

Again T::: {Ttlt:::o is a strongly continuous semigroup of bounded 

operators acting on CO(~) ,with TO::: I and once more this 

. .. f h _,,2/'''x2 semlgroup corresponds to exponentlatlon 0 t e operator a a 

describing the infinitesimal heat flow, e.g., if f is analytic 

(T f) (x) 
t 

Thus solution of the heat equation can be viewed as construction 

of the semigroup from its infinitesimal action. 

The translation semigroup and heat semigroup may be 

integrated on other function spaces such as LP(~) , P E [1, ooJ , 

but there are also interesting evolution equations in more general 

spaces than function spaces. For example the theory of quantum 



mechanics can be phrased in terms of observables A, B, C, 

which are bounded operators on a Hilbert space H and the change 

(A, t) ~ At of these observables with time is given by the 

Heisenberg equation of motion 

where H is a self-adjoint operator, the Hamiltonian, and AO = A . 

Formally the solution of this equation is 

where Ut describes the solution of the Schrodinger equation 

CJl/J 
t - i H,I, 
~- 'f't 

on the Hilbert space H, i.e., l/Jt = Utl/Jo' Thus the evolution 

of the quantum mechanical observables is described by a semigroup 

At = StA acting on the space of all bounded operators ~(H) on 

H. The infinitesimal action of the semigroup is given by 

A ~ o(A) = i(HA-AH) 

and solution of the Heisenberg equations of motion again corresponds 

to 'exponentiation' of this action. 

The general problem of semigroup theory is to study 

differential equations of the form 

5. 
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under a variety of circumstances, to establish criteria for 

existence of solutions, to develop constructive methods of solution, 

and to analyze stability properties of the solutions. Each of 

these aspects will be discussed in this chapter. Formally the 

solution is always at = exp{-tH}a and the key problem is to 

define the exponential of the infinitesimal operator H But 

there are also several important subsidiary factors to consider. 

The translation semigroup and the quantum-mechanical 

semigroup, which were briefly sketched above, both extend to one-

parameter groups which are isometric, e.g., IIstfll oo = IIflloo for 

The heat semigroup cannot be extended in this 

manner but it is nevertheless contractive, i.e., liT fll ~ IIfll t 00 00 

In the context of dynamics these conditions of isometry and 

contraction are connected with conservation laws, e.g., the 

contractive property of the heat equation reflects the fact that 

no heat is created in the isolated system, but it can dissipate. 

Continuity properties are also important. The translation semi-

group is strongly continuous on any of the spaces Co(~) or 

LP(~) with p E [1, (0) but this is certainly not the case on 

00 

L (~) Nevertheless one has the residual continuity property 

(f, g) 



for all f E L oo(JR) and 1 
gEL (JR) • 

co 
Since L is the dual of 

11 this corresponds to weak,O'-continuity, I.e., weak continuity 

with respect to the predual. Similarly the heat semigroup is 

only weak"'-continuous on L oo(lR) and the quantum-mechanical semi-

group is weak*-continuous on ~(H). Finally each of these semi-

groups is positive in a natural sense; the translation semigroup 

and the heat semigroup map positive functions into positive 

functions, and the quantum-mechanical semigroup maps positive 

operators into positive operators. Again this form of positivity 

can often be interpreted in -terms of physical conservation laws. 

Motivated by these examples we concentrate in this 

chapter on strongly continuous contraction semigroups and partially 

describe the theory of weak"'-continuous semigroups and groups of 

isometri~s. In Chapter 2 we examine positive semigroups. 

7. 
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1.2. Semigroups and Generators. 

Let B be a complex Banach space and B* its dual. 

We denote elements of B by a, b. c, ... and elements of B>" 

by f, g, h, Moreover we use (f, a) to denote the value 

of f on a and II-II to denote the norm on B and also the 

dual norm on B* , Le. , 

IIfll = sup{\f(a)\ lIall <: l} . 

A semigroup S on B is defined to be a family 

S; t E lR+ f-+ St E t( B) of bounded linear operators on B which 

satisfy 

1. s, t > 0 , 

where I denotes the identity operator on B. 

This notion of semigroup is not of great interest unless 

one imposes some further hypothesis of continuity. There are a 

variety of possible forms of continuity. Let us first consider 

continuity at the origin. 

The strongest possible requirement would be uniform 

continuity, i.e., 

.Hm liSt - III = 0 , 
t-+O+ 

where the operator norm is defined in the usual manner 



Iiall <: I} . 

But this is a very restrictive assumption. It can be established 

that a semigroup is uniformly continuous at the origin if. and 

only if. there exists a bounded operator H such that 

I + exp{-tH} 

(see Exercise 1.2.1). This is of limited interest in applications. 

Nevertheless we occasionally use uniformly continuous matrix 

semigroups for illustrative purposes. 

A weaker continuity requirement is strong continuity 

at the origin. i.e .• 

£im II (St - I)all = 0 
t-+O+ 

for all a E B. Semigroups with this property are usually called 

co-semigroups and we adopt this notation throughout the sequel. 

The heat semigroup on CoOR) is a semigroup of this type. Note 

that if S is a Co-semigroup then it follows from the principle 

of uniform boundedness (see Exercise 1.2.2) that 

for some M::: 1 and some finite w::: inf (t-l R.ogllstll) In 
t>O 

particular this implies that strong continuity of S at the origin 

is equivalent to strong continuity at all t::: o. This follows 

9, 
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from -the easy estimate 

II (Ss+t-Ss) all < Ilssll II (st-I)all 

:s Mews II (st-I)all . 

Moreover it establishes that the analysis of a general Co-semigroup 

can be reduced to the analysis of an M-bounded Co-semigroup, i.e., 

a semigroup satisfying 

This reduction is effected by replacing The 

case M = 1 is of particular importance. 

A Co-semigroup S for which each St is contractive, 

i. e. , 

is called a co-semigroup of contractions. The foregoing discussion 

of boundedness properties indicates that the theory of contractive

semigroups is very close to the general theory. Nevertheless there 

are some significant differences which lead to complications if 

M > 1 and there are a number of techniques which are only applicable 

to the contractive case M = 1, W = O. Consequently for 

simplicity of exposition and diversity of method we restrict the 

ensuing discu,ssion -to contraction semigroups. 

Before proceeding to the detailed discussion of CO-

semigroups we note that there are other weaker forms of continuity 



which are of interest. One continuity hypothesis, which is 

natural from the mathematical point of view, is weak continuity 

at the origin. By this we mean 

(,': ) (f, a) 

for all a E B and all f E B*. But here an unexpected 

simplification occurs; evepY weakly continuous semigPOup is 

automatically strongly continuous (see Exercise 1.2.3). 

Alternatively one could make the weaker hypothesis that (*) is 

valid for all a E B and all f in some 'large' subspace of 

B*. In particular if B has a predual, i.e., if B is the 

dual of a Banach space B*, then one could suppose that (*) holds 

for all a E B and all f E B*. This hypothesis is referred to 

as weak*-continuity and a semigroup that satisfies it is called 

a c~-semigroup. This notation is appropriate because it follows 

by duality that each c~-semigroup on B is the dual of a CO-

semigroup acting on the predual B*. Hence many facets of the 

theory of c~-semigroups can be deduced by duality from the CO-case. 

00 

The group of translations acting on L (R; dx) is an example of 

a c~-group which is not a Co-group; it is the dual of the Co-group 

of translations acting on 
1 L(R;dx). We consider the basic 

theory of C~-semigroups of contractions in Section 1.6. 

The most important concept in the theory of continuous 

semigroups is that of the (infinitesimal) generator. This generator 

is defined as the (right) derivative of the semigroup at the origin 

where the sense in which the derivative is taken is dictated by the 

11. 
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continuity hypothesis. In particular the generator of a CO-

semigroup is defined as the strong derivative. The detailed 

definition is as follows. 

If S is a Co-semigroup on the Banach space B the 

(infinitesimaZ) generator of S is defined as the linear operator 

H on B whose domain D(H) consists of those a E B for which 

there exists abE B with the property that 

,Urn 
t-+O+ o . 

If a E D{H) the action of H is defined by 

Ha ;:: b . 

Note that the semigroup property of S automatically 

implies StD(H) ~ D(H) and 

for all a E D(H) and t ~ O. Moreover one has the differential 

equation 

-HS a ;:: -S Ha 
t t 

for each a E D(H) • where the strong derivative dSt/dt is 

defined by 

(s -S) t+h t 
h 

a 



whenever the limit exists. It also follows that Sand Hare 

connected by the integral equation 

for each a E D(H). The integrals, both here and throughout the 

sequel, are understood as B-valued Riemann integrals. 

We now derive the basic properties of generators 

and their resolvents. 

Recall that the reso"lvent set r(H) of an operator 

H on B is the set A E !r for which AI - H has a bounded 

inverse, the spectrum a(H) of H is the complement of r(H) 

!r , and if A E r(H) then (AI_H)-l is called the reso"lvent of 

H 

in 

PROPOSITION 1.2.1. Let S be a Co-semigroup of contractions on 

the Banach space B with generator H. 

It fo"l"lows that 

1. H is no~ c"losed3 no~ dense"ly defined3 

2. If ReA < 0 the range R(AI-H) of AI - H satisfies 

R(AI-H) = B 

and for a E D(H) 

II (AI-H)al! ::: IReA I II All , 

3. If ReA < 0 the reso"lvent of H is given by the 

13. 
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Proof. 

on B by 

Laplace transform 

JOO d eASS a - s o s 

In particular a(H) C {A 

a E B . 

ReA:::: O} . 

Since ReA < 0 we may define a bounded operator RA(H) 

a E B . 

Explicitly one has 

IIRA(H)all ::: f~ ds e-SiReAllissall 

::: f~ ds e-slReAiliall = iReAi-lllall . 

But for each a E B one also has 

-1 foo AS( -At) -1 ft A(S-t)S = -t 0 ds e l-e Ssa - t 0 ds e sa 

where both integrals converge in norm. This last conclusion uses 

the strong continuity of S and the Lebesgue dominated theorem. 

It follows that RA(H)a E D(H) and 

In particular 
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R(AI-H) = B • 

But since 

and RA(H) is bounded one finds that 

(AI-H)RA(H)a 

for a E D(H). Hence A E r(H) and 

But boundedness of (AI-H)-l implies that AI - H , and hence' H , 

is norm closed. Moreover the explicit estimate for IIRA(H)all 

derived at the beginning of the proof immediately gives the desired 

lower bound on II (AI-H)a// . 

Finally a = -nR (H)a E D(H) 
n n 

a E Band for all 

n ::: 1. But 

f~ ds e-S(ss-r)a ~ 0 

n 

by another application of strong continuity and the Lebesgue 

dominated convergence theorem. Thus D(H) is norm dense. 0 

This result has two simple implications which we often 

use in the sequel without further comment. First the proposition 
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implies that for each a > 0 generators satisfy 

( ,',) \I (I+aH)all ::: Iiall , a E D(H) . 

But it immediately follows that the generator H of a co-semigroup 

s has no proper extension satisfying (*), i.e" generators are in 
A 

this sense maximal, To deduce this suppose H extends H and also 

satisfies (;,) then for a E DeB) set b = (I+aH)a. But there is 

an a' E D(H) such that b = (I+aH)a' , by Condition 2 of Proposition 

1.2.1, and hence O+aH)(a-a') := 0 , because 
A 

H extends H . Thus 

a :: a' by (,',) and H:: H, The second implication gives a 

characterization of a core of H Recall that a subset D of the 

domain D(X) of an operator X is called a core of X if for each 

a E D(X) there is a sequence a E D 
n 

such that lIa 
n 

all -)- 0 and 

IIXa - Xall + 0 as n -~ 00. In particular if X is closed then D 
n 

is a core if, and only if, -the norm closure X I D of X restricted 

to D. is equal to X It follows -that a subset D C D(H) is a aore 

for the generator H if. and only if~ (Al-H)D is norm dense in B 

for some A with ReA < 0 ~ or for all A with ReA < o. Clearly 

if D is a core R(AI-H)D 

denotes the closure of HID 

A:: H by use of C",). 

B by Proposition 1.2.1. Conversely if H 
"-

and R(Al-H):: B one again concludes that 

A slight variation of the argument used to prove 

Proposition 1.2.1 also provides the following slightly less evident 

criterion for a core of a generator. 

COROLLARY 1.2.2. Let S be a co-semigroup of aontraations on the 

Banaah spaae B with generator H and let D be a subset of the 

domain D(H) of H which is norm dense and invariant under S 3 

i.e., Sta E D for all a E D and t::: 0 

It follows that D is a core for H. 
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Proof. 
"-

Let H denote the closure of HID' By the above 

remarks it suffices to prove that R(AI-H) = B for some A with 

ReA < 0 But for a E D one can choose Riemann approximants 

N AS. 
IN(a) = I e lS a (s. 1-s.) 

i=l 
s. 1+ 1 

1 

N AS. 
IN«Ar-H)a) L e lS (Ar-H)a(s. I-s.) 

i=l 
s. 1+ 1 

1 

which converge simultaneously to a . Now 

IN(a) E D because of the invariance of D under Sand 

Thus I N(a) -+ -1 (Ar-H) a and (AI-H) IN(a) -+ a Therefore 

D C R(Ar-H) But (Ar_H)-l is bounded and hence R(Ar-H) is 

norm closed. Thus R(Ar-H) D by the norm density of D o 

Exercises. 

1.2.1. Prove that if a semigroup S is uniformly continuous 

then there exists a bounded operator H such that 

Hint: For small s > 0 the operator 
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is invertible, with bounded inverse, and 

1.2.2. Prove that a weakly continuous semigroup S must 

satisfy 

for some M > 1 and some finite w:::: inf (t -1 R,ogll St ll ) . 
eo 

Hint: Use the uniform boundedness principle for small t and 

the semigroup property for large t 

1.2.3. Verify that if Re z > 0 then 

-V/2 V _(x_y)2/ 
= (4~tz) J dye 1 4tzf (y) 

1.2.4. Prove that weak and strong continuity of a semi-

group S are equivalent. 

Hint: The weak generator 

S is defined by 

(f, H a) 
w 

H of a weakly continuous semigroup 
w 



with D(H) the set of a for which the limit exists for all 
w 

f E B*. Adapt the argument used in the proof of Proposition 1.2.1 

to deduce that D(H) is weakly dense and hence, by the Hahn
w 

Banach -theorem, strongly dense. Finally use 

reo' ds ( f, S H a) s w 

to prove strong continuity for all a E D (H) . 
w 

1. 2. 5, Prove that the generator H and weak generator 

of a Co-semigroup S coincide, 

Hint: Adapt the proof of Proposition 1.2.1 to deduce that 

H 
w 

H :::> H 
- w 

1,2.6. If H is the generator of a Co-semigroup prove that 

is norm dense. 

Hint: For each a define a by 
n 

where f is a positive, infinitely often differentiable, function 

with compact support in (0, oo) and with total integral one. Then 

a E Doo(H) and Iia - all -+ 0 as n -+ 00 
n n 

19. 
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1.2.7. Let S denote the heat semigroup on LP(~V) , 

Prove that the generator of S is the closure of the restriction 

of the Laplacian 

_v2 = <;' a2 
-[. -2 
i=l ax. 

~ 

to the infinitely often differentiable functions in LPQRV) • 

Hint: Use Corollary 1.2.2. 



1.3. Generators and Semigroups. 

Proposition 1.2.1 states necessary conditions for 

an operator to generate a Co-semigroup of contractions. Next 

we examine sufficient conditions and also study the construction 

of a semigroup from its generator. 

The problem of characterizing a generator H is 

equivalent to the problem of proving existence and uniqueness of 

global solutions of a differential equation 

da t 
--- + Hat dt 

o , a 

for all a in a suitable Banach space B. Formally the solution 

of the differential equation is 

and the difficulty is to give an appropriate definition of the 

exponential. Various algorithms and approximation techniques are 

of use. For example the algorithm 

exp{-tx} £im (l+tx/n)-n 
n~ 

for the numerical exponential san be extended to an operator relation 

if the (pseudo-) resolvent 
-1 

(I+aH) has suitable properties for 

small positive a . 

It should perhaps be emphasized that in applications 

21. 
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the Banach space B is not necessarily specified in advance. 

Typically one might encounter a differential equation of the above 

type for functions over some measure space but without 

specification of a particular norm. Thus the problem consists of 

choosing the norm and reinterpreting the operator H such that 

an appropriate solution can be found. 

The first basic result which characterizes 

generators is the following: 

THEOREM 1.3.1. (Hille-Yosida). Let H be an operator on the 

Banaah spaae B The following aonditions are equivalent: 

1. H is the infinitesimal generator of a Co-semigroup of 

eon traations S, 

2. H is norm alosed, norm densely defined: 

R(I+o.H) = B 

for all a. > 0 (or for one a. = 0.0 > 0) 

1l(I+a.H)ali ~ Hall 

for all a E D(H) and all a. > 0 (or for all 

If these conditions are satisfied 

Hm IISta - (I+tH/n)-nall = 0 
n-+oo 

for aU a E B , uniformly for t in any finite interval of [0, 00) • 



Proof. 1 ~ 2. This follows from Proposition 1.2.1, it 

suffices to set A = -lla . 

2 ~ 1. Assume R(I+aoH) = Band 1I<r+aH)all ~ lIall for all 

a E D(H) and a E {a, ao] Thus (I+aoH) -1 is a bounded 

operator with norm one. First we extend this conclusion to all 

a E {aoh, aO] and then by iteration to all a E (0, ao] 

If a E (ao /2' ao] then 

N 

I 
n=O 

[
a-a )n o ( ) -n-l -a- I+a('.H 

converges in norm to a bounded operator R. But for a E D(H) one 

has ~a E D(H) and a simple rearrangement argument proves that 

1i<r+aH)RNa - all + 0 and IIRN(I+aH)a - all + 0 as N + 00 Since H 

is norm closed it follows that R = <r+aH)-l and then IIR//::: 1 by 

the bound 1I<r+aH)all ~ lIail . 

The remainder of the proof consists of establishing 

that the strong limit of the operators 

r (t) 
n 

exists as n + 00 and that it defines a Co-semigroup of contractions 

with generator H Note that for n sufficiently large 

tin < a O and I/0+aH)-1,,::: 1 for all a relevant to the remainder 

of the proof. 

As a preliminary to studying the above limit we note 

that if a E D(H) 

23. 
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::: a.IIHall _ 0 . 
a.+0+ 

Since D(H) is dense one concludes that 
-1 

(I+a.H) converges 

strongly to the identity as a. + 0+ This has several implications. 

First if for a E B one defines 

then a E D(H2) and a is norm convergent to a 
n n 

is dense. Second if a E D(H) then a converges to a and Ha 
n n 

also converges to Ha Thus D(H2) is a core for H. Third 

r (t) 
n 

t > 0 

then 

r (t)a 
n 

is strongly convergent to the identity as t +0 

Next one claculates that drn(t)/dt is bounded for 

and, more specifically, 

dr (t) 
n = _H(I+tH/n)-n-l . 
dt 

Combining these facts one calculates that if a E D(H2) 

r (t)a = 
m 

Hm 
E:+O+ 

ft-E: d { } dS-d r (s)r (t-s)a E: s n m 

= Hm ft-E: ds {r I (s)r (t-s)a - r( s)r I (t-s )a} 
E:+O+ E: n m n m 

= Hm 
E:+O+ 

ft-E: {-l -1 } ds r (s)r (t-s) -H(HsH/n) a + H(I+(t-s)H/m) a. 
E: n m 



This immediately yields the estimate 

Thus {rn(t)a}n~l is a Cauchy sequence which is norm convergent, 

uniformly for t in any finite interval of [0, 00). But since 

is norm dense, and ilr (t)11 ::: 1 for all n = 1, 2, 
n 

it follows that {rn(t)}n~l is strongly convergent, uniformly 

for t in any finite interval of [0, 00) • 

denotes the strong limit one readily deduces that So = I , 

t E JR+ 1---+ St E (B) is strongly continuous, and "St"::: 1 • 

To establish the semigroup property we use the combinatoric 

identity 

n 
x n 

y 
n 

I n-m m-l x (x-y)y . 
m=l 

Hence for a E D(H2) one calculates that 

r (s)r (t)a 
n n 

r (s+t)a = 
n 

n 

I -n+m -n+m -m+l 
(I+sH/n) (I+tH/n) (I+(s+t)H/n) x 

m=l 

25. 

{ -I -1 -I} x (I+sH/n) (I+tH/n) - (I+(s+t)H/n) a 

n -n+m-l -n+m-l -m st 2 I (I+sH/n) (HtH/n) (H(s+t)H/n) 2"H a. 
m=l n 

Therefore 

Ilr (s)r (t)a - r (s+t)all ::: ~ IIH2ali . 
n n n n 
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In -the limit n -+ 00 one finds 

S S a 
s t 

S a s-l-t 

and the semigroup property follows from the density of D(H2) 

and the contractivity of S. 

It remains to identify the generator of S. 

Again one calculates for a E D(H2) 

n-l 
t -1 I (I+tH/n) -m (I+tH/n) -1 -I) a -I- Ha 

m=O 

1 
n 
I ((IHH/nrm-I)Ha n 

m=l 

t n m 
(I+tH/n)-PH2a 2 I I 

11 m=l p=l 

Consequently 

and in the limit n -+ 00 

A 

Thus if !-I denotes the generator of S then 

A 

Ha ::: Ha 

"-
is a core for H and hence H 

is an extension of H This, however implies that (I+aH)-l 



is an extension of 
-1 

(I+aH) for all small a > a . Since the 

latter operator is everywhere defined it is not possible that 

A A 

H is a strict extension of H. Therefore H = H . o 

There are a number of possible variations of the 

Hille-Yosida theorem. It follows from Condition 1 of the theorem 

that H is nOl~m closed but for the implication 2 => 1 it is not 

necessary to assume the closedness since it follows from the other 

hypotheses of Condition 2. For example if a E D(H) , 
n 

Iia - all -+ a , and IIHa - bll -)- a then there is a c such that 
n n 

( HaH)c a + ab , 

by the range condition, and consequently 

lie - a II < IIO+aH) (c-a )11 -)- a , 
n n 

by the lower bound. Hence c = a, b = Ha , and H is norm 

closed. This redundancy "fill reoccur, without comment, in several 

of the subsequent statements. 

The Hille-Yosida theorem can also be rephrased as a 

criterion for an operator to be a pre-generator, i.e., a closable 

operator whose closure is a generator. 

THEOREM 1.3.2. Let H be a norm densely defined operator on the 

Banach space B and assume that 

II (I+aH)a[[ > Iiall 

for all a E D(H) and all a E (0, a o] , for Borne aa > a . 

27. 
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It foZZows that H is norm eZosabZe and the foZZowing 

eonditions are equivaZent: 

1. The eZosU!'e H of H is the generator of a 

co-semigroup of eontraetions, 

2. R( I+aH) = B 

for one a E <o~ 0.0]' where the bar denotes 

norm e ZosU!'e. 

Proof. If an E D(H), lIanll + 0 , and !!Han-bll + 0 , then H is 

norm closable if, and only if, b = o. Now suppose at E D(H) 

and b' = Ha' then 

for a E <0, 0.0]' Therefore taking the limit over nand 

subsequently dividing by a one finds 

lib + a' + ab'" ~ lIa ill 

Hence 

lIa' + bll ~ lIa'" . 

But D(H) is norm dense and so for each E > 0 one can choose 

a' such that lib + a'" < E and IIa 'II ~ IIbt!. Therefore 

IIbll < E and b = 0 

Next suppose 

IIHa - "Hall + 0 then 
n 

a E D(H) , 
n 

lIa - all + 0 , and 
n 



II (I+O:f{)all 2im II (I -I-O:H)a II 
n 

lIall . 

Moreover if c E B and one chooses c E R(I+o:H) such that 
n 

lie - cll + 0 then c :: (I+o:H)a for some a E D(H) and 
n n n n 

IIc - c II n m 
II (I +o:H ) (a -a ) II 

n m 

:': lIa - a II . 
n m 

Therefore a must be a convergent sequence. But 
n 

IIH(an-am)1I S a-l{II(I+O:H) (an-am) II + lIan - amll } 

:: o:-l{lIcn - cmll -I- lIan - amll } 

and consequently Ha 
n 

is also convergent. Hence if lIa - all -+ 0 
n 

then a E D(i{) and IIHa - Hall -+ 0 because H is norm closable. 
n 

Thus 

C :: (I+o:H)a 

and this establishes that 

R( I+O:H) . 

Therefore Conditions 1 and 2 are equivalent by the Hille-Yosida 

theorem. o 
Remark 1.3.3. Results analogous to Theorem 1.3.1 and 1.3.2 are 

valid for general Co-semigroups. For example if one replaces the 
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lower bound in Condition 2 of Theorem 1.31 by the set of lower 

bounds 

a E D (Hn) , n = 1, 2, 3, .•• 

for all a E <0, wJ and repeats the proof of 2 = 1 then the new 

bounds give the estimates 

and one readily concludes that H generates a Co-semigroup S 

satisfying 

Conversely if S satisfies these bounds then the lower bounds (*) 

follow from the Laplace transforms 

-n 1 Joo n -t 
(I+aH) a = n! 0 dt t e Sata 

Rema rk 1. 3 • 4 • If S is a Co-semigroup with generator H it is 

customary to write 

-tH 
St = e 

This is justified by the definition of the generator and also by 

the construction of Theorem 1.3.1. Moreover if H is bounded 

St coincides with exp{-tH} defined as a uniformly convergent 

power series. 



The Hille-Yosida theorem can be reformulated in a 

much neater manner: H is the generator of a Co-semigroup of 

contractions if~ and only if, (I+aH)-l is a bounded contraction 

operator for all sufficiently small positive a. Nevertheless 

it is useful to identify explicitly the two pieces of information 

which are contained in the statement that 
-1 

(BaH) is a 

bounded contraction operator, the range condition 

R(HaH) := B , 

and the lower bounds 

II (I+aH)all =:: Iiall , a E DeH) > 

These latter lower bounds can often be re-expressed in quite 

different terms. They are related to the maximum principle when 

applied to differential operators and to a spectral property for 

operators on Hilbert space. In the next section we discuss the 

interpretation of these bounds as a criterion of dissipation. But 

for the present we adopt the terminology that the operator H is 

norm-dissipative if 

II (I+CY.H)all =:: lIall 

for all a E D(H) and all small a > 0 . 

The following example illustrates this concept for 

elliptic differential operators. 

Examp 1 e L 3. 5. (The Laplace Operator). 

f . f' \! space 0 contlnuous unctlons over ~ which vanish at infinity, 
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equipped with the usual supremum norm. The Laplace operator 

_V2 is defined on c~(~V) , the twice continuously differentiable 

functions in Co(~V) , by 

v a2a 
l -2 ' 

i=l ax. 
1 

and one has the obvious identity 

Therefore if a > 0 

1 (1-aV2) a 12 = lal 2 + a 2 1V2al 2 + a(-V2a)a + aa(-V2a) 

laj2 + a 2 1V2al 2 + 2al~al2 _ aV2 1al 2 

~ lal 2 _ aV2 1al 2 . 

Now if lal has a maximum at then the maximum principle 

states that x ~ _V2 Ia(x)1 2 is non-negative at x = Xo 

Therefore the preceding estimate establishes that 

II (I-aV2)all~ ~ 1 (1-aV2) a (xo) 12 

~ la(xo) 12 = lIall~ , 

i. e., the Laplace operator is 11 0 11 00 -dissipati ve. A similar 

conclusion is true for more general elliptic operators by the 

same calculation. o 
Now let us examine operators on Hilbert space. In 
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this case one has 

2 2 2 
lIall + a IIHall + 2a Re(a, Ha) 

Therefore H is norm-dissipative if, and only if, 

Re(a, Ha) =:: 0 

for all a E D(H). But under certain quite general circumstances 

these latter conditions are equivalent to a spectral property of 

H. For example if H is bounded and normal, i.e., if H 

commutes with its adjoint 1-1"', these conditions are equivalent 

to 

Re O(H) =:: 0 . 

This follows by a numerical range argument. Define the numerical 

range W(H) of H by 

W(H) {(a, Ha) a E D(H)} . 

If H is bounded then the Hausdorff-Stone theorem establishes 

that W(H) is convex. If, moreover, H is normal then the closure 

W(H) of W(H) coincides with the convex closure of O(H) . 

Therefore in this latter case Re W(H) =:: 0 if, and only if, 

Re O(H) =:: o. This conclusion can be extended to unbounded 

generators of normal semigroups. 

Examp 1 e 1. 3 . 6 . (Normal Semigroups). 

Co-semigroup acting on a Hilbert space H. The adjoints 



34. 

{ "'} S,.,:: S~ eo form a weakly, hence strongly (Exercise 1.2.3), 

continuous semigroup called the adjoint semigroup. The semigroup 

S is defined to be nOY'maZ if Sand S'" commute for all 
s t 

s, t > 0 and self-adjoint if Q :: S* for all t > 0 
~t t . Note 

that Ilst":: Ils~1I and hence Sand S* are simultaneously 

contractive. Moreover if H generates S then the adjoint H* 

of H generates S* (Exercise 1.3.4). 

If S is contractive then Re O(H) ~ 0 and if 

S is normal it is contractive if, and onZy if., Re O(H) ~ 0 

The first statement was established in Proposi-tion 

1.2.1. Moreover if H is bounded it is normal if, and only if, 

S is normal and the second statement folloHs from the discussion 

preceding the example. The case of unbounded H can now be 

deduced by an approximation technique based on the functional 

analysis of generators. 

If Re O(H) ~ 0 then 
-1 

(I +aH) is a well-defined 

bounded operator for all a ~ O. Consequently the operators 

H a 
-1 ( -1) a I-(HaH) 

are bounded. But if S is normal it follows that H is normal a 

and the uniformly continuous semigroups sa :: exp{-tH} are also 
t a 

normal. Moreover it follows from the identity 

-1 -1 -1 
I.. (I +01.1.. ) I - HOI. :: (Hal..) ( AI - H ) ( HaH ) 

that if I.. E r(H) then 1..(1+01.1..)-1 E r(Ha) ,unless I.. -a -1 



Therefore I' (H ) a 
contains the open lef-t hand plane, Re a (H J ::: 0 , a 

and Sa is contractive by the preceding argument for bounded 

generators. Finally the formula 

Jl a" ( -1) 
t 0 dA SAt S(l-A)t I-(I+aH) )Ha 

with a E D(H) , and the fact that ( I+aH) 
-1 

1---+ I as a -7 0 (see 

the proof of Theorem 1.3.1), establish that Sa 
t 

converges strongly 

to St Hence S is contractive. 

Note that if St = exp{-tH} is contractive then 

Re a(H) ::: 0 but the converse is not necessarily true if S is 

not normal. For example if 

H [: : 1 

then 0(H) 0 but 

St 
-tH 

[-: 
01 e 
1) 

and IIStll > 1 for all t f:: 0 . 0 

Throughout this section we have examined criteria 

for an operator H on a Banach space B to be the generator of 

a Co-semigroup of contractions. More generally one can ask 

whether a given operator H has extensions which are generators, 
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and then try to classify all such extensions. Unfortunately the 

theory of extensions is poorly developed except for specific 

examples, or for the special case of norm-dissipative operators 

on Hilbert space. This Hilber~c space theory can be briefly 

described as follows. 

Assume H is a norm closed, norm densely defined 

norm-dissipative, operator on the Hilbert space H and for small 

a > 0 define 

It follows by a simple variation of the argument used in the proof 

of Theorem 1.3.2 that HOI, is a closed subspace of H Now if 

H ::: H then 
a 

U 
L1 is the generator of a Co -contraction semig:coup 

by the Hille-Yosida theorem. Therefore we consider the situation 

HOI, t H and try to construct extensions of H which generate 

contraction semigroups. 

It is useful to introduce the spaces 

..L 
D D (H) = H which measure the extent to which the range a a. a 

spaces R(I+aH) fail to equal H. The D are called deficiency a 

spaces and the first key observation is that the dimension of 

is independent of a This dimension is called the deficiency 

index of H. To prove the independence statement one first 

remarks that 

II (AHH)all > Allall 

D a 



for all a E D(H) and all sufficiently large A > 0 because H 

is norm-dissipative. Next define E as the orthogonal a 

projection onto D and note that a 

II (I-E )bll = sup I(b, (HaH)a) 1/11 (I+aH)all 
a aED(H) 

Therefore if b E Dl / A then 

sup I (b, (JlI+H)a) 1/11 (JlHH)all 
aED(H) 

sup {I(b, (AHH)a)I + IJl-AI I(b, a)I}/II(JlHH)all 
aED(H) 

where the last estimate uses the norm dissipativity of H 

Consequently 

But this implies that 

II Eo. - E13 II = II (I - Eo.) E13 - E13 (I - Eo.) II 

~ 10.-131/13 + 10.-131/0. . 

Thus if a > 0 is in a sufficiently small open interval around 13 

one has ilEa - E13" < 1 which is equivalent to Eo. = E13 . 

Therefore Do. and D13 have the same dimension. But since 

13 > 0 was arbitrary the general independence statement follows 

immediately. 

The second crucial observation is that D(H) n Do. = {a} 
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for each a > o. This is established by noting that if 

a E D(H) n D then Ca, (I+o,H)a) = 0 and 
a 

(a, Ha) -ilall 

But H is norm-dissipative, hence Re(a, Ha) ::: 0 , and a = 0 

Now one can construct generator extensions of H by 

iteration of the following procedure for the simplest case that 

the deficiency index is one. 

Assume D is one-dimensional. Then define H by a a 

D(H J a 

for a E 

because 

Ho, (a+b) 

D(H) (B D and a 

D(H) and b E 

D(H) n D = {a} 
a 

D If a + 
a 

Therefore 

= 0 , i.e. , the operator H a 

b = 

Ha 

is 

Re«a+b), (Ha+b/o,) 

0 one has a = 

0 = b/o, and 

linear. But 

Re(a, Ha) + Ilbl1 2/o, + Re(b, (I+aH)a)/o, 

> Re(a, Ha) ::: 0 

0 

where we have used bED Thus H is norm-dissipative. a a 
I 

Finally if c E R(I-l-o,H r- then a 

for a E D(H) and bED a 

(c, (I+aH)a) + 2(c, b) = 0 

-L 
But R(I+o,H) = Ha and b E Ho, 

Therefore c = o. Thus to summarize a > 0 ~ H is a onea 

b 



parameter family of norm densely defined, norm-dissipative, 

operators with R(I+aHa ) = H . Hence the H are norm closed a 

and each Ha generates a Co-semigroup of contractions by the 

Hille-Yosida theorem. 

The above construction generalizes quite easily. 

If Da has dimension n > lone first chooses a one-dimensional 

subspace D(l) C D and defines 
a a 

D(H ) = D(H) ® D(l) 
a a 

and 

H (a+b) = a + b/a a 

and bED (1). It then follows as above that 
a for all a E D(H) 

Ha is norm-dissipative and the corresponding deficiency space is 

given by D (H) = D (H)\D(l) 
a a a '\ a Thus the deficiency index is 

reduced by one. Iteration of this procedure then produces a 

family of extensions of H which generate contraction semigroups. 

If n is finite, or countably infinite, this iterative procedure 

is straightforward. In the general case it is necessary to appeal 

to complete induction. 

Although the foregoing method allows the construction 

of some generator extensions, in the Hilbert space context, it 

does not give all possible extensions. A complete classification 

of such extensions is only known for the even more special cases 

of symmetric operators, 

Im(a, Ha) = 0 , a E D(H) , 

or anti-symmetric operators, 
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Re(a. Ha) = 0 • a E D(H) . 

These particular cases will be discussed in greater detail in 

Chapter 2. 

Examp 1 e 1. 3. 7 . Define H = d2 / 
/ dx2 

on the twice continuously 

differentiable functions with compact support in (O. 00) Then 

H is a symmetric norm-dissipative operator on 2 
L (0. 00) because 

foo Idf 12 (f. Hf) = 0 dx dx (x) 

for all f E D(H) . But the deficiency index of H is one because 

R(I+a2H)~ consists of multiples of the function fa where 

Hence the above construction gives a one-parameter family of norm-

dissipative extensions H of H satisfying the range condition a 

where a denotes the right derivative. Therefore the family of 

extensions of to the twice differentiable functions 

must also satisfy the range condition. But these extensions. which 



\.,e also denote by H , are also symmetric and norm dissipative 
a 

because 

( ) 1 I 12 fcc 1 df 12 f, Haf = a- f(O) + 0 dx dx(x) 

for all f E D(HaJ 0 Hence the Ha are pre-generators of 

contraction semigroups Sa 0 This construction omits, however, 

two extensions which formally correspond to the values a = 0 and 

a = 00 ; the first is related to Dirichlet boundnry conditions 

f( 0) := 0 and the second to Neumann boundary concli tions af (0) 0 0 

Exerci ses. 

1.3.1. If H generates the Co-semigroup S prove that 

and 

£im 
01;+0+ 

£im 
S-+O+ 

lis a - exp{-tH(I+aH)-lj'all 
t -

lis a - exp{-t(I-S J!s}a ll t s 

Hint: See Example 1.3.6. 

o 

o , 

1.3.2. Complete the proof of Remark 1.3.3 that a norm closed, 

norm densely defined, operator generates a Co-semigroup S 

satisfying IIStll::: M exp{wt} if, and only if, 

R(I+aH) = B 
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and 

for all small a > 0 . 

1. 3.3. Let 
v A be a bounded open subset of ~ Define the 

Laplace operator H == _V2 on the twice continuously differentiable 

functions with compact support in A. Prove that H is norm-

dissipati ve on LP (.i\) for all p E [1, oo} • 

1. 3.4. Let S == exp{-tH} be a Co-semigroup on a reflexive 

Banach space, i.e., B == (B*)*. Prove that the adjoints 

s* == {s~}t~O define a Co-semigroup, the adjoint semigroup, with 

generator H*, the adjoint of H. 

Hint: Use Exercises 1.2.4 and 1.2.5 together with the definition 

D(H",) == {f fEB"', I (f, Ha) I ::: cfllall a E D( H) } 

(f, Ha) for f E D(H",) , a E D(H) • 

1.3.5. Consider the Laplacian H == _V2 defined on the infinitely 

often differentiable functions in L2(~V) which vanish in a 

neighbourhood of the origin. Prove that the deficiency index d(H) 

of H satisfies 

d(H) 2 if v 1 

d(H) 1 if v 2 3 

d(H) 0 if v ~ 4 



1.4. Norm-dissipative Operators. 

The Hille-Yosida theorem establishes that norm-

dissipativity of a generator H, i.e., the condition 

II(HaH)all ::: lIall , a E D(H) , 

for small a > 0 , is an infinitesimal reflection of contractivity 

of the associated semigroup. Next we discuss a reformulation of 

dissipativity which corresponds to a more geometric interpretation 

of contractivity. This reformulation is the Banach space analogue 

of the condition 

Re(a, Ha) > 0 , a E D(H) , 

which characterizes dissipative operators H on Hilbert space. 

The semigroup S is contractive if, and only if, 

it maps the unit sphere, {a; Iiall = I} , into the unit ball, 

B = {a 
I 

lIall ::::: I}. Thus the change Sta - a of an element 

a must be toward the interior of the ball of radius lIall. To 

describe this last geometric idea in a quantitative manner it is 

necessary to introduce the notion of a tangent functional. 

An element f E B* is defined to be a norm-tangent 
a 

functional at a if 

lib II > Iiall + Re(f , b-a) a 

for all b E B. Geometrically each such functional describes a 

hyperplane tangent to the graph of bE B 1--+ IIbll ::: 0 at the 

point a. The functional f divides the space into two sets 
a 
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E = {b; Re(f, b) ~ o} and I = {b a a a Re(f , b) ~ o}. The 
a 

first set can be interpreted as the b which are directed toward 

the exterior of the ball {b IIbll < Iiall} and the second set 

the b which are directed toward the interior. Hence the 

geometric rephrasing of contractivity of S given in the last 

paragraph can be quantitatively expressed as 

i.e., the change S a - a of a 
t 

is toward the interior of the 

ball. Indeed this property follows directly from the definition 

of the tangent functional fa' 

Thus if H is the generator of the Co-contraction semigroup S 

'one concludes that 

Re(fa' Ha) 

for all a E D(H) and all norm-tangent functionals f at a 
a 

This is the alternative reformulation of horm-dissipativity of 

H ; equivalence with the original formulation is provided by the 

following. 

THEOREM 1. 4.1. Let H be an opepatop on the Banaah spaae B. 

The foLZowing aonditions ape equivaLent: 

1. (1' ) II(Ha.H)all > lIall 



for aZZ a E D(H) and aZZ a > 0 (for aZZ smaZZ 

a > 0) , 

2. Re(f , Ha) ::: 0 
a 

for one non-zero norm-tangent functionaZ at each 

a E D(H) • 

Moreover if H is norm denseZy defined these conditions are 

equivaZent to the foZZowing: 

o. Re(f , Ha) ::: 0 
a 

for aZZ norm-tangent functionaZs 

a E D(H) • 

f at each 
a 

The proof uses an alternative characterization of 

norm-tangent functional which can be used to establish the 

existence of such functionals. 

LEMMA 1.4.2. For f E B* the foZZowing conditions are 

equivaZent: 

1. f is a norm-tangent functionaZ at a, 

2. ICf, b)1 < IIbll , b E B , 

and 

(f, a) = Iiall . 

Hence for each a E B \ {o} there exists a non-zero norm-tangent 

functionaZ. 
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Proof. 1 => 2. Condition 1 states that 

Ilbll ::: lIall + Re(f, b-a) . 

Thus replacing b isby A.e b one finds 

= Re e i6( f, b) 

Hence 1(f, b)l::: IIbll But setting b = 0 in (*) one also obtains 

(f, a) ::: lJall and therefore (f, a) = lIall 

2 => 1. Successively applying the two relations of 

Condition 2 one has 

IIbll ::: Re(f, b) 

= Re(f, a) + Re(f, b-a) 

= lIall + Re(f, b-a) . 

Finally the Hahn-Banach theorem states that 

if p is a peaZ-vaZued funation ovep B satisfying 

p(a+b) ::: p(a) + p(b) , a, b E B , 

p(Aa) = Ap(a) A ::: 0, a E B 

and f is a Uneap funationaZ ovep a subsvaae C c B . suah 

that \<f, c) I ::: p(c) fop c E C then thepe exists a Zineap 

extension F of f to B suah that IF(a)l::: p(a) fop aZZ 

a E B. Therefore choosing: p(o) = 11 0 11, C = fAa; A Ell!} , 



and setting (f, lea) = Ie Iia Ii , one can find a linear extension F 

to B satisfying IF(b) I ::: 1M and FCa) (f, a) = Iiali. Hence 

F is a non-zero norm-tangent functional at a by Condition 2 of 

the lemma. o 

Proof of Theorem 1.4.1. Set b = Ha and for each 

sufficiently small a choose a norm-tangent functional ga at 

the point a + ab. Then from Condition 1 

lIall ::: Iia + abll 

Re(ga' a+ab) 

Re(ga' a) + a Re (ga> b) 

::: Re (ga' a) + allbll . 

Now the unit ball of B* is weakly* compact by the Alaoglu-

Birkhoff theorem, i. e., for every net fEB", with a Ilf II ::: 1 a 

there is a subset f. which converges to an f E B1, in the a 

sense that (fa" a) + (f, a) for all a E B 

deduces from the foregoing inequality that 

where g 

lIall ::: Urn 
a '-+0 

Re(g, a) 

is the weak* limit of the subset 

IIgall = lone has Ilgll::: 1 and then 

Re(g, a) ::: Ilgll lIall ::: Iiall . 

Hence one 

Now since 
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Hence 

(g, a) Iiall . 

This proves that g is a norm-tangent functional at a. But 

one also has 

Iiall S Re(ga' a) + a Re(ga' b) 

S Iiall + a Re(g , b) 
(X 

and hence in the limit a' -)- 0 one obtains 

o S Re(g, b) = Re(g, Ha) , 

i.e., Condition 2 is satisfied. 

2 => 1. Let f be a norm-tangent functional at a E D(H) 

satisfying 

ReCf, Ha) > 0 . 

Then 

II all Re(f, a) 

S Re(f, a+ooHa) 

S II (I+aH)all 

for all Of, > 0 . 

This is evident. 



Finally 3 => 2 and it remains to prove I => 

the assumption that D(H) is norm dense. 

Now if a, b E D(H) and f is a non-zero 

tangent functional at a one has 

Therefore 

But 

II (I-aH)all ::: lIall-a Re(f, Ha) . 

ReCf, Ha) ::: Hm sup (1Iall-II(I-aH)all) la 
a-+()+ I ( 

II (I-aH)all :S lIa + abll + allb + Hall 

:s II (I+aH)(a+ab) II + allb + Hall 

:s lIall + 2allb + Hali + a 2liHbII 

3 under 

norm-

for all sufficiently small a > 0 by Condition 1. Therefore by 

combination of these results 

Re(f, Ha) ::: -211b + Hall . 

But since D(H) is norm dense ,,7e may choose b arbitrarily 

close to -Ha and deduce that 

Re(f, Ha) ::: 0 , 

i.e., Condition 3 is satisfied. o 
Examp 1 e L 4 . 3. Let H be a Hilbert space and hence identifiable 

with its dual. If a, b E H then 
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I(a, b)1 < lIall lib II 

with equality if, and only if, a = Ab for some A E ~ Therefore 

ahaj! is the unique norm-tangent functional at a E Hand 

Theorem 1.4.1 states that an operator H is norm-dissipative if, 

and only if, 

Re(a, Ha) :': 0 

for all a E D(H). This is the characterization used in 

Section 1.3. o 

Exampl e 1.4.4. If B = LP(X; d~) with p E (1, 00) then there is 

a unique norm-tangent functional at each fEB given by 

and arg f(x) = 0 if If(x)l o If P = 1 this gives the tangent 

functional arg f , but this is not unique if f = 0 on a set Y of 

non-zero measure. In this case g + arg f where g has support in 

Y and Igl ~ 1 , is also a tangent functional. o 
Theorem 1.4.1 allows an immediate reformulation of the 

Hille-Yosida theorem which is often more convenient for applications. 

THEOREM 1.4.5. (Lumer and Phillips). Let H be an operator on 

the Banach space B. The following conditions are equivalent: 

1. H is the generator of a C -contraction semigroup s 3 
o 

2. H is (norm elosed)~ norm densely defined 

R( I+aH) = B 

for all a > 0 (or for an a > 0) and 



Re(f , Ha) ~ 0 
a 

for one norm-tangent functional 

a E D(H) . 

f.. at each 
a 

The alternative characterization of norm-dissipativity 

provided by Theorem 1.4.1 also allows an easy proof of a version 

of the Hille-Yosida theorem in which the range condition 

R(I+aH) = B does not occur explicitly. 

THEOREM 1. 4.6. Let H be an operator on the Banach space B and 

consider the following conditions: 

1. H is norm densely defined with norm densely defined 

adjoint H* and both Hand H* are norm dissipative, 

2. H is norm closable and its closure IT generates a 

Co-contraction semigroup. 

Then 1 = 2 and if B is reflexive 2 = 1. 

Proof. 1 = 2. Suppose R(I+H) is not norm dense in B. The 

Hahn-Banach theorem then implies the existence of a non-zero 

f E B* such that (f, (I+H)a) = 0 for all a E D(H). Therefore 

I(f, Ha)1 = I(f, a)1 :5 /If/l /la/l 

and hence f E D(H*). Moreover since D(H) is norm dense 

(I+H>")f = 0 Thus if b E B** is a norm-tangent functional at 

f E B* one has 

(b, H'''f) = -(b, f) = -/If /I 
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vlhich contradicts the norm-dissipativi ty of H'~ Hence 

R(I+H) is norm dense and the desired implication follows from 

Theorem 1. 3 . . 

Next assume B is reflexive and consider the 

converse. 

2 => L If H generates the Co-contraction semigroup S 

then H* generates the Co-contraction semigroup S* (see 

Exercise 1.3.4). Hence Condition 1 follows from the Hille-

Yosida theorem applied to S and S~' o 
Of course the drawback of this criterion is that one 

has to specifically identify the adjoint H* before it is 

applicable. 

Finally we illustrate the notion of norm-dissipativity 

with two examples of matrices acting on finite-dimensional spaces. 

Examp 1 e 1. 4. 7. (Matrix Semigroups). 

denote an element of the finite-dimensional space q:n Further 

let H = (H .. J be a complex-valued n x n matrix acting on ~n 
1J 

and S = exp{-tH} 
t 

t ::: 0 , .the corresponding .rnatrii< semigroup. 

The space [n can be equipped with various norms 

which are all equivalent in the topological sense. But S can be 

contractive with respect to one norm without being contractive 

with respect to an equivalent norm. Nevertheless if a norm is 

given then S is contractive if, and only if, H is dissipative. 

Dissipativity with respect to the ~oo_ and £l-norms is particularly 



easy to describe because of the simple geometry of the corresponding 

balls. ~iJe will not pursue, however, the geometric aspects but 

proceed analytically. 

Define the £oo_norm on ~n by 

[[xt" = max IXi j 
l:::i:::n 

It follows that St::: exp{-tH} is £OO-contractive if$ and only if3 

for aU i = 1, 2, 

i fixed choose x 

and H. 0 

lJ 
=F 0 , and 

ReB •. -
II I 

j;<'i 
jH .. 1 ::: 0 

lJ 

~ ~ Q , n This is established as follows. 

such that x~ 1 x. = -H .. jIB .. 1 if 
l ] lJ lJ 

x. = 0 if j 1: i and H •• ::: 0 Next 
] lJ 

For 

j t 

choose 

i 

f (fl' f ) such that .c 1 and to 0 if j -.;t i Then ~ " ~ , .L 0 

f is a 

n l 

norm-tangent functional at 

Re ( f, Hx) = Re H.. -
II 

x 

I 
j;<'i 

] 

and 

IH .. I . 
lJ 

Thus (*) is necessary for S to be £OO-contractive. Conversely let 

x be a non-zero element of ~n and choose i such that Ix. I ::: Ix. I 
l ] 

for all j 1: i . Set f. = x. /1 x. I and f . 
l l l ] 

o if j 1: i 

follows that f is a norm-tangent functional at x and 

Re(f, Hx) Ix. I 
l 

Re H. 0 + Re 
II I 

j;ti 
H .• X-oX. /lx. 1 
lJ l ] l 

It 

Thus (*) is sufficient for H to be £oo-dissipative and S to be 
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00 

£ -contractive. 

Next if 

n 

I 
i=l 

Ix.1 
l 

denotes the £l-norm it follows by duality that St;;: exp{-tH} 

is £l-contractive if, and only if, the adjoint semigroup 

S," ;;: exp{-tH:I,} 
t 

00 

is £ -contractive. 

£l-eontractive if, and only if, 

Re H •• -
II I !H .. l :::: 0 

Jl "-/-' Jr l 

for all i = 1,2, ... , n . 

Finally one can equip a;n with the !1P-norms 

for 1 < P < 00 and consider £P -contractivi ty. I~ S is both 

£1_ and £OO-contractive it follows by abstract interpolation that 

S is £P-contractive for all p E [1, ooJ. This conclusion can, 

however, be reached by explicit estimate. For example if p;;: 2 

then x !Jlxl!2 is the unique tangent functional at x and 

n 
[IXi 12 Re Re(x, Hx) I H .. + I H .. x.x.) 

i=l II j,ti lJ l J 

n 
[IXi 12 Re IH .. I (!x.12+lx.12)/2) :::: I H .. - L 

i=l II j;ti lJ l J 



= I (lx.1 2 (Re H .. 
i=l 1 11 

I 
jti 

(lH .. I+IH .. 1)/2) 
1J J1 

where we have used the Cauchy-Schwarz inequality. Thus combination 

of the conditions for £1_ and £oo-contractivity imply that H is 

0 2 d' . . :tv - 1SSlpat1ve. A similar argument using the Minkowski inequality 

bl ' h hoI d 0 00 ••• h esta 1S es t at :tv - an :tv -contract1v1ty 1mply t at H is 

£P-dissipative. 

If P t 1 or 00 the £P-dissipative conditions cannot 

be expressed in any particularly practical terms of the matrix 

element H .. 
1J 

Nevertheless if H is self~adjoint, i.e., if 

00 • 1- 0 1 .. b H = H* , then £ -contractivity of S 1mp 1es :tv -contract1v1ty y 

duality and £P-contractivity, p E <I, oo} , by interpolation. 

Thus a self-adjoint matrix semigroup is £P-contractive for all 

P E [1, 00] if3 and only if3 U<) is valid. More generally if H 

is normal, i.e., if HH* = H*H , then £2-dissipativity is implied 

by £1_ or £oo-dissipativity. This will be established in the next 

example. o 

Exampl e 1. 4 .8. (Normal matrix semigroups). Let St = exp{-tH} 

denote the matrix semigroup of Exmaple 1.4.7. We first argue that 

if the conditions 

( ''<) Re H •• 11 I 
jti 

1,2, ... ,n tH •. 1 ~ 0 , 
1J 

i 

for £CO-contractivity are valid then Re A 2: 0 for all eigenvalues A 

of H This follows by noting that if (H-AI)x =0 then 
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IH .. - AI Ix. I 
~~ 1 

::; I L - H •• x. I 
j¢i 1J J 

lB .. 1 I lJ 

where i has been chosen such that Ix. I ~ Ix. I for j t i 
1 J 

TIms if x is non-zero the conditions (,',) imply that 

IH .. -AISReH .. 11 11 

and hence Re A ::: O. Consequen-tly Example 1.3.6 implies that 

00 

if S is a normaZ matrix semigroup then ~ -contractivity implies 

~2-contractivity and hence, by interpolation or by explicit 

estimation, it implies ~P-contractivity for all p E [2, ooJ 

Similarly if S 01 . . 
is a nOl"Tnal matrix semigroup then N -contract1v1ty 

. l' 0 2 . , d h nP .. r 11 lmp les N -contract1v1ty, an ence N -contractlvlty Tor a 

p E [1, 2] . 

1.4.1. 

contractions. 

D 

Exerci ses. 

Let H be the generator of a Co-semigroup of 

-1 
Prove that the operators H = H(I+aH) , a 

a ::: 0 , are norm-dissipative, 

1.4.2. Prove that if H is an invertible norm-dissipative 

operator on a Hilbert space then H-1 is norm-dissipative. 

1.4.3. Prove that the closure of a norm densely defined, 

norm-dissipative, operator is norm-dissipative. 



1.5. C~-SemigrOuPS. 

If the Banach space B is the dual of a Banach space 

, the pre-dual of B then it is of interest to study families 

of bounded operators S {s } ,vith the semigroup property 
t eo 

SsSt = SS+t which are weak1'-continuous in the sense that 

(f, a) 

for all fEB and a E B* ' 

2. 

for all t > 0 , all a E B+ ' and all families 

such tha-t 

Cf, a) . 

f a 

Such families are called C~-semigroups. The simplest example is 

transla-tions on Loo(JR) which has pre-dual LI(JR) 

Our first aim is to show that if S is a C~-semigroup 

there exists an adj oint semigroup S,., on B,., such that 

The weak*-continuity of S then implies the weak, and hence strong, 

continuity of S*, i.e., the c~-semigroup S is the adjoint of a 

Co-semigroup S,." This explains the name C~-semigroup. In the 

sequel vJe demonstrate that much of the foregoing theory of 

Co-semigroups can be carried over to the C~-semigroups by duality 
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arguments. 

We begin by recalling a number of standard 

definitions. 

A family fa E B is weak*-convergent if there is 

an fEB such that 

tim (fa' a) = (f, a) 
a 

for all a E B* ' and a set V c B is weak*-closed if each weak*-

convergent family f E V has a limit a fED . Alternatively a 

set V c B is weak*-dense if each fEB can be approximated by 

fa E V in the weak*-sense, i.e., 

for all a E B* • 

tim (fa' a) = (f, a) 
a 

Next an operator H on B is weak*-densely defined 

if its domain D(H) is weak*-dense in B and it is weak*-weak*-

closed if fa E D(H) and 

for all a E B* , 

tim (fa' a) = (f, a) 
a 

J/,im (Hfa' a) = (g, a) , 
a 

imply that f E D(H) and g = Hf Moreover H 

is weak*-weak*-closable if it has a weak*-weak*-closed extension or, 

equivalently, if f E D(H) and (fa' a) -+ 0 , (Hf , a) -+ (g, a) , 
a a 

for all a E B* , imply that g = 0 
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The basic duality properties of operators rely upon 

two versions of the bipolar theorem. Specifically if A is a 

weak*-cZosed sbuspace of B and one defines 

{a E B,., Cf, a) = 0 for all f E A } 

-L-L 
A {f E B (f, a) 

then A Similarly if A;, is a closed subspace of B,., 

and 

(f, a) 

(f, a) 
I 

o for all f E A~} 

Both these statements are a consequence of the 

Hahn-Banach theorem. Consider, for example, the second statement. 

It follows by definition that Ai' C A~-L Next define 

p over B,., by 

pCa) inf{ Iia - cll c E A,.,l , 

then pCa) = 0 for all a E A,., but pea) i: 0 for a ~ Ai, . 

Moreover p satisfies the hypotheses of the Hahn-Banach theorem 

ci ted in Section 1.4. Hence for a E A,., and b ~ A1, one has 

p(a+Ab) ±Ap(b±a/A) 

where the + and signs correspond to positive and negative A 

respecti vely. Next introduce C as the subspace spanned by A,., 
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and b and define a linear functional f over C by 

(f, a+Ab) = Ap(b) 

for a E A1, • One has j(f, c)j = p(c) for c E C and hence, 

by the Hahn-Banach theorem, there exists a linear extension 

of f to B~ satisfying jF(a) j ::: p(a) for all a E B1, • .. 
p(a) ::: lIall it follows that F E B and since F(a) = 0 for 

a E A* one also concludes that 
.L 

F E A.~ . Finally 
...L.L 

F(b) = (f, b) = p(b) # 0 and hence b ~ A* 

and the two sets must be identical. 

F 

Since 

all 

LEMMA 1. 5.1. Let B be a Banach space with a predual B* and 

H an operator on B. 

The following conditions are equivalent: 

1. H is weak*-densely defined and weak*-weak*-closed, 

2. H is the adjoint of a norm densely defined, no1'l7l 

closed, operator H* on B*. 

If these conditions are fulfilled and H is bounded 

Proof. 1 => 2. Consider B x B equipped with the norm 

1I(f, g)1l = (lIfIl2+lIgIl2)~ and B* x B* with the norm 

II (a, b) II = (lia 112 + lib 112) ~ These two spaces are then in duality 

through the relation 

(f, g), (a, b») = (f, a) + (g, b) • 



Next introduce the graph G(H) of H in B x B as the subspace 

G(H) = f (f. Hf) • f E D(H)} 

J... 
Thus the orthogonal complement G(H) of G(H) in B* x B* 

consists of the pairs (a. b) which satisfy 

(f. a) + (Hf. b) = 0 

for all f E D(H). Now define 

G = (<-b. a) 
..L 

(a. b) E G(H) } . 

Then G is the graph of an operator H* on B*. This follows 

because if (0. a) E G the orthogonality relation gives 

(f. a) = 0 , 

for all f E D(H) • and a = 0 because D(H) is weak>"-dense. 

..L 
But G(H) and G • are norm closed by definition and hence H* 

is norm closed. Finally. if H,,< is not norm densely defined there 
J... 

must exist a non-zero element of G of the form (-f. 0) Thus 
..L...L 

(0. f) E G(H) But since H is weak*-weak*-closed G(H) is 
..L..L 

a weak*-closed subspace and G(H) = G(H) • by the first version 

of the bipolar theorem cited above. Hence (0. f) E G(H) This. 

however. contradicts the linearity of H and consequently 

D(H*) must be norm dense. 

2 =0 1. The proof is identical but B* replaces B. H* 

replaces H. etc .• and one uses the second version of the bipolar 

theorem. 
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Finally the equality of the norms for bounded 

operators follows because 

IIHII sup{I(Hf, a)l ; fEB, a E B1~} 

= sup{ I (f, H,.~a) I fEB, a E B, • .} = IIH, .. II o 

If S = {St}t~O is a c~-semigroup on B then the St 

are everywhere defined and weak*-weak*-closed, by the second 

continuity hypothesis. Hence Lemma 1.5.1 establishes the 

existence of an adjoint semigroup S* = {S*t}t~O on B* such that 

for all fEB and a E B* Moreover, 

But weak*-continuity of S is equivalent to weak, and hence strong, 

continuity of S*. Thus S* is a co-semigroup and in general 

satisfies bounds of the form IIs''<tll::: M exp{wt} -. Hence the cO-

semigroup S satisfies similar bounds. Now by exploiting the 

Hille-Yosida theorem for the Co-semigroup S* and the duality 

properties of Lemma 1.5.1 one can obtain a Hille-Yosida theorem for 
... 

the Co-semigroup S But first we must define the generator of 

S • 

If S is a C~-semigroup its generator H is defined 

as the weak"~-derivative of S at the origin. Explici tly D(H) 

consists of those fEB for which there is agE B such that 



the limits 

(g, a) Hm 
t-+O+ 

exist for all a E B,., and the action of H is then given by 

Hf ::: g Note that if K is the generator of the Co-semigroup 

S,., on B,., ' which is adjoint to S , then 

(Hf, a) £im ((I-St)f, a) / t 
t->-O+ 

£im (f, (I-S",t)a) / t ::: Ct, Ka) 
t+O+ 

for all f E D(H) and a E D(K) This demonstrates that the 

adjoint K"', of K, ex-cends H but part of the proof of the 

following result is to show that in fact K",::: H 0 

THEOREM 1. 5.2. Let B be a Banach space with a predual Ex 

and H an operator on B. The following conditions are equivalent: 

1. H is the infinitesimal gene1'ator of a c~-semigroup 

of contractions~ 

2. H is weak*-densely defined, weak*-weak*-closed, 

R( HaH) B 

for aU a > 0 (or for one a 

11< I+aH)f11 ::: Ilfli 

for all f E D(H) and all a > 0 (or for all 
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Proof. 1 => 2. The proof of this implication follows the 

reasoning used to establish Proposition 1.2.1. 

First for a > 0 one can define a bounded operator 

and since S is contractive one has the bound 

But a weak*-version of the calculation used in the proof of 

Proposition 1.2.1 demonstrates that 

Hence 

R(I-taH) = B 

and 

for all f E D(H). But Ra(H)f E D(H) for all fEB and 

Urn (Ra (H)f, a) 
a-+o+ 

= (f, a) 

for all a E B* by weak*-continuity of S and the Lebesgue 



dominated convepgence theorem. Thus D(H) is weak"'-dense. 

Finally suppose f E D(H) 
S 

and 

tim (f S' a) := ( f, a) 
S 

£im (CI+aH)fS' a) (g, a) 
S 

fop all a E B* Then 

(f, a) £im lR (H)(I+aH)fS' a) 
S a 

(Ra(H)g, a) 

fop all a E 13", by another application of the Lebesgue dominated 

convepgence theorem. Thus ( I +aH) , and hence H, is I-Jeak"'-lrJeak'''-

closed. 

2 => 1. It follows from Lemma 1. 501 tha"t H is the adj oint 

of a norm densely defined, norm closed, operator H;, on B;, 

But for a > 0 and a E D(H) 

II (I +aH,.,) a II sup{l(f, (I+aH1)a)I f E D(H) Ilfll S It 

= sup{!C(I+aH)f, a) f E D(H) , Ilfll S I} . 

Thus since II (I+aH)f11 ::: IIfll and R(I+aH) B one concludes that 

1i<r+aH,.,)a/i ::: sup{ I (g, a) I 

lIall , 

i.e., H* is norm-dissipative. 

Next suppose thepe is an fEB such that 
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Cf, ( o 

for all a E D(H;,) But then 

(f, -Cf, a) 

is continuDus in a. Hence f E DO-I) and 

( I f(ii-! )f. a 0 

for all a E D(H,). Since D( is norm dense it follO'iYS -that 

(I+aH)f == 0 and then f 

Finally Ne can apply the Hille-Yosida theor'em to 

deduce that Hi' gener-ates a Co -semigroup of contractions S,., on 

Then the adjoint semigl~ollp S on B 

contractions. But if K-" denotes the generator of this latter 

semigroup then by Laplace transformation 

= 

B '6" 
-1 -1 

£01" all f E and a E Thus ( HaK) (I-I-O'.H) 

i"e .. 9 K H is the generator of S 0 

Ther-e is also a pre-generator version of the foregoing 

theorem. If H is i"eak~'-densely defined and ",eak''-1I'Jeak'''-closable 

then its \-Jeak1'-closure H generates a c~-semigroup of contractions 

if, and only if, H is nOl'm-dissipative and R(I+aH) is weak"-

dense in B for all sufficiently small a > 0 0 

Finally "e remaI'k that a result analogous to Theorem 



1.5.2 can be obtained for a general c~-semigroup. The nOrffi

dissipativity which is characteristic of contraction semigroups 

is replaced by a family of lower bounds of the type described in 

Remark 1. 3 . 3 . 

Exercises. 

1. 5.1. Let ~(H) denote the algebra of all bounded operators 

on the Hilbert space H and ~H) the Banach space of trace class 

operators. with the norm 

Prove that ~(H) is the dual of ~(H) with the duality 

(T. B) ~ Tr(TB) . 

1. 5.2. Let S be a c~-semigroup on the Banach space B 

with generator H Prove that f E D(H) if. and only if. 

Sup I/(I-S )fl/,{ < -1 00 • 

O<t<l t 'Y' 

Hint: The unit ball of B is weakly*-compact by the Alaoglu-

Birkhoff theorem. 

1. 5.3. Let S be a c~-semigroup with generator Hand 

define BO ~ B as the norm closure of D(H) Prove that 

SBo ~ Bo and that the restriction of S to Bo is a CO-

semigroup. 
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1.6. Analytic Vectors. 

In the previous sections we examined various methods 

of constructing a contraction semigroup from the resolvent of 

its generator. Next we analyze the possibility of a direct 

construction based on an operator extension of the numerical 

algorithms 

exp{-tx} = L 
(_t)n n ---x 

~o 
n! 

= Hm (l_!x)n 
n 

n~ 

The problem with this new construction is that it is not applicable 

to all Co-semigroups, or contraction semigroups, although it is 

applicable to all Co~groups. The basic new concept is that of an 

analytic element. 

If H is an operator on a Banach space B an element 

a E B is defined to be an (entire) anatytia etement for H if 

and the function 

has a non-zero (infinite) radius of convergence. It is not at 

all evident that an operator possesses analytic elements but 

this is indeed the case 



if H is the generator of a strongly continuous group (a Co-group). 

In fact one can explicitly construct a norm dense set of entire 

analytic elements by the following regularization procedure. 

Let S = {St1tER be a Co-group with generator H 

and to each a E B associate the sequence a 
n 

defined by 

Since "St":'OM exp{wltll for some M::: 1 and w > 0 the integral 

is well defined. Moreover 

and it follows from strong continuity and the Lebesgue dominated 

convergence theorem that a 
n 

converges uniformly to 

H is norm closed one may argue recursively that 

all m = 1, 2, ..• and 

where H is the usual Hermite function. Thus 
m 

a . But since 

for 
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where we have used the Cauchy-Schwarz inequality. Using the 

normalization properties of the Hermite functions, 

one finally deduces that 

2 
:::: M2 W 2m+ I 2m I _ e n m. 

Hence a is an entire analytic element for H and the set of 
n 

such elements is norm dense. 

Despite this positive result the generator of the 

semigroup of left translations on CoCO, 00») has no non-zero 

analytic elements. The action of this semigroup is given by 

(Stf) (x) = f(x-t) if x::: t ,and 0 if x < t. It follows that 

for fto be an analytic element it must vanish with all its 

(right) derivatives at the origin but it must also be analytic in 

a strip about the right half axis. Thus f = O. Nevertheless 

the translation group acting on Co OR) does have dense sets of 

analytic elements and a function is analytic for this group if, 

and only if. it is an analytic function in the usual sense. 

Now we consider the construction of a semigroup 

through analytic elements and for simplicity we again restrict the 

discussion to contraction semigroups. 

PROPOSITION 1.6.1. Let H be a norm closed operator on a 

Banach space B. Suppose that 

1. H possesses a norm dense set of analytic elements3 



2. H is norm-dissipative. 

It follows that H is the generator of a co-semigroup 

of contractions. 

Proof. Let a be an analytic element for H. Thus there is 

at> 0 such that 
a 

converges uniformly for It I < t • Moreover for t fixed in 
a 

this range Sta is again an analytic element for H and one can 

define Ss(Sta) for suitably small s. Calculation with norm 

convergent power series then establishes that 

for all s, t satisfying 

prcperties of the function 

First one has 

lsi + It I < t . Next we examine a 

t E <-t , t } I-r IIStal1 . a a 

by the triangle inequality. But another power series estimation 

of the right hand side then establishes that t I-r IIStall is 

continuous. Second for 0 < h < t < t one has 
a 
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= tim 
n--

where we have used the assumed norm-dissipativity of H. But 

this estimate implies that t E (0, t a > f-+ IISta ll is decreasing 

and hence 

for o ::: t < t This contractive estimate now allows one to 
a 

extend the definition of Sta to all t ~ 0 

Since H is closed Sta E D(H) and 

Therefore 

for 0 < t < t 
a 

Iteration of this argument establishes that 

if 0 < t < ta then Sta is an analytic element for S with 

associated radius of convergence equal to ta 

to iterate the definition of St 

S a 
t+s 

Thus it is possible 



for 0 < s t < ta and consequently deduce that Iistall:s Iiall 

for all 0 < t < 2t 
a 

Repeating this argument one defines 

where n is chosen so that It is then easy to 

establish that this definition is independent of the choice of n , 

for all s, t > 0 , 

for all t > 0 , and 

S a 
s+t 

Urn IISta - all O. 
t-+O 

Therefore, since the analytic elements are assumed to be norm dense, 

S extends by continuity to a Co-semigroup of contractions on B. 0 

The foregoing result readily extends to Co -groups of 

contractions. But if S = {St}tElR is a group of contractions Hith 

So = I then S is automatically isometric because 

Second if S is also strongly continuous then S± 

both Co-semigroups of isometries. But 

73. 



74-. 

and hence the generator of S+ is minus the generator of S 

Combining these observations with Proposition 1.4-.1 and the 

construction of analytic elements described prior to the propositon 

one obtains the fallowing. 

THEOREM 1. 6.2. Let H be an opepatop on the Banach space B. 

The following conditions ape equivalent: 

1. H is the infinitesimal genepatop of a Co-gpoup of 

isometpies of B. 

2. H is noPm closed; H possesses a noPm dense 

set of analytic elements ±H ape both noPm

dissipative. 

Proof. 1 => 2. The entire analytic elements for H are dense by 

the construction preceding Proposition 1.6.1. The rest of the 

properties of H follow from the Hille-Yosida theorem. 

2 => 1. This follows by successively applying Proposition 1.6.1 

to ±H and then using the above observation that a group 

St = exp{-tH} of contractions is automatically isometric. f] 

One can also give a c~-version of Proposition 1.6.1 

and then deduce a weak*-version of Theorem 1.6.2. Since the second 

result is deduced by the same argument given above we will merely 

prove the analogue of Proposition 1.6.2. 



PROPOSITION 1.6.3. Let B be a Banach space with a ppedual B* 

and H a weak*-weak*-closed opepatop on B* Suppose 

1. the unit ball of the set of analytic elements fop 

H is weak*-dense in the unit ball of B 3 

2. H is noPm-dissipative. 

It follows that H is the genepatop of a c~-semigpoup 

of contpactions. 

Proof. Let B c B denote the norm closure of the subspace of a-

all analytic elements for H and let H denote the restriction 
a 

of H to B 
a It follows immediately that H is norm closed 

a 

and hence by Proposition 1.6.1 it generates a Co-semigroup S of 

contractions on B 
a 

In particular 

R{I+aH ) = B for all U > 0 a a 

H 
a 

is norm-dissipative and 

Now by Condition 1 we may choose for each fEB a 

family fS E Ba such that fS converges to f in the weak*-sense 

But it follows from the foregoing argument that 

there exist gs E D(Ha) ~ D(H) such that fS = (I+UH)gS and 

Thus {lIgs ll} is uniformly bounded. But the unit ball in B is 

weak*-compact, by the Alaoglu-Birkhoff theorem, and hence one may 

choose a weak*-convergent subfamily gs' of gs Let g denote 

its limit. Then gs' + g and fS' = (I+UHa)gS' + f where 

both limits are in the weak*-sense. 
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But H is weak*-weak*-closed and so H is weak*-weak*-closable 
a 

and its closure H is both norm-dissipative and satisfies the 
a 

range condition R(I+aHa) = B for a > 0 . Therefore H 
a 

generates a c~-semigroup S by Theorem 1.5.2. But H is a norm 

dissipative extension of H a 
and since the latter is a generator 

one must have H = H 
a o 

We conclude this section with a Hilbert space example. 

Exampl e 1. 6.4. Consider the criteria of Theorems 1.3.1 and 1.6.2 

for a Co-group of isometries on a Hilbert space H 

dissipativity of ±H is equivalent to 

Re(a, Ha) = 0 

for all a E D(H). Setting H = iK this becomes 

(a, Ka) (Ka, a) 

Norm-

for all a E D(K) ,i.e., K must be a symmetric operator. Thus 

Theorems 1.3.1 and 1.6.2 state that H is the generator of a 

Co-group of isometries if, and only if, H = iK where K is a 

densely defined, closed, symmetric operator satisfying 

either R(I+iaK) = H , a E JR.\ {o} 

or K possesses a dense set of 

analytic elements. 

The first of these conditions is the usual criterion 

for self-adjointness of K. Hence one can conclude from this 



argument that a densely defined, closed, symmetric opperator is 

self-adjoint if, and only if, it possesses a dense set of analytic 

elements. 

If these conditions are satisfied then the associated 

operators S = exp{-iKt} form a unitary group, e.g., 
t 

S'" = S t -t 

Both the unitary group and the generator can be represented by 

spectral theory as direct integrals of multiplication operators. 

In particular there exists a family of projection valued 

probability measures E over ~ such that 

for all a, b E Hand 

Ca, Kb) = J:oo dCa, E(A)b)A 

for all a E H , and b E D(K) , where the domain of K is defined 

by 

o 

In the Hilbert space context one can further elaborate 

the extension theory mentioned at the end of Section 1.3. Thus 

given a symmetric operator K one tries to construct self-adjoint 

extensions. This construction is a repetition of the procedure 

outlined in Section 1.3. Both ±iK must be extended to generators 

+ 
iKl , -iK2 , of contraction semigroup, S-. But these semigroups 

determine a Co-group of isometries, by if t :::: 0 and 
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St = S~ if t SO, if, and only if, KI + K2 = O. To obtain 

this latter relation it is imperative that the deficiency indices 

of ±K are identical. 

Exercises. 

1.6.1. An element a E B is defined to be bounded for H 

if a E n(Hn) for all n ~ I and 

for some r ~ 0 Prove that if H is the generator of the 

Co-semigroup S and a is bounded for H then 

for rt S I . 

Hint: 



1.7. Holomorphic Semigroups. 

Among the many semigroups which occur in applications 

one class is very common, the holomorphic semigroups. Roughly 

speaking these are the semigroups t ~ 0 ~ St E~(B) which 

can be continued holomorphically into a sector of the complex plane 

containing the positive axis. Among these semigroups one can also 

identify a subclass analogous to the M-bounded semigroups, i.e., 

the semigroups satisfying a bound of the form IIstll SM. This 

subclass consists of holomorphic semigroups which are uniformly 

bounded within appropriate sub sectors of the sector of holomorphy. 

For example if H is a positive self-adjoint operator on the 

Hilbert space Hand St = exp{-tH} is the corresponding semigroup 

then a E H ~ Sta E H extends to a vector valued function 

holomorphic in the right half plane satisfying 

for all z E ~ with Re z ~ o. Thus S is a bounded holomorphic 

semigroup with the right half plane as region of holomorphy. 

The general definition of these semigroups is as 

follows. 

DEFINITION 1.7.1. A Co-semigpoup S on the Banach space B is 

called a holomopphic semigpoup if fop some e E <0, n/2] one has 

the following ppopepties: 

1. t ~ 0 ~ St is the pestpiction to the positive peal 

axis of a holomopphic opepatop function 
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z E ~8 r+ SZ E~(B) where ~8 = {z IArg z I < 8} , 

2. 

3. Hm 
zE~El ,z-+o 

for aU a E B • 

If additionally S is unifo~ly bounded in ~8 
1 

for each 0 <81 < 8 then - S is caUed a bounded holomorphic 

semigroup. 

There are a variety of ways of characterizing 

holomorphic semigroups and the following theorem presents two 

characterizations in terms of the derivative of t r+ St and 

the derivatives of the powers (I+aH)-n of the resolvent 

(I+aH)-l . 

THEOREM 1. 7.2. 

Banach space B 

Let St = exp{-tH} be a co-semigroup on the 

The following conditions are equivalent: 

1. S is a (bounded) holomorphic semigroup, 

2. there is a C > 0 such that 

for all 0 < t ~ 1 (for all t ~ 0) , 



3. there is a C > 0 such that 

I/H(I+exH)-(n+l)11 ::: C(cm) 
-1 

for o < C( ::: 1 .. nC( ::: 1 3 and n = 1, 2, 0.0 

(f01~ ex > 0 and n = 1, 2, •• 0 . ) 

N.B. In the above formulation the parenthetic conditions should 

be read simultaneously to give a characterization of bounded 

holomorphic semigroups. Their omission covers the general case. 

Proof 0 1 ""' 2. Assume 8 has a holomorphic extension to 

t:,e = {z I Arg z I < e}. Since 8 is continuous it follows from 

the principle of uniform boundedness that there exists an Ml such 

that z E f1e n {z 
1 

where 

o < Sl < S. But by Cauchy's integral representation 

-1 J 8z 
= (2rri) C dz 2 

1 (z-t) 

{z Iz - tl 8in Slt} 0 Consequently 

for all 0 < t ::: 1. ~loreover if 118zl1 is uniformly bounded in 

t:,e the same argument establishes the estimate for all t > 0 . 
1 

2 => 3. 8ince 8 is a co-semigroup there exist constants 

M ~ 1 and w ~ 0 such that 
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(*) 

But 

H(I+aH)-(n+l) = ( 1)-1 Joo dt tne-tHsNt n. 0 u. 

and hence 

(1) -1 Joo n-l -1 -t(l-awl ) 
IIH(I+aH)- n+ II::: (n!) 0 dt t a C1 

= (~~J[l-~lr ' 
o < aWl < 1 

::: (~~) [l-:l/nr 

::: (~~) 1 
l-w 

1 

Where the second inequality follows from na::: 1 and the third 

follows because X 1-+ (l-w I rx 1 x 
is decreasing. 

Note that in the bounded case (*) is valid with 

WI = 0 and then the required bound follows for all a > 0 . 

3 => 2. It follows directly from Condition 3 and Remark 1.3.3 

that 

£im IIH(I+* Hrnll ::: Ct- l • 
n~ 

2 => 1. This implication can be established by a variety 

of arguments which begin with a power series definition. We will 



briefly sketch the sequence of ideas. 

First let z = t + is with lsi < t/Ce and 

Then one can define Sz by the norm convergent power 

series 

S 
z L 

n:::O 

Second one calculates that SzD(H) C D(H) and 

~ Sa 
dz z 

for all a E D(H). Thus 

and consequently 

£lm 
z+O 

-HS a z 

II (S -r}all z 

-S Ha z 

o 

for all a E D(H) . But then the same conclusion is valid for 

all a E B because D(H) is norm dense. 

Third if 0 < t ::: 1, a E D(H) , and 

zl' z2' zl + z2 are in the domain of definition of Sz' the 

foregoing identification of the derivative gives 

o . 

Thus integrating and using strong continuity at the origin 

one finds 
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But D(H) is norm dense and hence 

Finally one must extend the definition of Sz to the region 

Lle = {z Re z > 0 IArg zl < e} where Tan e = liCe This 

is achieved by first remarking that each zElle can be decomposed 

in the form 

Then one defines 

with 

S z 
n 

and 

There is, however, a problem of consistency since the 

Rez.~l. 
1 

decomposition of z is clearly not unique. But consistency 

is easily established by use of the semigroup property in the 

restricted region. The semigroup property for the larger region 

then follows by definition. 

In the bounded case this last argument is 

superfluous because S z can be defined for all zElle by the 

power series expansion and this also establishes that IIszli is 

uniformly bounded in Lle for each 0 < el < e . 
1 

There are alternative characterizations of 

o 

holomorphic semigroups in terms of spectral properties of the 

generator and resolvent bounds. Typically one has the following 



criterion for a bounded ho1omorphic semigroup. 

THEOREM 1. 7.3. Let exp{-tH} be a co-semigroup on the Banach 

space B. 

The following conditions are equivalent: 

1. S is a bounded 120 lomorphic s emigroup • 

2. there is a 8 > 0 such that 

Proof. 

{z 

a(H) c t; 
2!:.-8 
2 

{z I I 'IT 1 Arg z S"2- 8 J 

where a(R) deno-tea the spectrvm of H. Moreover 

for aU z E rr\KTI 3 where 0 S 81 < 8 ~ 
"2-81 

inf{lw-zl 

and M1 can depend on 81 , 

1 => 2. Suppose is ho1omorphic in the sector 

IArg zl < 8}. Next consider the Co-semigroups 

s~ exp{-t,-,rH} where w = exp{icd and 0 < lal < 8. The 

generator of SW is wH and hence a(wH) C {z; Re z ~ o} by 

Proposition 1.2.1. Therefore o(H) ~ {z; IArg zl S ~ - 8} 

Moreover, since there is an M1 such that IIS~II S M1 for 
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w E ~8 where 0 ~ 81 < 8 , one must have 
1 

whenever Re A < O. Consequently 

2 => L The detailed proof of this implication is rather 

protracted, although completely straightforward. Again we only 

sketch the outlines. 

First let r be a wedge shaped contour lying in the 

resolvent set r(H) of H with asymptotes Arg z + (~-8 ) - 2 2 

where o ~ 82 < 8 and for z E ~8 define S by 
1 

By Cauchy's theorem the integral is independent of the particular 

contour chosen and one can use this freedom of choice, together 

"i-th the resolvent bounds, to deduce that z E ~81--:+ Ilszll is 

uniformly bounded. 

Second one calculates that S satisfies the semigroup 

property by choosing outside and noting 

that 
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A (z +z ) 
= (2~i)-1 Ir dA e 1 2 (AI_H)-l 

Here we have used the obvious resolvent identity, Cauchy's theorem, 

and Fubini's theorem. 

Third one notes that if a E n(H) 

-1 I AZ -1 -1 = -(2~i) r dA e A (AI-H) Ha 

Z-+() ~ 0 

when the last conclusion follows from the resolvent bound and the 

Lebesgue dominated convergence theorem. 

Finally one identifies H as the generator of S by 

careful calculation of the derivative of S. This again requires 

Cauchy's theorem. o 
One simple explicit example of a bounded holomorphic 

semigroup is the semigroup S generated by the Laplacian on 

This semigroup is holomorphic in the sector ~~/2 and its 

action is given by 
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Note that if p = 2 then 

since s = exp{-zH} z where H is self-adjoint. 

has a boundary value as Re z + 0 because 

But if p = 1 

Jl.im lis .ta - e -itHall = 0 • 
s+O S+l 

Moreover S 

for Re z > 0 , and a similar result is true for p = 00. Thus 

in these latter cases IIszli + 00 as z approaches the imaginary 

axis, away from the origin, and S does not have a boundary value. 

Exerci ses 1. 7.1. 

1. Let S be a self-adjoint contraction semigroup on 

a Hilbert space H Prove that S is holomorphic for . Re z > 0 

and that lis II :so 1 in this sector. z 



1.8. Convergence of Semi groups 

In the preceding sections we examined the existence 

and construction of various classes of semigroup and next we 

analyze their stability properties. First we consider convergence 

properties and use these to extend the foregoing results on 

semigroup construction. 

Let be a sequence of Co-semigroups on a Banach 

space B and assume that ",Cn) 1 
w t converges strong y to 

each t ~ 0 Since the product of strongly convergent sequences 

is strongly convergent the St must satisfy the semigroup property 

SsSt = Ss+t for all s, t ~ 0 , and of course So = I Nevertheless 

S = {s 1 is not necessarily a Co-semigroup because of a possible tJt~O 

lack of continuity. The simplest example of this phenomenon is 

given by the numerical semigroups Sen) -nt 
acting IT: The = e on t 

limit S satisfies So = I , and St 0 if t > 0 ; it is clearly 

discontinuous. Thus it is of interest to establish conditions for 

stability of Co-semigroups under strong convergence and to identify 

stability criteria in terms of the generators. 

Although the strong limit S of the sequence Sen) 

89. 

often fails to be a Co-semigroup on the whole Banach space B it is 

possible that its restriction to a Banach subspace Bo is a Co-semigroup. 

For example if B = Bo ® a: 

fixed Co-semigroup on BO ' 

and where T is a 

then the limit S is discontinuous 

for a rather trivial reason; on the subspace Bo one has continuity, 

because S = T , and the discontinuity only occurs in the extra 
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dimension. Thus it is of some interest to broaden the discussion 

of stability of convergence by attempting to identify subspaces 

of continuity for the limit semigroup. 

We begin the analysis by first establishing that 

semigroup convergence is equivalent to convergence of the resolvents 

of the generators. For simplicity we consider contraction semigroups. 

PROPOSITION 1.8.1. (n) { } Let St = exp -tHn be a sequence of 

co-semigroups of contractions on the Banach space B and ~et 

St = exp{-tH} be a co-semigroup of contractions acting on a Banach 

subspace 

1(1') 

2(2' ) 

B c B 
0-

The fo~~owing four conditions are equiva~ent: 

for aU a E Bo and aU t::: 0 (uniform~y for 

t in finite interva~s of [0, co}) .. 

Hm 
n~ 

for aU a E Bo and for some Ct > 0 (uniform~y for 

Ct in finite interva~s of [0, co}) 

Clearly I' = 1 and 2' = 2. The proof that 2 = 2' 

involves two arguments. First one uses the Neumann series 

00 

I 
n=O 

which is convergent for Ct > CtO/ 2 ' to prove that resolvent 



convergence for a = a O implies resolvent convergence for all 

a > a O/ 2 ' and hence by iteration for all 

extimates from the Laplace transform relation 

Second one 

that 

Hence the convergence is uniform for a in 

finite intervals by a standard equicontinuity argument. 

Next we argue that 1 ~ 2 ~ I' 

1 => 2. By Laplace transfvrmation one has 

Ilf~ dt e -t (S~~) -Sat)all 

~ f~ dt e-tll(s~~)-Sat)all 

---'r 0 
n=oo 

where the last conclusion follows from the Lebesgue dominated 

convergence theorem. 

2 => 1'. Since the semigroups under discussion are all 

contractive on BO it suffices to prove their convergence on a 

norm dense subspace of BO We will repeat the tactic used in 

the construction of S in Theorem 1.3.1 and work on the norm 

Moreover if a E BO then 

where 
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and 

Let us estimate each of these terms. First 

Second 

__ 0 
n=oo 

~o. n=oo 

derives the equicontinuity relation 

and hence A(n) and 

any finite interval of 

c(n) converge to zero uniformly for t 

[0, (0). It remains to examine B(n) 

For this we use the integral representation 

in 



Thus 

--+ 0 
n=oo 

where the last conclusion follows from the Lebesgue dominated 

convergence theorem. But for tl ~ t2 one has 

Therefore 

and the convergence is again uniform for t in any finite interval 

of [0, 00 > • 

Combining these conclusions we see that 

for all b E D(H2) , and consequently for all b E BO. Moreover 
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the convergence is uniform for t in finite intervals of 

[0, (0) • o 

Although Proposition 1. 8.1 could be viewed as a 

cri terion for strong convergence of semigroups it does have two 

distinct drawbacks. First it gives an indirect link between 

semigroup convergence and convergence of the generators, because 

it concerns convergence of their resolvents. Second it assumes 

that the limit of the resolvents is the resolvent of a generator 

of a Co-semigroup, at least on a subspace. The next theorem 

avoids both these disadvantages and relates semigroup convergence 

directly to graph convergence of the generators. This latter 

notion is introduced as follows. 

If H is a sequence of operators on the Banach space 
n 

B then the graphs 

B x B by 

of H are defined as subspaces of 
n 

Now consider all sequences an E D(Hn} such that 

n--
-Um Iia - all n 

o , 
n--
-Um IIH a - bll 

n n 
o 

for some pair {a, b} E B x B • The pairs {a,b} obtained in 

this way form a subspace G of B x B and we introduce the 

notation D(G) for the set of a such that {a, b} E G for 

some b Similarly R(G) is the set of b such that 

{a, b} E G for some a Moreover we write 



G Hm G(H) . 
n n-700 

In general G is not the graph of an operator but if there 

exists an operator H on the Banach space B , or on a Banach 

subspace Bo' such that G = G(H) then H is called the 

graph Zimit of the 

R(G) = R(H) 

H 
n 

Clearly in this case D(G) = DOn 

The next result demonstrates that this kind of 

and 

convergence is appropriate for the characterization of semigroup 

convergence. 

THEOREM L 8. 2. Let s~n) = exp{-tHn } be a sequence of co-

semigroups of contractions on the Banach space B and define the 

subspaces G c B x B 
0(-

G 
0( 

Hm G ( I +OLH) • 
n 

n-700 

The following conditions are equivalent: 

1. There exists a Banach subspace Bo of B and a 

co-semigroup s on Bo such that 

Urn 
n-700 

o 

for all a E Bo and t > 0 ~ uniformly for t in any 

finite interval of [0, oo} 3 

2. There exists a Banach subspace Bo of B such that 
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for some a > 0 3 where the bar denotes norm alosure. 

Tf these aonditions are satisfied then S is a 

aontraation semigroup on Bo 3 Ga is the graph of I + aH 

where H is the generator of S 3 and Bo = D(Ga ) = R(Ga ) 

Proof. 1 =0 2. It follows from strong convergence that 

for all a E Bo and hence S is a contraction semigroup on Bo. 

Let H denote the generator of S then 

.Hm II (I+aHnrla - (I+aH) -lall = 0 
n~ 

for all a E BO by Proposition 1.8.1. Thus if a = (I+aH )-la 
n n 

one has 

and 

.Hm 
n~ 

Consequently {(I+aH)-la, a} E G 

and gives the identification of Ga 

This demonstrates Condition 2 



2 => 1. Define G to be the set of pairs {a, b} E BO x Bo 

such that there exists a sequence a E D(H ) 
n n 

with the property 

that an + a ,and Hnan + b ,as n + 00. To prove that G is 

the graph of an operator on Bo we must demonstrate that a = 0 

implies b = O. But suppose a = 0 and for an arbitrary pair 

{a', b'} E G choose a' E D(H ) 
n n 

such that a' + a' and 
n ' 

Hna~ + b' ,as n + 00. Then 

lIa(a'+b) + a 2b'lI = -Urn II (I+aHn) (an+aa~)Ij 
n-XX> 

~ -Urn lIa + aa'il = alla'il . 
n n n-XX> 

Dividing by a and taking the limit a + 0 one obtains 

lib + a' II ~ lIa' II . 

But this inequality is true for all a' E D(G). Moreover 

D(G) = D(Ga ) and hence D(G) is norm dense in BO ' by assumption. 

Therefore one must have b = 0 and consequently G is the graph 

of a norm densely defined operator H on Bo . 

Now Ga = G(I+aH) and it follows by limiting that 

IIO+aH)all ~ lIall for all a E D(H) = D(Ga) The same inequality 

. then extends to the closure H of H and it readily follows that 

R(I+aH) is norm closed. But R(I+aH) = ~ = B and hence H "'l"'a) 0 
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is the generator of a Co-semigroup of contractions S by the Hille

Yosida theorem. Now if a + a and b = (I+aH)a + (I+aH)a = b then n n n n 

s lib - b II + IIa - all . 
n n 
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Since R(I+aH) = Bo it follows that 

all a E B and s(n) converges to S by Proposition 1.8.1. 

But the resolvent convergence also implies that Ga is closed 

and hence H = H . o 
In Theorem 1.8.2 there is not necessarily any unique 

or natural subspace Bo of convergence, e.g., if S(n) converges 

to S on Bo and Bl c Bo is an S-invariant subspace of Bo 

then s(n) converges to SiB on Bl . Of course the largest 
1 

possible subspace of convergence is determined by the closure of 

n(Ga ) • If S(n) converges strongly to S on Bo it follows 

from the argument used to prove 1 ~ 2 in Theorem 1.8.2 that 

Ga = G(I+aH) where H is the generator of S. Thus 

n(Ga ) = n(H) and in particular one has the following. 

COROLLARY 1.8.3. Adopt the assumption of Theorem 1.8.2. The 

following conditions are equivalent 

1. There exists a Co-semigroup S on B such that 

II (s~n) -St)ajj + 0 for aU a E B , uniformly for t 

in any finite interval of [0, 00) • 

2. n(Ga) and R(Ga) are norm dense in B for some 

a> 0 

Proposition 1.8.1, Theorem 1.8.2, and Corollary 1.8.3, 

have a variety of uses. The latter results give a clear 

delineation of the infinitesimal properties which characterize 

semigroup convergence. But unfortunately these properties are 



often difficult to verify in particular examples. There is, 

however, one situation in which the first result is easily 

applicable. 

PROPOSITION 1.8.4. Let Sen) = exp{-tH} be Co-semigroups of 
t n 

contractions on the Banach space B and St exp{-tH} a 

simiZar semigroup on the Banach subspace Bo 

If there exists a core D of H such that 

for aZZ n or, more generaZZy, 

and if 

Hm II(H -H)all = 0 n n-+oo 

for aZZ a ED, then 

D C D(H ) 
- n 

for aZZ a E Bo ' unifoPmZy for t in finite intervaZs of [0, oo} • 

In particuZar H is the graph Zimit of H • 
n 

Proof. If ~ > 0 the set R~ = {(I+aH)a a E D} is norm 

dense in Bo because D is a core of H and R(I+~H) = BO. But 

for b = (I+aH)a with a E D one has 

::: II (H-H )all 
n 
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and hence (I+aHnrlb converges strongly to (I+aH)-lb for all 

b E BO' The convergence of S(n)b to Sb now follows from 

Proposition 1.8.1. The identification of H as the graph limit 

of the H is a consequence of Corollary 1.8.3. 
n o 

There are two general corollaries of this last result 

\"hich are useful throughout semigroup theory and which we have 

already partly exploited in Example 1.3.6. These corollaries 

concern the approximation of a given semigroup by a family of 

semigroups with bounded generators. 

First let 

where S = exp{-sH} is assumed to be a contraction semigroup. It 
s 

is evident that the Hs are bounded but they also generate 

contraction semigroups because 

1 . 

Moreover 

for all a E D(H) by definition. Hence Proposition 1.8.4 implies 

that 

Urn 
s-+O 



for all a E B uniformly for t in compact intervals of [0, oo} • 

Again 

because 

H 
s 

Second let 

H = H( I+sH)-l 
s 

is bounded and exp{-tH } 
s 

is a contraction semigroup 

where the last estimate uses IIO+SH)-lll < 1. But 

Urn II(Hs-H)all 0 
s-+O 

for all a E D(H) because -1 (I+sH) converges strongly to the 

identity as s tends to zero. This was established in the proof 

of Theorem 1.3.1. Thus the assumptions of Proposition 1.8.4 are 

satisfied by exp{-tH} and expf-tH} s 
and hence 

(**) 'urn II (e-tH_e-tHCl+SH)-l)all = 0 
s+O 

for all a E B , uniformly for t in finite intervals of 

. [0, oo} • 

The algorithms C*) and (**) give two methods of 

approximating a given Co-semigroup of contractions. The first of 

these was proposed by Hille and the second by Yosida. Consequently 
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we refer to the semigroups exp{-t(I-Ss)/S} as the HiZZe 

approximants and exp{-tH(I+SH)-l/s} as the Yosida approximants 

of S = exp{-tH} 
t 

The Hille and Yosida approximants have many 

applications. The following example describes the connection 

between Taylor's series expansion, the Stone-Weierstrass theorem, 

and the Hille approximants of the semigroup of right translations. 

Examp 1 e 1. 8. 5 . Let B = CO(O, 00) , the continuous functions on 

[0, oo} which vanish at infinity, equipped with the supremum norm 

and let S denote the Co-semigroap of right translations 

If s~h) = exp{-t(I-Sh)/h} denotes the Hille approximants then 

where 

f(x+t) = ~im (s~h)f)(X+t) 
h-+O 

n 
L (_l)n-k nCkf(x+kh) 

k=O 

and the limit is uniform for x E [0, oo} and t in any finite 

interval of [0, oo} This is a generalization of Taylor's theorem. 

But setting x = ° one also deduces that for each € > ° one can 
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choose N such that 

uniformly for t in any finite interval [0, to]' This is an 

explicit version of the Stone-Weierstrass theorem. o 
Alternatively these approximation techniques can be 

applied in a variety of ways to differential operators. The 

following example illustrates a typical problem of statistical 

mechanics, the independence of the thermodynamic limit from the 

choice of boundary conditions. In statistical mechanics one 

describes systems confined to a finite region of the appropriate 

phase space, e.g., a bounded subset 3 A c ~ ,and then attempts to 

calculate bulk properties, e.g., properties such as the specific 

heat per unit volume. For sufficiently large systems these 

properties should be insensitive to the size and any boundary 

effects. 

Exampl e 1. 8. 6. Let B = L2 QRV) and let H denote the usual 

self-adjoint Laplacian. Thus 

D(H) = if v 4- - 2 f d p p If(p) I < + co} 

and 

(Hf)(x) 

where f denotes the Fourier transform. The operator H generates 

the semigroup of contractions which solves the heat equation 
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on 

af(x,t) 
at 

2 
-1/ f(x, t) 

x 

The action of this semigroup is given by 

It is well known, and easily verified, that the space 

of infinitely often differentiable functions "lith compact support 

forms a core D of H 0 

Next for each bounded open set A C JRV let !-Ill. 

denote any positive self-adjoint extension of H restricted to the 

infinitely often differentiable functions with support in A 

There are many such extensions corresponding to different choices of 

boundary conditions for the Laplace operator on the boundary all. of 

A. Some of these will be discussed explicitly in Section 1.11. 

But if A is any increasing sequence such that any open bounded 
n 

set A is contained in A for n sufficiently large then 
n 

by definition. Hence 

o· "J.m 
n~ 

for all fEB, uniformly for t in finite intervals of [0, oo} 

by a direct application of Proposition 1.8.4. Consequently the 

net of contraction semigroups A i-+ exp{-tHl\.} converges strongly 



to St = exp{-tH} . o 

The Hille and Yosida approximants are just particular 

examples of a much broader class. If t E JR 1--+ F(t) C(;(B) is 
+ 

a family of contraction operators satisfying 

Hm II {(I-F(t) )/t - H}all = 0 
t~ 

for all a in a core D of H then t + exp{-t(I-F(s))/s} is a 

family of contraction semigroups and 

Hm II (St -exp{-t(I-F( s) )/slJall 0 
s+O 

for all a E B , uniformly for t in finite intervals of [0, oo} 

This is again a direct corollary of Proposition 1.8.4. Next we 

examine an alternative set of approximations of S by powers 

The first basic estimate which relates the power 

approximations to the foregoing exponential approximations is 

provided by the following lemma. 

LEMMA 1.8.7. Let A be a bounded operator on the Banach space 

B with IIAII:5 1 . 

It foHows that 

for aLL n = 1, 2, 3, ... . 

Proof. One estimates 
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::: IICI-A)alle-n I nm \n-:m\ 
m:::O m! 

::: IDII(I-A)all 

where the last estimate follows from a straightforward application 

of the Cauchy Schwarz inequality. o 
Combination of this estimate with the previous 

convergence theorems then leads to the following product formula, 

which generalizes the construction of the Hille-Yosida theorem. 

THEOREM 1.8.8. Let St = exp{-tH} be a co-semigroup of 

contractions and t E lR f--+ F(t) E;&(B) a famUy of contractions 
+ 

operators on the Banach space B. Further assume that 

tim II{(I-F(t))/t - H}all = 0 
t-+O+ 

for all a in a core D of H . 

It follows that 

J/,im Ilie -tH - F(t/n)n}all = 0 
n-+oo 

for all a E B uniformly for t in finite intervals of [0, 00) • 

Proof. First it follows from Proposition 1.8.4 that 
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Hrn II (e-tH_e-tCI-F(s»/S)all 0 
s-+O+ 

for all a E B , uniformly for t in finite in-tervals. Therefore 

Urn II (e-tH_e-nCI-FCt/n»)all 0 
n~ 

uniformly for t in finite intel"Vals. But Lemma 1. 8.7 gives the 

estimate 

II (e -nO-F(t/n» - F(t/n)n)all s (t/lil)II (I-F(t/n) )all/(t/n) 

and for a ED, the core of H, the right hand side converges to 

zero uniformly for t in finite intervals. Since D(H) is norm 

dense the desired result follows from combination of these two 

estimates. o 
Product formulae of the type described by the theorem 

have a wide variety of applications. As a first illustration we 

again consider the semigroup of right translations and the Stone-

Weierstrass theor'em. 

Examp 1 e 1. 8 • 9 • Adopt the notation and assumptions of Example 1.8.5. 

Next for 0 < A < 1 set 

F(t) (l-A)I + ASt/A 

in Theorem 1.8.8. Clearly the hypotheses of the theorem are valid 

and one has 
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Therefore if f E COCO, 00) 

n 
f(x+t) £im [ 

n-?oo m=O 

and the limit is uniform for x E [0, 00) and t in any finite 

interval of [0, 00). Thus for f E Cb(O, 1) one deduces that 

n 
f(t) ::: £im L 

n-?oo m=O 

uniformly for t E [0, IJ. This is Bernstein's version of the 

Stone-Weierstrass theorem. o 

As a second, completely different, application of the 

product formula we derive an approximation procedure for the semi-

group generated by the Dirichlet Laplacian. This example is of 

some importance because it provides the operator theoretic structure 

behind the Wiener integral, i.e., the functional integration 

description of the heat equation. 

Exampl e 1.8.10. Let 

Laplacian H:: _V2 on 

h b f L2 !JR\!J t e su space 0 ~ 

S denote the Co-semigroup generated by the 

L2 QRV) . Furthermore identify L2(A) as 

formed by the functions with support in the 

Now define HA as the restriction of H 

to the twice continuously differentiable with support in the interior 

v A c 1R , bounded open set 

of A. Since H is norm closed in L2 QRV) its restriction HA is 

norm closable in L2QR\!) and we also use HA to denote the closure. 

One can establish that HA is a positive self-adjoint operator on 

L2(A) and it corresponds to the Laplacian with Dirichlet boundary 



conditions, i.e., f E D(H) implies that f = 0 on the boundary 

of A at least in some distributional sense. Further details 

about this Laplacian and others corresponding to different boundary 

conditions will be given in Section 1.11. 

by 

where 

the set 

Now consider the family of operators on L2 (A) defined 

denotes mUltiplication by the characteristic function of 

If f E L2(A) is twice continuously differentiable 

with support in A one has 

Hm 
t+O+ 

o • 

But these f form a core for HA and hence Theorem 1.8.8 is 

applicable. Thus 

for all f E L2(A) uniformly for t in finite intervals of [0, 00) • 

Note that from the explicit form of S one has 

These results extend directly to the corresponding semigroups on 
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on LP(A) ,and LP(~V) , and they provide a proof that the 

Dirichlet semigroup is positive, Le., it maps positive functions 

into positive functions. o 
Theorem 1.8.8 can also be applied to semigroups whose 

generators are sums of generators. 

Let S '" exp{-tH} 
t 

and Tt = exp{-tK} be two 

Co-semigroups of contractions and assume that H + K is a norm 

closable operator whose closure H + K generates a Co-semigroup 

U. A slight extension of the argument preceding Proposition 1. 3. Lf 

demonstrates that H + K is dissipative and then the closure 

H + K is also dissipative. Thus U is contractive. 

Now we choose Ft = StTt and D '" D(H+K). One 

readily checks that the assumptions of Theorem 1.8.8 are satisfied 

for F and U Consequently 

for all a E B. This relation is called the Trotter product 

fo~ula. A second possible choice of F is 

F(t) 
-1 -1 

(HtH) (IHK) 

and this leads to the product formula 

Hm /I (Ut -(1HH/n) -1(1 HK/n) -1) all O. 
n-+oo 
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operators. 

Exercises. 

Let H be a uniformly bounded sequence of bounded 
n 

Prove that the graph limit of H 
n 

exists if, and 

only if, Hn converges strongly. 

1.8.2. Let Hn be a sequence of operators for which the 

graph limit H exists and P 
n 

a sequence of bounded operators 

which COnVel"ges strongly to P Prove that H + P is the graph 

limit of H + P 
n n 

111. 



112. 

1.9. Perturbation Theory 

The next aspect of stability that we describe is 

stability of a semigroup under perturbations of its generator. 

Let H be the generator of a Co-semigroup of contractions on 

the Banach space Band P a linear operator on B. Our aim 

is tu deccribe conditions on P which ensure that H + P also 

generates a Co-semigroup of contractions. In applications the 

perturbation P is often an unbounded operator and the notion 

of relatively bounded operator is useful. 

Let Hand P be linear operators on a Banach 

space. Then P is defined to be reZativeZy bounded with respect 

to H , or H-reZativeZy bounded~ if the following two conditions 

are satisfied: 

1. D(P)::l D(H) 

2. IIPall::: aHal! + I3I!Hal1 

for all a E D(H) and some a, 13 > 0 • 

The greatest lower bound of the 13 for which this last relation 

is valid is called the reZative bound of P with respect to H, 

or the H-bound. 

The key result concerning relative bounded perturbations 

of generators of contraction semigroups i~ the following: 

THEOREM 1.9.1. Let 

on the Banach space 

St = exp{-tH} 

B and assume 

be a co-semigroup of contractions 

P is H-reZativeZy bounded with 



H-bound 130 < 1 

If P, or H + P , is norm-dissipative then H + P 

generates a co-semigroup of aontraations. 

Proof. First note that it follows from Theorems 1.3.1 and 1.4.1 

that D(H) is norm dense and Re(f, Ha) ~ 0 for all tangent 
a 

functionals f at a E D(H) 
a 

Second since D(H) C D(P) the 

latter set is norm dense. Hence if P is norm-dissipative 

Re(f , Pa) ~ 0 for all tangent functionals at a E D(H) by 
a 

Theorem 1.4.1. Therefore Re(fa' (H+AP)a) ~ 0 for all A ~ 0 and 

H + AP is norm-dissipative. Alternatively if H + P is norm-

dissipative then Re(f (H+P)a) ~ 0 and 
a 

Re(fa' (H+AP)a) = (l-A)Re(fa , Ha) + ARe (fa' (H+P)a) 

~ 0 

for 0::: A ::: 1 Thus in both cases H + AP is norm-dissipative 

for 0::: A ::: 1 

Next we exploit the relative bound. 

Let us assume that 

IIPall ::: allall + 13 II Hall 

for all a E D(H) where a > 0 and 13 < 1. Therefore 

::: (aA+213)llali 
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where we have used II (I+AH)-lll ::: 1 Thus if o ::: A < (2(3)-1 
1 -

one may choose AO > 0 such that Al (aA+2(3) < 1 for 0 < A < AO 

and then the operator PA = AlAP(I+AH)-l is bounded with 

Hence I + PA has a bounded inverse. But 

and since R(I+AH) = B one has 

Therefore H + AlP is the generator of a Co-semigroup of contractions 

by Theorem 1.3.5. 

To continue the proof we.remark that 

and since AI::: (2(3)-1 one has 

We may now choose o ::: A2 ::: (4(3)-1 and repeat the above argument 

to deduce that H + (AI +A 2) P is the generator of a Co-semigroup 

of contractions. Iteration of this argument n times proves that 

H + AP is a generator for all 0::: A < (1-2-n)/(3. Choosing n 

sufficiently large, but finite, one obtains the desired result. 0 



Next we examine a more restricted class of perturbations. 

If St = exp{-tH} is a Co-semigroup and P is a linear operator, 

on the Banach space B, then P is called a phiZ Zips perturbation 

of S if the following three conditions are satisfied: 

1. P is closed. 

2. For each t > 0 one has StB ~ n(p) and PSt has 

bounded closure. 

Note that if S is a group then each Phillips 

perturbation P of S is automatically bounded because 

More generally, for semigroups, 

P is relatively bounded. To see this consider the case that S 

is a contraction semigroup. Consequently 

-1 roo -At 
(AI+H) a = JO dt e Sta 

for each a E B and A > O. But one also has 

for any 0 < 0 < 1. Since P is closed a simple Riemann 

approximation argument establishes that -1 (AI+H) a E n(p) , 

i.e., n(H) c n(p) , and 

1 Joo -At P(AI+H)- a = 0 dt e PSta 
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Therefore setting b = (AI+H)-la and using the foregoing estimate 

one finds 

::: I! (AI+H)bll [J~ dt IIPSt ll+ll pS811/ A) 

::: (Allbl!+I!Hbll) [ J~ dt IIPSt ll+llps8 11/ A J 

Thus P is H-relatively bounded. Moreover choosing 0 to be small 

and A to be large one sees that P has H-bound zero. The same 

conclusion is indeed valid for a general Co-semigroup but one must 

use the bound liSt II::: M exp{wt} and take A > w . 

Theorem 1.9.1 can now be strengthened for the class 

of Phillips perturbations. 

THEOREM 1.9.2. Let St = exp{-tH} be a co-semigroup of 

contractions on the Banach space Band P a Phillips perturbation 

of S. 

If P 3 or H + P , is norm-dissipative then H -I- P 

generates a co-semigroup of contractions sp. Moreover 

for all a E B , where the integrals exist in the norm topology and 

define a series of bounded operators which converges in norm 
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unifoY'fl'lZy for t in any finite interoaZ of the foY'fl'l (E:, liE: > 

where 0 < E: < 1 

Proof. The first statement of the theorem follows from Theorem 

1.8.1 and the foregoing observation that a Phillips perturbation 

P of H is H-relatively bounded with H-bound zero. 

Now consider the perturbation series for Sp. It 

follows from the definition of a Phillips perturbation that each 

term is well defined as a bounded operator and is strongly 

continuous for t > 0 . But if denotes the n-th term then 

= (-1) ft ds S PS(n-l). 
o t-s s 

Hence, by iteration, 

where 

the * denotes the convolution product, and 
n'~ f denotes the 

n-fold convolution of f with itself. 

Now let us examine bounds on f 

Since S is contractive f is non-increasing and 

the integral 
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is finite for each A > O. Moreover IA ~ 0 as A ~ 00 

But for 0 < s < t one has f(t) S f(t-s) and hence 

Therefore 

Consequently for A sufficiently large 

and 

Moreover since S is contractive there is an M > 0 such that 

JOO -At 
o dt e get) < M , get) 

for this same range of large A. 

Next we examine the propagation of these bounds. 

Suppose two positive integrable functions f l , f 2 , 

on [0, (0) satisfy 
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Then 

fOO
, eAt(f *f Jet) o at 1 2 fOO e-AtflCt) JOO -AS ( ) o dt 0 ds e f 2 s 

Moreover 

At J~OL/2 ds Ml -AS At ft -A(t-s)f C' ) M2 
~ e 2 e f (s) + e t/2 ds e 1 T-S 8 2 

(t-s) 

Thus the bounds propagate. 

Combining the foregoing estimates one concludes that 

foo -At o dt e g 1, 

and 

Consequently the perturbation series for sP is majorized in norm 

by the series 

L MeAt /2n t 2 
n:::O 

and this immediately implies the convergence statements for the 

perturbation series. 
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It remains to prove that sP is a co-semigroup 

with generator H + P . 

First strong continuity at the origin follows from 

the integrability of t 1-+ IlpStn at the origin and the 

straightforward estimate 

s I 
n~l 

Second note that sP satisfies the integral equation 

and hence 

Thus the family of operator-valued functions 



is entire analytic, in the norm topology, and satisfies the 

homogeneous integral equations 

It then follows from Taylor's series that Ft(A) = 0 , i.e., the 

semigroup property 

is valid. 

Finally let K denote the generator of Sp. For A 

sufficiently large one has 

1 r» -At P 
(AI+K)- = JO dt e St 

But using the integral equation for sP one finds 

(AHK) -1 10 dt 
-At f~ dt f~ ds e -AtS PSP = e St t-s s 

(AI+H)-l - f~ dt -At P 10 ds 
-AS P 

= e St e S s 

= (AI+H)-l _ (AI+H)-lp(AI+K)-l . 

This establishes that 

But 

-1 (AI+H+P)(AI+K) = I . 
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and 

for A sufficiently large. Therefore (AI+H+P) is invertible 

with bounded inverse. Consequently 

and 

K = H + P . o 

Rema r k 1. 9 • 3 • One can obtain an analogue of Theorem 1.9.2 without 

assuming that S is contractive or P norm-dissipative. If 

St = exp{-tH} is a co-semigroup and P a Phillips perturbation 

of S then H + P generates a Co-semigroup sP which can be 

defined by the perturbation series of Theorem 1.9.2. The proof of 

this generalization is very similar to the above proof but the 

estimates necessary for the convergence of the series are slightly 

more onerous because of the growth of /I St II . 

Examp 1 e L 9 • 4 • Let B -- LP FJRV) d 1 t S b th . ~ an e e e semlgroup 

generated by the Laplacian, i.e., 

where 



Next let V be a multiplication operator 

(Vf)(x) V(x)f(x) 

where V E Lq(~V) and q > V/2, q ~ p. Then by successively 

applying Holder's and Young's inequalities 

where 
-1 

P 
-1 -1 

q + r 

1 S p, q, r, s S 00 But 

-1 -1 
s + p - , and 

-V/2q 
ct . 

Thus Ilvstll p is integrable at the origin and V is a Phillips 

perturbation of S . 

Exercises. 

1.9.1. Let P be relatively bounded with respect to H 

with H-bound less than one. Prove that H + P is closable if, 

and only if, H is closable and in this case the closures have 

the same domain. 

If P is relatively bounded with respect to H with 

H-bound 8 < 1 prove that P is relatively bounded with respect 

H + P with H+P-bound 8(1-8)-1 . 
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1.9.3. Let H be the generator of a co-contraction 

semigroup on a Banach space B and suppose P is relatively 

bounded with respect to H. Prove that if A > 0 then 

-1 aA + 2S . 

Moreover if B is a Hilbert space 

Hint: In the Hilbert space case use norm-dissipativity to prove 

that 

1.9.4. If a E L 2 (IR3) has partial derivatives in L 2 (IR3) 

prove that 

Hint: Calculate Vlxl~a(x) . 

1.9.5. Lp I'mV) Let H denote the Laplacian on t~ 

the operator of multiplication by the characteristic function of 

the open bounded set A C RV • Define s(n) to be the Co-

semigroup generated by the perturbed Laplacian Hn = H + n(I~XA) 

Prove that s(n) converges strongly on LP(A) to the semigroup 

generated by the Laplacian with Dirichlet boundary conditions, as 
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1.10. Comparison of Semigroups. 

In perturbation theory one starts from a semigroup S 

and an operator P, which is "small" with respect to the generator 

H of S , and then constructs a perturbed semigroup SP, with 

generator H + P , which is "close" to S. The notions of 

"smallness" of the perturbation and "closeness" of the semigroups 

are intimately related. In particular one can estimate from the 

identity 

that 

St - SPt = Jto ds d (SP S) ds t-s s 

= Jt ds sP P S 
o t-s s 

liSt - s~11 = O(t) , 

as t + 0 , if P is bounded, or 

II (St -S~)all = O(t) 

for all a E D(H) , as t + 0 , if P is relatively bounded with 

respect to H. Our aim is to prove converses to these statements. 

We now begin with two semigroups satisfying the 

estimate (*) , or (**) , and attempt to prove that the corresponding 

generators differ by a bounded, or a relatively bounded, perturbation. 

The difficulty is that these converse statements are not valid for 

general Co-semigroups. Nevertheless they are valid for c~-semigroups, 
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with some slight qualification, and hence for Co-semigroups on 

reflexive Banach spaces. In general another phenomenon of 

intertwining of generators has to be taken into account. We will 

discuss this after describing the basic results on c~-semigroups, 

and their corollaries. 

THEOREM 1.10.1. Let S and T be two c~-semigroups on the 

Banach space B with generators H and K 3 respectively. The 

following conditions are equivalent: 

2. D(H) = D(K) and K = H + P where P is a bounded 

operator from the norm closure D(H) of D(H) to B. 

Proof. 1 => 2. Condition 1 states that there are constants N, 

<5 > 0 such that 

for 0 ~ t < <5. Now for f E D(H) consider the one-parameter 

But the unit ball of B is compact in the weak,Ltopology, by the 

Alaoglu-Birkhoff theorem, and hence there exists a subnet f t which 
a. 

is weak*-convergent, as ta. + 0+ , to a limit g. Now if K*and 

T,~t denote the adjoints of K and Tt' on B1" which exist by 

Lemma 1.5.1, one has 



fe K,.,a) 

( Hf )( a) + g ( a ) 

for all a E DC K,.,) and f E DC H). Since the right hand side is 

continuous in a, and since DC K,.,) is norm-dense in B,., ' one 

concludes that f E D(K) and hence D(H) C D(K) But reversing 

the roles of Sand T in this argument gives D(K) C D(H) and 

hence D(H) = D(K). Furthermore the foregoing identity gives 

Kf Hf + g . 

But Ilgll:s Nllfll and hence K - H extends by closure to a bounded 

operator P from D(H) to B, with IIpll:s N . 

2=>1. 

Therefore 

If f E D(H) then S f E D(H) and 
s 

o :s s :s t} 

oCt) 

as t -+ 0+ because /lSt/l, I/Ttll :s M exp{wt} for suitable 

M, w ::: 0 . o 

Note that in the proof of 1 => 2 one establishes that 

the perturbation P satisfies the estimate 
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Ilpll <: Sup liSt - Ttil/t 0 

t>O 

But in the proof of 2 ~ lone has the converse estimate 

Thus if Sand T are contraction semigroups, or more generally 

The magnitude of the perturbation is measured by the "distance" 

liSt - Ttll/t between the semigroups for small t 

The difficulty in interpreting Condition 2 of 

Theorem 1.10.1 as a perturbation result is that the perturbation 

p = K - H is only defined on the weak"'-dense domain D( H) . 

Although it is bounded as an operator from the norm closure of D(H) 

to B it is not clear that it has a bounded extension from B to 

B. This is the case, however, if D(H) is norm dense. In 

particular this follows if B is reflexive because then the norm 

topology and weak"'-topology coincide. Therefore Theorem L 10.1 has 

the following corollary. 

COROLLARY 1.10.2. Let Sand T be two co-semigroups on the 

refZexive Banach space B with generators H and K respectiveZy. 

The foZZowing conditions are equivaZent: 

1. o ( t), as t -+ 0 + , 



2. Thepe is a bounded opepatop P on B such that 

K = H - P . 

Reflexivity of B means that B* = B* and hence 

weak*-continuity is equivalent to weak, or strong continuity. 

Therefore C~-semigroups are Co-semigroup~ and this result follows 

from Theorem 1.10.1. But it is not generally true without 

reflexivity. Before giving a counterexample and discussing the 

new phenomenon which arises we will, however, describe the 

relative boundedness version of Theorem 1.10.1. 

THEOREM 1.10.3. Let S and T be two c~-semigpoups on the 

Banach space B with genepatops H and K, pespectively. The 

following conditions aPe equivalent: 

1. oCt) as t + 0+ , fop all f E D(H) , 

2. K ::> H + P 

whepe D(P) D(H) and 

IIPfll ::: allfll + bllHfll 

fop all f E D(H) and some a, b ~ a . 

Proof. 1 => 2. First remark that f E D(H) if, and only if, 

II (I-St ) fll = O( t) at t + 0+ , by Exercise 1. 5.2. But then since 

II (I-Tt)f// ::: I/(I-St)fll + //(St-Tt)f// = OCt) 

one must have D(H) C D(K) and one can define P by D(P) D(H) 
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and P K - H . 

Next note that Hand K are both weak"'-closed, and 

hence strongly closed, and consider the graph 

G(H) = {(f, Hf); f E D(H)} equipped with the norm 

II (f, Hf)11 Ilfll + IIHfl1 0 

The graph G(H) is a cJosed subspace of B x B and the mapping 

(f, Hf) r+ Kf is a linear operator from G(H) into B But this 

operator is closed, because if (f , Hf ) 
n n 

converges in G(H) and 

Kfn converges in B then Ilfn - fll ->- 0 , and IIKfn - gil ->- 0 , for 

some f, g E Band g = Kf since K is closed. Therefore the 

mapping is bounded by the closed graph theorem, i.e., there is a 

constant c > 0 such that 

IIKfl1 s c (1Ifll+IIHfli) . 

Consequently 

IIFfII II (K-H)fll 

s cllfll + (c+l)IIHfll 

2 => 1. If f E D(H) then Stf E D(H) C D(K) and 

for all a E B,.,. Therefore 

S t 

Sup 
OSsst 

Sup 
OSsst 



But IIStll, IITtll S M exp{wt} for suitable M, w ::: 0 and hence 

as t ~ 0+ for each f E D(H) . o 

The analogues of Theorems 1."10.1 and 1.10.3 are not 

true for general Co-semigroups because of another effect which is 

illustrated by the following example. 

Example 1.10.4. Let B = COOR) be the continuous functions on 

the real line which vanish at infinity, equipped with the usual 

supremum norm, and let S denote the Co-group of translations, 

for fEB and t E lR. Thus the generator H of S is the 

operator of differentiation with domain the differentiable functions 

f E CO(lR) whose derivatives f' are also in CoOR). Next let 

M be the operator of multiplication by a bounded function m which 

is non-differentiable at some points but is uniformly Holder 

continuous in the sense that 

Im(x)-m(y)I < clx-yl 

for some c . Define W by W = exp{iM} and T by T = WS W- l 
t t 

Since 

one has the estimate 
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But the generator K of T is given by K = WHW-l and 

D(K) * D(H) because m is chosen to be non-differentiable. In 

fact one can choose m to be non-differentiable at a dense set 

of points and then one obtains the extreme case D(H) n D(K) = {a} 

Note that the same construction on LOO(m) does not 

lead to a similar conclusion because the domain of the differentiation 

operator which generates translations is much larger and contains 

functions which are not continuously differentiable. o 

The infinitesimal comparison of Co-groups which are 

close together can be explained by a combination of a per-turbation 

and a twis-t of the type occurring in Example L 10.4-. It is possible 

that this is also true for Co-semigroups but the following proof 

does use the group property in an essential way. It also broadens 

the comparison criterion. 

THEOREM L 10.5. Let Sand T be two Co- or c~-groups on the 

Banach space B with generators Hand K ~ respectively and let 

o < a S 1. The following conditions are equivalent: 

2. there exist bounded operators P 3 W 3 such that W 

has a bounded inverse3 

K W(H+P)W- l 
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and 

Proof. 1 ~ 2. Define 

w 1 foY' ds T S 
s -s r 

where r is chosen sufficiently small that II I - wI! < 1 , 

and hence W has a bounded inverse. This is possible by Condition 1. 

Next introduce 

One then has the identity 

which implies the existence of the strong, or weak'L, limit 

P = Hm (I-UhJ! h 
h+O -, 

and gives -the identification 

Thus P is bounded. Next remark that 

But the right hand side converges for all a E D(H) in the limit 
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t ~ o. Hence Wa E D(K) and 

KWa W(H+P)a. 

Similarly if a E D(K) then W-la E D(H) and 

Thus D(K) = WD(H) and 

But 

K = W(H+P)W-l . 

Finally one has 

s - WS W- l 
t t 

t ~ ws W-l is the group with generator 
t 

-1 
K - WPW -

and hence 

by perturbation theory, e.g., by Theorem 1.9.2. Thus 

2 => 1. Define Q = _wpw- l then H 

is the group generated by K + Q Thus 

-1 and WSW 
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as t -+ 0 by another application of perturbation -theory. But 

and hence 

D 

Exerci ses. 

1.10.1. Prove that if Sand T are two CO-, or C~-, 

semigroups with 

as t -+ 0+ then S = T . 

1.10.2. If S is a Co- or c~-semigroup prove that S is 

uniformly continuous if, and only if, there exist E, 0 > 0 such 

that 

II I - St'l ::: 1 - € , 

1.10.3. If Sand T are two Co- or c~-groups with g~nerators 

Hand K prove that there exist €l' 01 > 0 such that 



136. 

o < t < 01 • 

if, and only if, there exist £2' 02 > 0 and bounded operators 

p, W, such that W has a bounded inverse K = W(H+P)W- l and 

o < t < 02 • 

Hint: Follow the p~oof of Theorem 1.10.5. Note that Exercise 

1.10.2 follows by setting T= I . 
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