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In fmancial economics a contingent security is an instrument that can be traded now, and which 

returns at some fixed time T in the future an amount that depends on the value at time T of some 

underlying security (usually a share). Since the price s at time T of the security is effectively a 

random variable on [O,oo], the contingent security may be identified with the function f(s) specifying 

its return. For example, the holder of a call option has the right, but not the obligation, to buy a 

share at some agreed strike price s0 at time T; the associated returh function is f(s) = max[O,s-soJ. 

The problem is to determine the present value (i.e. price) of such a contingent security, or 

equivalently to identify the pricing functional v: L ~ 9i, (L is the set of feasible return functions). 

At present option pricing is done via the Black-Scholes formula [4]. The formula is derived by 

constructing a self-financing portfolio consisting of shares and bonds (a bond is a risk-free security 

whose return function is a constant) which is adjusted by trading so that it replicates the return of the 

contingent security. The option must have the same present value as the portfolio, otherwise buying 

the portfolio and selling the security, or vice versa, would give certain profit now, while the future 

returns of the two assets would cancel. Under the basic assumptions that the underlying stock price 

evolves through a geometric Brownian motion and that one can trade continuously in the market, a 

simple p.d.e. can be derived that describes the evolution of the portfolio, and this can then be 

integrated backward to determine the present option price. This approach is of great practical use, 

however its validity is restricted by the strong assumptions made about the market. Our aim is to 

find alternative characterizations of v. 

In a perfect market where all contingent securities could be traded, the prices of securities contingent 

on a particular underlying security must be consistent if the market is in equilibrium. If not, there 

would be the possibility of riskless profit taking, which would in tum move prices. These 

consistency conditions essentially require that the functional v be linear and positive. Thus if L is 

a subset of any reasonable function space, e.g. L is the positive cone of LP([O,oo],f.l) for some p and 

fmite measure fl, then v must be a bounded linear functional [6, p. 84]. 

The problem brought to the workshop arose from an attempt to further characterize the pricing 

functional through the general equilibrium theory of Arrow and Debreu [1]. Briefly, given a 
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collection of N individuals with utility functions U;(f) and initial endowments fi of securities who 

then trade among themselves, the theory relates the final allocations f;*, the ui and the valuation 

functional V* when equilibrium is reached (i.e. when no one can make himself better off by trading 

at the prices V* without someone else becoming worse off). The theory in [1], however, 

covers the finite dimensional case where f(s) is replaced by a finite vector with components fm· 

Moreover, the extension to the present infinite dimensional setting is not straightforward, because the 

sets L of feasible allocations are subsets of the positive cone of LP([O,=J: p); if p < =, L will not 

have a nonempty interior and the standard separation theorems cannot be applied. 

The particular problem was to show tha:c at equilibrium V* must be proportional to the gradient 

JU;ifi'' ). The following special case of this result was quickly proved at the workshop using the 

duality theory for constraint sets wit.li nonempty quasi-relative interiors recently developed by 

Borwein and Lewis [2,3). 

Theorem: If v "'L1([o,=),J.L) and a;::o are given, f*(s) solves the optimization problem: 

"" "" - J U(j(s)) df-L to: jJ(s) v(s) df-L :::; a 
0 0 

with a finite and there exists g E qri(dom(E[U(.)J), then {Jv(s) E JU(f*(s)) for some f3;::; 

0. Conversly, if v "'U([o,oo),d) and v(s) E iJU(f'*(s)) for some p;::o, then f*(s) solves: 

sup E[U(f)J 
fE J!', f:?:O 

subject io.· 
= 

jf(s) v(s) df.l 
0 

"" 
:::; Jf*(s)v(s)df.l 

0 

We hope to extend these results to establish an infinite dimensional version of the full general 

equilibrium theory for contingent securities, and to relate the results to those presented recently by 

Mas-Collel [5]. 
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