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Abstract Vl e transform the representation of monotone operators due to Krauss to 

get a of monotone operators in terms of the subdifferentials of 

convex functions on the product of the space and its duat The convex functions 

representing maximal monotone operators satisfY a minimality condition. 
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1. In.trl{)duction. The representation of monotone operators on a space E in terms 

of the subdifferentia1s of saddle functions em ExE was accomplished by Krauss 
[Kr]. In this paper we develop the representation of monotone operators on E in 

terrns of the subdi.fierentials of convex functions on ExE':'. TrJ.ese are actually 

transforrns of Krauss' saddle fllllctions. However the results we obtain have quite 

a difierent flavour than those of Krauss. 

We originally tried tins approach in attempting to solve a problem we 

stated in [F-C]: if a m,rmotone operator on Banach space E has domain E a..nd 

range E* then must E be :reflexive? However it seems that convex analysis on 

ExE* does not help answer that question. 

Throughout true. paper E is a Hausdorff locally convex space and E* is its 

dual with the weak* topology. We recall some definitions. A mapping T of E 

i.nto subsets of E* is a morwtone operator provided fbr each x*e Tx and y*e Ty we 

have <x*- - y>;;:: 0. The domain of T is the set D(T):=(xeE I Tx:;e0}, the range 

of T is the set R(T):={x*eE* I x*eTx for some xeE} and the graph ofT is the set 

G(T):={ (x,x*) I xe x*e . If T is monotone fu"ld G(T) is not properly 

contained in the graph of a monotone operator on E then T is said to be maximal 

monotone, 

We adopt the natural duality on ExE* identifYing (ExE*)* vl'ith E*xE so 

that <(y*,y),(x,x*)> := <y*,x> + <x*,y> for all x and y in E and x* an_d y* in E*, 

Our convex functions vlill be proper, that is, they have values in ]~=,oo] and are 

not identically equal to ""· 
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2. Conwex: functim:lls on ExE*. lnthls section we define and study a monotone 

n"'''""""""' on E a convex flLnction on ExE*" 

2.1. Definition Fo:r each convex function f on ExE* let 

Tfx := {x*eE* I (x*,x)eClf(x,x"')} 

for each xe E. 

2.2. Proposition Iff is convex on ExE* then Tf is a monotone operator on E. 

Proof If x*e Tf x and y*e Tf y then, since df is monotone, we have 
<x*- ,x- y> = <(x"',x)- (y*,y),(x,x*)- (y,y*)> ~ 0. + 

2.3. Example Let g be a convex function on E and 
f(x,x*) := g(x) + = sup{g{x)- g(y) + <x*,y> I yeE}. 

Then Tr= Clg. 
Proof If x*e dg(x) then xe Clg*(x*) so that 

(x* ,x)e df(x,x*) then for ue E we have 

<x*,u> = <(x*,x),(u,O)> S f(x+u,x*)- f(x,x*) 

Clf(x,x*)o On the other hand if 

= g(x+u) + g*(x*) - g(x) - g*(x*) = g(x+u) - g(x) 

so that x*e og(x) as required. 

We will be interested in the case when f(x,x*) ~ <x*,x> for an XEE and 

x*e E*. This allows a simple way to guarantee x*e Tfx. 

2.4. Theorem Suppose f is a convex function on ExE* such that f(x,x*) ;;:: <x* ,x> 

fo:r all (x,x*) in some neighbourhood U of (y,y*). If f(y,y*) = then y*eTrY· 

Proof Let (z,z*)eExE* and s > 0 so that (y+sz,y*+sz*)eU. Then 
f(y+z,y*+z*)- f(y,y*) ;;:: s-l[f(y+sz,y*+sz*)- f(y,y*)] ~ s-l[<y*+sz*,y+sz>- <y*,y>] 

= <z*,y> + ,z> + s<z*,z>. 

Letting S--t0+ we have f(y+z,y*+z~')- f(y,y*) ;;;:: <z*,y> + <y*,z> so that (y*,y)e of(y,y*) 

and y*e Tfy as required. 

Now denote the x-section of f by fx(x*) := f(x,x*) fo:r xeE and x*eE*. 

2.5. Theorem Suppose f is a convex function on ExE* and XE of"(x*). If 
sup { <y* ,x> - f(x,y*) I y*e E*} = 0 (1) 

then f(x,x*) = <x*,x>. 

Proof If u*eE* then <u*,x> S f,c(x*+u*)- fx(x*) so we have 
<x*+u*,x>- f(x,x*+u*) S - f(x,x*). 

Taking the supremum over u* we see from (1) that 0$ <x*,x>- f(x,x*). However 
putting y*=x* in (1) we get <x* ,x> - f(x,x*) S 0 so f(x,x*) = <x* ,x>. 4> 
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2J:t Corollary Suppose E*} = 0 tor all yeE. Then 

XE a~'((x*) if and only if x*e Tfx. 

Proof Combine Theorems 2.4, and 2.5. 

3, Convex ~.lllletiolllll!i frcom monotone O]I:IC:t":BltolN!l. In thls section Y'le define and 

study a convex function on ExE* using a monotone operator on E. 

3.1. Definition Let T be a monotone operator on E. l<'or xeE and x*eE* let 

Ly(x,x*) :"" + <y~' ,x ·· y> I q, 

The first res-ult is imn11ediate from the definition. 

:=t:z. Proposition If 

convex on Ex:E*. 

then the function ~" is lower se:micontinuous ru.11d 

4? 

As a start to examining we have the follov,ring result. 

3.3. lf_,emma If T is a monotone '"'""'""''''1~"'.,. on E and 

and x*e E* we have 

,x- y> + <x*,y> 

then (y,y*) E dLy(x,x*). 

Proof For each UE E and u*e E* we have 

Ly(x+u,x*+u*) -

= sup{<x':'+u*,v> + 

;;:: <x*+u*,y> + <y*,x+u>- <y*,y>­

= <y*,u> + <u*,y> 

so we have (y,y*) E tiLy(x,x*). 

Lr(x,x*) = <x*,x> and (x*,x) E dLy(x,x*). 

orn and for some XE E 

E G(T)} - Lr(x,x*) 

- <y*,x-y> 

then 

Pro<rPf By monotonicity, for all e G(T) we have <x~',x> 2: <x*,y> + <y*,x-y> so 

that Ly(x,x~') s; <x* ,x>. On the other hand 

Ly(x,x*) ;;:: <x*,x> + <x*,x-x> = <x*,x> 

and now Lemma 2.4 shows that (x*,x) E i3LT(x,x*). 

3,5. Corollary For each monotone operator T on E we have Tx k TLTX for all xe E. 

If T is maximal monotone then T = TLT· ~ 

We note that T = TLT for some mono1xme operators T which are not 

maximal monotone. For example if T is the monotone operator whose graph is 
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{ (0,0)} then Lr is identically equal to 0 and T = TLT . 

The situation for LTf is not so dear since one can add a constant to f 

without changing ;)[ To make p:rogTess we need to assume that :2: 

for certain x and x*. 

3.6. Theo:rtem Let f be a convex function on ExE* and suppose 

an X and x* such that (x*,x)e!.lf(x,x*). Then Ln~ f. 

Proof Let ye E and y*e E*. 'l'hen 

LTf =sup{ <y*,x> + <x*,y-x>- f(y,y*) I (x*,x)e Glf(X,J>~')} 

~ <x*,x> for 

= sup{<y*-x*,x> + + <x*,x>- f(y,y*) I (x*,x)e 

~ sup { f(y ,y*) - f(x,x*) + <x* ,x> - f(y ,y*) I (x* ,x)e of(x,x*)} 

=sup{<x*,x>- l(x*,x)ei1f(x,x*)} 

by our assumption on f. 

Next we show a minimality property of Lr· 

3.7. Theorem Let T be a monotone operator on E. If f is a convex function on 

ExE* with f(x,x*) ~ <x*,x> for all xeE and x*eE* and if f(y,y*) = <y*,y> for aU 

(y,y*)e then Lr ~f. 

Proof By Theorem 2.4, if y*eTy then y*eTfY· Thus for all xeE and x*eE* we 

have 

Lr(x,x*) = sup{<x*,y> + <y*,x-y> I (y,y*)eG(T)} 

~ sup{<x*,y> + <y*,x-y> I (y,y*)eG(Tf)} 

LTf(x,x*) ~ f(x,x*) 

by Theorem 3.EL 

However to get Ly(x,x*);::: <x*,x> we need maximal monotonicity. 

3.8. Theorem If T is a monotone operator on E then T is maximal monotone if 

and only if Lr(x,x*) > <x* ,x> whenever xe E and x*e E*\T(x). 

Proof If Ly(x,x*) ~ <x*,x> then we have <x*,y> + <y*,x-y> ~ <x*,x> for all 

(y,y*)e G(T) so <x*-y* ,x-y>;::: 0. When T is maximal monotone that implies 

x*e Tx. Conversely if T is not maximal monotone then there are xe E and 

x*e E*\T(x) such that <x*-y* ,x-y> :2: 0 for aU (y,y*)e G(T). It follows that 

Ly(x,x*) ~ <x*,x>. 

::t9. Corollary Let T be a maximal monotone operator on E. Then 

Ly(x,x*) :2: <x* ,x> for all xe E and x*e E*, and Ly(x,x*) = <x* ,x> :if and if 

x*e:Tx. 

Proof Use Theorems 3.4 and 3.8. 
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Now for maximal monotone operators ·we have a nice characterization of 

Lr· 

3o10. Theorem n· T is a maximal monotone operator on E then is the 

minimal convex function f on ExE* such that ;::: <x* ,x> for rul x<:: E and 

x*<::P and = <y*,y> for aH (y,y*)eGCn 

Proof \Ve have l.rr:::;; f for any such f1.mction f by Theorem 3.7. However Lr has 

the :required properties by Corollary 3.9. i> 

Recall that a monotone operato:r T m1. E is angle-bounded provided there 

is a> 0 such that <x*-y'~,y-z> :<:; o:<x*-z*,x-z> wheneve:r (x,x*), and 

are in 

3.11. Theorem If T is an angle-bounded monotone operator on E and xED(!) 

and z*e then LT(x,z*) < ""'· 
Proof Let (x,x*) and (z,z*) belong to G(T). For aU (y,y*)e G(T) we have 

+ <y*,x-y> = + <z*~x> 

:::; o:<z*-x*,z-x> + <z*,x> 

so Ly(x,z*) :::;; a:<z*-x* ,z-x> + <z* ,x> < =. 

3.12. Corollm·y If T is .angle-bom1ded. then Lrr is finite on conv D(T) >< conv R(T). 

Proof Since Lr is convex and is finite on D(T)xR(T) we see that Lr is finite on 

= conv D(T) >< conv • 

::t13. Corollary If g is a lower senncontinuous convex function on E then Lag is 
finite on conv D(Cig) x conv R(og). 

Proof The monotone operator og is angle-bounded with a = 1. 

4. Dualit;~l results. For each monotone operator T on E let 

tr <x* ,x> if (x,x*) E G(T) 
ttr(x,x"') := • . 

= otherWise. 

;,tl. Proposition If T is a monotone operator on E then Ly(x,x*) = hT*(x*,x) a:r1d 

Lr*(x*,x) = hT**(x,x*) for all xeE and x*eE*. 

Proof These statements are imm.ediate from the definitions. 

4,2. Proposition If T is a monotone operator on E then Lr(x,x*) :::;; Ly*(x*,x) :::; 

hT(x,x*) for all xeE and x*eE*. For all (y,y*) e G(T) we have Lr~'(y*,y) = <y*,y>. 

Proof If (y ,y*)e G(T) then Ly(y ,y*) = ,y> which shows Lr :5: hT. Thus Lr* ~ hT*, 

so Ly*(x* ,x) ;::: Ly(x,x*) for all xe E and x*e E*. Since hT**(x,x*) :::;; hr(x,x*) we 
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have Lr*(x* ,x) ::;; hT(x,x*). Now if (y,y*)e G(T) then <y*,y> ""L7 (y,y*) ::;; Lr*(y* ::;; 

hT(y,y*) = <y*,y> and we see Lr*(y'~ = <y*,y>. 

all (x,x*) e conv G(T) and Ly*(x* ,x) = ""' for all ~ cl conv G(l). 

Proof Since Lr*(x*,x) = <x*,x> <""' fo:r 

Ly*(x*,x) <co for all (x,x*) e conv 

e G(T) and Lr* is convex we have 

is not in cl conv G(T) then 

hT**(x,x*) = "" (because 

LT*(x*,x) = =. 
is the lower semicontinuous convex closure of h), that 

• 
4A. ProposUion Suppose T is a monotone on E and (y,y*) e G(T). If 

xeE and x*eE* a:re such that Ly(x,x*) = - y> + <x*,y> then (x,x*) and (y,y*) 

are in GlLr*(y*,y). 

Proof By Lemma 3.3 we have e iJLy(x,x*), so (x,x*) e ()Ly*(y* ,y). Since 

Ly(y,y*) = <y*,y> we also get (y*,y) e ()Ly(y,y*) and (y,y*) e dLy*(y*,y). + 

Next we note the relationship of the saddle function 

duality with Ly. 

ofKrauss [Kr] in 

4.5. Theorem If T is a monotone operator on E and xeE and x*eE* then 

Ly(x,x*) =sup{ <x*,y>- KT(x,y) I yeE}. 

Proof For each xe E Krauss defines KT(x,-) to be the closure of the convex 
function HT(x,-) which is defl.ned by 

HT(x,y) :::: infJ !'A;(y:,y;- [ne N, 'A;<::O, !i\=1, tl;Y;"'Y, 
l~l •1 •1 

Thus for xe E and x*e E* we have 

sup{<x*,y>- KT(x,y) I yeE} = sup{<x*,y>- HT(x,y) I yeE} 

= sup{(x*,y)+ ~)i(y;\x-y~ lneN,'Af:O, !\=1, (Y;·Y~)eG(T)1 
i=l I •1 J 

= sup { <x*,y> + <y* ,x- y> I (y,y*)e G(T)} = Lr(x,x*)" 

Similarly one can express K., in terms of Ly as follows. 

4.6. Theorem If T is a monotone operator on E and xe E and ye E then 

KT(x,y) =sup{ <x*,y>- Ly(x,x*) I x*eE*}. • 

Thus one could translate the results ofKrauss[Kr] into our framework 

However that procedure seems to yield unwieldly statements and there may be 

more natural conditions for existence of solutions and for the maximality of sums 

of monotone operators, which can be expressed in terms of Tr and Lr" 
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5. Problems. F'inally we list some open problems about Tf and Lr. 

5.1. Problem For which convex functions f is LTr = f? 

5.2. Pr·oblem Fo:r which riwnotone operators T is Tt;r = T? 

5.3. Problem For which convex functions f is Tr maximal monotone? 

5.4. Problem If S and T are monotone operators characterize Ls+T. 

5.5. Probll8m The convex fill'.1ction in Example 2.3 has f(x,x*) = f*(x* Given a 
n:wnotone operator T on E find. a convex function f on ExE':' such that 

:;;;:,; and f(x,x*) = for all xeE and. x*eE*. For which such f is 

Tr maximal monotone? 
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