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REPRESENTING MONOTONE OPERATORS BY CONVEX FUNCTIONS

Simon Fitzpatrick

Abstract We transform the representation of monotone operators due to Krauss to
get a representation of monotone operators in terms of the subdifferentials of
convex functions on the product of the space and its dual. The convex functions
representing maximal monotone operators satisfy a minimality condition.
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1. Introduction. The representation of monotone operators on a space E in terms
of the subdifferentials of saddle functions on ExE was accomplished by Krauss
[Kr]. In this paper we develop the representation of monotone operators on E in
terms of the subdifferentials of convex functions on ExE*, These are actually
transforms of Krauss’ saddle functions. However the results we obtain have quite
a different flavour than those of Krauss.

We originally tried this approach in attempting to solve a problem we
stated in [F-C]: if a monotone operator on Banach space E has domain E and
range E* then must E be reflexive? However it seems that convex analysis on
ExE* does not help answer that question.

Throughout this paper E is a Hausdorff locally convex space and E* is its
dual with the weak* topology. We recall some definitions. A mapping T of E
into subsets of E* is a monotone operator provided for each x*eTx and y*eTy we
have <x*-y*x-y>20. The domain of T isthe set D(T):={xeE | Tx=0}, the range .
of T is the set R(T):={x*cE* | x*e Tx for some xeE} and the graph of T is the set
G(T):={(x,x*) | xe D(T), x*e¢ Tx}. If T is monotone and G(T) is not properly
contained in the graph of a monotone operator on E then T is said to be maximal
monotone .

We adopt the natural duality on EXE* identifying (EXE*)* with E*xE so
that <(@y*,y),xx*)> = <y*x>+<x*y> forall x and y in E and x* and y* in E*.
Qur convex functions will be proper, that is, they have values in J-eo,co] and are
not identically equal to e.
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2. Convex functions on EXE*, In this section we define and study a monotone
operator on E using a convex function on EXE*,

2.1. Definition For each convex function f on ExXE* let
T := {x*eE* | (x*x)e of(x,x*)} v
for each xeE. ' ®

2.2, Proposition If f is convex on EXE* then T; is a monotone operator on E.
Proof If x*eT;x and y*eT;y then, since df is monotone, we have
<x*-y*x-y> = (1/2) <(x*x) - (y*,y)(xx¥) - (v,y*)> 2 0. ¢

2.3. Example Let g be a convex function on E and

f(x,x*) = gx) +g*(x*) = sup{g(x) - g(y) + <x*y>|yeE}.
Then T;=0g.
Proof If x*edg(x) then xedg*(x*) sothat (x*x)edf(x,x*). On the other hand if
(x*,x)e of(x,x*) then for ueE we have

<x*u> = <(x*x),(1,0)> < f(x+u,x*) - f(x,x*)

= g(x+u) + g*(x*) - g(x) - g*(x*) = gx+u) - gx)

so that x*edg(x) as required. %

We will be interested in the case when f(x,x*) = <x*x> for all xeE and
x*e E*, This allows a simple way to guarantee x*e Tgx.

2.4. Theorem Suppose f is a convex function on EXE* such that f(x,x*)> <x* x>
for all (x,x*) in some neighbourhood U of (y,y*). If f(y,y*) = <y*,y> then y*eTyy.
Proof Let (z,z*¥)eEXE* and s>0 so that (y+sz,y*+sz*)e U. Then
f(y+z,y*+2z*) - f(y,y*) 2 s1f(y+sz,y*+sz*) - f(y,y")] = sl[<y*+sz*,y+sz> - <y*,y>]
= <z*y> + <y*,z> + s<z¥,2>,
Letting s—0+ we have f(y+z,y*+z*) - f(y,y*) 2 <z*)y>+ <y*,z> so that (y*,y)e of(y,y*)
and y*eTsy as required. ¢

Now denote the x-section of f by f,(x*):=f(x,x*) for xeE and x*eE*,

2.5. Theorem Suppose f is a convex function on ExE* and xeodf (x*). If
sup{<y*x> - f(x,y*) | y*€ E*} =0 ey
then f(x,x*) = <x* x>,
Proof If u*eE* then <u*x> <f,(x*+u*) - f,(x*) so we have
<xFHuk,x> - f(x,x*4+u*) < <x* x> - f(x,x*%).
Taking the supremum over u* we see from (1) that 0 < <x*x> - f(x,x*). However
putting y*=x* in (1) we get <x*x>-f(x,x*) < 0 so f(x,x*) = <x*x>, 13
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2.6. Corollary Suppose sup{<y*y>-f(y,y*) | y*eE*} =0 for all yeE. Then
xe of,(x*) if and only if x*eTgx.
Proof Combine Theorems 2.4 and 2.5. @

3. Convex functions from monotone operators. In this section we define and
study a convex function on EXE* using a monotone operator on E.

3.1. Definition Let T be a monotone operator on E. For x€E and x*cE* let
Lp(x,x*) := sup{<x*,y> + <y*x - y> | (y,y*)e G(T)}. &

The first result is immediate from the definition.

3.2. Proposition If D(T)#0 then the function Ly is lower semicontinuous and
convex on ExE*, 3

As a start to examining JdLy we have the following result.

3.3. Lemma If T is a monotone operator on E and (y,y*)e G(T) and for some xeE
and x*eE* we have
Lp(x,x*) = <y*x - y> + <x*,y>
then (y,y*) € dLy(x,x*).
Proof For each ucE and u*eE* we have
Lrp(x+u,x*+u*) - Lp(x,x*)
= sup{<x*+u*,v> + <v¥x+u> - <v¥v> | (v,v¥) € G(T)} - Lp(x.x*)
2 <xFuky> + <yFx+u> - <yEy> - <xFy> - <yFx-y>
<y*,u> + <u*y> '
so we have (y,y*) € oLp(x,x*). %

3.4. Theorem If T is a monotone operator on E and (x,x*) e G(T) then
Lp(x,x*) = <x*x> and (x*,x) € oLp(x,x¥).
Proof By monotonicity, for all (y,y*) e G(T) we have <x*x> 2 <x*y>+ <y*x-y> so0
that Lp(x,x*) < <x*x>. On the other hand
Lp(x.x*) 2 <x*x>+ <x*x-x> = <x*3x>
and now Lemma 2.4 shows that (x*,x) € oLp(x,x¥). &

3.5. Corollary For each monotone operator T on E we have Tx ¢ Ty rx for all x<E.
If T is maximal monotone then T =Tyr. ¢

We note that T=Tpp for some monotone operators T which are not
maximal monotone. For example if T is the monotone operator whose graph is
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just {(0,0)} then Ly isidentically equalto 0 and T=Tyy.

The situation for LT; is not so clear since one can add a constant to f
without changing of. To make progress we need to assume that f(x,x*) > <x* x>
for certain x and x*. ‘

3.6. Theorem Let f be a convex function on ExE* and suppose f(x,x*)2 <x*x> for
all x and x* such that (x*x)edf(x,x*). Then Ly<f.
Proof Let yeE and y*cE*, Then
L1 (7,5%) - £(y,y%) = sup{<y*,x> + <x*,y-x> - f(y,5%) | (x*x)e of(x,x*)}
= sup{<y*-x*x> + <x*y-x> + <x* x> - f(y,y*) | (x* x)e of(x,x*)}
< sup{f(y,y*) - f(x,x*) + <x* x> - f(y,y*) | (x*,x)e of(x,x*)}
= sup{<x*x> - f(x,x*) | (x*,x)e of(x,x*)}
=0
by our assumption on f. é

Next we show a minimality property of Ly.

3.7. Theorem Let T be a monotone operator on E. If f is a convex function on
ExE* with f(x,x*)2<x*x> for all xeE and x*eE* andif f(y,y*) =<y*,y> for all

(y,y%)e G(T) then Ly <f.

Proof By Theorem 2.4, if y*eTy then y*eTy. Thus for all xeE and x*cE* we
have

Ly(xx*) = sup{<x*y>+ <y*x-y> | (y,y*)e G(D)}
< sup{<x*y> + <y*x-y> | (y,y*)e G(Tp}
= Lps(xx*) < f(x,x¥)
by Theorem 3.6. %

However to get Lp(x,x*) = <x*x> we need maximal monotonicity.

3.8. Theorem If T is a monotone operator on E then T is maximal monotone if
and only if Lp(xx*) > <x*x> whenever xeE and x*e EX\I(x).

Proof If Lp(x,x*) < <x*3x> then we have <x*jy>+ <y*3x-y><<x*x> for all
(7,y%)eG(T) so <x*-y*x-y>=0. When T is maximal monotone that implies
x*eTx, Conversely if T is not maximal monotone then there are xeE and

x*e¢ EMT(x) such that <x*-y*x-y>20 for all (y,y*)eG(T). It follows that

Lr(x,x*) < <x* x>, ¢

3.9. Corollary Let T be a maximal monotone operator on E. Then

Lp(x,x*) 2 <x* x> for all xeE and x*eE*, and Lp(xx*) = <x*x> if and only if
x*e Tx.

Proof Use Theorems 3.4 and 3.8. ' @
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Now for maximal monotone operators we have a nice characterization of

3.10. Theorem If T is a maximal monotone operator on E then Ly is the
minimal convex function f on EXE* such that f(x,x*¥)2><x*x> for all xeE and
x*e¢E* and f(y,y*) =<y*,y> for all (y,y*)eG(T).

Proof We have Ly<f for any such function f by Theorem 3.7. However L; has
the required properties by Corollary 3.9. @

Recall that a monotone operator T on E is angle-bounded provided there
is a>0 such that <x*-y*y-z><a<x*-z*x-z> whenever (x,x*), (y,y*) and (z,z*)
are in G(T).

3.11. Theorem If T is an angle-bounded monotone operator on E and xeD(T)
and z*eR(T) then Lg(x,z*) <.
Proof Let (x,x*) and (z,2*) belong to G(T). For all (y,y*)e G(T) we have
<zZFy> 4 <yFx-y> = <zF-yFy-x>+ <zF x>
< o<z¥*-x*,z-x> + <z* x>
80 Lp(x,z*) < a<z*-x¥,z-x> + <z¥ x> <eo, ¢

3.12. Corollary If T is angle-bounded then Ly is finite on conv D(T) X conv R(T).
Proof Since Lt is convex and is finite on D(T)XR(T) we see that Ly is finite on
conv(D(T)XR(T)) = conv D(T) x conv R(T). ¢

8.13. Corollary If g is a lower semicontinuous convex function on E then L, is
finite on conv D(dg) X conv R(dg).

Proof The monotone operator dg is angle-bounded with o =1. 3

4. Duality results. For each monotone operator T on E let

<x*x> if (x,x*) e G(T)
hT(x,x*) =

«  otherwise.

4.1. Proposition If T is a monotone operator on E then Lp(x,x¥)=hp*(x*x) and
Lr*(x*,x) = hy**(x,x*) for all xeE and x*eE*.
Proof These statements are immediate from the definitions. e

4.2, Proposition If T is a monotone operator on E then Lp(x,x*) < Ly*(x*x) <
hp(x,x*) for all xeE and x*eE*. For all (y,y*) e G(T) we have Lr*(y*,y) = <y*,y>.
Proof If (y,y*)e G(T) then Ly(y,y*)=<y*,y> which shows Ly <hyp. Thus Ly*2=h*,
so Lp*(x*,x) = Lp(x,x*) for all xeE and x*eE*, Since hp**(x,x*) <hp(x,x*) we
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have Lt*x*x) < bp(x,x*). Now if (y,y*)eG(T) then <y*y>=L(y,y*) <Ly*@y*y) <
hr(y,y*) = <y*,y> and we see Li*(y*y) = <y*y>. ¢

4.3. Theorem If T is a monotone operator on E then Lp(xx*) < Ly*(x*x)<e for
all (xx*)e convG(T) and Ly*(x*x) = forall (xx¥)e clconvG(T).

Proof Since Lp*(x*x)=<x*x><ee for (x,x*) e G(T) and Ly* is convex we have
Lr*(x*x) <eo forall (x,x*)e convG(T). If (xx*)isnotin clconv G(T) then
hp**(x,x*) = o (because hyp** is the lower semicontinuous convex closure of h), that
is, Lp*(x*,x) = e, ¢

4.4. Proposition Suppose T is a monotone operator on E and (y,y*) e G(T). If
xeE and x*eE* are such that L(xx*)=<y*x-y>+<x*y> then (xx*) and (y,y*)
are in JdLr*(y*,y).

Proof By Lemma 3.3 we have (y*,y) € dLp(x,x¥), so (x,x*) e dLp*(y*,y). Since
Ly(y,y*) = <y*y> we also get (y*,y) € dLr(y,y*) and (y,y*) € dLp*(y*.y). ¢

Next we note the relationship of the saddle function Kt of Krauss [Kr] in
duality with Ly,

4.5. Theorem If T is a monotone operatoron E and xeE and x*eE* then
Ly(x,x*) = sup{<x*,y> - Kr(x,y) | ye E}.

Proof Foreach xeE Krauss defines Ky(x,") to be the closure of the convex

function Hy(x,) thCh is defined by

Hixy) i= iiw b5

Thus for xeE and x*¢E* we have
sup{<x*,y> - Kp(x,y) | yeE} = sup{<x*y>- Hy(x,y) | ye E}

= sup { (<*9) + X;Ay xe y>

=1

ne N, 1.20, ik— zlyl—y,yeTyT

)
neN, A0, 2)» =1, (y,y)e G(T)j
= sup {<x*y>+ <y*x - y> 1 (y,y)NeG(D)} = Lyxx*). ¢

Similarly one can express Ky in terms of Ly as follows.

4.6. Theorem If T is a monotone operator on E and x€E and yeE then
Kr(x,y) = sup{<x*,y> - L1(x,x*) | x*e E*}. 23

Thus one could translate the results of Krauss [Kr] into our framework.
However that procedure seems to yield unwieldly statements and there may be
more natural conditions for existence of solutions and for the maximality of sums
of monotone operators, which can be expressed in terms of T; and Ly.
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5. Problems. Finally we list some open problems about T; and Lr.
5.1. Problem For which convex functions f is Lp;=f?

5.2, Problem For which monotone operators T is Tyr=T?

5.3. Problem For which convex functions f is T; maximal monotone?
5.4.Problem If S and T are monotone operators characterize Lg t.

5.5. Problem The convex function f in Example 2.3 has f(x,x*) = f*(x*x). Given a
monotone operator T on E find a convex function f on EXE* such that

T(x) c Tdx) and f(xx*)=*(x*x) forall xeE and x*cE*. For which such f is
T; maximal monotone?
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