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"STRONG DENSITY OF FINITE RANK OPERATORS IN SUBALGEBRAS OF B(X)." 

M.S. Lambrou 

Abstract: An open problem in operator theory asks whether for a com

plete atomic Boolean subspace lattice Jlthe rank one subalgebra of 

Algi is strong operator dense in Algi. A very special case of this prob

lem turns out to be equivalent to an open problem in the Theory of Ba

ses. Here various related questions are surveyed and some positive re

sults are given. 

§0 Introduction The first part of this paper is to survey certain density 

results and open problems in Operator Theory. It turns out that a special 

case of the main open problem is equivalent to an old standing problem in the 

Theory of Bases. This perhaps unexpected link between an Operator Theory ver

sion and a Basis Theory version of the same open problem is explored in the 

second part. The third part of the paper gives certain new results along 

these lines. 

The link between Operator Theory and Basis Theory here is provided by a 

result in [1] which is under preparation. To avoid the overlap however we 

sha 11 only report a brief (but sufficiently long) summary of the proof. 

The author wishes to thank his co-authors of [1], S. Argyros ar · 
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w. E. Longstaff, as well as A. Katavolos for many discussions relating to the 

present work. 

_§_}_. Subspace La.ttices. In the fonm,Jing H 11i 11 denote a Hilbert space over 

the real or complex scalars. The cases when H is required to be restricted to 

be a le camp ex Hilbert space over (., wi 11 be specified whenever re-

quired. The letter X win denote a Banach space, again over !Ror (.,, and is 

its dual. The set of (bounded linear) on X is denoted X) and 

the rank one * * x~-~e (x)f for fixed f (I; X and e 1< is denoted 

By X) we denote the lattice of closed subspaces of v 
A, and a coiiection 

l!i X) is ca 11 ed a _:>_:1bspace lattice if it contains the two extremes, X and 

the zel'O (0), and is complete with respect to taking arbitrary closed 

linear· spans and intersect"lons. That is, whenever L_1 ~<:t_ (i<~:I for some indexing 

set I, then also VILi and niLi belong to L If ~.~C(X) then denotes the 

set X) IA(Ll!iL for a.11 U That is, AlgL is the set of all 

leaving the elements of l invariant. It is easy to see that Al is an algebra 

which is closed in the weak operator (and hence topo

X) I A(L sL an A in ll}. logy. Dua 1 if,A:;;.'!B(X) then 

For any . the set is a 

denotes the set (L 
·t 

lattice. Following Halmos' nmv stand-

ard tennino-logy, a subspace lattice is called reflexiv~ if LatAlg = ,t. Note 

that the inclusion LatAl is a true. It is easy to see that a nece-

ssary and sufficient condition for l to be reflexive "is that l= LatJ~ for 

some .A (necessarily ,J\£Alg.t,), For further discussion on the ic of inva

riant subs paces we refer to [22j , 

The question of characterizing reflexive (necessarily ) lattices 

has the fo11owing partial answers. "IViost" of the knovm examples of reflexive 

lattices are distributive in the sense that if l,M,N, are elements of the 

lattice then (LVM N = (LI\N)V011lN) and its dual hold (see [3] for standard 

terminology on lattice Theory.) Indeed,in finite dimensional Banach spaces we 

have the following characterization of R. E. Johnson. 
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Theorem 1 ( [12]) In a finite dimensional vector space a finite lattice is 

reflexive if and only if it is distributive. 

The first reflexivity result in infinite dimensional spaces is due to 

Ringrose who studied certain generalizations of subspace lattices considered 

by Kad i son and S ·i nger in their semina 1 paper [13] . R i ngroses' Theorem is sta

ted and proved in [23]. for Hilbert spaces but the proof c.an be adapted (we 

shall omit this here) to Banach (in fact just normed) spaces. 

Theorem 2 ( [23]) Any totally ordered subspace lattice l of subspaces of a 

Banach space is reflexive. In I' act l= Lat'llt where 'R is the set of rank one 

operators of 

To fix one more nota tiona 1 symbol, for a given subspace lattice t, the set 

of finite sums of rank one operators of Al wi 11 be denoted by 1R,.. This 

may be empty, and will be called the rank one subal of A 1 g t . The 7J( in 

the Theorem 2 can be replaced by this, new, 

The next infinite dimensional reflexivity result is due to Halmos Again 

this is proved for Hilbert spaces but is also valid for Banach spaces. 

Theorem 3 atomic Boolean subspace lattice l of subspaces of a Ba-

nach space satisfies fL= Latlll. and hence is ref1exive. 

(The conclusion L= Lat?R. is not stated in [9] but it is implicit in the 

proof). Recall that Boolean lattices are distributive. Related to these is 

the resu 1t of Harrison [1Q] who showed, again in the presence of a certain 

(strong) distributivity condition,a reflexivity resu1t.Specifica11y an infi

nitely distributive subspace lattice l in which each non-zero sub-space is 

the join of completely-join-irreducible subspaces in l is reflexive. All of 

the last three results are a special case of the result of Longstaff (which 

we state for Banach spaces instead of the original Hilbert space version). 
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Theorem 4 ( [18]). Every completely distributive subspace lattice l of sub

spaces of a Banach space satisfies l= Latll and hence is reflexive. 

We shall not attempt to define complete distributivity here (see ~8], [14]). 

We only mention that it is equivalent to the identity 

L =n{M_ I MEL, M~LJ 

holding for all Lin!, where M is defined as 

A most interesting family of reflexive lattices that has been the object 

of very active research in the past few years are, in complex Hilbert spaces, 

the commutative subspace lattices of Arveson [2]. A subspace lattice is called 

commutative if the corresponding projections commute. For example totally or-

dered subspace lattices have this property. In the pioneering paper [2] we 

have (for separable Hilbert spaces but extended to general ones by Davidson 

in [6] ): 

Theorem 5 ([2], [6}). In a complex Hilbert space every commutative subspace 

lattice is reflexive. 

It is easy to see that commutative subspace lattices are distributive, but 

not conversely.(For example two non-orthogonal quasi-complemented subspaces). 

An ex amp 1 e of T. Trent in [11] (Ex amp 1 e 4) shows that there exist commutative 

subspace lattices which are not completely distributive. A necessary and su-

fficient condition for complete distributivity of a commutative subspace 

lattice is given in [11], drawing upon deep results of Arveson in [2]. 

Not all examples of reflexive lattices are distributive. For example t:(X) 

is such, but a non-trivial example (a pentagonal lattice) is given by Halmos 

in [9]. This result is extended by Longstaff [1~ to lattices satisfying 

the condition 
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for all L in L. Notice that if this dimension is zero, we have complete 

distributivity. 

' In infinite dimensional spaces the other direction of Johnsons finite 

dimensional characterization, Theorem 1 above, also fails. Conway [4] gave 

an example of a non-reflexive Boolean (and thus distributive) lattice. To 

summarize,the above results·can be 

each dot signifies that the space 

concerned is non-empty. Below w~ 

produce an examp-le showing that 

the remaining space is also non-

en:pty. That is, we produce a 

reflexive distributive subspace 

lattice which is neither complete 

distributive nor commutative (In 

pictured in the fo11ovving d·iagram, where 

/d"t~bt-./ 
/ 1 s n ,u lVe 

{ 'fi // ---~ reflexive 

\ /~:~~~\ 
\ { ~\ 0 ( commu-

~~// 
~ 

order not to distract from the survey,we postpone the example till §3). 

The Ringrose, Halmos and Longstaff reflexivity results above showed 

the presence of sufficiently many rank one operators to describe the 

lattice. A pertinent question ·is 1vhether 1!, is large enough to describe 

the a 1 gebl"a : Is it true that the strong operatol' c 1 osure of 1R is the 

whole of Alg$-.? For example the algebra ?B(X) falls into this category, 

and note that (X)= AI for the trivia1 subspace lattice ll={(o), xJ. 

It turns out that complete distributivity is the right context for strong 

density of 111... Infact the following characterization, which for obvious 

reasons we cal1 the 1-density, is valid. The necessity is from ['19] and 

the sufficiency from [15). 

Theorem 6 ( [19J , [15] ) Let t be a subspace 1 a tt ice on a Banach space X. 

Then a necessary and sufficient condition for(!tt to be completely distribu-
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tive is that for each x, X, ~:,::;.0 and A~Algl there exists an element R of 'iR, 

the set of finite sums of rank one operators of Alg£,, such that I lAx- Rxll<~. 

Observe that the condition in this theorem need only be verified for 

A I, the identity on X, since the set 'l$t is an ideal of .1\lgl. 

Is strong density a conclusion in the above theorem? That is, if we can 

approximate at any one given vector x within epsilon, can v1e do the same 

for any given finite set of vectors?This is an open problem and we state: 

9uestion 1 Let l be a completely distributive subspace lattice. Is the set 

of finite sums of rank one operators of Aig£.. strong operator dense in Algi.? 

The question is equivalent to asking weak operator density of~ in AlgL, 

since on convex sets the two closures coincide. For Hilbert spaces it is 

also of interest to know (the harder) density in the ultraweak and ultra-

strong topology or to know whether density can be uniformly bounded or 

sequential. Finally whether, at least, the various density properties hold 

for sets between Gland AlgL, such as the trace class or Hilbert- Schmidt 

or even the compact operators of Algl. 

In several special cases the above question is known to have an 

affirmative answer. Perhaps the best result in this context is the Erdos 

density theorem which not only concludes strong density of ?R. in the case 

of totally ordered tin separable Hilbert spaces, but the following 

Kaplansky type unit ball density theorem holds. 

Theorem 7 ( [ 7] ) Let l be a totally ordered subspace 1 att ice on a comp 1 ex 

separable Hilbert space. Then for any given A in the unit ball of Algt, 

and given x1' x2, ... , x11 in X,;;."> 0, there is an R in the unit bal1 of 'R 

such that I I Ax . - R x . I I < ~ ( i = 1 , 2 , .. , n ) . 
l l 

Totally ordered subspace lattices are both commutative and completely 
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distributive. In the presence of cornmutativ.ity we have an affirmative 

answer to Question l. The following is putting together results from [11] 

and [17] which lilsed [2] and [16] . 

Theorem 8 ( [11], [17]). Let R... be a commutative subspace lattice. Then L 

is completely distributive if and only if the Hilbert- Schmidt operators 

of Algl., are strong operator dense in Algi. if and only if 7R is dense in 

Algl in any of the strong, weak,ultrastrong or ultraweak operator 

topologies. 

In their theorem [11] the authors give yet another characterization of 

complete distributivity ( in the commutative case.) This is a measure 

theoretic characterization which was used by T. Trent in his example 

(see above) to show that a conn;1utative subspace lattice may have trivial~. 

and hence may be non-completely distributive. 

In the unpublished [1] the special case of a complete atomic Boolean 

subspace lattice with two atoms is settled affirmatively. Moreover a result 

of Harrison to appear in [1] settles the unit ball question when the 

underlying Hilbert space is separable and complex. 

Theorem 9 ([1] and Harrison reported in [1]) (i). Let Land M be quasi

camp l emented subspaces of a Banach space X. Then in A 1 g l, where 1. = 

[(0), L, f··1, x}, i1t is strongly dense in Alg'i,.. Moreover 

(ii) In the case of complex separable Hilbert spaces, the conclusion 

of Theorem 7 holds. 

Another special case of complete atomic Boolean subspace lattices on 

a Banach space are the ones in the other extreme, namely those with one 

dimensional atoms. Those proved [1] to be intimately related to a 

generalization of a Schauder basis, and a special case of Question turned 

out to be an open problem in the Theory of Bases. We discuss this in the 



90 

next section" 

§ 2 Strong M-bases. One of the generalisations of a Schauder basis on 

Banach space studied in [26] are the strong ~1- bases, Reca 11, a strong 

M- basis is an M- basis (complete and total biorthogonal family) (f , 
n 

with the additional property that 

n{er f n~' = Vrc (for every I 4i:ll'l) 

These bases ~trere introduced previous by various authors under a 

variety of names or equivalent (as it was later l definitions. For 

example the strong complete bases of Markus and the 1- series 

summab l e bases of Ruck 1 e [25J, are i dent i ca 1 to the strong M- bases. The 

following is more or less from [1] and connects the notion of strong 

M- bases to completely distributive subspace lattices. 

Theorem 10 Let ( f *) be an M- basis. Then the following are equivalent 
' n 

( i) The set l= is a complete atomic Boolean subspace 

lattice (with one dimensional atoms the <:fi>). 

( i i) For each I and J conta·ined inl'f'lv1e have ('\/ 1t 1l()(V/j) = Vrn/;: 
(iii) * (fn,fn ) is a strong M- basis. 

(iv) For any x in X and f. >0 there exists a finite rank operator of 

the form R = ~ 7>! 1 t/®t1 such that II x-Rx II ~'t. 

Brief [1]: The hardest part of the proof is (ii)*(i). Assuming 

(ii) clearly t is complemented and distributive. The difficu is to prove 

completeness. This requires us to prove that the condition in (ii) extends to 

arbitrary intersections: 

The one inclusion being obvious let x be in the left hand side. We can 

construct inductively using (ii) a sequence 111 of finite sets of indices 
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such that x is w·ithin 1/n of the linear span of tf 1 I i Elnl and such that 

I , 11i(IJI )!H\I,. Then if I = U 12 ., 1 , J = \J r2n , it is easy to see 
nT ""~"" m " "' n T " 

that x belongs to both V1f. and VJf .. Again by (ii) it follows that 
- l l 

x(-V1 nJi=~r;./i' completing the summary of the proof. The other parts 

are included in one way or another in the literature. 

The crucial observation in the above theorem is that the operators 

appearing in (iv) are in Alyl for .l the complete atomic Boolean subspace 

lattice described in (i). By Lemma 3.1 of ~8] these operators exhaust 

So (iv) ·is simply the conclusion of Theorem 6 ~•hich is valid for the more 

general case of completely distributive subspace lattices. (Reca11 that 

complete atomic Boolean lattices are completely distributive by a result 

of Tarski [3]). On the other hand, strong density of~ is not known even 

in the (very) special case of complete atomic Boolean subspace lattices 

with one dimensional atoms considered here. This question was raised, in 

a different language, Ruckle in [25_1 and \~e state it in an equivalent 

but Operator Theory context. 

Question 2 If l is a complete atomic Boolean subspace lattice with one 

dimensional atoms, is 1R. dense in Algt in the strong operator topology? 

1' 
Equivalently, if (fi' f; ) is a strong M- basis, is it true that for 

given x1, ... , xN in X and t;>O, there exist scalars i11, ... ,~Msuch that 

II xi -(flnfn'"@fn) x1 ll<:f? 

The corresponding question for sequential density of Jlwas raised in 

[25] and was proved fa 1 se in [5] , so unit ball density as in Erdos' 

Theore1n 7 above fails here. Also notice that for Schauder bases, the An's 

above cou 1 d be taken as 1' s. In [21] ~lenshov gives an ex amp i e where the 

?\'s cannot ahMays be replaced by 1's in the Fourier trigonometric 

functions ( which by Fejers theorem and the equivalence of (iii) and (iv) 

above , form a strong M- basis). 
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If we call the approximation at any given vectors described in 

Question 2 as the n- density property of '(R, the above question can also 

be rephrased as Does 1- density imp n- density for each n? ana 

to the Jacobson n- fold transitivi theorem (see [J] or [22] Chapter 8 

we feel that the following question is more proper. 

Question 2' If Lis a complete atomic Boolean subspace lattice with the 

2- density property (notice that the 1- density property is automatic), 

does it follow that it will have the n- density property? 

Partial answers to relevant questions postponed above are given in the 

section following. 

§3 Some new results 

It was mentioned in §1 that there exists a reflexive and distributive 

subspace lattice which is neither 

tative. The example is as follows: 

completely distributive nor commu-

Example Let e0, e1, be an orthonormal basis of the Hilbert 

space H ~ 2 . Consider the following subspaces of f2 
" L = V e (n = 0, 1, 2" •• ) 

n "•oJ k ,. 
M0 = ( o) , M = V ( e0+ek) ( n = 1, 2, ..• ) 

n ~~..,, 

so that L 0 cL 1 c.L 2 ~··· ,M0cM1c.M2 c ... , Mn£Ln(n~O), 

Ln V Mn + = Ln + 1 ( n l} 0), and, because of the 1 i near independence of 

en + 1 ( n ~ 0) from the previous vector·s, Ln 11 Mn + 1 = ~~n ( n "-" 0). These re

lations show that LnV Mn = Lmax(n,m) Lnn = Mmin(n,m) and hence that 

l = HU{Ln I n?:oJu£~1n ln~oJ is a (not necessari1y complete) lattice. 

We proceed to show that it is also complete and therefore a subspace 

lattice. A moments reflection, because of the above properties, shows 

that we only need to show 
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VI Ln = H = V I Mn 

for any infinite set r:~ of indexes. Because of the inclusions 

Ln ~ Ln-1, Mn~ Mn-1 ( n ~ 1) we only need to show \ANLn = H = V1N~1n. Of these 

the first is clear and the second sallows from the following: since 
"' I 1 .. I 

II e0 -l~r:r(e0 +ekl II ""NII~,ekll-:.m-~ o (*) 

we have that e0 e ~NMn. Thus ek = (ek + eol-eo are also in VINMn, showing 

the required property V1NMn = H. The 
M 

folloHing Hasse diagram summerizes ---t 
I 

I 
the above. I 

I 
Easy direct calculations show / 

that Lis distributive (alter-

natively , since clearly L con-
Lo 

tains neither a pentagon nor a 

double triangle it is distributive). (0) 

On the other hand complete distributivity fails since 

L0 n ( V rv1 ) = L0 yet V ( L0f! M J = ( o) . 
n~1 n n ~1 n 

Finally commutativity fa i1 s s i nee the orthogona 1 projections onto the one 

dimensional subspaces L0 and fvl 1, namely ed:l>e0 and~ (e0 + e1l ® (e0+e 1), 

do not commute. 

It remains to show that lis ref1exive. Although it is possible to de

scribe all of Algl, we only describe sufficiently many operators to 

guarantee reflexivity. We define Rmn = em®(e0+en) form~n':!J.l, and show 

that they leave invariant a11 oft. This is so because 

Rmn U1k) ={o} (Olik~n-l), R 11m(Mk)~.::e0+en'>~Mk (k~n) 
Let then (O)t LE: LatA1gt,, so that R (L):.L. \~e are to show that U:t. mn 

The first step is to show that if x = (x0, x1, ... ) is a non- zero vector 
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in L, and if for some n>O the entry xn is non- zero, then L also contains 

the vectors e0 + e1,. ,. , e0 +en. Indeed, for l>!k"" n we have 

e0 +ek =: RnkHRnk(L);L 
" 

He now distinguish two cases, according as e0¢ L or e0 e. L. 

~ Suppose that the vectors in L a11 have a zero entry from 

"" some N onwards, and let N be the 1east such N. In this case we have Lf:Vek. 
\<::<> 

By the first step each ek = (e0 +ek)~e0 (Uk£N) is also inLand thus 
M N 
~ ek ~ L, showing that L = V ek = LN ~ t. 

'U.-0 \t~O 

If on the other hand the vectors in L do not have ail zero entries 

from any N onwards, the first step shows that L contains all ek (k~O) so 

that L = Ht-f_. 

Case 2, e0~ In this case we shan shm~ L = r~n for some n. Clearly the 

vectors of L must be zero from some co- ordinate onwards: otherwise, by 

the first step, L would contain ali e0 +en and hence e0 by(*). So let N 

be the least integer with the entries of each vector in L having zero co

ordinate. xn for n ~N+l. So each vector x of L is of the form 

"' x = (x0,xl' ... ,xN'O,O, ... ). We show that 1~e must have x0 = ? xi. Indeed, 

the vectors e0 + ek ( l:: k ~ N) are a 11 in L and hence so is the vector 
N " , 

x- 2:: xi ( e0 + e i) = ( x0 -:z. x.) e0 • • 1 

"' As we have assumed that e0 4 L we must have x0 -L.x. = 0, as required. 
'1>!1 ' l 

Hence the vector x of L can be 1~ritten as x =i. x. ( e +e.) showing that it 
I l 0 1 

is in f1w As fviN 5o L by the first step we have L = MN <!:l concluding the proof 

of the reflexivity of l. I 
We remark that we could base the above reflexivity proof on Corol1ary3.2. l 

of ~8]. We have not done so because we can s 1 i ght 1y modify the above 
1.~/fi 

example (replacing Ln by V ek and Mn by 
"' .. ' 

"' ... 
· V (eo+e2k)vV(el+e2k+l)) 

l<:t.l I< ... , 

to arrange that this Lis not covered by the said corollary. In this case 
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it can be shm~n that with the notation in [1~ dim(Mn*e Mn) = 2, On the 

other hand the proof of reflexivity is a trivial modification of the one 

given here. We now turn to density related results. 

Before stating the next theorem, son~ remarks are in order. The 

property "i= A lgl for a subspace 1attice L, where - denotes closure 

under some operator topology, (strong, weak etc.), is equivalent by the 

Hahn- Banach theorem and the ide a 1 property of ~ in A 1 g l to the property 

that for each linear functional~ continuous in 

this topology we have 

X) with respect to 

(lf(R) = 0 for a1l R in!R)~'f(Il = 0. 

In the case of the ultraweak operator topology on a Hilbert space, the 

cant i nuous 1 i near funct i anal s are given by 'fr ( ·) tr (T· l Where T is a 
- .... 

trace class operator and tr denotes trace. So to show 'l1l = Algl it is 

equivalent to showing that if tr (TR) = 0 for all R in~ then tr(T) = 0. 

Reca 11 that the trace of T is given by 2 (Ten, en"'> where fen\ is any 

orthonormal basis. In the following we show under certain assumptions 

on a trace class operator T, there exists a closed linear tran~formation 
*-1 and an orthonormal basis such that <. TAe 11 , A en> = 0. Note that formally 

(but not exactly) this says that A-lTA has its diagonal consisting entirely 

of zeros and a fortiori has zero trace. If for example we knew that A were 

a bounded invertible operator it would follow that A-lTA and hence T itself 

would have zero trace. 

* Theorem 11 Let (fi,fi) be a strong M- basis (equivalently the <f;'> 

generate as aton1s a complete atomic Boolean subspace lattice) on a separable 

Hilbert space and let tr(TR) = 0 for all R in~ ,where T is a trace class 

operator. Then there exists a denselydefined injective linear transfor111ation 

A with dense range and an orthonorma 1 basis (en) IN such that each en 

*-1 *·1 . ) w is in the domain of both A and A and such that <TAen,A e11 >= O(ne:IN • e 
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· may . even take A to be positive. 

Proof Let (en)~ be any orthonormal basis in H and let A0 be defined on 

the linear span of the (en) by A0en = fn. The completeness and totality 

assumptions show that A0 is well defined, is injective, its domain is dense 

and so is its range. We show that this ·Ao is closable. Let then xnt1)(A0), 

f c:;~n) f f" · h ~n) xri_,. 0 and Ax~y. I xn = i- "i e; or some 1n1te sum, we ave "i~ 0 

for each fixed i. But Ax = Z ~~)Ae. = ~A(~lf. so that taking inner n ,. 1 1, 1 1 

product with f/ and using Axn,.y we get }l(r~(y,f;*>, so that (y,f/-;,= o 
* By the totality of the f; we conclude that y = 0, showing that A0 is 

closable. 

Let A be the closed extension of A with G(A) =. G(A0). We have fn = Aen 

4\ *-1 *-1 and claim that en~.u(A ) and A en= * fn . Equivalently we are to show 

* e.. * * * that f n ~~(A ) and A f n = en. Indeed, for x E~(A0 ) (not 1)(A))we have, 

for some finite sum, x =I.\"'; ei so for any fixed n 

* * * 
l<fn, A0x)l = l<fn ,A0E\";e;'>l = l<'fn .h;f;'>l· 

This last expression is either zero or It" nl according to whether n 

exceeds or not the largest index in the summation. In any case the last 

expression is less that or equal to (~1\";1 2 )~. = llxll 

* Hence the map x~( f n , A0x> is cant i no us on ; ( A0 ) showing that 

* * ·-- * * fn '5)(A0 ). But as ~(A0 ) = H we have 1'>(A) = ~(A0 ) (see [8] page54) 

* proving that fn'~(A ). Now for fixed m,n we have 

* * * * c 
<._A f n, em">= (f n, Aen;> =(f n, fm'> = "nm = .(en, em'"> cone 1 ud i ng that 

* * A fn =en, as required. 

Let now T be a trace class operator such .that tr (TR)=O for all R inCJt. 

In particular for the elements f~~f. of ~we have that 
1 1 

' * ' * <: Tf;, f i ) = tr ( T( f; ®f;)) = 0 

*-1 
so that (TAe;, A e;) = 0, as claimed. 
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Now, A is injective with dense range and hence so is the closed 

* linear transformation A . 

By the closed linear transformation version of the polar decompo-

* * * 1 sition theorem ( [;24] page 297) applied to A we have A = U I AA j 2 = UB 

* say, with B closed self- adjoint positive, l)(A) = 1,)(B), and U a partial 

* isometry. Because A is injective with dense range the partial isometry U 

*-1 -1 * * * * is actually a unitary and so we have A = B U and A = B U = BU . 

Hence *-1 / * -1 * ....... 0 = <TAen, A en>=~ TBU en,B U en" 

* and we may replace A by B and (en) by (U en) which is also an orthonormal 

basis. I 
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