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THE RAIKOV CONVOLUTION MEASURE ALGEBRA 

Gavin Brown and William Moran 

1. INTRODUCTION 

What follows is propaganda for the study of a particular commutative Banach algebra, 

A - one not inappropriate to a conference which emphasises automatic continuity. In 

fact A is that subalgebra of the measure algebra, .i\J(T), of all regular bounded Borel 

measures on the circle under the total variation norm and convolution multiplication, 

which is characterised by the automatic continuity of measurable characters: 

A= {l.u:M(T): If v << p, and x E (T dr is v-measurable, then xis continuous} 

Here T d denotes the circle group with the discrete topology and (T aY its (compact) dual 

group. 

The challenge of A is that its Gelfand structure exhibits the delicate interplay of 

harmonic analysis and Banach algebra theory which one finds in the full measure algebra 

M(T), while the cruder pathology which arises from thin sets is necessarily absent. Indeed 

A admits an alternative characterization as the collection, B, of all basic measures 

defined by 

B = {p,cM(T) : E Borel, lp,I(E) > 0 :::::> gp(E) = T} 

Here gp(E) denotes the intersection of all subgroups ofT which contain E. By way of an 

exercise let us note that, for a symmetric Borel set E, some n-fold sum, (n)E, has positive 

Haar measure if and only if gp( E) = T. 
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It turns out that A(= B) can further be described as the intersection of all those 

ideals of measures which annihilate symmetric Raikov systems. For this reason we like to 

call A the Raikov convolution measure algebra or the Raikov kernel. This makes 

it interesting to re-investigate the pioneering work of Raikov and Sreider defining certain 

complex homomorphisms (in fact idempotent generalized characters) of M(T). It has long 

been known that the Sreider scheme for generating splittings of M(T) into a direct sum of 

an ideal and a subalgebra is not subsumed by the Raikov scheme. Here we make the simple 

observation that nevertheless the Raikov and Sreider kernels coincide. Also we sketch a 

proof of the apparently new result that the simplest Raikov splitting is indeed obtained 

by the Sreider method. 

It is by no means obvious that A contains interesting non-singular measures. We 

offer a novel and particularly simple proof of that tact in Proposition 1. Apart from the 

examples just cited, most of the other results mentioned have already appeared in some 

form in [3], [4] or [8]. Some related questions are discussed in Chapter VIII of [7] where 

basic measures appear as "very strongly continuous" measures. There is no analogue there 

of the defining property of A or of the Raikov kernel, but the reader will find other points 

of interest which are ignored here. For further background see [5], [6]. 

Finally we remark that the discussion permits extension from T to general locally 

compact abelian G. For propaganda purposes it is better to exhibit all phenomena in the 

simplest case. 
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2. MEASURABLE CHARACTERS 

Theorem L With the notation of the introduction, A = B and this is a closed ideal of 

M(T). 

Proof Suppose f.J-EM(T)\B. Then there is a Borel set E and some non-zero v << f.J­

which is concentrated on H = gp(E), H ~ T. Without loss of generality we may suppose 

that His dense in T. Now choose some x E (T d/Hr which is not identically one. Then 

X is discontinuous but v-measurable. Thus f.L !f. A and we have checked that A ~ B. 

Suppose next, with a view to obtaining a contradiction, that B Sf; A. There exists 

some f.L E B, v < < f.i-, and v-measurable X such that X fails to be continuous. Since B 

is stable with respect to absolute continuity, we see that v E B. From Lusin's theorem, 

we know that there is some Borel set E with positive v-measure such that the restriction 

of X is continuous on gp(E). The set gp(E) equals T because v E B, so x is everywhere 

continuous. This is the required contradiction. 

Observe finally that B is evidently norm closed and that the ideal property of B 

follows because 

I"'* v(E) = f.L(E- x)dv(x) =J 0 

implies that 

f.L(E- x) =J 0 for some x. 

When f.t E B, we deduce that T = gp(E- x) = gp(E). 

The next result can be deduced from [4], [1]: 

Theore1n 2. The Raikov ],ernel, A, contains the Riesz product measures. Hence A ex­

hibits the Wiener-Pitt phenomenon, A (even An Mo(T)) bas a maximal ideal off the Silov 
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boundary, and only analytic functions operate on A.. 

REMARK 1) For present purposes a Riesz product is given by 

n 

dp = lim IJ(1 + rk cos 21fnkt)dt, where inf nk + 1 > 3. 
n---+oo nk 

k=l 

2) Cantor middle-third measure belongs to A. -in fact for Borel sets E, F (see [3] and 

elaborations in [2]), 

p(E) 01p(F)cx:::; m(E +F), 

where p is Cantor measure, m is Haar measure, a = log 3/ log 4. 

Here is a simple proof that A. contains non-trivial measures and, m consequence, 

exhibits the Wiener-Pitt phenomenon. 

Proposition 1. v1 = * .!.( 84-n + L 4-n) belongs to A.. 
n=l 2 

Proof Note first that Haar measure m can be expressed as follows: 

00 1 
m = * -(Oz-n + Lz-n ). 

n=l 2 

(Of course Ox denotes the point probability located at x and the quickest check is to 

consider Fourier transforms). 

Now define v2 by 

J f(t)dvz(t) = J f(2t)dvl(t) (f E C(T)) 

so that 

*00 1(' r , Vz = - uz.z-2n + O-z.z-2n ). 
n=l 2 
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Considering alternate terms in the infinite convolution form, we now see that 

m =VI* Vz. 

Now suppose that x E (Tdris WI-measurable where WI<< VI· We see that x 2 , given by 

x 2 (t) = x(2t), is WI-measurable and therefore that X is Wz-measurable, where Wz << Vz 

and w2 is related to WI as v2 is related to vi. Now we see that x(s + t) = x(s)x(t) is 

(wi X w2)-measurable and hence that X is (wi * w2)-measurable. But WI * w2 is absolutely 

continuous with respect to m, and it follows that x is continuous. 

The following corollary is now standard: 

Corollary. The spectrum in A of VI is the unit disc while the range of its Fourier-Stieltjes 

transform lies on the real line. 

Proof sketch Consider /n(t) = exp(7ri4nt), 1(t) = exp(1rimt), for some fixed m. We 

see that 

00 

VAICinl) = IT cos(7r4n-k + 7rm4-k) 
k=I 
00 

= II [cos(7r4n-k) cos(7rm4-k)- sin(7r4n-k)sin(7rm4-k)]. 
k=I 

Therefore, as n -+ oo, 

00 00 

VAICinl)-+ err cos(7r4-i)) II cos(7rm4-k) = avAI(/), 
j=I k=I 

for some 0 < a < 1. 

We have just shown that In converges to the constant a in the o-(L00(vi), £I( vi))-

topology. This topology is consistent with that of the Gelfand space b.A of A. Indeed 
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elements ¢ of L.A can be represented as ¢ = ( ¢1') E rri'EA L 00 (J.l ), and the Gelfand 

topology is the appropriate product topology. At this stage we have exhibited an element 

W of L.A with the property that 1J! 111 = a. 

It remains to recall that certain algebraic operations are permissible on L.A. In fact, 

given ¢ = ( ¢1') E L:.A, it turns out that 1¢1, defined coordinatewise by 

belongs to L.A. Moreover, for z with re(z) > 0, 1</>lz given by 

is a member of L.A. 

Now we note that, for re(z) > 0, lwlz(vi) = az belongs to the spectrum of v1 . Varying 

z we see that the spectrum of v1 is indeed the entire unit disc. 

3. RAIKOV SYSTEMS AND SREIDER SPLITTINGS. 

A Raikov system, R, is a family ofF" subsets ofT closed under countable unions, 

algebraic sums, translates, and F" subsets. Given such a system we define 

A(R) = {J.l E M(T) : J.l is concentrated on some subset of R} 

I(R) = {J.l E M(T) : IJ.LI(R) = 0 (R E R)}. 

Then 

M(T) = A(R) EB I(R), 

where the direct sum is orthogonal, A(R) is a subalgebra and I(R) an ideaL This is called 

a Raikov splitting of M(T). 



38 

In fact we shall consider only symmetric Raikov systems, that is, those where 

R E n => - R E R. While making this restriction we should note that there is extraordinary 

pathology associated with asymmetry in this context. In fact the present authors showed 

in [3] that there exists a basic measure JJ concentrated on a compact set ]{ which is thin 

in the sense that m( ( n )K) = 0 for every positive integer n. Thus any Borel set E which 

is charged by JJ must satisfy gp( E) = T. 

In the example just discussed JJ and all its convolution powers are .supported by thin 

sets. The study of A emphasises rather the distinction between the distribution of mass 

associated with a measure and the support set of that measure. For example the measure 

VI, discussed in Proposition 1, has mutually singular convolution powers all of which are 

singular to Haar measure. (This is because the generalised character 'IJ! constructed in the 

proof of the corollary takes the constant value an on vf). At the same time the algebraic 

sums of any set on which v1 (or any power of v1 ) is concentrated expand to cover T. 

Inasmuch as Raikov systems are designed to encapsulate the properties of the families of 

sets of concentration of typical L-subalgebras of M(T) this warns us to expect them to 

describe only a small part of the Banach algebra structure. 

We say that the Raikov system n is proper if T itself does not belong to n. 

Proposition 2. A= B = n{ I(R) : n is a proper symmetric Raikov system} 

Proof Suppose that JJ E nr(n) but that JJ rf. B. Then there exists some Borel set E 

such that IJJI(E) > 0 but m(gp(E)) = 0. We may, of course, replace E by some compact 

subset K which is charged by JJ and consider the Raikov system, R(K), generated by that 

set. R(K) is proper and JJ rf. I(R(K)), so we have a contradiction. 
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Suppose next that p, is basic and that R is a proper symmetric Raikov system. If 

p, rf_ I(R) then f-liE f. 0 for some E in R. It follows that gp(E) = T and again we have a 

contradiction. 

NOTATION Now let S be a subgroup of (T aY. 

A(S) = {p, E M(T): "!is p,- measurable("! E S)},I(S) = A(S)-'-. 

Then 

M(T) = A(S) EB I(S), 

where the direct sum is orthogonal and A(S) is an algebra, I(S) is an ideal. This is called 

a Sreider splitting of 1\J(T) and the proof is an immediate consequence of the next two 

propositions. 

Proposition 3. If Sis countable then there is a Raikov system R such that 

A(R) = A(S),I(R) = I(S). 

00 

Proof. We take R to be the collection of all F"' subsets R of T such that R = U Rn, 
n=l 

where Rn is compact and X!Rn is continuous for all X inS and all n. 
00 

If v is concentrated on Rn then, of course, X is v-measurable for every X in S. 
n=l 

Thus A(R) ~ A(S). 

Suppose next that p, is a probability measure belonging to A( S). Fix some (countable) 

collection ( a(x) )xES of positive numbers such that L a(x) = 1. Now for X E S, x 1s p,-

measurable so, for all n, there exists a compact set, I<(x, n ), such that 

f-l(K(x,n)) > 1- a(x)n-1, 
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and the restriction of x to K(x,n) is continuous. Define Kn = n K(x, n). Then 
xES 

J.t(Kn) > 1- n-1, Kn is compact and the restriction of X to Kn is continuous for each 
00 

X inS. Now, of course, U Kn E n (by definition) and J.t (U::'=1 Kn) = 1. Thus J.t is 
n=l 

concentrated on n, i.e. f..l E A(R). Because A(S) is obviously an L-space there was no real 

loss of generality in choosing J.t to be a probability measure. Thus A(S) ~ A(R). Since we 

already know that I(R) = A(R)'.L, we now see that I(S) = I(R). 

Proposition 4. For generals, (i) A(S) = nA(C) (ii) I(S) = UI(C), where c ranges 

over the countable subgroups of S. 

Proof. (i) follows at once from the definition, so we concentrate on (ii). The first obser-

vation is that UI(C) is an L-subspace of M(T). From the foregoing each I(C) is an L-

subspace. For any sequence (Cn), it is clear that 

n 

and all the conditions to be satisfied by an L-space are stated in terms of (at most) 

sequences of elements. Now we have 

UI(C) ~ I(UC) = I(S), 

where we know that both sides are L-spaces. Suppose that the inclusion is strict. There 

must exist some f..l E I(S) with J.t..l I(C) for every C. This J.t belongs therefore to nA(C) = 

A(S), and we have a contradiction. 

Corollary. n I( S) = B = A. 
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4. RELATIONSHIP BETWEEN THE SYSTEMS. 

First we recall an old example: 

EXAMPLE Let I< be a perfect independent subset of T and let f-! be some continuous 

probability measure on I<. Define 

S = {x E (T dr: xis J.l-measurable }. 

Then A(S) -=/= A(R) for any Raikov system R. 

Sketch of justification Fix Rand suppose that A(S) ~ A(R.). Necessarily 1-' E A(R.) 

and so f.l must be concentrated on some subset E of K which belongs to R.. Choose 

some continuous probability measure v concentrated also on E but orthogonal to 1-l· Then 

v E A(R.). There is some perfect set K1 ~ E such that v(I{l) > 0 but J.l(I<1) = 0, and 

1{15 in turn, contains a subset F, say, which is not v-measurable. Since J{ is independent 

it is possible to find some X E (Tat which is identically one on F and identically equal to 

some other number of unit modulus on I<\F. This xis {-L-measurable so belongs to S but 

is not v-measurable so v tj_ A(S), and A(R.) -j. A(S). 

Proposition 5. The simplest Railwv splitting of M(T), as a direct sum of the discrete 

and continuous measures, is a Sreider splitting in which S can be taken as generated by a 

singleton. 

Proof sketch Let H be a Hamel basis for T over Q and list all perfect subsets ofT as 

K = {K1, K2, · · ·, Ka, · · ·}. Then H, JC, and each member of JC, all have c elements. Take 

H 1 ~ H so that H 1 is countable and span( H 1 ) n J( 1 is a countable dense subset of J( 1 . Let 

x belong to K1\ span (H1) and fix some il1 such that il1 \H1 is countable but 
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XE span (HI). Let Xn E K 1n span (H1 ) be such that Xn converges to x. Now fix some 

character x1 of span (HI) and extend it to :X! on span (H1) in such a way that :b(xn)-/+ 

:Xt(x). (The point is, of course, that we have associated a discontinuous character with K 1 

and we want to do this for every K 01 ). 

Suppose next that for all a < {3, we have H0, Xa so that Xa is a character of span 

(Ha) which is discontinuous on span (Ha) n IC)/. In fact we further suppose that, for 

a < a 1 < {3, Ha ~ Het' ~ H, that card Ha < c, and that Xa = Xa' on Ha. Now let 

Jf3 = U01 <f3 Ha so that card Jf3 < c. Choose Hf3 :2 Jf3 with Hf3 ~ H, card Hf3 < c, and 

span (H(3)nK(3 a dense subset of Kf3 (with cardinality less than c). Let Xf3 be a character 

on span (H13) which extends each Xa,a < {3. Next take fif3 :2 H13 such that H(3\H(3 is 

countable and there is yin span (Hf3) n Kf3 outside span Hf3. Let Yn E span (Hf3) n Kf3 

converge toy and take some Xf3 which extends Xf3 but is such that X(3(Yn)-/+ Xf3(y). 

We continue the transfinite induction just sketched until JC is exhausted and we have 

arrived at say. It may be the case that H has not been exhausted. If so extend x to X 

a character of T d = spanH in any way. \Ve have now found a single X with the property 

that XiK is discontinuous for every K in JC. 

Finally let J-1 be a continuous measure on T such that X is J-1 measurable. By Lusin's 

theorem there is some compact set - and hence some perfect set, K, such that XiK is 

continuous. This contradiction establishes the result. 

REMARK In order to focus attention on the Raikov kernel we have just devoted consid­

erable discussion to structure of i\1(T) outside that kernel. There is a further important 

remark of that type. The methods used to establish structural properties of the Gelfand 
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space of the kind stated in Theorem 2 depend on the notion of 'tame' measure ( cf. [ 1:). On 

the other hand we have shown that all the natural examples of tame measures belong to 

the Raikov kernel. That raises the possibility that some of the structural complexity of 

the Gelfand space of 111(T) is confined to the Raikov kernel! However Jane Lake, [8], has 

shown how to construct tame measures which are not basic; so the phenomenon persists 

outside the Raikov kernel. 
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