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CONSTRUCTIONS PRESERVING WEAK AMENABILITY 

Niels Gr¢nbd3k 

0. INTRODUCTION 

When one considers module derivations from commutative Banach algebras it seems 

natural to restrict the attention to symmetric modules, that is, modules where left and 

right module multiplications agree. In particular one suspects that, if a commutative 

Banach algebra A has the property that every continuous module derivation from A 

into any symmetric Banach A-module is zero, then A is particularly nice. Phrased in 

terms of Hochschild-Johnson cohomology groups, we require that H 1(A,X) = (0) for 

all symmetric Banach A-modules X. Commutative Banach algebras with this property 

were called weakly-amenable (from here on abbreviated WA) in [1]. In that paper the 

authors related WA to amenability for certain classes of Banach algebras. They also 

showed that the only symmetric module which one has to consider is the dual of A, 

that is, A is WA if and only if H 1(A, A*)= (0). 

In a subsequent paper ([5]) the present author gave a characterization of WA in 

forms of the short exact sequence . 

i 
---7 A-+ 0, 

where 1r(a ®b) = ab and K = ker1r. (Here and throughout A# = A EB C, the al-

gebra obtained by formal adjunction of a unit.) The algebra A is WA if and only if 

(K2 )- = K. If A has a b.a.i. then one may replace A# by A. This parallels com­

pletely the corresponding characterization of amenability (Theorem III.21 of [9]). The 

result is especially useful for Banach algebras which behave nicely under the formation 

of projective tensor product. 

To illustrate this let us show: 
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THEOREM 0.1. Let G be a locally compact abelian group and let w : G--+ R+ be a 

continuous submultiplicative weight. Then the B eurling algebra L 1 ( G, w) is WA if and 

only if 

{ l¢(g)l I } 
sup w(g)w(-g) g E G = +oo 

for each non-zero measurable group homomorphism ¢ : ( G, +) --+ ( C, + ). 

Proo[ We identify L1 (G,w)@L1 (G,w) with V(G x G,w x w). Then f E Kif and 

only if 

fa f(t- s, s)ds = 0 (a.e.). 

First suppose that there is an additive, non-zero, measurable function¢ : G--+ C so that 

q)(g) = O(w(g)w( -g)). Let m: g--+ C be any measurable function such that (s, t) ~---+ 

J¢(s)m(s+t)J is essentially bounded for example m(s) = - 1-. On L 1 (G X G,w X w) 
w(s)w(t) ' w(-s) 

define a functional D by 

(f, D) = f f( s, t)q)(t)m(s + t)d( s, t). 
laxG 

Then for j,g E K 

(f*g,D)= { f f(s-u,t-v)g(u,v)q)(t)m(s+t)d(u,v)d(s,t) 
JaxG laxG 

=1 1 f(s-u,t)g(u,v){¢(t)+¢(v)}m(s+t+v)d(u,v)d(s,t) 
GxG GxG 

Now 

lr= { j f(s-u,t)g(u,v)q)(t)m(s+t+ v)d(s,t) 
laxa GxG 

=1 j f(s,t)g(u,v)cp(t)m(s+u+t+v)d(s,t)d(u,v) 
GxG GxG 

=1 ;· f(s,t)g(u,v-u)q)(t)m(s+t+v)d(u,v)d(s,t) 
GxG GxG 

= 0, 
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since g E K. Similarly 12 = 0. Obviously one can pick m so that D does not annihilate 

K. Conversely, suppose that D ¢. 0 on K and D j_K2 . Let g', g", h', h" be arbitrary 

elements in L 1(G, w). Let fs(t) := f(t- s) define the shift. Then one may verify that 

if>(s) = ((g' * g")-s ® (h' * h")s- (g' * g") ® (h' * h"), D) 

defines an additive map ¢> : G ---+ C such that 

lif>(s)l:::; JIDIIJig' * g"llllh' * h"iiw(s)w( -s). 

Since L 1(G,w)2 is dense in L 1(G,w) and D ¢. 0 on K, we may choose g', g", h', h" so 

that ¢> ¢. 0. 

REMARK. When G is discrete, this theorem is proved in [5]. 

If A is non-commutative we may use the result of [1] to define weak amenability 

for A. 

DEFINITION 0.2. Let A be a Banach algebra. We call A weakly amenable (WA) if 

H 1(A,A*) = (0). 

It is known that all C*-algebras are WA [8, Corollary 4.2] and that L1 (G) is WA 

when G is a SIN group ([10]). 

One might hope that a description in terms of the short exact sequence 'E may 

also prove useful in the non-commutative case. When A has an identity there is such a 

description: We replace ,A# by A in 'E. Consider the map on A®A given by (a® b)0 = 

b ®a (a, bE .A). Put A= {u E A®Aiu0 = -u}, and S = {u E A®Aiu0 = u}. Then 

A®A =A EElS, and A is WAif and only if 

((An K) ·KEEl A® e)-= An K + S. 

This formula is neither as pretty nor probably as useful as the corresponding one in the 

commutative case. It illustrates that the situation is considerably more complicated in 

the non-commutative case. 
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Having focussed on the homological invariant A~--+ H 1(A, A*), it is an immediate 

task to determine which constructions preserve it. We set forth to investigate condi­

tions under which the taking of extensions, embedded ideals, and homomorphic images 

preserve \VA. We shall also illustrate that under certain conditions WA is preserved by 

the formation of Banach algebraic free products. The latter will give a unified approach 

to establishing WA for discrete 'group algebras and C*-algebras. 

It is easy to see that, if D :A-+ A* is a derivation of a C*-algebra or a group alge­

bra, then D satisfies (a, D( b)) + (b, D( a)) = 0 (a, b E A). (Here and throughout (-, -) 

will denote the canonical pairing between A and A*.) Derivations with this property 

are called cyclic. Clearly inner derivations are cyclic. The corresponding subgroup of 

H 1 (A, A*) will be denoted by Hl (A). It is the first order cyclic cohomology group in 

the theory of cyclic cohomology developed by A. Connes in [3], and independently from 

the point of view of homology B.L. Tzygan in [12]. 

DEFINITION 0.3. A Banach algebra A is called cyclicly amenable, (CA), if 

H{(A) (0). 

The property CA is in general not nearly as restrictive as WA. We shall show that, 

if F x is the free semi group on a set then £1 (F x) is CA. Consequently every Banach 

algebra is a quotient of a CA Banach algebra. However, for important classes of Banach 

algebras (e.g. C'' -algebras and group algebras) the two concepts coincide. Since the 

hereditary properties of CA are somewhat better than of \NA this will be important. 

1. PRELIMINARIES 

This chapter consists mainly of definitions of the concepts involved. Through­

out A denotes a Banach algebra and A# = A EB C its unitization. All linear maps 

are continuous unless otherwise stated. Although the proper setting of the concepts 

dealt with is that of full (Hochschild-Johnson) cohomology we shall limit ourselves to 
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dimensions n = 0, 1. We remind the reader that, if M is a Banach A-module, then 

H 0 (A, M) ={mE Mia· m = m ·a (a E A)}. In particular H 0 (A, A*) is the space of 

(bounded) traces on A. 

DEFINITION 1.1. Let I be a closed two-sided ideal of A. We say that I has property 

ET (with respect to .A) if the restriction map H 0 (.A, A*)---+ H 0 (.A, I*) is surjective, that 

is, if every m E I*, satisfying a · m = m · a (a E A), can be extended to a trace on A. 

The following concept is important for extension of linear maps. 

DEFINITION 1.2. Suppose A has a bounded approximate identity ( eoy )oyEr· Then 

( eoy )oyEr is called quasi-central if eoyM- M e-y ---+ 0 for each multiplier M on A. 

It is well known, see for instance Appendix 3 of [11], that if A has a quasi-central 

bounded approximate identity ( e-y )r, then be-y - e-yb ---+ 0 for b belonging to any Ba­

nach algebra containing A as an ideal. Examples of Banach algebras with quasi-central 

bounded approximate identities are Arens regular Banach algebras with bounded ap­

proximate identities, in particular C* -algebras. 

vVe shall now give various results concerning hereditary properties of WA and CA. 

The proofs are all fairly straightforward, and will be omitted in most cases. For a more 

detailed account, see [6]. 

PROPOSITION 1.3" Let I be a closed ideal in a Banach algebra A. Assume that 

I has a quasi-central bounded approximate identity. Then I has the ET -property with 

respect to A and every derivation D : I ---+ I* can be lifted to a derivation fJ : A ---+ A*. 

"Proof". The extensions alluded to in the proposition are made by passing to weak* 

limits of nets of the form ( e1 · f)oyEr where ( e1 )-yEr is a quasi-central bounded approxi­

mate identity and f is a functional on I. The quasi-centrality, in the case of a derivation 

together with Cohen factorization, will ensure that the extended map has the desired 

property. 
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PROPOSITION 1.4. Let G be a discrete group and let N be a normal subgroup. Then 

the kernel of the canonical homomorphism fl(G)-+ fl(G/N) has the ET property. 

Proof. We represent elements in R1(G) as formal sums :LgEG >..(g)g, >..(g) E C, 

:LgEG j>..(g)j < oo. The kernel I is 

I= clspan{h- h'jh = h' (mod N)}. 

Let mE H 0 (P(G), I*), and supposes, t E fl(G) satisfy st = ts (mod N). Then 

n 

m(sn+1ts-n- ts) = Lm(si+1ts-i- sits-i+1) 
i=O 

n 

= L m(st- ts) = (n + l)m(st- ts), 
i=O 

so that m( st - ts) = 0. Define an equivalence on G by h "' g {:} g E 7-1 h7N for some 

7 E G, and let C be a set consisting of exactly one element from each equivalence class. 

Define an element r E .e=( G) by 

( -1 -1 ) ( ( -1 ) -1) 0 m 71 c71 - lz c7z = m c - 7172 c 7271 = . 

Obviously T extends m, since we may choose the same 7 for g and g1 in the definition 

of T where g = g' (mod N), and T is equally easily shown to be a trace. Suppose 

h1 = ghg-1. Then 

r(h)- r(ht) = m(h- 7-J q)- m(ghg-1 - 97-1 qg-1 ) 

= m(h- 7-1q)- m(g(h- 7-1q)g- 1 ) = 0. 

We shall now define two types of Banach algebraic free products. 
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DEFINITION 1.5. Let (A1 ) 1 Er be a family of Banach algebras. A Banach algebra~c 

free product of (A1 ) 1 H is a Banach algebra :F, satisfying the following universal prop-

erty. There are isometries i 1 : A1 -7 :F so that, whenever cp1 : A1 --+ B is a family of 

bounded homomorphisms into a Banach algebra B with 

sup{II'P,IIII E r}::; 1, 

there is a unique bounded homomorphism cp : :F --+ B so that the diagrams 

(IE r) 

all commute. 

For existence and uniqueness (up to isomorphism), see [2]. We use the notation 

-:- A 7 for :F. Likewise, we may define a unital Banach algebraic free product of a fam-
1Er 

ily of unital Banach algebras (A1 ) 1 u as a unital Banach algebra U which satisfies the 

same universal properties as above, now for unital Banach algebras and unital homo-

morphisms. U may be represented as ( ":' M 1 )# where M1 is a (maximal) two-sided 
1Er 

ideal of A 1 such that A 1 = Ce1 EBM1 , where e1 is the unit of A 1 . The usual arguments 

show that unital Banach algebraic free products are unique up to isomorphism. 

EXAMPLE 1.6. We wish to give a representation of Banach algebraic free products. 

Let A and B be two Banach algebras. Then A: B is defined as 

00 = 
A:B = ffi An ffi Bn, 

i=l i=l 

where 

An = A~ B ~ A~ B . . . ( n factors) 

and 

Bn = B~A~B ®... (n factors) 
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as Banach spaces. Here EB denotes £1-direct sum. The algebra product on A: B is given 

by tensor product modulo the relations a1 ® az = a 1 a2, b1 ® b2 = b1 b2 (a; E .A, b; E B, 

i = 1, For further details, see [2]. 

In general, we define 

and for an arbitrary family, we define 

where P0 (F) is the set of finite subsets of r and the direct limit is taken with respect 

to the inclusion order on P0 (F) and the canonical embeddings 

EXAMPLE 1.7. If G1 and G2 are two groups, then the unital Banach algebraic free 

product of £1 (GI) and £1 (02 ) is £1 (G1 · G2 ), where G1 · G2 is the free group product of 

the groups G1 and G2 , whereas £1 (GI):£1 (G2 ) = £1 (G1 :c2 ) where G1 :Q2 is the free 

semigroup product of the two (semi-) groups 0 1 and G2. 

2, WEAK AND CYCLIC AMENABILITY OF EXTENSIONS 
AND FREE PRODUCTS 

Given a derivation D : A -> A* it is natural to ask if D can be extended to a 

derivation D: .A# ---t (.A#)''. The answer is given by the following. 

PROPOSITION 2.1. Let D : A---t A* be a derivation. Then D can be extended to 

a derivation fJ : A# __, (A#)*, if and only if there is a constant J( 2: 0 so that 

I ~((a;,D(b;)) + (b;,D(a;)))l S: K/1 ~a;b;/1 

(a;, b; E i = 1, ... , n). 
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Proof. Suppose D can be extended. Then 

I ~((a;,D(b;)} + (b;,D(a;)))i = /( l,n( ~a;b;) )/ 

~ IIIIIIIDII/1 ~a;b;ll· 
Conversely, suppose the inequalities hold and define a linear functional by 

tp(ab) = (a,D(b)} + (b,D(a)) (a,b E A). The inequalities imply that tp an be extended 

to a bounded linear functional on .A. We identify (A#)* with CEB.A*. Then the natural 

action is given by (.\1 +a)· (f-l, f)= (Af-l +(a, f), >..f +a· f)()., f-l E C; a E A; f E .A*). 

Put 

D(H +a)= (tp(a), D(a)) (>. E C, a E A). 

A routine calculation verifies that D is a bounded derivation, extending D. 

COROLLARY 2.2. If A has a bounded two-sided approximate unit, then every 

derivation D: A---> A* can be extended to a derivation D: Jl#---> (A#)*. 

Proof. Let ( e; )iEI be a bounded two-sided approximate identity for A and let 

a1, ... , an, b1 , ... , bn E A. Then 

I ~((ak,D(bk)) + (bk,D(ak))l =lim\ ~((e;ak?D(bk)) + (bke;,D(ak)))i 

=lim/ ~(e;,D(akbk))j 

~ limisup lie;IIIIDIIII ~akbkll· 

COROLLARY 2.3. If D : A ---> A* is a cyclic derivation, then D can be extended 

to D : A# ---> (A#)*. In particular, if there are no bounded traces on A, then every 

derivation D : A---> A* can be extended. 
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Proof. Clearly cyclic derivations can be extended. If A has no bounded traces, it 

follows from the long exact sequence of A. Connes, [3], 

that every derivation D : A -+ A* is cyclic. 

In view of Corollary 2.3, and for later purposes, it is of interest to know for which 

Banach algebras all derivations into the dual module are cyclic. Concerning this, we 

have: 

LEMMA 2.4. Let A be a C* -algebra or a discrete group algebra. Then every derivation 

D : A---+ A* is cyclic. 

Proof. vVe only prove the case when A is a C* -algebra. The other case is similar. By 

Corollary 2.2 we may assume that A is unital. Hence we must prove that (1, D(a)) = 0 

(a E A). If a is normal this is an obvious statement about commutative C* -algebras, 

so it clearly holds for any a E A. 

EXAMPLE 2.5. Let A2 = (0) and choose f E A*\(0). It is immediate to verify 

that the map D: A---+ A*, given by Da = f(a)f (a E A), is a derivation, and since 

(a,D(b)} + (b,D(a)) = 2f(a)J(b) it is dear that D cannot be extended to A#. 

We now turn to a description of hereditary properties of INA and CA under exten-

sions. Consider the short exact sequence of Banach algebras and continuous homomor-

phisms 

j 
---+ A 

e 
-7 B ---+ 0. 

We shall identify I with a closed two-sided ideal in A. As the following proposition 

shows, CA and INA behave almost identically with respect to extensions. 
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PROPOSITION 2.6. Consider the short exact sequence above. Then 

(i) If l3 is CA, then I has ET. 

(ii) If A is WA (CA) and I has ET, then l3 is WA (CA). 

(iii) If A is WA (CA) and I has a quasi-central bounded approximate identity, then 

I is WA (CA). 

(iv) If l3 is WA and I is WA (I is CA and (I2)- =I), then A is WA (CA). 

"Proof". The proofs of the various statements consist mostly of appropriate diagram 

chases. As an example let us prove (i): 

Suppose B is CA. Let f E I* satisfy a· f- f ·a= 0 (a E A). We must prove that f 

can be extended to a trace on A. Let 1 E A* be any extension of f. Let 8 : A -+ A* be 

the inner derivation generated by 1 and define a derivation D : B -+ B* by f)* DB= 8. 

This map is well defined. Let a, a' E A and i, i' E I. Then 

(a'+ i1,b(a+ i)) = (a1,b(a)) + (i,8(a)) +(a'+ i',8(i)} 

= (a',b(a)) + (i1,j ·a- a· f)- (i,f ·(a'+ i')- (a'+ i') ·f) 

= (a1,8(a)). 

Clearly D is a cyclic derivation, and since 8 is an open map, D is bounded. The 

property CA of A then implies that there is g E !3* so that 

cJ - 8* (g)) · a - a · (! - 8* (g)) = 0 E A), 

that is, 1- B*(g) is a trace on A. Since 8*(g)(I) = (0) it follows that 1- 8*(g) extends 

the given functional f E I*. 

EXAMPLE 2.7. One may ask, whether the condition (I2)- = I is necessary in 

Proposition 2.6(iv). The following example shows that some condition is needed. Let 
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R = C, with trivial algebra product. Then R is clearly CA. However, the split extension 

given by 

is not CA. 

A simple example shows that if .A and 13 are two Banach algebras, then .A: 13 is 

never \VA. The theorem to follow shows that this is caused by the asymmetry between 

the first and second entries in bilinear forms(·, D(·)} arising from non-cyclic derivations. 

THEOREM 2.8. Let .A and B be two CA Banach algebras and let :F be their (possibly 

unital) Banach algebraic free product. Then :F is CA. 

"Proof". We shall illustrate the proof by showing that, if £1 (G1 ) and £1 (G2) areCA, 

then £1 (G1 · Gz) is CA, where G1 · Gz is the free group product of G1 and G2. Elements 

of G1 · G2 will be called words, composed of leiters from the two groups G1 and G2 . 

Each word w E G1 · G2 has a unique representation w = h1 ... hn, where no two adjacent 

letters h; and hi+1 ( i = 1, ... , n -1) are from the same group. We shall always represent 

words in this standard form. 

Let D : £1 (G1 · G2 ) ----+ £00(G1 · G2 ) be a derivation. By assumption there are 

functionals m; E £00 ( G;) (i = 1, 2) such that 

First we extend rn; to functionals mi E eco(G; · G2 ) so that 

(w, D(g;)) = m;(g;w- wg;) ( w E G1 · G2 , g; E G;, i = 1, 2). 

To be definite, let us extend m 1 . Let w be any word in G1 · G2 \ G1 . Let h be the first 

letter of w and write w = hw1 • 

Define 

{ 
0, 

Al(w) = (w',D(h)) 
if hE Gz 
if hE Gt 



198 

Now, let g E G1. If hE Gz we get 

(w,D(g)) = A1(gw) 

= A1(gw- wg), 

since the first letter of w9 is from G2 • If h E G1 , then the first letter of w' is from 

Gz. So in this case we get 

(w, D(g)) = (hw', D(g)) 

= (w',D(9h))- (w 19,D(h)) 

= A1(ghw'- W 1 gh)- >.. 1(hw 1 g- w' gh) 

= A1(gw- wg), 

by what we have just proved about words beginning with a letter from G2 . Let m1 be 

the join of m 1 and 

Hence, by subtracting the inner derivation generated by Ih we may assume that 

D has the form 

(1) 

(2) 

D(gt) = m · g1 - g1 · m (gi E GI) 

D(gz) = 0 (gz E Gz) 

for a certain function mE £=(G1 • G2 ). To prove that Dis inner, we must show that 

m has a decomposition 

(3) 

where /11 · 91 - 91 · /11 = /12 · gz - 92 · /12 = 0 (9i E G;, i = 1, 2). Let 

S~ = { w E G1 • G2 !w has n letters, first letter is from Gi}. 

We regardS~ as subsets of £1 (G1 · G2 ). Let a 1 (31 ... anf3n E Sin· Since D(Gz) = {0} 

and Dis cyclic we have (f3n,D(Oilf31· . . Oin)) = 0. 
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Using the derivation identity and (1) and (2) we get 

n 

= L m(a; ... f3nal ... f3i-1)- m((3; ... f3na1 ... a;), 
i=l 

so that 

n n 

(4) 
i=l i=l 

n 2: 2, where the bracket indicates that the right hand side does not have the standard 

form if n is odd, and put cr(G1 U G2 ) = {0}. 

The functions fJ,l and p 2 will be defined stepwise by gradually extending their 

domains. On SJn U Sin we first define ;.t1 on range(id-cr) by 

f.-tl · (id - cr) = m · (id - cr )PI 

where P1 is the projection on Sin along Sin. This is well-defined, for suppose (id -

cr)(w1 + w2) = 0, where w; E S~n (i = 1, 

means that cr2 (w;) = w; (i = 1,2). Hence 

= 0, 

Since 0" interchanges Sin and Sin, this 

by the identity ( 4 ). Then we extend p 1 to all of S:~n U S:~n by the Hahn-Banach theorem. 

Define f-12 on Sin U Sin by means of the equation m = ftl + f-12· On SJn+l 2: 1) 

we put 
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This is well-defined since a = Sin+l --+ Sin and Jll has already been defined on Sin· 

Similarly define on Sin+I: 

Finally, put p1 = m on Sf U Si U { e} and use thereafter the equation m = Ill + JL2 to 

define p1 and JL2 on all of G1 · G2. 

By construction p 1 and JL2 satisfy the prescribed commutator relations. However, 

they may not be bounded as functions on G1 · G2 . But we do have the relation 

(w', D(w")} = JL2(w"w'- w'w") 

so the variation of p 2 on each conjugacy class is bounded by liD II· If necessary, we may 

subtract a suitable function which is constant on conjugacy classes (i.e. an (unbounded) 

trace) to ensure that D is generated by a bounded functional. 

Now a rather straightforward induction shows that if :F is a (unital) Banach alge­

braic free product of a family (A7 ) 7 Er of CA Banach algebras, then :F is CA, provided 

one can choose generators f 7 for any given derivations D 7 : A7 --+ A~ such that 

{ IID"YIII } 
sup IIJ"YII 'Y E r < 00. 

This will certainly be the case if all A7 's are commutative. This gives us the 

corollaries. 

COROLLARY 2.9. Every Banach algebra A is a homomorphic image of a CA Ba-

nach algebra, which can be chosen to be unital and/or separable if A is. 

Proof. It is easy to see that the discrete convolution algebra £1 (N) is CA. By the 

remark following the proof of Theorem 2.8 every discrete convolution algebra on a free 
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semigroup F x, being the Banach algebraic free product "':' £1 (N x) (N x a copy of N) 
xEX 

is CA. Since every Banach algebra is a homomorphic image of an appropriate fl(Fx ), 

where X may be taken to be countable if A is separable, the result follows. 

COROLLARY 2.10. (B.E. Johnson) Every convolution algebra on a discrete group 

isWA. 

Proof. By the remark following Theorem 2.8 it is true for all free groups. Invoke 

Proposition 1.4. 

COROLLARY 2.11. (U. Haagerup) All C*-algebras are WA. 

Proof. Let A be a C*-algebra. We may assume that A is unital. Let (A-y)-yer be the 

family of unital commutative C*-subalgebras of A. Then -:- A-y is CA. Using Theorem 
-rer 

2.6 of [4) and the Grothendieck-Haagerup inequality [7) one can show that the kernel 

of the canonical map "':' A-y -+ A has the ET property. Since all derivations from a 
-rer 

C* -algebra are cyclic, the result follows. 

REMARK. As the two corollaries show, it is pertinent to find methods to prove that 

some given ideal has the ET property. Suppose for convenience that A is unital and let 

mE H 0(A, I*). Let X:= {f E A*lf11 = m, llfll = JJmJJ}. Then X: is non-empty, weak*-

compact and convex. Let g E Inv(A) and denote by T9 the inner automorphism given 

by g. Since m E H 0 (A, I*) we have the inclusion T;(K) ~X:. Hence, if one could find 

a common fixed point of some appropriate subgroup of Inv(A) we would have obtained 

a trace extension of m. 
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