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Results and Conjectures in Mathematical Relativity 

Robert Bartnik 

In 1916 [1] Albert Einstein presented his well-known equation 

relating the geometry of space and time, modelled by a 4-dimensional manifold with 

Lorentz metric g~ and Ricci curvature R~ , to the physical matter distribution, 

modelled by the stress-energy tensor T ~ . This was a truly revolutionary theory in 

that it lead to major changes, both philosophical and scientific, in the way we view our 

world. 

The effect on physics has perhaps been the most noticeable. Quite apart from its 

s~prising predictions about the large scale geometry of the universe, general relativity 

introduced the idea of a "Theory Of Everything" , now a Holy Grail of theoretical 

physics, and it showed that differential geometry is the natural language of physics. 

The success of the Y ang-Mills-Higgs model of the electroweak interaction, and of the 

intensive work in areas such as string theory and supergravity, shows clearly that these 

ideas have had some impact on physics. 

The effect of Einstein's theory on mathematics, especially differential geometry, 

was just as pronounced. By emphasising the physical relevance of such questions as the 

relation between curvature, geodesics and geometry, and the nature of Maxwell's equa

tions on a manifold, the outlines of the subject we now recognise as differential geo

metry were laid. 
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However, it can be said that it is not the Einstein equations themselves, but 

rather the paradigm they represen~ -that the techniques and results of geometry are of 

fundameRtal importance on physics~ that has been more significant, The Einstein 

equations have been comparatively neglected, and -~he reasons for fills are not hard to 

The physical effects predicted the are exhemely small and thus diffi-

cult to and it i::; not to arrange -the universe is our 

laboratory. Mathematically the (vacumn, Tafj = 0) Einstein equsctions form a non

linear of hyperbolic partial differential with a coordinate gauge de

gen,~racy, and even now our understanding of such systems is very limited. The only 

of getting information about physically interesting such as the 2-body 

:is to resort to numerical :computation, or, in nearly Nevvtonian situations, to 

use approximation methods. 

Despite all there is beautiful and e'ven 

neraJ xeiati.vHy, and I v10uld like to describe soro.e examples 

some open problems. A theme will be the way 

mathematics hidden in ge-

this here and to indicate 

:intuition and mathe-

matical theorems complement each other: suggests mathematical eonjectures, 

and m.athematlical theorems in turn validate and enhance physical intui.tion. The most 

spectacular example of thiE is the positive mass theorem [2,3], but there are other 

examples. Presmnably this correspondence betvveen the matherna11ics and the physics 

just Hlustrates that relativity is a physically realistic but I st:iH find it 

rather mysterious. 

The Schwarzschlld metric 

A large proportion of the physical intuition :in ger1eral relativity can be traced 

back to one special solution, the Schwarzsch:iid spacetime S, which was also un-
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covered in 1916 [4] . We quickly summarise its basic properties. The metric of S in 

the usual coordinate chart (r > 2M, t e IR, 0 e S2) is 

(1) 

where M is a positive constant and d02 is the usual metric on s2 . In fact, this ex

pression contains two solutions of the vacuum Einstein equations, represented by the 

coordinate ranges 0 < r < 2M and 2M < r , and it was realised quite early that these 

covered two disjoint regions in a larger vacuum spacetime (also denoted S), with the 

surface {r =2M, t = +oo} representing their common boundary. This surface is 

called the horizon of S and separates the (black hole) region {r < 2M} , where every 

observer (observer= future-directed, time-like curve) must hit the curvature singula

rity at r = 0 in finite proper time, from the exterior region {r > 2M} , where observers 

can avoid this presumably ghastly fate. These properties can be easily shown by intro

ducing the Kruskal-Szekeres coordinates, see [5]. 

Some further properties of S which will be important later are 

(a) time-independence: the metric ds2 has a time like Killing vector K = at which 

is also hypersurface-orthogonal. Such metrics are called static, and more generally, a 

metric with a timelike Killing vector is called stationary. 

(b) spherical symmetry: the group S0(3) acts isometrically on S with orbits diffeo

morphic to s2 . 

(c) asymptotically flatness ( AF): introducing rectangular coordinates (xi) into the re

gion {r >2M} in any obvious way, we find that the spatial metric gij(x) in these co

ordinates satisfies 

e: .. (x)- 6 .. = O(lxl-1) , 
"''J IJ 

I akgijl = O(lxl-2) ' I akq~jl = O(lxl-3) ' as lxl -I 00. 
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s __, (r(s),t(s)) in S satisfies 

d2r ll -3 
Cl:S2=-!2+0(r), r>>2M, 

where s is the proper time parameter. the AF coordinates of to make a com-

'"u.uo··-..u v7ith Newtonian gravity, we are lead to identify lVI as the mass of S. 

VVe must also mention two generalisations of S which ·win be needed: the Reiss-

ner-Nordstrom spacetime [6] and the Schwarzschild static star [4] . The Reissner-

Nordstrom metric is 

2 fl. 2~~ ds =- .·1--+ 
r (2) 

a spherically symmetric solution of the Einstein-Maxwell equations with electromagne-

tic curvature 2-£orm F = e dL\dt . If the constants e , M lei < M then the 

global structure is similar to S [5]. 

The Schwarzschild static star is produced attaching a baH of static, constant 

perfect fluid 1'0 .,o = diagCu,p,p,p) where the density fJ is to the 

region {r > r 0} , for ro > i 2M, of S. The metric in the usual Schwarzschild coordi

nates is 

. 2 us 

j( ,----,;-m,--" "j2 1 
-, ~ 11_21 __ ! 1_2lrL·l2J dt2 +(I _2lil(I-if 

121 ro 2 ro\ro1 ij, ro r 0 } 

l 

+ 

+ r2dn2 , for 0 < r ~ ro , 

I 
II (' 1 2M) dt2 11 2Il!:) -ld 2 - -- +I --l r + 

r , r J 
l 

, for r o ~ r < oo , 
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which is c1 across the surface of the star at r = r 0 • This metric is clearly static, with 

spatial surfaces { t = constant} diffeomorphic to IR3 and metrically constructed by 

adding a spherical cap to the spatial surface of S . 

Uniqueness / Rigidity theorems 

A frequent phenomenon is that of "rigidity": apparently mild conditions turn out 

to be satisfied by only a very few spacetimes. The prototypical result here is 

Birkhoff's theorem [7]: Suppose V is a spherically summetric vacuum spacetime such 

that the area function r is nondegenerate {i.e. dr :f. 0} . Then V is isometric to a sub

set of S. 

The proof is a direct computation, starting from the fact that the hypotheses 

allow us to construct coordinates in which the metric takes the form 

(4) 

where a= a(r,t), R = R(r,t). Writing out the vacuum Einstein equations, one finds 

they can be integrated using a single constant, the Schwarzschild mass. We note that a 

similar result is true for the spherically symmetric Einstein- Maxwell equations, lead

ing to a uniqueness theorem for the Reissner-Nordstrom metrics (2). Birkhofrs theo

rem is interpreted physically as showing that the spherically symmetric mode of the 

Einstein equations carries no dynamical degrees of freedom, being governed by the 

single mass parameter M . 

The Schwarzschild spacetime satisfies another, much more subtle, uniqueness 

theorem, in the class of static metrics. Since this involves a number of interesting 
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ideas, I shall describe it in a little detail. By adapting coordinates to the spacelike 

hypersurfaces orthogonal to the Killing vector, the general static metric can be written 

as 

2 2 2 i . 
ds = - a dt + ~jdx: rucJ , 

where (xi, i=1, ... ,3) are coordinates on a spatial 3-manifold, and a= a(x) , 

~j = gi/x) . The vacuum Einstein equations for this metric reduce to the system 

(5) 

where v2 a is the Hessian of a in the metric g . Supplementing the AF boundary 

condition for gij with 

a(x) --d as lxl -too , (6) 

we have the classical result: 

Theorem. Suppose (Jl,g) is a complete AF Riemannian 3-manifold, and a E C00(Jl) 

is positive and satisfies (6) . If (Jl,g,a) satisfy the static vacuum equations, then 

(Jl,g) = (IR3,o) and a= 1 . 

Proof: The maximum principle says a has neither maximum nor minimum in Jl . 

Hence a:: 1 and then Ric(g) = 0 . Since Jl is 3--dimensional, g must be flat, and 

then Jl AF gives J{ :::s IR3 . 0 
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For the Schwarzschild solution, o: = jl-2~ is not constant, and the region 

where the syst.em (5) i.s elliptic has natural boundary at the horizon {r =2M} . This 

motivates the boundary condition for the main Schwarzschlld uniqueness theorem. 

Theorem [8]. Suppose is an AF Riemannian 3 -manifold with smooth boundary, 

and o: E is a positive the boundary conditions and 

a= 0 on 

(Jl,g,a) satisfy the static vacuum equations (5) then either 

or (.M,g,a) = 

The elegant proof I shall sketch is due to Bunting and Masood-ul-Alam. Previous 

results used a ra'Gher different technique due to Israel which required that {)J{ be con

nected, i.e. that Jl have only one black hole. The above theorem has the physical 

interpretation that it is not possible for multiple black holes to exist in static equi-

librium. Note that there are static vacuum metrics which can be interpreted as repre

senting two bodies, but these have singularities [9], as the theorem implies. 

sketch proof: Since g,o: are c2 near {)){ and a= 0 on 8Jl, the static equations 

(5) show that 8){ is totally geodesic, and we can construct the double manifold (M,g) 

gluing two copies of along {)){. On the respective halves ){ , ){ we intro-+ -

duce the conformal metrics, ~'± = (~(l±o:))4g - the resulting metric, "' say, is cl,l 

across the joining submanifold. To determine the behaviour of "' near the respective 

infinities of .H.+, , we need asymptotic expansions for g, a . These are obtained by 
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2 writing the static equations in Jl in terms of the metric 'Yo = a g and using AF co-

ordinates which are harmonic in 'Yo • An argument gives 

gij = (1+ l~j) oij+O(Ixl-2) 

a = 1-1~1 + O(lxl-2) as lxl -HX> , 

for some constant m > 0 . Thus the infinity in Jl_ is compactified by 'Y, and further 

terms in the asymptotic expansions show that 'Y is at least c1•1 across the added 

point. In the infinity of Jl+, 'Y has the expansion 

and, as will be described later, the absence of a lxl-1 term in 'Y implies that 'Y has 

vanishing total mass. In summary, (Jl u {0},-y) is an AF, complete c1•1 Riemannian 

3-manifold, with vanishing total mass and it is easy to verify that 'Y has scalar curva

ture identically zero. The positive mass theorem, also to be described later, implies 'Y 

is flat, and it is straightforward then to show that (Jl,g,a) represents the Schwarz-

schild spacetime. D 

There are two related results which are worthy of mention. The Schwarzschild 

star (3) is unique amongst static perfect fluid stellar spacetimes with constant density 

and having only one star [10], and it is conjectured that general static perfect fluid 

stars are spherically symmetric. The other result is the uniqueness of the Kerr-New

man rotating charged black hole spacetime, amongst metrics which are stationary and 

axially symmetric and satisfy suitable boundary conditions [11] . This is proved by a 

uniqueness theorem for a harmonic mapping system with boundary conditions. 
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A quite different of by S.T.Yau [12] 

and proven by J .Eschenburg . Thls concerns spacetimes satisfying the 

thnelike convergence condition 

Ric(n,n) ~ 0 all timelike vectors n , 

and having a timelike line - a 

realises the di.s~ance between 11x1y two of its In particular, a line has no conju-

gate 

Theorem. V is a globally hyperbolic spacetime which satisfies the timelike 

con'Uergence condition and has a line. Then then~ is a Riemannian 3 -manifold (Ji,ds~) 

su,ch that V = " 

[5] for the defivJtion of globally hyperbolic). Eschenburg's original proof re--

quired also that V be timelike ~· the result as stated :is an im-

provement due to Galloway, and another variation has been given Newman [14]. 

Like the Cheeger-Gromoll splitting theorem of Riemannian geometry 

the is based on properties the level sets of the Buseman functions, and 

earlier work of 

The physical content of t.he splitting theorem can be seen by attempting to con-

struct a counterexample. For example, :in the Schwarzsclrild static star spacetime, we 

consider the sequence of ti:melike geodesics 1k joining the points (t = ±k,xo), k ---i oo. 

H the geodesics were to have a limit timelike curve, then thls would be a con-

tradicting the theorem. Thus there is no limiting curve; the points xk = n {t = 

move out to infinity and then lk , k large, represents a freely falling observer who 

starts near the star t = moves out to large radius (at t = 0) and then falls back 

to the star. In other gravity is an attractive force, for spacetimes satisfying the 
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global hyperbolicity and timelike convergence conditions. This indicates, for example, 

that the singularity at r = 0 of the Schwarzschild metric with negative mass, cannot 

be regularised in physically reasonable way. This hint that mass is positive/gravity is 

attractive, for global reasons, bring us to the next topic. 

Mass and the Positive Mass Theorem 

The identification of the parameter M in the Schwarzschild metric with the 

mass of S was based firstly on the translation "unit-speed timelike geodesic = world

line of an observer, moving freely under the force of gravity", and secondly, on a com

parison with the Newtonian space-time IR3 " IR by means of asymptotically flat coordi

nates. This suggests that a definition of the mass of a more general spacetime should 

involve a limiting process and an AF coordinate condition. Motivated also by the 

Hamiltonian description of general relativity, this generalisation was found in 1962 by 

Arnowitt, Deser and Misner (ADM) [17]: 

1 i m = -32 r (8.e: .. - 8.g .. ) dS . 
ADM 7r JS ( 00) J"'J I JJ 

(7) 

Here the derivatives 8i and metric components gij are taken in the rectangular AF 

(spatial) coordinates; S( oo) is the sphere at infinity, representing the limit of the inte

gral over spheres of large coordinate radius, and dSi is the outer normal surface mea

sure. It is rather surprising that this (non-tensorial!) expression is independent of both 

the choice of limiting sequence of spheres, and of the choice of AF coordinates. Even 

more surprising is that the ADM mass has physical/geometric meaning: 
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Positive Mass Th.oorem. [2,3] Suppose (Jl,g) is a complete AF Riemanniann 

3 -manifold with scalar curvature R(g) 

and = 0 iff (Jl,g) = (!R3,5) . 

The conditions of the theorem arise physically if (M,g) is a spacelike hypersur

face of a spacetime satisfying the ·weak energy condition, 

T(n,n) ~ 0 for all timelike vectors n 

(T(n,n) is the local energy density of the observer n), and if the extrinsic curvature 

Kij of M has trace zero. From the Einstein and Gauss equations we have 

where n is the timelike unit normal vector to M, and the condition R(g) ! 0 follows. 

We note that the maximal surface condition, trgK = 0, implies a quasiHnear elliptic 

equation for J{ , which has been shown to have smooth spacelike solutions [18] . 

There is a generalisation, the positive energy theorem [2,3] , which takes into 

account the contributions of the extrinsic curvature Kij to the ADM energy-momen

tum vector, but the simpler version we have stated conveys the geometric ideas. 

Rather than describe the Schoen-Yau or Witten proofs, we shall give simpler proof of a 

weaker version [19] , which gives some insight into the geometric origin of the ADM 

mass. 

We suppose g is an AF metric on 11(3 (or on !Rn, n ~ 3), which is sufficiently dose 

to the flat metric that there are global harmonic coordinates (xi), i = 1, ... 3 (i.e. 

b.gxi = 0), such that the metric components gilx) in these coordinates satisfy 
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Now, in general coordinates the scalar curvature is 

(8) 

where rijk are the Christoffel symbols, 

is seen to converge to the ADM mass integrand, and the final term expands to 

ii' jj' kk' _ 1 2 1 jk n g g g r .. kr.,1,.,---411Bgll +-2gkl8.g a.g, 
lJ l { J 1 J 

2 iiI ••t kk 1 • 
where lfllgfl = g gll g Bigjk8i,gj'k'. Integratmg (8) over !lP with the usual 

Lebesgue measure dx and integrating by parts gives 

Now the harmonic coordinate condition implies 

and we use this to rewrite and estimate the final term 
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"k "1 "k il ik il 
gklaig-1 al = (gkl - okl)( aig-1 ajg - aig at: ) + 

"k "k "k "k "k il 
+ ai(g-1 al - gl ajg-1 ) + gklai aj'6 

~ ~ l8g~2 + 1Vr,ol2 + ai(~kaik- gikaik) 

Since ~j is AF , the boundary term vanishes, and we obtain the estimate 

(9) 

so mADM ~ 0 and mADM = 0 only if g is flat. The equality case mADM = 0 may be 

considered another uniqueness theorem, and shows that the ADM mass measures the 

"nontriviality" of the geometry of an AF manifold with non-negative scalar curvature. 

An interesting generalisation of the positive mass theorem was conjectured by 

R.Penrose [20] . Suppose (Jl,g) satisfies the conditions of the positive mass theorem 

and suppose I: --+ Jl is a stable, embedded, minimal 2-sphere. If Jl is a totally geode

sic hypersurface (i.e. Kij = 0) of some spacetime, then E is the intersection of Jl 

and horizon of the spacetime . 

Conjecture [20]: 

(10) 

with equality iff (Jl,g) is the standard Schwarzschild spatial hypersurface. 

Despite the two different proofs of the positive mass theorem, there has been 

little progress on this conjecture. 
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It seems clear that we are entitled to can mUH.! the total mass of (J!,g) . How

ever, the linearity of the mass function in Newtonian gravity enables us to assign a 

mass to the separate components of a Newtonian system, 

{rV) m \H = 
N 

dx, 

defimng 

where JJ: !1!3 --1 [If~ u {0} is the mass density, and n c ma . This defimtion generalises 

naturally to relativity: if is an AF 

unit nonnal vector n , then fJ, = T(n,n) is the local stress-Bnergy density, and for 

n c ,l{ we set 

tt{x) dv . 
g 

Unfortunately this function vanishes identically for subsets of a vacuum (Ta$3 = 0) 

spacetime. Since physically reasonable, nontrivial, vacuum spacetimes are known to 

exist and these necessarily have positive ADl'VI: mass, and since we should expect a suit-

able quasilocal mass function to be non- zero for nonflat n , we must reject 

m11 as a candidate for a quasilocal mass. (This may have been expected, since the Ein

stein equations are non-linear, but the definition of mN is based on linearity proper

ties of Nevvtonian gravity). 

I would now like to outline a recently proposed [21] definition of quasi- local 

mass, w·hich is physically natural and poses interesting questions for geometry and 

physics. As motivation, recall that in Newtonian gravity, the gravitational potential u 

of the mass density fJ, satisfies 

{
b.. u = 47rJ.b in [R3 

u(x)--; 0 as I xi --;co , 
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and thus we can write the total mass as 

in clear analogy to the definition of the ADM mass. Similarly, we have the following 

formula for the Newtonian quasi-local mass 

Vu·dS , where u E C00 (IR3) satisfies ~u =I" in 0 , 

which suggests the following. Let PM be the class of Riemannian 3-manifolds, 

PM = { (Jl,g) I g is a complete AF metric of non-negative, integrable scalar 

curvature, R(g) ~ 0, and such that there are no stable minimal 

2-sphere.s ("horizons") in } . 

Using 0 c Jl. to indicate 0 is an isometric subset of (Jl,g), we define 

(11) 

for any n such that 0 c Jl E PM and 8fl. is connected. From the positive mass theo

rem we see immediately that mB(n) ~ 0 and mB(n) = 0 if n c !R3. Further, we have 

the monotonicity condition 
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which may be the best analogue we can hope for of the additivity property of the New

tonian mass. It is an interesting problem for physics to give an interpretation of this 

lack of additivity. 

The no-horizon condition is needed to exclude a general construction of extension 

manifolds (.Jlk,gk) of 0 , with mADM(.Jlk) --1 0 . These extensions are produced by con

formally adding scalar curvature so that a horizon forms and then shrinks off, taking 

mADM to zero. This can easily be seen in spherically symmetric metrics. 

It is an open problem to show that mB(·) is a nontrivial function, i.e. that there 

are sets 0 with mB(O) > 0. However we note that any other mass function me(-) 

which satisfies the physically desirable condition 

me ~ mADiJl) , for any PM extension 0 c .Jl, 

must satisfy also me(O) ~ mB(O) , so the definition (11) is, in this sense, the best 

possible. 

If we restrict our attention to spherically symmetric metrics, then it is easy to 

compute mB . In geodesic coordinates about the origin, the spherically symmetric 

metric can be written 

Defining the Schwarzschild mass function m(p) by 

the scalar curvature is determined by m 1 (p) ; 

m 1 (p) = ~ R(p) A 2 A 1 • (12) 
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The no-horizon condition is then A' > 0, and 

so we see that 

m(p)--~ mii.DM as p-'~ oo, 

is the spherical quasi~local mass of the domain n = {p < 
Po 

Observing that mB is realised here by the Schwarzschild metric with mass , we 

are lead to 

The is ?'ealised 

(5) outside n 1 and which is acrOSS an 1 perhaps with non-negative 

distributional scalar curvature along an . 

This static-metric can be by a pure physics 

argument: the extremal metric should be vacuum, since the any stress- energy can be 

removed by conformal change, w·hich decreases the ADM mass. Any dynamical free-

dom should also increase the total mass, so the extremal metric 

should have a timelike Since we are assuming the extrinsic curvature K." 
XJ 

vanishes on n , the extremal metric should also have Kij = 0 , which implies static. 

The Einstein Y :mg--:lvfills equations 

Birkhoff's theorem and its generalisation [22] show there is no dynamical freedom 

for the spherically symmetric Einstein equations with either vacuum or Maxwell 

matter terms. This is not true for other matter models - Christodoulou [23] has exten-

sively analysed the hyperbolic differential equations that result if the stress-

energy tensor arises from pressure-free perfect fluid ( 11 dust 11 ), or from a massless scalar 

field. Although these two systems have different behaviour (for example, dust solutions 
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can develop naked singularities, whereas it seems that the massless scalar field solu

tions do not), one property they have in common is the absence of non-trivial regular 

time-independent solutions. 

In [24] we analysed the spherically symmetric Einstein Yang-Mills equations with 

gauge group (} = SU(2) and showed numerically that the equations have solutions 

which are static, asymptotically flat, everywhere non-singular and topologically 

IR3 x IR . This is in contrast to the above-mentioned matter models, and is interesting 

for many other reasons. 

Although the Yang-Mills fields are of fundamental importance in particle phy

sics, it is known that they are "dispersive" -for finite-energy solution of the YM equa

tions in IR3'1 , the energy in any bounded region in IR3 must decay to zero [25]. The 

proof of this is based on the conformal invariance of the 3+ 1 dimensional YM equa

tions, in particular, the invariance under the conformal dilations with generating vec

tor X= r8r +tat . We note that this dilational invariance fails for the EYM equa

tions, since the mass scales as a length. The usual method for circumventing this non

existence result in IR3'1 is to introduce a Higgs field- a scalar field coupled to the YM 

connection - and then to impose topologically non-trivial boundary conditions. Al

though this method is natural and attractive mathematically, it has the physical dis

advantage that, unlike the YM field, the Higgs field has not been observed experimen-

tally. 

The prototypical solution of the YM-Higgs equations is the Bogomolny-Prasad

Sommerfield (BPS) monopole [26] . With generators ri, i = 1,2,3 of the gauge Lie 

algebra SU(2), connection A(x) and Higgs field <P : 1R3 ~ 1R3 valued in the adjoint re

presentation of SU(2) , the BPS monopole is given in the "canonical" gauge [27] by 

[ 1 1] . A(x) = ;:;;;;-g;j-- f .. k r.x. dxk 
Slllu~ r 1 r IJ 1 J 
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where x. = 
l. 

, r = I xI , x E 1113 . To see that this connection is asymptotically 

U(l )-valued, we make the gauge - -1 -1 A -1 A = = u. du + u Au , where 

B), sp,) = and (}, \O are polar coordinates. In this 11 abelianl! 

A= r . [T d!9-sinh{r). 2 +cosO 

that the connection is asy1nptotic to the charge 1 Dirac U(l) magnetic mono-

pole, 'Nith the non-triviality of the subbunille reflected :in the fact that the 

gauge transformation is defined only on " IR+. We note that 

the charge k Dirac monopole, Ak = k cos{} dcp , serves as a source for the Reissner-

Nordstrom metric with e = k. 

symmetric if S0(3) (or acts on 

the principal leaving the connection invariant, and such that the projected 

orbits of the action on the base manifold are generically s2 . It can then be shown [28] 

that in the abelian gauge, the general spherically 

IR3'1 is: 

connection on 

A= + +cosO dcp 

where ·the symmetry group is also SU(2) and a, b, c, d depend on (r,t) . We can use 

the remaining U(l) gauge freedom to impose the radial gauge condition b(r,t) = 0, 

and we will assume that a( r, t) = 0 Hooft-Polyakov ansatz) . 

The general static spherically symmetric, globally nonsingular metric can be 

written (with m = m(r), 15 = c5(r)) 

2 [ 2m] -26 2 [ 2m]-l 2 2 2 ds = - 1 - r e dt + 1 - -:r- dr + r dO , (13) 
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and the static, spherically symmetric EYM equations reduce to the system 

(ii) 

(iii) 

[ -8 [ ?m] J ' -8 [ 2] / e 1-T w' + e 1- w w r = 0 

,2 
{/ =- 2 .!!____ 

r 

2 
1 _ [ 1 2m] ,2 (1-w2) 

m - --r- w + 2r2 ' 

(14) 

where the YM connection is given by setting d = w, c = 0. The equations (14 (ii,iii)) 

show that the metric functions o, m are determined by the YM function w , which 

satisfies the YM equation (14 (i)). In fact, if we use (14 (:ii,iii)) to define (m,8) from 

w , the YM equation can be obtained as the Euler-Lagrange equation of the (nonlocal) 

total mass functional 

The mass equation (iii) is just (12) with stress-energy density 

The metric is asymptotically flat if we impose the boundary condition 

M(w) = lim m(r) < oo , 
T---liiJ 

(15) 

and the solution is regular across the origin if we require that the stress-energy is 

bounded, 

lim Too(r) < oo. 
T-tO 
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This leads to the boundary conditions 

=0 

which we used as the basi.s of a 

conditim1 ensures that the connection can be gauge 

across the ori-

NuDn.erically, a discrete of so1utions 

condition were indexed by the number of zeroes of we 

show the YM function and the T 00 for the 4--zero solution, The 

i.s concentmted in the region :r 1 arul Jn the 

farfield region r > the Sehvtarzschlld solution since 

w:.:.: 1 , and the mass is M4 "' 0.9992313. (I do not understand vtrhy Mk N 1) , In the 

near field 1 < r < 1000 , the solution w "' 0 indicates the curvature is "nr"''".,., 

Reissner-

Nordstrom. We this 

e 1 - &ffil I I = 1 - ~~ + ( 
') r. )' n.r 

r } r 

and Figure 3 shows the RN charge g2 agrees with the Dirac magne-

tic charge 1 in the near field region. Since the total mass M ~ 1, the metric in the near 

:field in fact approximates the extremB1 RN with m = e g) , 

we expect the time-dependent solutions to he unstabk This can be seen by consider

ing the solutions as resulting from a balance between the attractive gravitational force 

and the 
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persion of YM radiation on the other. This unstable gravitational collapse/YM dis

persion balance has been observed numerically. 

There are clearly many questions about the EYM equations which need to be 

answered, starting with a proof of the existence of the numerical solutions found in 

[24] . The static spherically symmetric EYM equations without the 't Hooft-Polyakov 

ansatz (i.e. nonvanishing electric field) are also very interesting, as we may hope that 

the electric field helps to stabilise the solution. The numerical evidence for the exis

tence of asymptotically flat solutions here is inconclusive, but does show that the equa

tions with electric field behave quite differently. 

The observation that the solutions approximate the extremal RN metric in the 

near-field region raises the intriguing possibility of the existence of superposition solu

tions of the static EYM , approximating the Majumdar- Papapetrou metrics [22,29] 

where I dx 12 is the standard metric on IR3, and U(x) satisfies D. U = 0 . If 

p1' ... ,pk E IR3 and rk(x) = lx-xkl , then the MP metric with 

k 
~m· 

U(x) = 1 + k r ~ , 
i=l 

represents the superposition of extremal Reissner-Nordstrom metrics with charges 

ei = mi , positioned at pi [29]. This would be analogous to the superposition of multi

monopole solutions of the Bogomolny-YMH equations [30]. Since the positions of the 

extremal RN sources in the MP metric are arbitrary, we may expect that the EYM 

particles move freely as long as their separation distances fall below the near-field 

radius. Beyond this radius, we should not expect static solutions, since the RN charge 

decays and the gravitational attractions predominates (this is assuming some mecha-
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nism can be found which . However, unless an algebraic construc-

tion can be found, to the constructions for multimonopole BYMH solutions, 

it seems unlikely that these solutions could be by other that numerical 

'don. This in 

pletely intractable to current 

to the time-dependent evolution, which seems com

techniques. 
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