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SCHAUDER ESTIMATES ON LIE GROUPS 

Robert J. Burns and Derek W. Robinson 

1. INTRODUCTION 

Let 81 , ... , od denote the partial differentiation operators on the usual Lp-spaces 

Lp(IRd; dx) and aa = of1 ••• o~d their products. Then the subspaces 

Lp;n = ll D(o"') , 
a;lal::;n 

·where Jod = a1 + ... +ad, are Banach spaces with respect to the norms 

'P E Lp;n r--+ Jjcpjjp;n = sup 118"' cpjjp · 
01;l<>l::;n 

Moreover, if /::, = - 2:,:=1 8f is the Laplacian then Lp;n = D( /::, n 12 ) and for each 

p E (1, oo), each n = 1, 2, ... , and each A> 0 there is a Cp,n,>. > 0 such that 

(1.1) 

for all cp E Lp;n (see, for example, [Tri] Section 2.2.3). 

Thus the differential structure of the Lp-spaces coincides with the structure given 

by the Laplacian. Our primary aim is to prove similar properties for the differential 

structures associated with left, or right, translations on the Lp-spaces over a Lie group 

G. 

It shou.ld be emphasized that the equivalence of the norms cp r--+ II'PIIp;n and 

(p t--t II(U + Ll)nfz sollv is not valid if p = 1, or p = oo. Nor does it hold on Co(IRd). 

The domination properties 
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which are often referred to as a priori inequalities, or Schauder estimates, in the context 

of elliptic differential operators, are quite delicate and it is perhaps surprising that they 

extend to all Lie groups. Despite this delicacy the bounds (1.1) can be substantially 

improved in the classical setting, e.g. for each p E (1, oo) and n = 1, 2, ... there is a 

Cp;n such that 

(1.2) c;,~ sup 118"' c,ollp ~ ll~n/2 c,ollp ~ Cp,n sup ll8c,ollp . 
a;i<>l=n a;i<>l=n. 

These inequalities reflect the fact that the Riesz transforms 8; ~ - 112 extend to bounded 

operators (see, for example [Ste1] Chapter III). Our secondary aim is to establish 

bounds analogous to (1.2) for all compact Lie groups. Stein [Ste2] proved a similar 

result for the hi-invariant Laplacian by a version of Littlewood-Paley theory. Our proof 

is quite different and applies to all possible Laplacians. 

It would be of interest to establish the Lie group version of (1.2) for general 

groups but this seems to require global estimates which go beyond the methods of this 

paper. The proof of (1.1) is based on global bounds on L2 , local bounds on L1 , and 

interpolation. Then (1.2) follows for compact groups with the aid of a spectral bound 

for~. 

2. NOTATION AND PRELIMINARIES 

Let G be a d-dimensional Lie group, dg left-invariant Haar measure, dg right­

invariant Haar measure, and m the modular function. Thus dg = dg m(g)-1 . Further 

let LP = Lp( G; dg) and L:P = Lp( G; dg) denote the corresponding scales of Lp-spaces 

with norms II · liP, and II · II:P, respectively. The action of left translations Lon Lp, or 

L on L:P, is given by 

for c,o E Lp, or cp E Lp. The action of L is isometric but the operator norm of L is 

given by 
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Next let a 1 , ... , ad be a basis of the Lie algebra g of G and A; = dL( a;), A; 

dL(a;) the generators of the one-parameter subgroups t f-+ L(e-ta'), t f-+ L(e-ta;), 

of translation on LP, and Lfi, respectively. \Ve define the en-elements Lp;n for left 

translations on Lp as the common domain for all n-th order monomials in the A;. The 

en-elements L:P;n for L on Li> are defined similarly. The C 00 -elements Lp;oo, or L:P;oo, 

are then introduced on the intersection of the family of subspaces Lp;n, or Lp;n· It is 

also useful to introduce the en-norms ll·llp;n by the recursive definition ll·llp;O = !!·liP 
and 

[jcp[[p;n = !icp[[p;n-1 + sup [[A; cp[[p;n-1 
I::;i<d 

Norms II · li:P;n on Lp;n are defined analogously. 

The Laplacians L)., and A, of the basis a 1 , ... , ad are then defined by 

i=l i=l 

These operators are closable on each of the Lp-, or Lfi-, spaces, and it is an implication 

of our estimates (see Theorem 3.1) that they are already closed if p E (1, oo}. There-

fore, at a slight risk of confusion, we will not make a notational distinction between 

the operators and their closures. 

Now with these definitions we aim to establish the inequalities (1.1), and similar 

inequalities for the Lp-spaces. Thus the classical results transfer directly to the Lie 

group setting for left translations on either scale of spaces and hence, by symmetry, 

they also hold for right translations. 

The key tools in this investigation are the families of continuous semigroups S, and 

S' generated by the (closed) operators L)., and A. (If p E [1, oo} all statements are with 

respect to the strong topology, and if p = oo the weak* topology.) These semigroups 

were originally constructed by Nelson &J.d Stinespring [NeS], and independently by 

Langlands [Lan]. The two families interpolate between the spaces, e.g. St(Lp n Lr) ~ 

Lp n Lr, and they are consistent, i.e. St(Lp n Lp) = St(Lp n Lp)· The semigroups s 
are contractive but 
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where ,82 = -:Lt=l j3f and the j3; are the left derivatives of m at the identity e of G, 

1.e. ;3; = (A;m)(e). 

Langlands [Lan] established that the action of S, and S, 1s determined by a 

universal integral kernel K, 

for all rp E Lp n Lp· Properties of this kernel, and in particular upper bounds on the 

kernel and its derivatives, are fundamental for the sequel. Such bounds have been 

given by many authors and the information we use can be found in [Dav] [Var] [Robl] 

or references cited therein. 

The kernel K is pointwise and jointly analytic in t and g. Moreover one 

has upper bounds 

where a, b > 0 and g >-> lgi is the modulus associated with a right-invariant Riemannian 

metric on G. In particular 191 = oo and Kt(g) = 0 if g 1ft the connected component 

of the identity. These bounds can be improved for special classes of groups, or for 

special choices of the modulus, but we will not need these improvements. 

The resolvents (>.I+ A)-1 of the (closed) Laplacian A are defined for)..> 0 as 

bounded operators on the Lp-spaces Laplace transformation of S, 

It then follows that the resolvents have positive kernels R such that 

The resolvents associated with /5, on Lp can also be defined for .\ > ,82 /p and their 

action is determined the same kerneL The bounds on J{ then translate into bounds 

on R. One finds that there are b, c, .,\0 > 0 and for each ,\ > ..\0 a.n a;;. such that 
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for all g E G\{e} where 

f(g) = lgl-(d-2) if d > 2 

= 1 + I log lgl I ifd=2. 

The semigroups S, and S, map the spaces Lp, and Lp, into the C 00-elements 

Lp;oo, and Lp;oo, for left translations. Therefore the operators A; St, A; Aj St, etc. are 

bounded, for all t > 0 and i, j = 1, ... , d, and have kernels A; Kt, A; Aj Kt etc. where 

the derivatives A;, Aj or Kt are defined by pointwise limits. These latter kernels have 

bounds [Robl] similar to (2.1); 

(2.3) { 
I(A; Kt)(g )I :::; a' (1/\ t)-d/2 c1/2 eft•t/4 e-blul• ft , 

I(A; Aj Kt)(g )I :::; a" (1/\ t)-d/2 c1 efi•t/4 e-blul• ft , 

for all g E G and t > 0 etc. Thus each additional derivative introduces an extra factor 

r1/2. 

Now the resolvents leave the C 00-elements invariant and hence A;(>.I +A)-I, 

A; Aj(>.I +A)-I, etc. are defined on these subspaces. But for <p E Lp;oo it follows 

from the dominated convergence theorem that 

The pointwise derivatives g E G\ { e} t-t (A; R:x)(g) exist, however, by the bounds (2.2) 

and another application of the dominated convergence theorem. Therefore the action 

of A;(>.I + A)-1 , A; Aj(>.I + A)-1 , etc. on Lp;oo is given by the derivatives A; R;x, 

A; Aj R;x, etc. of the kernel R;x. The bounds (2.3) on the derivatives of the kernel then 

lead to bounds 
I( A; R:x)(g)l :5 a~ lgl-(d-1) e-(b>.tl•-c)lul ' 

I(A; Aj R:x)(g)l :5 a~ lgl-d e-(b>.tl•-c)lul ' 

for >. > >.0 and g E G\ { e}, etc. Thus each additional derivative introduces an extra 

factor lgl-1. These bounds are now valid for all d ~ 2. 
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3. A PRIORI ESTIMATES 

For the remainder of this paper it will be asstuned that G is a nnimodular Lie 

group. So dg = dg, Lp = Lp etc. This makes it easier to describe the results but the 

assumption is not essential. See [BuR] for a complete exposition. 

The principal problem in establishing the Lie group version of the basic inequalities 

(1.1) on the Lp-spaces is to establish that the operators A;(.AI +.6.)-112 , and A; Aj(.AI + 

.6.)-1, are bonnded. Here, the square root is defined by the algorithm 

(see, for example, [Paz]). 

Theorem 3.1. If p E (1, oo) and .A > 0 then there exists a Cp > 0 such that 

(3.1) 

(3.2) 

for all t.p E Lp;2 and i,j = 1, ... ,d 

II'PIIp;1 :::::; Cp II( .AI+ .6.)112 'PIIp 

for all t.p E Lp;1 

Proof. Since the proofs of (3.1) and (3.2) are similarin outline only the proof of (3.1) 

will be described. There are four steps. 

Step 1. Inequality (3.1) is first proved for p = 2. A brief algebraic calculation is 

involved. See [Rob2] for details. 

Step 2. Restricted weak L 1 estimate. 

From step 1 the_operator A; Aj(.AI + .6.)-1 extends to a bonnded operator on 

L2. We now prove that this operator satisfies a restricted form of boundedness as an 

operator from L 1 into the weak L1-space. 
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Let X= X~i denote the operator A; Ai(>.I +L'l.)-1 defined on L 1;co· Let <p E L 1;oo 

and for 1 > 0 define <p 1 by <p 1 (g) = <p(g) if I'P(g)l > 7 and <p 1 (g) = 0 if l<p(g)l:; 'Y· We 

need to prove that there is a C > 0 such that 

(3.3) L dg {g E G : I(X lf''Y)(g)l >a} :; a-1 C lllf''YII1 

for all If' E L1;= and a,7 > 0. 

The estimate (3.3) is a consequence of the following proposition which is proved 

in [BuR]. 

Proposition 3.2. Let X be a left-convolution operator from C~( G) into Li n Lz 

with kernel R, i.e. 

(X IP)(g) = L dhR(h)ip(h- 1 g). 

Assume that 

1. X extends to a bounded operator from L2 to Lz, 

2. R has support in a ball Br, is once pointwise left-differentiable on Br \ { e }, and 

satisfies bounds 

for all g E Br \ { e} and i = 1, ... , d. 

It foLlows that there is a C > 0 such that 

L dg {g E G; I(X lf''Y)(g)l >a}:; a-l C lllf''YIIi 

for all If' E C~( G) and a, 7 > 0. 

The proposition is very similar to results developed by Stein for the discussion of 

singular integrals (see [Stel] Chapter II). One key idea of the proof is to reduce it to 

the case G = IRd choosing r sm.all and using the exponential map. 

Step 3. Interpolation. 

The interpolation argument of Stein ([Stel] p.21-22) now gives (3.1) for p E (1, 2]. 

Step 4. Duality. 

A duality argument can be used to obtain (3.1) for p E (2, oo ). 
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4. DIFFERENTIAL STRUCTURE 

The a priori inequalities of Theorem 3.1 provide the principal information for 

the characterization of the left differential structure on the Lp-spaces by the Lapla­

cian. Using Theorem 3.1, induction, and some algebra we can establish the following 

theorem. 

Theorem 4.L For each p E (1, oo), n = 1,2, ... and A> 0 Lp;n = D((AI + A)nf2 ) 

and there is a Cp,n,>. > 0 such that 

c;,~,A llc,ollp;n:::; II(U + At12 'PIIp:::; Cp,n,>. II'PIIp;n 

for all tp E 

Remark: The identification Lp;n = D((>..I +L':.)nf2 ) implies a certain universality. The 

definition of Lp;n is independent of the choice of basis a1, . .. , ad. But the definition 

of L':. is certainly basis dependent. Nevertheless one concludes D((A.I + is basis 

independent. But D(L':.nl2 ) = D((M + L':.)n/2 ). Hence the domains D(L':.nfZ) are the 

same for all Laplacians. 

5. COMPACT GROUPS 

In the introduction we indicated that the relations between differential structures 

revealed by Theorem 4.1 can be considerably strengthened if G = IRd. A similar 

situation prevails for compact groups. 

Theoren1. 5.1. Let G be a compact group. For each p E (1, oo) and n = 1, 2, ... , 

Lp;n = D(A nf2 ) and there is a Cp;n such that 

for all 'P E Lp;n, where the supremum is over all n-th order monomials in the generators 

, ... ,AJ. 
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