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OPERATORS OF TYPE o WITHOUT A BOUNDED H.. FUNCTIONAL
CALCULUS

" Alan MeIntosh 1 and ‘Atsushi Yagi

1. Introduction

At the previous C.M.A. Miniconference which was held at Macquarie
University, one of us considered operators T of type o acting in a Hilbert
space %, and listed several conditions equivalent to such an operator T
having a bounded H,. functional calculus [MCI]. We shall list these again
shortly. It is sometimes asked whether every operator of type w satisfies
one or other of these conditions, so we would like to take this opportunity to
show that they do not. On other occasions we have considered operators T of
type o with respect to a double sector, and discussed the conditions under
which such a T has a bounded H. functional calculus, which implies in
particular that 7 has bounded spectral projections associated with each
sector. An example of an operator with no such bounded projections will
also be presented.

In the next section we shall recall some results from [MCI] and other
papers. We shall then define and study some operators which will be used
in the following two sections to construct the counter-examples. These
examples are really modifications of those presented in earlier papers
[Mc,1,2,3,4], and their existence comes as no surprise to those who are
familiar with this material.

In the final section we shall show that every operator T of type @w does
have a bounded H ., functional calculus if it is considered as acting in a

Hilbert space %y in which the norm of # is replaced by a square function
norm.

1 This research was supported by the Australian government through the Australian

Research Council.

Mathematics subject classification number: 47A60
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2. Operators of type o

We shall consider operators T in a Hilbert space # over the complex field
C. By this we mean that T is a linear mapping from its domain D(T) ¢ H to
H, where D(T) is a linear subspace of #.

We shall need the sets, defined for 0 < pu < 7x, by
Syr = {zeC:larg) sporz=0}, Sy = =Sy, Sy = Sy Sy (w<in)

which are closed sets with interiors Su"+ ,S;_ and S;. We shall employ the
spaces of functions defined on these open sets by

H(Sy) = {f:S4 — CIf is holomorphic and Il fll, < e }
which are Banach spaces with norms lifll, = sup{lf(z)l : fe § ,;p}, and Hw(S;),
which are defined likewise and are also Banach spaces, as well as

clzls
1+z128

Sy ={ we Hu(Syy) :35>0, ¢ 2 0 such that ly(z)l < forallze S, ).
Definition. An operator T in # is said to be of type w (or type w+) provided
that T is a closed operator in H, its spectrum o(T) is a subset of S, (or Sps),
and for all g > @ there is a number cy such that II(T-M)'III < c‘ulll'1 whenever
Ag Sy (or Ae S.).

Every such operator has domain D(T) dense in #. In this talk we shall
assume that T is one-one, which (for operators of type w or w+) is equivalent
to T having range R(T) dense in #. (There is a slight change of terminology
from [MCI] where type @ was defined with respect to S,,.) Actually, if T is
not one-one, then H = A(T) ® R where A(T) is the kernel of T and R is the
closure of R(T), and we can focus our attention on T|g, which is a one-one
operator of type @ or w+ in the Hilbert space ® . (The direct sum @ is
typically not -orthogonal.) '

Every operator T of type o (or type w+) has a natural functional calculus
defined over H.(S,) (or H.(S,})) where 0 Sswo<p<in (r0<sw<p<m)
provided that we admit the possibility of the functional calculus containing
unbounded operators. In particular, if f, fj € Hoo(S,) (or Heo(Sy3)) and a e C,
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then f(T) and f;(T) are closed operators with domains dense in # which

satisfy
) a(AT) + AT = (of + L)(Dlorry) and
(ii) HDAT) = FHMloET))

{where the operator on the right of (ii) has domain D(fi)(T) N D(AT))). The
interesting problem is to show that for certain such 7T, all these operators f(T)
are bounded. Nevertheless, regardless of such boundedness, the functional
calculus is of interest. For example, if 7 is a one-one operator of type w+ and
s is a real number, define T by T = fo(T) where fi({) = Cis. Then, for all
s;te R, TSTHy = Ty whenever u e D(THTH) = D(THE*Dy A D(TH) . Asa
second example, take T to be a one-one operator of type w, and define the
spectral projections E, and E_ associated with the right and left sectors by E+
= 2 (T) and E_= y_(T) where

1if Re({) > 0
0if Re({) < O

1if Re(&) < O

and z_(&) = {0 if Re(¢) > 0

200 = {
Then, by (i) and (ii), D(E,) = D(E_) =D ,E, + E_=lilp, E42 =E,, EZ2=E_and
EE =EE =0lp.

The significance of this approach is that the above operators, along with
fractional powers T% and semigroups, all fit into the same framework.
Incidentally, it relies on repeated use of the following result.

Convergence Lemma. Let T be a one-one operaior of type w+ in H. Let
L > @ Let fo be a uniformly bounded net of functions in ‘I’(Su°+) which
converges to a function fe H(,O(S;Jr) uniformly on every set of the form { z e
S“°+ :0<8<lzl €A < }. Suppose that the operators fo(T) are uniformly
bounded operators on H. Then fo(T)u converges to (T)u forall ue H, and
consequently (T) is a bounded linear operator on H with I(T)Il < suplife(T)HII.

If T is a one-one operator of type @ in H, then the analogous result holds
with S!f.,_ replaced by S;.

The important thing to know about an operator T of type @ (or @+) is
whether or not it has a bounded H. functional calculus. If it does, then, in

particular, the operators T and E, are bounded.

Let us first summarize some positive results. The first, which builds
upon the work of Yagi [Y] and many others before him, is taken (slightly
modified) from [MCcI]. (Let us note that, if we 'P(Sul), then w(T) is a bounded



162

. ; )
linear operator on # which can be represented as w(T) =7 (T — M)'lt//(l)dl
27:15

where & is an unbounded contour, § = {A=re*"’ : r> 0}, @< v <y, parametrized
clockwise around S, .)

Theorem 1. Let T be a one-one operator of type o+ in H. Then the
following statements are equivalent.

(a) for each p > w, T has a bounded Hw(Su°+)functional calculus (i.e. there
exists cy such that | (T) I <c ll fll, for allfe HW(S”‘:L)) ;

(b) there exists > @ such that T has a bounded Hm(S#o,L) functional calculus;

() { T |se R }is a c? group, and, for all p > ®, there exist ¢, such that
TN < cue“m whense R ;

(d) if Ais a non-negative self-adjoint operator and U is an isomorphism
satisfying T = UA, and 0 < a < 1, then D(T*) = D(A%) and ¢ NA%ull < IT%ll <
cllA%ull for some ¢> 0 and all ue D(T%) ;

(e) forallpy>wand all y e ‘[’(Su‘;) there exist q >0 such that, whenue H,

o0 3
g Nl < flh//(tT)ullz 2o < gl ;
0

(f) there existsu>w, v e ‘P(S;f),) and q > 0 such that y(x) > 0 when x > 0, and

o0 3
g Ml < fnw(zT)uuz e < gl
< e o
0

for all ue 9.

The second result, which was proved in [MCQ], is based upon the proof by
Jones and Semmes of the L, boundedness of the Cauchy integral operator C,
on a Lipschitz curve y in the complex plane [CJS]. Note that if ¥y = {x+ig(x) :
x e R}, where g is a Lipschitz function, then C, = i(x4(D,) - x_(D,)) where D,
denotes differentiation on y with respect to the complex variable. See [McQ]
for details. The boundedness of Cy on Ly(y) was first proved in [CMC¢M].

We call (T,T’) a dual pair of operators with respect to a dual pairing (.,.)
between H and itself if (Tu,v) = (u,T'v) for all u € D(T) and all ve D(T').
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Theorem 2. Suppose 0<w<pu<in. Let (T, T'Ybe a dual pair of one-one
operators of type win H. Let H, be the closure of the range R(E.), let Ky be
the closure of R(x+(T") and let Ty = T|3y and T’y = T'|gs. Then the following

statements are equivalent.

(a) The operator T has a bounded Hw(SZ) functional calculus (i.e. there exists
cy such that | f(T) Il < cullfllw for allfe H‘,,(S;)) ;

(b) the operators Ty and T’y have bounded Ho‘,(Su‘;) Sfunctional calculi in the
Hilbert spaces #, and X .

We find (b) an intriguing result, because it has the consequence that
estimates within % and X, imply that the operators E, = y4(T) are bounded,
and hence that H =H, ® H_ =X, ® X_. In the case of the operator D,, this
means that the quadratic estimates proved by Kenig within the Hardy spaces
associated with the regions above and below y imply that L,(y) is the direct
sum of these Hardy spaces, or equivalently, that C, is a bounded operator on
Ly(¥) [CIS].

3. An Operator Equation

We shall now define some matrices which will be useful in constructing
the counter-examples. Similar examples were used in [MC¢,1,2,3,4]. See also
[K,1,2] where Kahan obtained estimates which depend on the size of the
matrices.

cN*! a5 a Hilbert space as usual. For >0, let A, B and

For N = 1, consider
Z be the operators in CV*! given by the matrices A = diag(?/), B = (B jk) and

Z = (Zj ), where

. . 2k ) ) -4
—L. if j=# &k T ; if j =k
- k -
Bj = w(k-J) Zik = @K+27)ym(k-J)
0 -ifj=k% 0 ifj=¢%

with j and k ranging from O to N. Then A is a self-adjoint operator with
o(A) c [1,2V], B is a skew-adjoint operator with IIBIl < 8,

AZ +ZA =BA,

and lIZIl 2 B(%logN — 1). The inequality lIBIl £ § is a consequence of the fact
that B is the NxN Toeplitz matrix corresponding to the function b(6) =
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iﬁ(l—n"le) on 0 <@<2m. To obtain the lowér bound on lIZll, estimate Zull for
u = (1,1,....,1).

Note that Z is the only solution of the above operator equation.

4. Unbounded Projections

Our aim now is to construct a one-one operator 7 of type O in a Hilbert
space # with unbounded spectral projections E. corresponding to the sectors

S;i as defined in section 2. Such an operator T therefore does not have an
H_ (S Z) functional calculus for any u > 0.

Theorem 3. Let x > 1. There exists a closed operator T of type 0 in a
Hilbert space 9 with real spectrum o(T) contained in the pair of intervals
(—o0,=11 U [1,0), and with resolvent bounds WT-AI)'ll < klIm(A)Y, for which
the spectral projections E, = x.(T) are unbounded.

There also exists a one-one bounded operator S of type 0 on a Hilbert
space H with real spectrum o(S) contained in the interval [-1,1], and with

resolvent bounds II(S—M)'III < xllm(l)l'l,for which the spectral projections
Ey = x4(S) are unbounded.

We remark that operators 7 and S which satisfy the above resolvent
bounds with x = 1 are necessarily self-adjoint and their spectral projections
E, and E_ have norm one.

To prove the theorem, it suffices to construct, for every natural number

n, operators T, on finite dimensional spaces #, = C2"*2 with real spectrum

o(T,) contained in the pair of intervals [—2N ~11 u [1,2N 1, and with resolvent
bounds I(T,~AI) Il < klIm(A)"!, for which the spectral projections E, satisfy
HE llzn. We then take T = @®T, and S = @2'NT,, in the Hilbert space H = @ H,,.

So let us fix numbers n and « greater than 1, and choose N large enough
that (x—1)( %logN — 1) = n. Then choose operators A and B on cV fl such that A

is a self-adjoint opefator with o(A) [1,2N 1, B is an operator with lI1Bll £ x -1,
AZ +ZA = BA,

and lIZIl = (x=1)( %logN — 1) 2 n. This was shown to be possible in section 2.

Now define the operators T, , P, and P_on %, = C¥*1 @ ¢V*! by
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A BA 1 Z 0 <2
T, = P, = P_ =
0 -A 00 0 7
Then T, has spectrum o(7,) = o, v o_ where o, = o(A) = {1,2,4,...,2N} and
o- = o(-A) =—oy . Moreover P, +P_=1,P,P_=P P, =0, P+2 =P,, P=p_ ,

A0 0 0
PTy=TyPy=Py| o |Py and PTu=T,p_=P_| = |P.

and 1Pl 2 1227 .

It is not too difficult to calculate resolvent bounds for 7,. Indeed, for all
non-real numbers A,

[ (A-AD7Y (A-ADT'BAA+ADT }

(T, _,‘U)-l =
0 —(A+AD!
and so
(T, =AD" < Um)Y + 1 A-ADTBAA+AD ™ Il < ©Im(A)!

as required. Hence T, is of type zero, so we can define the spectral
projections Ey, = y4+(T) as in section 2. The proof is completed on observing
that £, = P, and hence that lIE 1z IZlzn. [/

5. Our last example

The operator constructed in section 4 is an operator of type zero (with
respect to a double sector), whose H. functional calculus is unbounded. Our
aim now is to comstruct an operator 7 of type w+ (with respect to a single
sector) whose H,., functional calculus is unbounded.

Theorem 4. Suppose 0 < o <y <in. Then there exists an invertible closed
operator T of type w+ in a Hilbert space H which does not have a bounded
HW(S;;.) Junctional calculus.

This theorem is a consequence of the following lemma.

Lemma. Let we (0,47n] and let ne W. There exists an operator T, of type w
=CY*! which has the form T, =
(1+V)A2,where Ais a self-adjoint operator with spectrum o(A) contained in
the interval [I,ZN], Wil € sinw, and IITnévH = nllAvll for somev e #,.

on a finite dimensional space H,
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To see that theorem 4 is a consequence of the lemma, we first show that
T, is of type ® and that o(T,~I) c S, . Indeed

T,—AM = (I+VAXAZ-2aD" A% - 4D

is invertible when A-1 ¢ S IJO+ , because

sinw ifRe(A) < 1
Il VA2(A2 - AD- 11l £ YiA-llsinw .
_—Ilm(ﬂ,)l if Re(l)% 1
and then
NI S if Re(1) < 1
A-11(1-sinw) i Re(d) <
W (Tp— D11 < .

Im ()] - [A-1lsine i Re(@)=1.

So T is of type @ and o(T,-I) C Sy .

Define T = ®T, in the Hilbert space # = @ H,. Then T is an invertible
closed operator of type w+ in H of the form T = US, where U is invertible and
S 1is a self-adjoint operator with o(S) ¢ [l,e). However T and S do not
satisfy part (d) of theorem 1 with a = %, and hence T does not have a
bounded H.(S,;) functional calculus.

Let us now turn our attention to proving the lemma.

So let us fix n e N and ¥ = l+sinw, and choose operators A and B on a

finite dimensional space H, = C¥*! and u e H, such that A is a self-adjoint
operator with o(4) C [1,2N ] and B is an operator with lIBIl £ x—1, and such that

the unique solution Z of the operator equation

AZ+7ZA = BA

satisfies 1Zull = (x—1)( %logN — Dllull = nllull. This was shown to be possible in

section 2.

For z e €, define W, =( + zB)Az. Then W, is of type u for some p <ixn
provided Izl < (x=1)"!, and depends holomorphically on z, as does Wzi. Of
course Wz"}WZé =+ zB)AZ, so on differentiating both sides with respect to z,

3

setting z = 0, and substituting Wy* = A, we obtain
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4.4 a3 a2
(dz z IZ:O)A + A (dZ z lz:O) = BA ’

. _(4, 3 -1
or in other words Z = (dz 2 |z=O)A .

We claim now that IleéA'lull 2 nllull for some values of z satisfying Izl =1.

Recall that Zull 2 nllull. Suppose to the contrary that IIWziA'luII < nllull
whenever Izl = 1. Then

N Zull = ” (Z‘I—ZW}IZ:O)A‘M H = —2%” J Z—IZ—W}A‘lu dz H < nllull

Izl=1

which is not possible. Hence HWziA'luII = nliull for some values of z
satisfying Izl = 1 as claimed.

To complete the proof of the lemma, take V = zB for such a z, T, = W,
and v = A lu. J/

This completes the proof of theorem 4. Two small problems remain
open. The first is to make the example explicit by finding a specific value of
z. The second is to determine whether or not a closed operator T of type O+
exists which does not have a bounded H (S u°+) functional calculus. These
problems are left for the amusement of the interested listener.

6. Square Function Norms

We saw in theorem 1 that a one-one operator T of type w+ has a bounded
H. (S ;+) functional calculus if and only if T satisfies quadratic estimates. Let
us explore what happens when we replace the given norm by a new omne
defined by '

o 3
di
lully, = f Ny (THull®> 5
0

where wy(z) = w(iz).

Theorem 5. Let T be a one-one operator of type o+ in #H. Let v, w e ‘P(Sui)
where U > w, and suppose that w(t) > 0 when ©> 0. Then there exists ¢ such
that '
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oo i - i
[igwamuiz & < ey [y &
0 0
for all f € Hoo(S,,) and all u e 5.

Note that fy, e ¥(S ”o+), and so (fy,)(T) is a bounded linear operator on #.

The proof depends on the following estimates. There exist constants ¢,
and ¢, such that

@ NI < eqlifil,

for all f € H.(S,;) and all ¢ > 0, and

co

) s :
(ii) JII Jﬁw,(rmﬂ)gu)‘-’f 12e < Cz{ [ngom> & }
o o
0

for all continuous functions g from [e,8] to H and all O << f <o,

These estimates can be proved by representing the operators as integrals
over an unbounded contour § = {1 = retV . r> 0}, w < v<pu, parametrized
clockwise around S, . The first is easy, and the second not much harder
[M¢Q]. To derive it we observe that

[7AN

1
YD) 1< 15 = [T = Al yAu(A)dA |
)

1 A oAl
°°“S"J Al 1+1A125 1+l7A2s
5

IA

dal

- { const.(¢/T)S(1+log(z/t)) if 0 <t <7< o
~ Lconst.(¢/)5(1+log(t/z)) if O<7<t< oo

and hence that

o

:
| { I fﬂwxw,(ng(r)d—: I
0
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4 : = i 8 3
SSMP{ f hyw (THII ‘-lf} Sup{ lhy e (Tl ‘%} {fug(t)uz ‘{—’}
t>0\a 7>0 0 o
B 3
< cz{fng(t)nz d
o

as required.

B
Proof of theorem 5. Define y,g lI’(S;ﬁ,r) by wo,p(2)= k1 fﬂf(z)% where k
o

co

= _"13(7)4;7. Let u e #. By the Convergence Lemma in section 2, Ugpg =
0

y/a’ﬁ(T)u —uas o — 0and f — . Also

o 3 - B 3
{Ofll(fy/t)(T)ua’ﬁllz df} = k) JIIJ PO |12 4
W0
4 oo ﬁ i
= K19 Ju | vty &
[14
L0

A

o )
ke { f!l(fm)(T)m(T)unz a } by (id)
0

A

oo 4
kKle,eilifll, {fn%(T)uuz "7’ } by ().
0

The result follows on applying the dominated convergence theorem. //

Given a one-one T operator of type @+ in #, let us choose a function
we 'P(Su‘:_) for some u > » which satisfies w(z) > 0 when > 0, and let Hy =
{ue H: iIuIIV,< e}, where
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oo )
dat
lull, = fuu/t(T)uu2 .
0

On applying the preceeding theorem with f = 1, we deduce that different
choices of u and yw which satisfy the same criteria, give rise to the same space
H, with equivalent norms. (To see that they are norms, we need to use the
fact that T is one-one, and hence that w«(T) is one-one.) Moreover D(T%) N
R(T* < H, for a > 0, so H is dense in H. The space H, is an inner product
space under

W,y = [wdDu, v &
0

Define the Hilbert space #r to be the completion of #,, together with one
of the equivalent inner products (# , v)y and norms llully .

Given any linear operator S in #, let Sg = Slp(s,) where D(Sy) = {u e H, :
Su e Hy }, and let S” be the closure of S in Hy if it exists.

Whenever B is a bounded linear operator on A which commutes with
Ry = (T—)J)'1 when 4 ¢ o(T), then B commutes with y(T), and consequently
B(#Hp) © Hy and Bully, < B llully, for all u € Hy. So B™ is a bounded linear
operator on #y and IIB”l, < lIBll, where IB7Il,, denotes the operator norm of B~
on Hy under llully. If B, is a uniformly bounded net of linear operators on #
which commutes with R, and if B, converges in the strong topology to B,

then, by dominated convergence, B, u — B u in Hy for all u € H, and hence
for all u e Hy.

In particular, when A ¢ o(T), then R;” is a bounded linear operator on Hr
and 1IR3l < lIRyll. Note also that I” is the identity map and 07 is the zero
map on Hrp. Now, for ¢ >0, tR_, converges strongly to I as t — oo, and tR_;
converges strongly to 0 as ¢ — O (since T is a one-one operator of type w+ in
#), and therefore tR_,” converges strongly to I~ as ¢t — oo, and tR_;” converges
strongly to 0™ as t = 0.

We shall now prove that the operator T has a closure T~ in #Hy and that
Ry = (T"'—/'LI")'1 when A ¢ o(T). To do this it suffices to show that R;~ is one-
one. Now (t+A)R_,R3 =R; —-R_;, when t> 0, so (t+A)R_;R)” =R, —R_; also.
Hence, if Ry u =0,then 0 =tR_; u — u as 7 - o, and so u = 0. We conclude
that R,~ is one-one as claimed.
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Theorem 6. Let T be a one-one operator of type w+ in H, and let T~ be the
associated operator in Hy which was defined above. Then T  is a one-one
operator of type w+ in Hy which has a bounded Hm(Su‘:_)functional calculus
when U > o, and thus satisfies the equivalent statements of theorem 1 (with
H replaced by Hr).

Moreover, {T7) =fT) forall fe HW(S;,P), and so ATy, < DI when
f(TY is bounded, where the operator norm Hf(T")Il,',,is defined with respect to
any function we ¥(S,) with v> o and w(1) > 0 when > 0.

Proof. We have already seen that o(T") < o(T) and II(T"—M)'IIIV,S (T-Ann
whenever A ¢ o(T), so T~ is an operator of type w+ in Hy. Suppose T u = 0 for
some ue Hp., Thenu=1tR.;u— 0as 7> 0, and so u =0. Thus T~ is one-one.

Suppose for the moment that fe Y(S ﬂ°+). Then the bounded linear
operators f(T7) and f(T)” on Hy are equal. This is a consequence of the
contour integral representations of these operators and the above facts about
resolvents and convergence. Hence IIf(T")Ist HATHNI. Further, by theorem 5
with w =y, IRT )ully, < clifilllully, for all u e H; and thus for all u € Hr.

Now every function fe Hw(Su°+) is the limit of a sequence of functions
fne ¥(S,)) which converges to funiformly on sets of the form { ze S, :
0<d<izl £A <=}, and which satisfies lIf,ll, <€ lIfll, for all . Therefore, by
the Convergence Lemma, f(T7)is bounded on Hy with AT )l < supllfu(T7)lly,
< clifll, < clifil,. That is, 7" has a bounded HW(S;,_) functional calculus.

To conclude, suppose that fe H.,(S u°+). We need to show that fA(THu =
ST Yu for all u e D((T)y) and that D((T)y) is dense in Hy, for then f(T) =
f(TT). Note that, if u € D(AT)) n Hy, then, by theorem 35, f(T)u € Hy, so
D(f(T)) = DH(T)) n Hy. For such a u, and for the functions y, g used in the
proof of theorem 5, we have that u,g= vy g(T)u = wo (T )u —u in Hy as o — 0,
B~ co. Also I )utg,p= FT)Wa,fT ) = (Fyrg (T I = (Fyrg, p)(TI = g p(DATI
= Yo, p(T M(T)u, so, on taking limits in Hy, we have ATu = {T)u as required.
To prove density, take v e %, and observe that vy, g(T)v € D(AT)) N H; and
that yq g(T)v = wo g(T")v —v in Hy, Hence D(f(T)) = DAT)) N Hy is dense in
Hy (in the Hy topology), and therefore is dense in Hy itself.  //

We have discovered that, although there exist one-one operators of type
@+ in a Hilbert space # which do not have a bounded H.(S u°+) functional
calculus when p > o, nevertheless all one-one operators of type w+ do have a
bounded H. (S #°+) functional calculus in the closely related Hilbert space #Hr.
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