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A BA 1 Z 0 <2
T, = P, = P_ =
0 -A 00 0 7
Then T, has spectrum o(7,) = o, v o_ where o, = o(A) = {1,2,4,...,2N} and
o- = o(-A) =—oy . Moreover P, +P_=1,P,P_=P P, =0, P+2 =P,, P=p_ ,

A0 0 0
PTy=TyPy=Py| o |Py and PTu=T,p_=P_| = |P.

and 1Pl 2 1227 .

It is not too difficult to calculate resolvent bounds for 7,. Indeed, for all
non-real numbers A,

[ (A-AD7Y (A-ADT'BAA+ADT }

(T, _,‘U)-l =
0 —(A+AD!
and so
(T, =AD" < Um)Y + 1 A-ADTBAA+AD ™ Il < ©Im(A)!

as required. Hence T, is of type zero, so we can define the spectral
projections Ey, = y4+(T) as in section 2. The proof is completed on observing
that £, = P, and hence that lIE 1z IZlzn. [/

5. Our last example

The operator constructed in section 4 is an operator of type zero (with
respect to a double sector), whose H. functional calculus is unbounded. Our
aim now is to comstruct an operator 7 of type w+ (with respect to a single
sector) whose H,., functional calculus is unbounded.

Theorem 4. Suppose 0 < o <y <in. Then there exists an invertible closed
operator T of type w+ in a Hilbert space H which does not have a bounded
HW(S;;.) Junctional calculus.

This theorem is a consequence of the following lemma.

Lemma. Let we (0,47n] and let ne W. There exists an operator T, of type w
=CY*! which has the form T, =
(1+V)A2,where Ais a self-adjoint operator with spectrum o(A) contained in
the interval [I,ZN], Wil € sinw, and IITnévH = nllAvll for somev e #,.

on a finite dimensional space H,
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To see that theorem 4 is a consequence of the lemma, we first show that
T, is of type ® and that o(T,~I) c S, . Indeed

T,—AM = (I+VAXAZ-2aD" A% - 4D

is invertible when A-1 ¢ S IJO+ , because

sinw ifRe(A) < 1
Il VA2(A2 - AD- 11l £ YiA-llsinw .
_—Ilm(ﬂ,)l if Re(l)% 1
and then
NI S if Re(1) < 1
A-11(1-sinw) i Re(d) <
W (Tp— D11 < .

Im ()] - [A-1lsine i Re(@)=1.

So T is of type @ and o(T,-I) C Sy .

Define T = ®T, in the Hilbert space # = @ H,. Then T is an invertible
closed operator of type w+ in H of the form T = US, where U is invertible and
S 1is a self-adjoint operator with o(S) ¢ [l,e). However T and S do not
satisfy part (d) of theorem 1 with a = %, and hence T does not have a
bounded H.(S,;) functional calculus.

Let us now turn our attention to proving the lemma.

So let us fix n e N and ¥ = l+sinw, and choose operators A and B on a

finite dimensional space H, = C¥*! and u e H, such that A is a self-adjoint
operator with o(4) C [1,2N ] and B is an operator with lIBIl £ x—1, and such that

the unique solution Z of the operator equation

AZ+7ZA = BA

satisfies 1Zull = (x—1)( %logN — Dllull = nllull. This was shown to be possible in

section 2.

For z e €, define W, =( + zB)Az. Then W, is of type u for some p <ixn
provided Izl < (x=1)"!, and depends holomorphically on z, as does Wzi. Of
course Wz"}WZé =+ zB)AZ, so on differentiating both sides with respect to z,

3

setting z = 0, and substituting Wy* = A, we obtain
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4.4 a3 a2
(dz z IZ:O)A + A (dZ z lz:O) = BA ’

. _(4, 3 -1
or in other words Z = (dz 2 |z=O)A .

We claim now that IleéA'lull 2 nllull for some values of z satisfying Izl =1.

Recall that Zull 2 nllull. Suppose to the contrary that IIWziA'luII < nllull
whenever Izl = 1. Then

N Zull = ” (Z‘I—ZW}IZ:O)A‘M H = —2%” J Z—IZ—W}A‘lu dz H < nllull

Izl=1

which is not possible. Hence HWziA'luII = nliull for some values of z
satisfying Izl = 1 as claimed.

To complete the proof of the lemma, take V = zB for such a z, T, = W,
and v = A lu. J/

This completes the proof of theorem 4. Two small problems remain
open. The first is to make the example explicit by finding a specific value of
z. The second is to determine whether or not a closed operator T of type O+
exists which does not have a bounded H (S u°+) functional calculus. These
problems are left for the amusement of the interested listener.

6. Square Function Norms

We saw in theorem 1 that a one-one operator T of type w+ has a bounded
H. (S ;+) functional calculus if and only if T satisfies quadratic estimates. Let
us explore what happens when we replace the given norm by a new omne
defined by '

o 3
di
lully, = f Ny (THull®> 5
0

where wy(z) = w(iz).

Theorem 5. Let T be a one-one operator of type o+ in #H. Let v, w e ‘P(Sui)
where U > w, and suppose that w(t) > 0 when ©> 0. Then there exists ¢ such
that '
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oo i - i
[igwamuiz & < ey [y &
0 0
for all f € Hoo(S,,) and all u e 5.

Note that fy, e ¥(S ”o+), and so (fy,)(T) is a bounded linear operator on #.

The proof depends on the following estimates. There exist constants ¢,
and ¢, such that

@ NI < eqlifil,

for all f € H.(S,;) and all ¢ > 0, and

co

) s :
(ii) JII Jﬁw,(rmﬂ)gu)‘-’f 12e < Cz{ [ngom> & }
o o
0

for all continuous functions g from [e,8] to H and all O << f <o,

These estimates can be proved by representing the operators as integrals
over an unbounded contour § = {1 = retV . r> 0}, w < v<pu, parametrized
clockwise around S, . The first is easy, and the second not much harder
[M¢Q]. To derive it we observe that

[7AN

1
YD) 1< 15 = [T = Al yAu(A)dA |
)

1 A oAl
°°“S"J Al 1+1A125 1+l7A2s
5

IA

dal

- { const.(¢/T)S(1+log(z/t)) if 0 <t <7< o
~ Lconst.(¢/)5(1+log(t/z)) if O<7<t< oo

and hence that

o

:
| { I fﬂwxw,(ng(r)d—: I
0
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4 : = i 8 3
SSMP{ f hyw (THII ‘-lf} Sup{ lhy e (Tl ‘%} {fug(t)uz ‘{—’}
t>0\a 7>0 0 o
B 3
< cz{fng(t)nz d
o

as required.

B
Proof of theorem 5. Define y,g lI’(S;ﬁ,r) by wo,p(2)= k1 fﬂf(z)% where k
o

co

= _"13(7)4;7. Let u e #. By the Convergence Lemma in section 2, Ugpg =
0

y/a’ﬁ(T)u —uas o — 0and f — . Also

o 3 - B 3
{Ofll(fy/t)(T)ua’ﬁllz df} = k) JIIJ PO |12 4
W0
4 oo ﬁ i
= K19 Ju | vty &
[14
L0

A

o )
ke { f!l(fm)(T)m(T)unz a } by (id)
0

A

oo 4
kKle,eilifll, {fn%(T)uuz "7’ } by ().
0

The result follows on applying the dominated convergence theorem. //

Given a one-one T operator of type @+ in #, let us choose a function
we 'P(Su‘:_) for some u > » which satisfies w(z) > 0 when > 0, and let Hy =
{ue H: iIuIIV,< e}, where
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oo )
dat
lull, = fuu/t(T)uu2 .
0

On applying the preceeding theorem with f = 1, we deduce that different
choices of u and yw which satisfy the same criteria, give rise to the same space
H, with equivalent norms. (To see that they are norms, we need to use the
fact that T is one-one, and hence that w«(T) is one-one.) Moreover D(T%) N
R(T* < H, for a > 0, so H is dense in H. The space H, is an inner product
space under

W,y = [wdDu, v &
0

Define the Hilbert space #r to be the completion of #,, together with one
of the equivalent inner products (# , v)y and norms llully .

Given any linear operator S in #, let Sg = Slp(s,) where D(Sy) = {u e H, :
Su e Hy }, and let S” be the closure of S in Hy if it exists.

Whenever B is a bounded linear operator on A which commutes with
Ry = (T—)J)'1 when 4 ¢ o(T), then B commutes with y(T), and consequently
B(#Hp) © Hy and Bully, < B llully, for all u € Hy. So B™ is a bounded linear
operator on #y and IIB”l, < lIBll, where IB7Il,, denotes the operator norm of B~
on Hy under llully. If B, is a uniformly bounded net of linear operators on #
which commutes with R, and if B, converges in the strong topology to B,

then, by dominated convergence, B, u — B u in Hy for all u € H, and hence
for all u e Hy.

In particular, when A ¢ o(T), then R;” is a bounded linear operator on Hr
and 1IR3l < lIRyll. Note also that I” is the identity map and 07 is the zero
map on Hrp. Now, for ¢ >0, tR_, converges strongly to I as t — oo, and tR_;
converges strongly to 0 as ¢ — O (since T is a one-one operator of type w+ in
#), and therefore tR_,” converges strongly to I~ as ¢t — oo, and tR_;” converges
strongly to 0™ as t = 0.

We shall now prove that the operator T has a closure T~ in #Hy and that
Ry = (T"'—/'LI")'1 when A ¢ o(T). To do this it suffices to show that R;~ is one-
one. Now (t+A)R_,R3 =R; —-R_;, when t> 0, so (t+A)R_;R)” =R, —R_; also.
Hence, if Ry u =0,then 0 =tR_; u — u as 7 - o, and so u = 0. We conclude
that R,~ is one-one as claimed.
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Theorem 6. Let T be a one-one operator of type w+ in H, and let T~ be the
associated operator in Hy which was defined above. Then T  is a one-one
operator of type w+ in Hy which has a bounded Hm(Su‘:_)functional calculus
when U > o, and thus satisfies the equivalent statements of theorem 1 (with
H replaced by Hr).

Moreover, {T7) =fT) forall fe HW(S;,P), and so ATy, < DI when
f(TY is bounded, where the operator norm Hf(T")Il,',,is defined with respect to
any function we ¥(S,) with v> o and w(1) > 0 when > 0.

Proof. We have already seen that o(T") < o(T) and II(T"—M)'IIIV,S (T-Ann
whenever A ¢ o(T), so T~ is an operator of type w+ in Hy. Suppose T u = 0 for
some ue Hp., Thenu=1tR.;u— 0as 7> 0, and so u =0. Thus T~ is one-one.

Suppose for the moment that fe Y(S ﬂ°+). Then the bounded linear
operators f(T7) and f(T)” on Hy are equal. This is a consequence of the
contour integral representations of these operators and the above facts about
resolvents and convergence. Hence IIf(T")Ist HATHNI. Further, by theorem 5
with w =y, IRT )ully, < clifilllully, for all u e H; and thus for all u € Hr.

Now every function fe Hw(Su°+) is the limit of a sequence of functions
fne ¥(S,)) which converges to funiformly on sets of the form { ze S, :
0<d<izl £A <=}, and which satisfies lIf,ll, <€ lIfll, for all . Therefore, by
the Convergence Lemma, f(T7)is bounded on Hy with AT )l < supllfu(T7)lly,
< clifll, < clifil,. That is, 7" has a bounded HW(S;,_) functional calculus.

To conclude, suppose that fe H.,(S u°+). We need to show that fA(THu =
ST Yu for all u e D((T)y) and that D((T)y) is dense in Hy, for then f(T) =
f(TT). Note that, if u € D(AT)) n Hy, then, by theorem 35, f(T)u € Hy, so
D(f(T)) = DH(T)) n Hy. For such a u, and for the functions y, g used in the
proof of theorem 5, we have that u,g= vy g(T)u = wo (T )u —u in Hy as o — 0,
B~ co. Also I )utg,p= FT)Wa,fT ) = (Fyrg (T I = (Fyrg, p)(TI = g p(DATI
= Yo, p(T M(T)u, so, on taking limits in Hy, we have ATu = {T)u as required.
To prove density, take v e %, and observe that vy, g(T)v € D(AT)) N H; and
that yq g(T)v = wo g(T")v —v in Hy, Hence D(f(T)) = DAT)) N Hy is dense in
Hy (in the Hy topology), and therefore is dense in Hy itself.  //

We have discovered that, although there exist one-one operators of type
@+ in a Hilbert space # which do not have a bounded H.(S u°+) functional
calculus when p > o, nevertheless all one-one operators of type w+ do have a
bounded H. (S #°+) functional calculus in the closely related Hilbert space #Hr.
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