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LACUNAE IN BOUNDAlRY LAYER MODELLING 

J J Finnigan 

Lacuna: A gap, an empty space, a cavity [OED]. 

This paper examines two gaps in our understanding of basic boundary 

layer physics that are obstacles to climate modelling and, in the spirit of 

this meeting, emphasizes their mathematical aspects. The particular facets 

of boundary layer dynamics we shall discuss are flow over steep "topography 

and transfer processes in boundary layers with strong stability; the 

corresponding mathematical disciplines are the theories of dynamical chaos 

and hydrodynamical stability. The first part of this paper will be devoted 

to shm.ring how these problems arise naturally when we attempt to devise 

practical rules for sub-grid scale averaging of land surface processes, a 

fundamental requirement in setting boundary conditions for global climate 

models (GeM's). 

The problems of forecasting future climate fall roughly into four 

classes. The first concerns the generic predictability of climate itself, 

whether it has chaotic tendencies at relevant time scales and whether 

global climate models (GCM's) can capture the essentials of this property. 

The other three concern the details of the GeM's themselves. GCM's are 

schemes to numerically integrate sets of coupled, partial differential 

equations describing, primarily, the behaviour of oceans and atmosphere. 

The second class of problems, therefore, concerns the stability and nature 

of the numerical integration schemes employed. The third class is the 

parameterization of physical processes that occur on scales too small to be 

resolved by the solu"tion grid. Important atmospheric examples are cloud 

formation and dissipation, gravity wave momentum transfer and turbulent 
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mixing in the boundary layer. The last group of problems is concerned with 

the specification of the boundary conditions, particularly the surface 

boundary conditions. Less attention need be paid to the allied question of 

setting initial conditions as this is much less crucial over the long 

integration times used for climate prediction (typically decades to 

centuries) than in numerical weather prediction. Ibere, essentially the 

same equations are integrated but for a relatively short time so that 

prediction errors are conditioned primarily by uncertainty in initial 

conditions (Garratt [25]). 

We shall concern ourselves here with the surface boundary conditions 

over land, a subset of the fourth class of problellil but in the process will 

be led to consider the parameteriza"tion of sub-grid scale turbulent mixing. 

2. SUB-GRm VAI.HABILITY MID WCAL CLIMATES 

The sensitivity of GCM predictions to planetary boundary layer (PBL) 

and land surface processes has recently been reviewed by Garratt [25]. His 

study showed that although few experiments on the global response to 

surface parameterization have actually been performed, those that have been 

done confirm the overall sensitivity of the predicted climate to the way 

that surface roughness and evapotranspiration are parameterized. At a 

regional level the dependence is even more marked. One of the most 

detailed studies looked at the change in regional climate following a 

hypothetical deforestation of the AJlIazon basin (Dickinson and 

Henderson-Sellers [10]). They observed significant increases in near 

surface temperature (3-SK) and decreases in evapotranspiration when the 

jungle was replaced by grassland. TI~eir model coupled a detailed 

representation of the vegetation canopy (BATS - Dickinson et al. [9J) with 

the NCAR Community Climate Model run in full 3d mode. 

Representation of surface boundary condi"tions cannot be divorced from 

simulation of the PEL. Indeed, by definition, the PBL is the layer of the 
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atmosphere directly influenced by radiant energy partitioning and momentum 

absorption at the ground and responding, as a result, to the diurnal cycle 

of solar heating. Exchange processes at the surface are not independent of 

the (mainly turbulent) dynamics of the PEL, which forms the buffer between 

the surface and synoptic scale atmospheric processes developing on time 

scales longer than a day. This interdependance ensures that local climates 

are responsive to local surface conditions to a greater or lesser degree 

and has several important consequences for our present purpose. 

First of all it means that, if a GeM is run ,.ith homogeneous surface 

boundary conditions, then its prediction of near-surface conditions will 

not correspond to any observable local climate. This leads to the "top 

down" problem of surface parameterization: how to interpret GeM output at 

local scale. Its solution is crucial in verifying GeM model output against 

actual measurement. Secondly, it means that the detailed information 

available on surface properties, which satellites such as Landsat now 

provide, cannot be averaged into homogeneous boundary conditions without 

taking into account the dynamic response of the PEL. For example, the 

evapotranspiration from a particular patch of surface is determined not 

only by the character of that patch but by the nature of upwind surfaces 

that have contributed to the properties of the PBL flowing above it. 

Combining local surface properties into a homogeneous boundary condition 

(be) is the "bottom up" problem. In what follows we intend to make a 

virtue of necessity and exploit this interdependence between the PBL and 

surface exchange to attack in a rational way the question of sub-grid scale 

averaging in the horizontal. 

Current GeM's have typical grid square resolution of S· x S', which is 

roughly 500 km by 500 km near the equator, although the generation of 

models now coming into use generally . doubles this resolution to 

250 km x 250 km. Such a large area of land surface can contain a range of 

significantly different surface types. There may be variety in surface 
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cover from bare soil or sand through grass and crops up to forest canopies. 

Surface elevation may also vary through coastal plains, plateaux, hills, 

mountains and open water bodies. 

Vertical resolution is provided by as few as four or as many as thirty 

grid levels, although most present "production model" GCI'1' s have about nine 

levels in the atmosphere (Garratt [25J). Temporal resolution is determined 

by the time step, ~vhose upper limit in turn is set the requirement of 

numerical stability. Physically, this choice depends on the time that the 

fast:est moving resolved disturbance (wave) takes to traverse a grid cell. 

Typical time steps vary from a few minutes in models that resolve the PBL 

(e.g. Suarez et al. [53J) to one day in coarser models that cannot, 

therefore, resolve the diurnal cycle. 

The boundary conditions must adequately represent the exchange of 

energy and momentum over an entire grid cell by a single set of parameters. 

In the bottom up problem we mus-t find rules to combine the descriptors of 

exchange at each patch of surface into an average description that produces 

-the correct net exchange for the whole cell. In the top down problem we 

must do the reverse; we must find rules to translate the single set of 

values of wind speed, temperature, scalar concentration and so on, produced 

by the GeM at each grid cell, into correct local values. An ideal scheme 

would be symmetrical and could be used in both the upward and downward 

mode. Let us formalize these statements and, at the same time, introduce 

some concepts and notation that we shall use throughout. 

The energy balance at the earth I s surface can be ~liritten: 

(1) 

where 01 is the surface albedo, Sd is the dmroward component of short wave 

radiation, Ld the downward long ,<lave radiation, E is the emissivity, (j the 

Stefan-Boltzmann constant, To the surface temperature, G the heat flux into 

the ground, Ho the surface flux of sensible heat, A the latent heat of 

evaporation and Eo the surface flux of water vapour. We use the shorthand 
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term "flux" here but the components of equation (1) are formally flux 

densities. On a homogeneous patch of surface the sensible and latent heat 

fluxes lIIay be parameterized as: 

(2) Sensible heat: 

ra(z) being the aerodynamic resistance to transfer between the surface at 

temperature To and the reference level at height z, where the temperature 

is T(z). p is air density and c p the specific heat of air at constant 

pressure. Note that subscript 0 always denotes surface values. 

(3) 

where Q is the specific humidity of air. The resistance to transfer 

between the surface and level z is affected both by turbulent dynamics and 

by molecular diffusion through the unsteady laminar boundary layers on 

leaves. However, despite this it is possible to use the same aerodynamic 

resistance for both heat and water vapour because the appropriate Lewis 

Number is close to 1 in air. 

Equations (1) - (3) contain the surface concentrations To and Qo' It 

is possible to eliminate these by a set of now standard assumptions and 

manipulations to produce the combination equation (also called the 

Penman-Monteith equation): 

(4) 

with 

(5) 

hE 

A 

eA + P h D(z)/ra(z) 
e+1 + rs/ra(z) 

e is the dimensionless rate of change of the saturated specific humidity, 

Qsat with temperature, viz e D is the specific 

saturation deficit, D{z) Q(z) - Qsat«z» rs is called the surface 

resistance and A is the 'available energy', available, that is, to 

evaporate water. rs represents the resistance to transfer of water vapour 

from its source within plant tissue or the soil to the surface. When 

applied to plants, the classical interpretation of rs is the resistance 
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imposed by leaf stomata to vapour transfer between the saturated air in 

substomatal cavities and the leaf surface. 

Derivations and various equivalent forms of equation (4) can be found 

in Monteith [39], McNaughton and Jarvis [36] or Finnigan and Raupach [23]. 

The combination equation neatly encapsulates the driving forces for 

evaporation, which are a supply of radiant energy A or of dry air D and the 

controls on evaporation, which are the rate of diffusion of water vapour 

away from the surface, parameterized by r a , and the availability of water 

vapour at the surface, expressed as rs' The combination equation can be 

used to describe evaporation from individual plant leaves or from areas of 

vegetation, in which case it is often called the "big leaf" model. We 

shall make it the central pillar of our surface description for the simple 

reason that any point on the land that receives regular and sufficient 

rainfall supports some plant cover. Seen in this light there has been 

misplaced emphasis in the past on complex soil evaporation schemes as the 

land boundary conditions for GeM's. 

When equation (4) is applied to a single leaf, rs has a precise 

interpretation as a physiological property of the plant. However, when 

equation (4) is integrated through the depth of the plant canopy and used 

to characterize the evapotranspiration of the whole canopy and the 

underlying soil, the interpretation of rs is less simple. In this big leaf 

mode, rs can no longer be regarded as a purely physiological or biological 

property of the vegetation but depends also upon the distribution of wind 

speed, radiation and D throughout the canopy. Raupach and Finnigan [47] 

discuss these questions and show how to relate individual leaf resistances 

to whole canopy values. 

Similar problems arise when we wish to assign whole canopy values to ra 

or to albedo and emissivity, and although vertical averaging of ra is also 

discussed by Raupach and Finnigan [47] the relationship between the leaf 

surface temperature and whole canopy values of O! and E still awaits an 
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adequate treatment. The approach of this paper, however, will be to ass1JIlIiIe 

that this vertical averaging can be performed in a rational way and the 

surface properties controlling evapotranspiration condensed into four 

variables: 01, f, ra and r s ' so that we may concentrate instead on the 

equally vexing problem of horizontal sub-grid averaging. 

Raupach [46] actually presents a complete scheme for performing the 

vertical average, drawing heavily on the techniques of Raupach and Finnigan 

[47] and his o,m ,.ork on modelling of turbulent transport in canopies, but: 

a somewhat different approach has been taken in the only complete 

vegetation models to have actually been employed in GCl1" s. These are SiB 

(Sellers et 1'1.1. [51]) and BATS (Dickinson et a1. [9]). Both models 

a detailed description of the canopy and the underlying soil in the 

veJCtical, requiring many parameters to be specified. In a corr~entary on 

one of the SiB papers, ~IcNaughton [35] argued that this type of 

land-surface model faces three difficulties: critical biological and 

aerodynamic processes are handled crudely (mainly by bulk resistances), 

making irrelevant a detailed physical model of ol:11.er parts of the system 

such as the lower soil layers; il: is impossible in practice to measure the 

required number of parameters for every land-surface grid point in a GeM, 

80 most of the parame 1i:ers will necessarily be guessed; and even if the 

model did .TOrk at one point in space with properly measured parameters, it 

includes no method for spatially averaging the soil and vegetation 

parameters over the many vegetation and other surface types within a single 

grid cell in a GCM. 

Assuming that the necessary vertical averaging has "been performed to 

obtain values of Ct, f ~ ra and rs that characterize the whole canopy and 

underlying soil, '>le can formalize this sub-grid horizontal averaging 

problem. Le't <> denote a horizontal average over a grid cell. Cell 

average values of the four parameters above are defined as 
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a & < Ci(~) \OO'(~) > 

b E < d~) \Of (~) > 
(6) 

c rS < rS(~) 'PrS (~) > 

d ra < ra(~:) 'i'r (~) > 
a 

The problem is to find weigh'ting functions 'P such that: 

(7) <"E(!!:» 
e <A> + P ), _ D/r~ 

E+l + r~;/ra 

(8) <11> (1 &)Sd + € Ld - € (J T 4 G 0 

are the single values produced by the GeM for 

that grid cell. 

rne problem can be simplified somewhat if we assume that the surface of 

the cell is covered with n discrete homogeneous patches, each of area fi 

and with a'ttributes cri' Ei, rai' rsi. The averaging operator <> can now be 

replaced by a simple sum and the ·(qeighting functions 'P suitably redefined. 

Equation (6) thus becomes: 

a & I Cli Ii 'Pad 
i 

b L Ei fi il'Ei 
i 

(9) 
c rs L rsi fi 'Pr 

i si 

d ra I rai fi 'Pr 
i ai 

In equations (7) and (8) we have grossly simplified the averaging 

problem for the radiation balance in order to focus attention on the PEL 

dynamics. We should acknowledge, however, that I.e'[ should strictly be 

replaced by <Ld> , which must take account of sub-grid scale variability in 

water vapour content, particularly as clouds. Problems also arise because 

of the nonlinearity of the Stefan-Boltzmann term, which requires To be 

replaced by <To"> and ensures that this 'radiation' surface temperature is 

po'tentially different from the 'evaporation! surface temperature that 

appears in equation (2). These are questions at least as difficult as the 

ones we shall address below and the fact that: '.'is do not discuss them in 
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detail should not be interpreted as casting doubts on their importance. 

Comparable problems arise when we consider the transfer of momentum 

rather than evapotranspiration or radiation. Because the wind speed at the 

surface is identically zero we can write for a homogeneous patch of 

surface: 

(10) TO 

where TO is the surface shear stress, U(z) a reference velocity at height z 

and is the drag coefficient:. A new difflculty arises here because the 

aerodynamic drag on the surface is parallel to the near surface wind, which 

in turn is parallel to the large scale pressure gradient (the geostrophic 

gradient over the flat ground). Above the surface layer, however, the mean 

wind is directed at an angle to the surface wind, turning through the 

'EYJRan spiral' to attain the geostrophic balance between pressure gradient 

and Coriolis force above the boundary layer _ Deviation of the vertically 

averaged wind in a convective mixed layer from the surface direction is 

typically 100 (Deardorff [8J) but it may be much larger than this in stable 

layers. Various procedures can be suggested to cope with this problem, see 

for example Deardorff [8]_ 

Given a range of drag coefficients appropriate to each surface patch, 

the horizontal averaging problem is to find a weighting function \Om(x) 

defined by 

(11) 

such that 

(12) 

where, as before, U is the output of the GCM, or, discretizing the 

procedure as in equation (9), 

(13) 2: Gdi fi \l'mi­
i 
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:3 • THE PLANETARY BOUNDARY LAYER AND SURFACE EXCHANGE PROCESSES 

It is conventional to divide the planetary boundary layer into two 

regions: the surface layer, where turbulent motion is dynamically 

constrained by the proximity of the ground, and the rest. The depth h of 

the PBL is defined in different ways according to whether the surface heat 

flux is positive (unstable), negative (stable) or zero (neutral). The 

clearest definition occurs in unstable conditions when a convectively 

driven 'mixed' layer develops above the surface layer and extends to a 

capping density inversion at height h. The surface layer then occupies 

about the lowest 10% of the PEL. Within the well mixed region of this 

convective boundary layer (GEL) scalar properties like temperature and 

humidity are essentially constant, as is the wind speed magnitude, although 

changes in wind direction of order 10° are typical, as we have already 

mentioned. The depth of the GBL increases through the day, rapidly at 

first then levelling off until the evening "collapse", "IIihich occurs as the 

surface heat flux 1iJeakens. Typical values for afternoon eEL height in 

mid-latitudes are 1-2 Ian. 

The height of the stable boundary layer t:hat supersedes the GEL is much 

less, typically of ~ 100 Ill. A recent diagnostic formula for h in neutral 

and stable conditions encapsulating much earlier work is that of 

Zilitinkevich [60] 

(14) h 

where ~ is the friction velocity given by ~ ~ (TO/p)I, f is the Coriolis 

parameter (- 10-4 S-l in mid-latitudes), k is Von Karman's constant 

(= 0.4), A and Ch are constants of order 0.3 and 1.0 respectively (Garratt 

and Pielke [26]) and ~ is defined by: 

(15) - k 2 llVQ 

If I ~2 

where Hvo is the surface buoyancy flux: 

(16) H + 0.07 l\E 
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The contributions of both water vapour and temperature to density 

fluctuations are combined in the buoyancy flux. 

The depth of the stable boundary layer is clearly affected by the 

magnitude of Hvo. In daytime convective conditions the boundary layer 

depth is even more strongly coupled to Hvo. At the same time the boundary 

layer depth exerts an important influence on the magnitude of Hvo. This 

close coupling or feedback bet,,,een the state of the whole PEL and the 

surface fluxes is a vital element which must be modelled when a 

parameterized PBL is interposed between resolved, GeM outputs and surface 

characterizations in a GeM. 

In 1972 Deardorff [8 J presented a complete scheme to do this. His 

approach remains an excellent point of departure for more recent efforts. 

He began by using standard, stability-dependent Monin-Obukhov surface layer 

formulae to model transfer from the ground to the top of the surface layer 

at height za. Between za and the top of the PEL at h, he employed 

empirical, stability-dependent formulae to describe the departures of 

virtual temperature Bv and wind speed U from their values at za. The 

virtual temperature Bv , which bears the sruJlle relationship to Hv as H does 

to T, is defined by: 

(17) T + O.6lQ 

He then matched the two descriptions to eliminate the unkno~7n values of Bv 

and U at za and obtained formulae valid throughout the whole PBL. These 

relationships were of the form, 

u* h ~) a Um 
fl (y: 

Zo 
(18) 

b By!! h h 
Bvm - IJvo 

f 2(y: , z) 
0 

where Z 0 is the aerodynamic roughness length, (Jv'~ 

Obukhov length defined as: 

(19) L 

where g is the acceleration due to gravity and subscript m denotes values 
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in the 'well mixed' PBL above the surface layer. 

The actual forms of the diabatic influence functions and bulk PEL 

formulations used by Deardorff have been largely superseded now with the 

advent of better data but the essential point remains unchanged; formulae 

(18)a and b parameterize the surface fluxes ~ and 1Jv* in terms of 

stability L, surface roughness Zo and boundary layer delJ'th h. In order to 

close the description of the surface fluxes, therefore, a specification of 

h must be added. In stable or neutral conditions, equation (14) could be 

used. (Deardorff actually used a simpler formula.) 

In the more rapidly varying dBytime GEL a prognostic equation is 

necessary. Deardorff used 

(20) 
ah 
at W(h) - Y(h) . Vh + S + V . (K Vh) 

where is ,the vertical velocity at level h obtai:,,,,d from the GCM, 

Y(h) . \7h is ,the advective term, yell) being the horizontal wind vector, 

also from the GCI'i, and V is the horizontal gradient operator" S is the 

source term associated w'ith penetrative convection ,through the inversion 

that caps the CEL, and the last term, involving an eddy coefficient K, 

represents (at least partly) effects of sub-grid-scale lateral diffusion of 

h. Except: for the last term, this equation expresses the idea that an 

average fluid particle, initially located at z = h, remains at h unless 

entrainment causes h to increase by means of the term S. 

Simpler, one-dimensional "slab" models of the convective boundary layer 

ignore ,the first, second and fourth terms on the right hand side of 

equation (20) and parameterize S in terms of the surface buoyancy flux and 

the gradien't of synoptic virtual temperature above h. See, for example, 

Tennekes [56] and Tennekes and Driedonks [57]. 

Deardorff's approach was extended by Suarez et al. [53] ",ho made two 

important advances. They rewrote the system of equations in terms of 

pressure based 'sigma' coordinates, a common device in large scale 

meteorology, enabling the top of the PBL to be identified with 'the firs't 
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grid level of the GCM. This practice avoids an awkward matching problem 

that is encountered when h lies between GCl~ grid levels. More 

fundamentally. they incorporated cloud physics into their boundary layer 

model, specifically the formation and breakup dynamics of a stratocumulus 

deck and of cumulus towers above the inversion. When their PEL 

parameterization was coupled with the UCLA GCM (Suarez et al. [53]), cloud 

dynamics were seen to playa significant role in the evolution of climate. 

Raupach's [46J treatment of the coupled GEL-surface layer system 

differed from that of Deardorff and Suarez et al. in two important 

respects. Firstly, he employed the combination equation as the basis of 

the evapotranspiration boundary condition. This had the immediate 

consequence of avoiding the necessity of specifying T and Q at the surface, 

replacing them by the quasi-physiological parameter rs and providing a link 

between models of the biosphere and the atmosphere. Secondly, by comparing 

the dynamic and thermodynamic response times of the coupled system he 

obtained expressions for the weighting functions 'P of equation (9) in two 

important limits. To illustrate these points we will outline the relevant 

aspects of Raupach's 'SCAM' (simple canopy-atmosphere model). 

The first step is to specify the reference level for equations (2) and 

(3) as within the mixed layer, where scalar quantities are assumed to be 

constant with height. The aerodynamic resistance, therefore, describes the 

resistance to transfer imposed by turbulent mixing rates across the entire 

surface layer. Next, by assuming a simplified form for the structure of 

the CEL, equations are written for the mixed layer concentrations. For a 

scalar C these are: 

(21) 

or 

(22) 
d 
dt (h .1.C) 

dh 
'Yc h dt - Fc 

(Tennekes and Driedonks [57] where .1.C 



149 

concentration at the top of the PEL, Fco the flux of C at the 

surface and ~c(z) dCI 
dz z>h 

With Feo given by 

(23) 

and C+ given by the GCM output, a further equation is needed to close the 

system. This is the equation for h, equation (20), which, for a simple 

one-dimensional slab GBL, reduces to 

(24) s 

S can be specified if Hv(h), the downward flux of buoyancy caused by 

penetrative convection at the top of the mixed layer, is known or inferred. 

A common way to do this is to assume that this entrainment flux is a 

constant fraction of the surface buoyancy flux (Tennekes and Driedonks 

[57]), hence 

(25) 

where B ~ 0.2 is a constant. 

Equation (25) provides the required closure assumption enabling the 

surface fluxes and synoptic concentrations to be coupled through a 

combination of surface layer (equation (23» and mixed layer (equations 

(21) and (24) dynamics. ra is obtained by adopting Monin-Obukhov 

formulations for surface layer transfer. Standard methods for obtaining ra 

in this way can be found in Monteith [39] or Finnigan and Raupach [23] 

They require, as one might expect, that momentum transfer be computed in 

parallel with evapotranspiration and that surface roughness, zo' therefore, 

be specified. 

As we mentioned previously, Raupach avoided the need to specify surface 

concentrations, when C represented temperature or humidity, by using the 

combination equation (LI) and employing the quasi-physiological surface 

resistance rs' To make the problem mathematically more tractable he also 

worked with new variables, which were linear combinations of T and Q. This 
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had the important effect of making the boundary conditions separable but 

the features of the SCAM model that we are interested in can be illustrated 

without this refinement. 

The thermod~lamic equilibrium of the coupled PBL-surface system can be 

defined as the achievement of a constant rate of evaporation and constant 

values of Tm and Qm when A, r s ' ra and synoptic concentrations are held 

fixed. The precise time taken to achieve this equilibrium depends on the 

nature of the closure hypothesis and growth model chosen for the PBL -

equations (24) and (25) for example - as well as on ·the nature of the 

surface as characterized by 1:s and :1:131 , For any plausible choice of GEL 

growth model, however, Raupach showed that the • e folding time' of the 

(approximately exponential) approach to equilibrium exceeded 18 hours for 

lush grass surfaces, 21 hours for forests and 56 hours for open. water. In 

other vlOrds, over a diurnal cycle, evaporation from the land surface never 

approaches thermodynamic equilibrium. 

The dynamic equilibrium of the convective boundary layer is a different 

concept. By this we mean that the turbulent exchange processes in the 

surface and mixed layer reflect local values of surface buoyancy flux. It 

can be characterized by the distance X one ~muld have to go downwind of a 

step change in surface conditions befon~ changes in turbulent: quantities no 

longer occurred. To estimate X we note that the characteristic turbulent 

velocity scale in the mixed layer is w*, where 

(26) fL ~ h]lh 
Lovm pCp . 

Then simple scaling argtllllents invoked by Raupach [46] show that for step 

changes in 

(27) 

, both positive and negative, we can write: 

Urn 11. 
"1* 

where, for definiteness, we can take hand w* as the means of values far 

upwind and dow"m1ind of the change. h is of order 1000 III while w* is of 

order 2 III !C1 so that the adjustment time scale L/w* is like 8 minutes. 

This great disparity between the timescales of thermodynamic and dynamic 
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equilibria effectively decouples the specification of the transfer process 

from that of the controls upon evapora-tion rate. 

Noting this, Raupach uses X as a scale to order the heterogeneity of 

the surface. Three classes are identified: 

a) jf « X 

b) jf X 

c) jf » X 

where jf is the linear scale of a typical patch of homogeneous surface in 

the grid square. Case (a) defines lllicroscale heterogeneity. Here, the 

convective boundary layer does not have time to react to each individual 

patch of surface. Consequently, each patch, fi, is overlaid with the same 

well-mixed layer. The total flux of C from the grid square is therefore: 

(28) <Fe> 
<CQ> - Cm 2: CQi - Gm fi <ra> ra. 

i :L 

(29) hence 1 
2: [~J <ra> i :L 

(30) and <Co> <ra> 2: rf;i CQi] 
i 

~ r ai 

Equation (29) defines the IPradfunction of equation (9d). Equation (30) 

defines an analogous relationship, which, when used in the combination 

equation (4) to substitute for Co (with C = Q or T), produces an equivalent 

~rs function for the surface resistance (equation (9c). 

Case (c) defines macroscale (or mesoscale) heterogeneity. Each surface 

pa-tch fi must now be regarded as having its own convective boundary layer 

so that we must write: 

(31) <Fc> 
i 

There is now no obvious unique choice of weighting for ra but, if we 

adopt equation (29) as in the previous case, then equation (30) continues 

to apply not only to <Co> but also -to <em>: 

(32) 
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The formula yielding <r8> is now a complex dynamical expression 

involving solution of the coupled system of equations (21), (23), (24) and 

(25) with only the synoptic values of concentration being common across the 

grid square. In particular the weighting functions are time dependent as 

each individual eEL evolves at its o~m rate. Fortunately, with /fi » X we 

can only accommodate a fe,\>1 patches within a grid square, probably less than 

10, so that the computing costs of running independent slab models is 

probably not excessive. 

Case (b), where Ifi X, is the most difficult to handle because the 

coupled adjustment of the surface layer and convective boundary layer in 

two or three dimensions must be considered. No suitable treatment of this 

problem exists at present (at least not to this author's knowledge). First 

and second order closure models of the surface layer are not uncommon (e.g. 

Philip [44] but non~equnibrium mixed layers are rarely considered. fA 

combination of the two presents special problems in the matching of three 

distinctly different modes of turbulent mixing: diabatically modified 

shear~driven turbulence in the surface layer, free convection in the mixed 

layer and entrainment at the capping inversion. Indeed, little 

experimental data for this situation exist and we could justifiably 

identify this as the first of our lacunae. 

In moderately stable or neutral conditions the same approach as we have 

outlined for the convective boundary layer may be adopted" This brings 

with it both simplifications and complications. It is usually considered 

unnecessary to use a prognostic equation for stable layer height; although 

such creatures exist (fArya [1]), this is a level of complexity which 

certainly exceeds our needs. It is clear from equation (14) that, near 

neutrality, h is determined mainly by momentum transfer and that coupling 

between the synoptic state and surface fluxes of heat and moisture is 

driven by shear generated turbulence. In determining X, the appropriate 

mixing velocity scale, therefore, is u*, which in stable layers would be of 
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or less .,hile h{stable) would also be of order 

0.1 h(convective)' Hence the readjustment distance of stable layers on 

flat ground is typically of the same order as the GEL although now, surface 

roughness Zo rather than rs may be the prime determinant of a change in 

surface conditions. Instead of steady state solutions of the GBL aqua·tion 

set (21-25) similarity relationships of the Deardorff [8] form (equations 

(17) and (18) or more up-to-date variants may be used (e.g. Nieuwstadt 

[401) . When conditions are strongly stable, more subtle descriptions, of 

surface layer exchange at least, are needed with radiative flux divergence 

and gravity-ymve forced, intermittent turbulence explicitly accounted for, 

A s·table boundary layer exhibi·ting the full range of these extra 

complications was studied by Finnigan et al. (1984). 

A more intractable problem concerns the resolved synoptic output from 

the GCI-L After the evening collapse of the GEL, the PBL contracts to about 

10% of its convective depth in a very short time. Fifteen minutes to 

achieve the evening transition is atYl,Jical period. We recall the 

phenomenological definition of the PEL as tI,e layer responding directly to 

surface exchange. There remains, however, above this new, thin PBL, a deep 

layer of previously convective turbulence ·that is no'" decoupled frol1~ the 

ground and is decaying towards synoptic conditions 0 The rate of this 

convergence to"ilmrdsthe grid average depends on ·the local state oftb.e CBL 

before transition and is governed by comparatively poorly understood 

dynamics in which ,,,ave-turbulence in·teraction features prominently. 

A COllllllent is appropriate here on the relative importance of daytime 

versus nocturnal, s·table evapotranspiration and drag. Under stable 

conditions t:urbulent: exchange of any property is strongly damped, althou.gh, 

as we shall note more fully in §5, horizontal transport may be enhanced 

density driven flows. If daytime exchange is so predominant, therefore, it 

lllay "Hell be asked why parameterization of the nocturnal case is so 

important? The main reason lies in the expressions for GBL height, the 
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prognostic equations (20) or (24). Because we are able to link only the 

rate of change of the eEL height to surface exchange, specification of the 

initial conditions at sunrise can determine the prediction of eBL evolution 

through a large part of the day. These initial conditions are, of course, 

set by the nocturnal PEL behaviour. Although this is the main reason for 

our interest, other motivations can certainly be found. Respiration by 

plants is but one example of an exchange process that continues through 

the nighttime hours. Dew and frost formation, processes which often 

feature prominently when the agricultural impacts of Greenhouse warming are 

discussed, are others. 

Let us summarize the story so far. Given a GCM, which we must assume 

resolves the synoptic atmospheric state above the PBL, and a surface that 

is heterogeneous on a scale that the GeM cannot resolve, we find that the 

weighting functions necessary to perform sub-grid scale averaging of the 

surface descriptors involve parameterizing the PEL. In fact, we exploit 

simplified PEL dynamics to connect the unresolved surface to the resolved 

s)rnoptic conditions. The PEL parameterizations we employed were, however, 

derived for the simplest situation: flat, homogeneous surfaces with most 

attention paid to convective conditions. We now wish to ask how applicable 

these formulae are to the range of condi tiona encountered in the real 

world. Furthermore, throughout this section we have assumed that each 

sub-grid scale surface patch fi can be assigned homogeneous surface 

However, particularly for the 

small patches of micro scale inhomogeneity, a local advection problem must 

be solved to find equivalent rs and ra values for a given patch. At a much 

smaller scale (on a single leaf) this problem was addressed by Cowan [7]. 

For the larger patches of cases (b) and (c) the region where advective 

changes in ra and rs occur occupies only a small fraction of the total area 

and can essentially be ignored. But local advection is only one of the 

complicating factors and in the sections that follow we shall ask whether 
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such quasi-one-dimensional surface descriptions can, in fact, be achieved 

in two common circumstances: neutral or unstable flow over steep 

topography and very stable flo,,] over moderate or flat topography . 

Let us restrict our attention to a sub-grid scale patch covered by a 

range of hills, iqhose relief can be considered statis1cically homogeneous on 

the scale of the patch. Physical examples are no't difficult to find. Host 

of the Great Dividing Range running up the eastern margin of the Australian 

continent falls under this descriptio!L Anyone-dimensional or homogeneous 

characteriza'tion of such a surface en'tails averaging properties over the 

patch. To simplify matters let us stipula'te that the patch be sufficiently 

largetha't we can ignore edge effects 0 

In flat, horizon'tally homogeneous concH tions , the integrated 

Monin-Obukhov siunilari'ty Imm for yelocity and a scalar C take ,the form of 

profiles (Yaglolll [59]): 

(33) velocity: U(z)- + 

scalar C; C(z) - Co 

are diabatic lLnfluence functions (Paulson 

[l>2] ), z 0' the surface roughness length, can be regarded as a measure of 

the capaci'cy of the surface to absorb momentu.'ll, w-hile Zc is the equivalent 

roughness length for C. The relationship 'be'cv7een equation (33) ana 

,equation (10) is obvious and leads to an expression linking Cd and zo: 

(35) 

These equal:ioHs have been extended to boundary layers on hills by 

defining extended influene,!') functions that depend on parameters describing 

flow distortion as ewell as stability (Finnigan [19]). W'e consider !llOmentUlll 

only for brevity and equation (33) becomes: 
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(36) U(z) = ~ [Qn[~O) + o/m(z/L, z/R, z/La, z/~)] 

The 'log law' is now expressed in orthogonal, physical streamline 

coordinates where x is distance along a streamline and z and y, distances 

along two orthogonal trajectories to the streamline" z corresponds roughly 

to the surface normal coordinate and y to the transverse coordinate 

parallel to the surface. R is the local radius of curvature of the 

streamline and La the local 'e folding distance' of streamwise acceleration 

so that liLa = ljU aU/dx. l/ff is streamline torsion which is probably an 

important parameter in general three-dimensional flows but about which we 

have lit'tle sli1pirical information. The derivation of this coordinate 

system is described in Finnigan [16] for the two-dimensional case and 

Finnigan et al. [24J and Finnigan [20] for three-dimensional flow. 

T",o important restrictions apply to the modified log law, equation 

(34), Firstly it is confined to a relatively thin layer of depth Q, where 

Q is defined by 

(37) ~ Qn (;0] ~ 0.025 , 

A being the distance between successive hill crests. Because of the 

dependence of Q upon z 0' we find that over hills covered with tall 

vegetation, Q may be of the same order as the heights of the roughness 

elements (plants) so that no local logarithmic dependence is observed at 

all. The second restriction applies behind hills with separation bubbles 

or where flow separation is imminent. In these regions the connection 

between surface stress pU*L and the velocity shear remote from the surface 

is tenuous or totally absent. In such cases, the basic assumptions upon 

which equations (33) and (36) are based are no longer tenable and the log 

law may not be applied. 

The consequence of this is that only over very gentle, relatively 

smooth topography is it feasible to average the local, topographically 

modified log law (36) across the grid patch to yield average descriptions 
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of momentum transport or Cd' Over steeper, rougher terrain, this 

description is discontinuous and another approach is necessary. 

A method adopted by several workers has been t:o treat the hills 

themselves as roughness elaments and to wri"te a new log Imq of "the form 

(38) 

where we have used « » to distinguish an areal average Olver the sub-grid 

patch frolll t:he full grid square average. Compatible defini tlons of «7 0», 

«~», «"0» and «zo» must nm1T be defined, and different ways of doing 

this have been proposed by Mason [38], Taylor [54'J and Taylor rat a1. [55]. 

we shall not describe their methods here but ask ins "tead, "what intrinsic 

limits are there to the applications of th,e log la:iiI? In fact, 'there are 

ew'o essential prerequisites for a relationship of the forill of equations 

(33), (36) or (38). TI'1e first is "that u* or «u*» characterize the 

transfer of momentum dmm "the mean velocity gradient. Tne second is that 11 

scale separation of 100 to 1000 exist between the layer shear 

depth 5 and the length scale (or scales) characterizing the surface 

roughness. We have distinguished "here between the relevant depth scale il, 

the height above which shear is dynamically insignificant, and our earlier 

value of 11 because in convective conditions 5 should strie"tly be taken as 

"the surface layer depth, i. e. {j '" 0.1 h, although in neutral or stable 

l'BL"s we can equate ~ and h. In the case of the average log law (38) it is 

this second requirement that is crucial. 

lile have already discussed 1-1 aot lengtI1L. Order of magnitude values for h 

are - 1000 ill for the eEL and 100 ill for the stable PEL. If hills are to be 

regarded as roughness elements, "t.,l0 obvious length scales suggest 

themselves as characterizing the surface. These aTe the hill height and 

lthe hill spacing. Less obvious scales involving parameters such as the 

roughness element frontal area per unit ground area have also been employed 

"to determine ehe dependence of Zo on roughness geomectry (Raupach at a1. 

[49]) but this does not effect the present arg1..Llllent. 
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Broadly speaking, the height a determines the amplitude of the 

disturbance caused by an isolated hill in a flow but the hill length scale 

(usually taken as - A/4 for a single hill) determines the height to which 

the hill's influence is felt" This conclusion follo.n, from simple 

arguments based upon potential flow theory (Hunt [28]) and has been 

employed in several successful asymptotic analyses of flow over low hills, 

for example, Hunt at al. [30]. Since, even in very rugged terrain, it is 

rare to observe A/a smaller than 3 or 4, the requirement that 5/A = 100 to 

1000 is the crucial one. 

This condition would be automatically satisfied if the greater momentum 

absorption of rugged topography could increase the boundary layer depth 

sufficiently. This does not happen for two reasons. First of all, in 

convective conditions, h is determined by the buoyancy rather than the 

momentum flux. The l'llechanisllJ. by which hilly topography absorbs more 

momentum than flat country with the same ground cover is the form or 

pressure drag that develops around the hills. There is no counterpart to 

this in scalar transfer and the limited. experimental evidence suggests that 

area-averaged, convective heat flux is fairly insensitive to topography. 

Conversely, in times of strong stability, there is an essential decoupling 

of the flow below· some level from the fhn" aloft. This is called the 

'dividing streamline effect' (Hunt and Snyder [29]). Flow above the 

the hills were dividing streamline continues to behave as if 

three-dimensional obstacles and flows both over and around. them, while flow 

below the dividing streamlines goes around the hills" The result is that 

the surface looks substantially smoother to the boundary layer above than 

in neutral or convective conditions. Even in neutral conditions, «U*», 

,,,hieh determines the increase in h through equation (14) (h = AolLk/! f!), 

does not increase rapidly enough with a and ). to maintain the required 

scale separation. 
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Evidence for the failure of the average log law concept over large 

scale topography can be found, ironically, in publications that attempt to 

prove its usefulness but where the data have to be culled so drastically 

and arbitrarily to fit the log-law mould that the opposite conclusion can 

more easily be drawn. See, for example, Kustas and Brutsaert [32]. 

The attraction of an extended log law such as equation (38) is that it 

makes maximum use of well tried concepts and formalisms to derive the drag 

coefficient Cd, through equation (35) or the equivalent scalar transfer 

coefficient. The alternatives are an appeal to empiricism or a search for 

a different paradigm in other branches of fluid mechanics. 

One well studied field with many parallels to the present case is the 

flow in plant canopies. It has been recognized for a considerable time 

that in a 'roughness sub layer , extending about three canopy heights from 

the surface, adjustments must be made to the standard influence functions ~ 

of Monin-Obukhov theory to account for the proximi ty of the flow to the 

roughness elements themselves and the changed character of the turbulent 

motion in the plant-air layer. Furthermore, the spatial averaging required 

for equation (38) is a technique which has reached its maximum 

sophistication in the plant canopy context (Raupach and Shaw [48]; Finnigan 

[17]) . 

The main difference is that, while in fairly dense plant canopies the 

character of the turbulence is affected by eddies shed in the wakes of 

individual plants, it is dominated by the much larger eddies that result 

from a global instability in the inflected velocity profile of the areally 

averaged flow field (Raupach et al. [50] ) . When the 'canopy' is very 

sparse or consists of a range of hills this, is no longer true. The areal 

average is then a purely abstract concept and can have no dynamical 

significance and the areally averaged mixing is dominated by the 

unconnected separation regions behind individual plants or hills. 
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It seems unlikely, therefore, that formulae describing the enhancement 

of the area averaged diffusivity can be carried over directly from plant 

canopies to ranges of hills. It is equally improbable that studies of 

random rough surfaces at the bottom of laboratory boundary layers have much 

to offer us for the reasons cited earlier, and we are forced to take a 

closer look at the flow characteristics of ranges of hills themselves. 

Here we forcefully encounter our second lacuna; field, wind tunnel and 

theoretical attacks on this problem have been very few indeed and what 

conclusions there are tend to be contradictory. We shall illustrate this 

briefly by comparing a relatively sophisticRted turbulence closure model of 

flow normal to a range of sinusoidal hills (Taylor et al. [55 J) with a 

field study of a similar situation (Bradley and Coppin [2J). Bradley and 

Coppin measured turbulence fluxes on 60 ill towers placed on the crests of a 

series of ridges in rugged but homogeneous terrain, consisting of parallel 

N-S ridges in a westerly airflow. The height a of individual ridges was 

- 200 m and the spacing A ~ 2000 m. The ridges were thickly wooded. 

Measurement of turbulent m.omentum flux pu"w' at the 60 III level on the ridge 

crests amounted to roughly one half the total, areally averaged drag to be 

expected from such hills according to the model of Taylor et aL [55 J • 

(Here, u' and w' are the horizontal and vertical components, respectively, 

of the velocity fluctuation.) 

This discrepancy could result from three different causes: the 

turbulence model could be inappropriate for the field situation or simply 

inaccurate; the hill-top turbulent flux pU'w' could be a poor 

representation of the areally averaged value «pu' w'»; or there may be 

another mechanism of momentum transfer not accounted for by «pu'w' ». 

Treating these in turn, the three models cited by Taylor et al. [55] agree 

reasonably well with each other when predicting flow and drag over hills of 

rather small steepness. However, over steep hills with real separation 

bubbles, such as those studied by Bradley and Coppin, only the most 
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sophisticated of the models used by Taylor et al. [55] is applicable and 

this has not been reliably calibrated against field or wind tunnel 

measurements. The possibility of prediction error cannot, therefore, be 

dismissed. Turning next to the question of how well pu'w' (60) at the hill 

crest matches the areally averaged value, we can say with confidence that, 

while pu'w' does vary as a hill is traversed, it attains its maximum value 

above the crest (Finnigan [18]). In other words, the measured value of 

momentum flux on the ridge crest can only overestimate the areally averaged 

turbulent flux. 

The third possibility is particularly interesting. 

averaged momentum flux to the surface can be written as: 

(39) 

The areally 

where the velocity field, whose horizontal component is u and vertical 

component w, has been decomposed into its time average (u,w) and 

fluctuation (u',w') at a point: 

u U + u' 

(40) w w + w' 

while the time average has been further decomposed into its areal average 

«\1», «w» and local departure therefrom u", w": 

u «u» + u" 

(41) «w» + wIt 

In other words, correlated spatial variations in the mean flow can transmit 

momentum, a circumstance that has long been recognized in plant canopy 

studies, where it is called the dispersive flux (Finnigan and Raupach 

[23]) . 

Wavelike disturbances in the mean flow that are stationary with respect 

to the underlying hills (lee waves) have been suggested as the source of a 

similar case of 'extra momentum transfer', observed in the SESAME boundary 

layer study (Lenschow et al. [33]). 



162 

Over more complex topography or in convectively unstable conditions, 

such simple, ,vave-like structures in the velocity field have not been 

observed. Nevertheless, over hills, complex, spatially constant patterns 

in the mean flm'1 are probably the rule rather than the exception. Tvm 

particular candidates may be catalogued. The first is the streamwise 

vortex rolls that may form on the concave, upwind faces of two-dimensional 

ridges or the flanks of axisymmetric hills. See, for example, Finnigan et 

al. [24] for comment on the former case and Hunt and Snyder [29] and 

Jenkins at a1. [31] for model and full scale examples of the latter. 

Separate, though occasionally coupled to such features, is the 

three-dimensional separation bubble that fo1."1IIS behind both j:Tgo-dimensional 

ridges and three-dimensional hills if they are steep enough. In the 

two-dimensional case, instability of the detached shear layer ensures that 

the bubble breaks up into distinct cells. 

Perry and Steiner [43] showed that three-dimensional separation bubbles 

behind bluff bodies in laminar streams have complex topological signatures, 

in particular, for kinematic reasons they cannot be closed and so have mean 

inflow and outflow. (See also Tobak and Peake [58].) Furthermore, there 

is some evidence, both from the behaviour of integral length scales 

(Finnigan [18]) and turbulence budgets (Pronchik and Kline [45]), that the 

energy containing turbulence in a separation bubble is of small scale 

relative to the bubble dimension, being formed in the highly strained, 

reattaching shear layer behind the bubble and entrained back into the 

bubble by the weakly unsteady mean flow. In such cases it is valid to 

treat the mixing or transfer process across the bubble as being made up of 

a mean advective component and a smaller scale, turbulent component, as a 

low (turbulent) Praudtl or Peclet Number flow in fact. 

Detailed consideration of flow fields of this kind are generally 

avoided in the atmospheric boundary layer literature but have recently been 

tackled head on by the wider fluid mechanics community in the study of 
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dynamical chaos in fluids. The complex (chaotic) advection behind steep 

hills can be termed, in -the modern j argon, "Lagrangian turbulence", that 

is, steady but spatially random motion, and the diffusive cOlllponen't as 

conventional Reynolds turbulence" The Reynolds turbulence itself would 

usually have high molecular Prandtl and PecHit numbers. 

In flows of this kind, statistical methods have generally failed to 

provide the universal scaling laws which could form a basis for 

interpreting experimen-t, while case by case treatments have produced little 

of universal utility (Gibson [27]). As a result, an attempt has been made 

by Octino [4-11 to produce a new paradigm for mix:tng in these complex 

It is based upon the topology of the flow, whe"e 'flo')]' now 

takes a precise meaning as the spatial pattern of streamlines in. the time 

averaged velocity field. '"e should note at once that relatively simple, 

three-dilllensimnal steady veloci 1ty fields can result in essentially chaotic 

streamlin.epatterl1s (Dombre e-t aL [llJ; Finnigan [20]). 

Ottino IS paraaigI!I equates efficient mixing ,~ith the presence of 

connec-tions b,a-tween the stable and. unstable utanifold.s of hyperbolic fixed 

points in the flo',... If the connection is between i:he stable and unstable 

manifolds of different hyperbolic points, 1118 "'peak of a 'transverse 

heteroclinic point; of ehe srulle hyperbolic point, a transverse homoclinic 

point. 

This topological structure has the effect of stretching and 

folding stream or iso-concentration :surfaces and taking -them to -their 

original, or an equivalen'/:, looat1.on. The process is the physical 

realization of the Smale horseshoe map (Smale [52] and is a signature of 

dynamical chaos. Ottino"s approach ciiffers a little from standard 

tres-tments of chaos in that he consistently deals with rate Drocesses 

rather than long term, asymptotic behaviour. Hence his formalism 

em~:)h.asises mix.ing efficirenci,ss rather than 2 for example ~ Lyapunov exponents 

.as indicators of chaos ~ al,though correspondence is regained at: long 'times ~ 
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Topological classification of three-dimensional flows in terms of fixed 

points has been developed to a substantial degree by Chong et al. [6], and 

Ottino [41] discusses ,the features of diffusion across separation regions 

described in this way. It at'tains further generality and applicability in 

the present context when it is cast in intrinsic or streamline coordinates 0 

Finnigan [20] shows how to do this and has proposed a heuristic condition 

for characterizing streamline chaos that traces the evolution of the 

'wrinkliness' or folding of stream surfaces in steady velocity fields. In 

this theory, chaos depends, suggestively in the light of Ottino's work, on 

the presence of hyperbolic points in the tangent map of the flow. A 

further conclusion of Finnigan's analysis is that chaos requires a 

component of vorticity in the flow direction such as inevitably occurs on 

the flanks of isolated hills, where the vortex lines of the mean flow wrap 

around the obstruction. 

This is a rapidly developing field which lIlIay provide a much needed 

fresh approach to the analysis of mixing in complex, topographically forced 

flow fields. At the very least, we might expect an analysis based upon 

these concepts to suggest new experiments to resolve and qL18.ntify the 

relative roles of Reynolds turbulent fluxes and dispersive fluxes in 

transfer of both momentum and scalars to steep topography. 

5. MOKEN'l'UM: AND SCAlAR TRANSFER IN TIMES OF STRONG STABILITY 

The third lacuna that we shall discuss is really a very wide gap 

furnished with occasional stepping stones and bridges. As a result we can 

only touch briefly on some of the many topics that could reasonably fall 

under this heading. We will treat the subject under two sub-headings: the 

processes that govern the noctural decay of previously convective 

turbulence towards the synoptic state and the determination of ra values at 

times of strong stability. When stability is weak or moderate, let us say 

when local Richardson Numbers are between 0 and 1/4, established theory is 
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quite sufficient. The dynamics of the whole stable PBL are adequately 

described by turbulence closure models such as that of Brost and IoJyngaard 

[4J or the local similarity scheme of Nieuwstadt [40]. It is at times when 

the average Richardson Number in the lowest lOOOm of the atmosphere is 

larger than 1, conditions typically coinciding with light winds and clear 

skies, that real difficulties occur. 

At such times, the atmospheric dynamics are often dominated by 

propagating internal gravity waves that have length scales much longer than 

those of turbulent eddies but '"hose periods may easily coincide with 

turbulent eddy timescales. The ubiquity of these structures is typified by 

the recent study of one month's contiguous data by Einaudi et al. [13]. 

Using records from the Boulder Atmospheric Observatory in Colorado, USA, 

they found short period waves (1-5 min) during 40% of the nights between 

mid-I'1arch and mid-April, while longer period "'Taves (10-20 min) vmre present 

95% of the time . Basing his comments on European data, Bull (personal 

communication) has suggested -that these figures represen-t lower limits cm 

the frequency of occurrence. 

Propagating internal waves of this kind can be generated by a varie-ty 

of mechanisms. Marht [37] has identified inertial oscillations. 

directional shear coupled to do,vnslope drainage, 'shooting flows' and Ekman 

gravity flows as possible sources of the waves while Einaudi and Finnigan 

[15] (and references therein) have studied a large number of cases of 

Kelvin-Helmholtz waves that ~Jere generated on elevated shear layers or low 

level jets. 

A feature of these disturbances, however generated, is that they couple 

strongly with existing -turbulence or generate turbulence ab-initio and 

maintain it at a significant level despite background Richardson Numbers 

much larger than ~. This coupled i.ave-turbulence field can display some or 

all of -the following distinguishing features: it may be intermittent on 

time scales of several or many wave periods; it may drive cO'J.nter-gradient 
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heat and lIIomentWll fluxes in horizontally homogeneous conditions; it lIIay 

stratify into a layered structure of alternating strong and weak shear, 

strong shear being associated with high turbulence intensities. The height 

scale of these layers is typically 10-50 m (Einaudi and Finnigan [15]; 

Finnigan et 801. [22]; Li et 801. [34]). An understanding of the details of 

this coupled wave-turbulence system is essential to predict the rate at 

which conditions in the lower atmosphere approach higher-level synoptic 

values, as it is these unique dynamics that drive the necessary diffusion 

processes, as well as to extend the simple models of PEL behaviour we used 

in §3 to times of strong stability. 

The fundamental problem is to characterize the behaviour of 

inhomogeneous turbulence maintained by unsteady forcing against a strongly 

stable buoyancy gradient. Two theoretical approaches, which have shown 

some promise, are presently being pursued. The first is the extension of 

rapid-distortion (or linearized turbulence) theory to unsteady, stably 

stratified and inhomogeneous flows. The applicability of rapid-distortion 

theory, a field having much in cOllllllon with classical, small-perturbation 

theory, follows from the fact that wave periods often match the periods of 

energy-containing eddies so that wave straining is rapid compared to 

turbulent relaxation times. Characteristic signatures of this situation 

were noted by Finnigan and Einaudi [21] in a near neutrally stratified, 

wave-perturbed boundary layer. 

A second approach is the use of higher order closure schemes to model 

the relaxation of the turbulence field under wave straining. This has been 

done, using a Ii order, k-f model, by Einaudi et al. [12]. The challenge 

now is to combine this with a realistic treatment of the near surface 

behaviour of the gr·avity "lave so as to quantify an idea proposed by Jones 

and Hooke (personal communication). They suggested that the vertical 

structure of the multiple shear layers observed in the lower atmosphere 

(most clearly by remote sensing) corresponds to the vertical wavelength of 
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the 'viscous wave I that, in linear perturbation descriptions of gravity 

waves, must be added to the inviscid solution to satisfy a no-slip 

condition at the ground. See, for example, Einaudi and Finnigan [14]; 

Jones and Hooke (personal communication). If the viscosity used in the 

model solution is the molecular viscosi"ty, then the vertical wavelength }.'Z 

of the viscous ,,,ave is only a few centimetres but if a realistic eddy 

viscosity is used, >'z grow"s to "tens of metres and provides a reasonable 

match to the observations. Unfortunately, a tempcrally constant eddy 

viscosity does not describe wave-turbulence coupling well and so the use of 

a more sophisticated approach is clearly indicated. TI,e hope is that the 

vertical wavelength hz might provide the elusive scaling parameter that 

would not only describe the turbulence locally, but also respond "to both 

wave forcing and the presence of the ground. 

Turning to our second sub-heading, the specification of ra in very 

stable times, much of wha-t we have said above remains relevant" 'We can 

draw a:ttention particularly to the times of counter-gradient flux, which 

"mulct produce negative l:a values, and the complicating effects of multiple 

shear layers. Hm7ever, tw"o fur-ther aspects of stahle layer behaviour must 

now be considered. The first of ,these is the possibility (of local 

advection driven by katabatic "effects such as gravity currents. A 

ca"talogue of some important classes of "these flm,s on the boundary-layer 

scale may be found in ~iarht [37]. we must also consider the role of 

non-propagating gravity waves or lee "\>laves, (Strictly, such waves 

propagate upwind at the mean ~"ind speed but they are stationary with 

respect: to the ground.) Lee waves have been widely studied at large scale 

as mountain waves 0 See, for exam.ple, Bretherton [3]. Here t'le wish to 

point out the possible importance of these wa.'J"es on the PEL scale. Two 

features should be noted. 11"1e amplitude of the lee T"ave component of the 

momentum flux «pil"w"» is proportional to a 2 so that, as 'the height a of 

the hills increases, the wave stress soon exceeds the Reynolds stress 
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component «pu'w'» of momentl1Jll flux, even over moderate terrain (Chimonas 

and Nappo [5]). Secondly, the direction of the shear stress vector 

associated with the lee .. laves is perpendicular to the ridges generating 

those waves, not necessarily parallel to the mean, near-surface flm;]' 

(Chimonas and Nappo [ 5 J ) • This can have important consequences for the 

resultant wind directions in the middle and upper PBL. 

In contrast to the work on propagating "laves mentioned earlier, there 

has been, to this author'S knowledge, no work at all done on the 

interaction between turbulence and lee waves in "the PBL. The problems must 

be very similar to those encountered in propagating waves but, undoubtedly, 

new features will arise. Finally we should point out that these waves are 

not merely a theoretical prediction but were measured by aircraft based 

instruments in the SESAME experiment (Lenschm, at al. [331) and were 

estima"ted thereto carry a significant fraction of the total morilentum flux. 

6. CONCLUSIONS 

The object of this paper was to reveal some of the problems that occur 

when we write land surface boundary conditions for GCM's. Specifically we 

have discussed the way that sub-grid scale, horizontal variability might be 

handled and have proposed a scheme that relies on using a simple 

description of the planetary boundary layer as the link between 

heterogeneous surfaces and the synoptic scales that are resolved by the 

GCM. This simple description requires, paradoxically, a good understanding 

of PEL physics in both daytime convective and nighttime stable conditions 

as well as the ability to attach quasi one-dimensional descriptors to each 

distinct: patch of the inhomogeneous surface. 

~e have shown that for a significant range of conditions our 

understanding of PEL dynamics is not equal to this task. In convective 

conditions, when surface properties, particularly aerodynamic and surface 
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resistancees "to heat and moisture transfer, change over length scales 

comparable to the dynamic equilibrium length scale Db of the GBL, we are 
w* 

required to predict the behaviour of an advective GEL. At present no 

sui "table models exist to do this. 

When the boundary layer flows over an extensive region of hilly 

topography, then established theory is only capable of predicting ra values 

in very restric"ted circumstances: in even moderately steep and rugged 

"terrain it fails completely. The understanding "we lack is of the nature of 

momentuIfi and scalar transfer over regions of separated flow. Modern 

dynamical chaos theory has produced some quite new ways of looking at this 

problem which may allow valuable insights in the future. 

Under very stable conditions, specification and parameterization of 

atmospheric exchange processes requires a good understanding of the various 

modes of wave-turbulence interaction. At present this is a field poorly 

se,--ved by theory; most studies of this problem h",ve involved analysis of 

field data ,,,hile the volullIinous literature on ,mve dynamics almos"t all 

avoids l'llention of turbulence and indeed nonlinearity of any kind. 

It is clear that the construction of GCH's and the interpretation of 

GeM outpU"t at local or regional scale cannot be viewed as a problem in 

efficient codification or interpretation of existing knowledge. There 

remain significant gaps in our understanding of boundary-layer processes 

that pose real obstacles to matching Gel-i's to the real world. To fill 

these gaps will require sophisticated matI-iematical techniques no less than 

experiment. 
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