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1. INTRODUCTION 

There are two main areas where the ocean is important in climate change. Firstly, it is 

an active lower boundary to much of the atmosphere, for which it is a major source and/or 

sink of heat, water vapour and carbon dioxide. Secondly, sea-level changes have a direct 

affect on the coastal environment. 

In order to understand the ocean's role in climate change it is necessary to be able to 

model the entire depth of the ocean, not just the surface layers. Present day numerical ocean 

general circulation models (OGCM's) suffer a number of deficiencies: 

1. Climatically important quantities such as poleward heat flux are sensitive to the param-

eterization of unresolved mixing processes. Present estimates of the vertical diffusivity 

in the ocean vary by almost two orders of magnitude [2]. 

2. The present ocean velocity climate is not well-known, which makes validation and tuning 

of OGCM's difficult. 

Tracer conservation equations provide a relation between velocity, tracer gradients, 

mixing coefficients and tracer source/sink terms. Several methods exist for inverting these 

equations to obtain ocean currents, mixing coefficients and source/sink distributions (if 

the tracer is not conservative). Additional constraints are provided by the assumptions 

of geostrophy and continuity. The tracer conservation equations are integrated vertically 

between two neutral surfaces to improve accuracy, and a geostrophic streamfunction is 

introduced to reduce the number of unknowns. The resulting equations are discretized, 
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and the matrix equation inverted to find reference level velocities, mixing coefficients and 

unknown source/sink tenns for non-conservative tracers. 

The matrix system is typically under-determined; a unique solution is obtained by 

minimizing a derivative norm of the solution. Positivity constraints are added for mixing 

coefficients, and for source/sink coefficients where applicable. An example inversion is 

presented for a section of the eastern North Atlantic influenced by the Mediterranean Water 

tongue. It is shown that the solution can alter drastically as a function of the relative weighting 

between solution variables. 

Tests conducted with a two-dimensional advective/diffusive problem where the answer is 

known indicate that the under-determined fonnulation with a derivative norm has the potential 

to provide quite accurate answers. Two practical problems remain: firstly, there are many 

parameters to be estimated, such as smoothing norm differential order and length scales, 

signal to noise ratio, prior solution mean and relative weighting between different types of 

unknowns (in this case velocity and mixing coefficients); secondly, an estimate of the validity 

of the inverse solution is needed. A possible candidate for the parameter estimation problem 

is a suitable modification of the technique of generalized cross validation (GCY). 

2. TRACER CONSERVATION EQUATIONS 

(1) 

The steady-state conservation equation for a tracer C in neutral surface coordinates is [9J 

[Vn - VnK - J{ :z (VnN)· VnC + eCz] 

= ICv~C + (DCz)z -)..C 

where V n is the horizontal velocity in a neutral surface, e is the dianeutral velocity (vertical 

velocity through the surface), V n is the lateral gradient operator in a neutral surface, 1'.,1 is 

the height of a neutral surface, J{ is the epineutral diffusivity, D is the dianeutral diffusivity 

and ).. is a consumption coefficient. 



The tracer conservation equations are written in the neutral surface framework because 

mixing is thought to occur preferentially in this plane, which is locally perpendicular to the 

gradient of buoyancy [8]. The mixing rate is about seven orders of magnitude larger in this 

plane than perpendicular to it. Using the wrong surface means that some of the much larger 

quasi-horizontal mixing will be interpreted as vertical mixing. Ocean currents and heat fluxes 

have been shown to be very sensitive to the magnitude of vertical mixing [2]. 

The obvious way to proceed is to write the tracer conservation equation on a neutral 

surface for each tracer, and solve for the 7 unknowns 

(2) = (ll,v), e, I{, D, Dz ,)' 

as functions of (x, y). 

There are two points to note here: 

1. Potential temperature 8 and salinity S are related on a neutral surface by ctVn 8 = jjvns, 

where 0: is the thermal expansion coefficient and jj is the saline contraction coefficient 

[8]. Hence only one of these tracers may be used; 

2. Vertical second derivatives of the tracer field are needed. These tend to be difficult to 

estimate accurately in the deep ocean. 

A better strategy is to vertically integrate the tracer conservation equation between two 

neutral surfaces. Now 8 and 5 give independent information (because 0: and jj are different 

functions of depth), and only vertical first derivatives of C are needed. 

One problem is that the number of unknowns has grown enormously; we now need to 

estimate the unknowns as functions of (x, y, z). It transpires that the number of unknowns 

can be reducta to 6 on a two-dimensional surface by the use of dynamical constraints, and 

some simplifying assumptions. 

Geostrophy is considered a good assumption in the deep ocean. In addition, it may be 

shown that a geostrophic streamfunction exists in a neutral surface [11]. Hence the horizontal 
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velocity on any surface may be written in tenns of a streamfunction 'IjJ on a reference surface: 

(3) 

where 

(4) 

is the thennal wind, f is the Coriolis parameter, p is water density and 9 is the gravitational 

acceleration. 

Geostrophy plus continuity give the linear vorticity balance on a neutral surface [10] 

(5) 
f3v f} 

ez = f - f}z (V n . '\InN) 

which can be integrated vertically to give an equation of the fonn 

z 

(6) e (z) = eo + f3~x (z - zo) + 7 J Vtw dz' - [V n . '\InN]:o 

Zo 

where f3 is the latitudinal derivative of f, eo is the dianeutral velocity on the reference surface, 

and Vtw is the second component of the thennal wind (4). 

It may be shown that if a streamfunction is used, and linear vorticity is enforced exactly, 

then the resultant velocity field satisfies continuity exactly. Hence it will not be necessary to 

explicitly include the continuity equation in the inversion. 

3. INVERSE MODEL FORMULATION 

The tracer equation (1) is now integrated from a point on the reference neutral surface 

z = Zo to a point on an0the~ n;':t:t:"cl surface z = Za, which should be sufficiently far from 

the reference level to ensure that a number of data points are contained between them; 

otherwise the advantage of vertical integration is lost. The velocity is replaced in tenns of 

the streamfunction at the reference level and the thennal wind according to (3), the vertical 



velocity is replaced using (6), and unknown tenns are collected on the left-hand side: 

(-~,/ J. ~./f). U V.Cdz -1 (V.N)C, d, + v. NI" (C, - CO)) 

Za Za 

+ 1/;x ~ J (Ca - C) dz - V nK . J V nC dz 

Zo Zo 

(7) +K(-[VnN.VnCl~~+ jVnN·:z(VnC)dZ- j\l~CdZ) 
Zo Zo 

Za 

+ Do Czl zo - Da Czl za + eo (Cu - Co) + A J C dz 

Zo 

~ ~ ~ 

= - J V tw · VnCdz + J (Vtw · VnN) Cz dz -7 J Vtw(Ca - C) dz. 

Zo Zo Zo 

Integration by parts has been used where possible to simplify terms, and to ensure that 

vertical derivatives of V nN are eliminated in favour of vertical derivatives of the tracer. 

The latter should be less prone to numerical error. It has been assumed that K and A are 

independent of depth. 

There are six unknowns in (7): 

(i) 1/;, streamfunction on the reference surface z = zo; 

(ii) K, average epineutral diffusivity between the two depths; 

(iii) Do, dianeutral diffusivity on the reference surface; 

(iv) D u , dianeutral diffusivity on the surface z = Za; 

(v) eo, vertical velocity through the reference surface; 

(vi) A, average biological consumption coefficient between the two depths (oxygen only). 

Equation (7) is written in finite-difference form on a uniform grid for each available 

tracer, giving the matrix system 

(8) Ax=b 

where each line of A represents one discrete equation for one grid cell, and each element 

is the coefficient of a variable, x is the model vector containing all the variables on a two-
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dimensional grid: 

(9) 

and b is the data vector containing the known forcing terms in the tracer equation. 

Once (8) has been inverted to find all the variables comprising x, one can diagnose for the 

three-dimensional horizontal flow field V n (z) using (4), the dianeutral velocity e( z) using 

(6), and D( z) using the original tracer equation (1). 

4. INVERSION METHOD 

The system of equations (8) is underdetermined; a unique solution is obtained by 

minimizing a weighted measure of solution size: 

o 

(10) o K 

where a, b, etc. are constants determining the relative weighting between the constituent 

variables of x. 

The least-squares criterion, where W x is just the unit matrix, often gives poor solutions. 

For example, it is not at all clear that the size of 7jJ should be made small. It would be better 

to minimize a physically interpretable quantity such as kinetic energy (although, again, it is 

not at all clear that this is appropriate.) 

There are a number of mathematically desirable properties that any solution should 

possess: 

1. 1/; must be differentiable to obtain velocity; 

2. The solution should be sufficiently differentiable so that the finite-difference scheme 

used to obtain Ax = b converges. 
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In order to ensure that the solution is suitably differentiable, it is necessary to define 

the weight matrices in terms of a Sobolev norm [1]. These norms contain the integral of 

the sum of the squares of all possible derivatives up to some order. An example (in two 

dimensions) is 

(11) 
111112 = ff {J2 + 2Z2 (J; + I;) 

+Z4 (J;x + 2f;y + I;y) + ... } dxdy 

In two dimensions, if the highest weak derivative in the norm is of order d, then 1 is 

continuously differentiable of order d - 2 [1]. 

In discrete form, each weight matrix W w, WK etc. in (10) represents a Sobolev norm 

(also referred to as a smoothing norm) of the form 

d 

(12) W= Ll2i D[Di 
i=O 

where (in the case of a one-dimensional grid for clarity) 

(13) 
1 

D1 =­
,0. x 

-1 1 

-1 1 

-1 1 

In two dimensions, this matrix will look slightly different because of the need to represent 

derivatives in each dimension. 

It may be shown that there is a one-to-one correspondence between the deterministic 

approach to inverse problems and the statistical approach, where the prior solution covariance 

function (or matrix) is specified, and a minimum variance solution sought [13]. W x may be 

interpreted as the inverse of the solution covariance matrix C~l. 

The equivalent covariance function for the norm given by (11) may be shown to be [12] 

(14) C(r) = (rll)d-l lCd-1 ('I'll) 
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where K d- 1 is the modified Bessel function of order d - 1. In discrete form, the equivalent 

covariance function can always be determined numerically by inverting W x' The parameter I 

may be interpreted as a length scale for fixed d (see Fig. 1). The highest derivative appearing 

in the norm affects the shape of the equivalent covariance function. Two choices are compared 

to a Gaussian covariance function in Fig. 2. It should be noted that I is not a good measure 

of the width of the peak. A better measure is the integral length scale 
00 

(15) I[ = / IC (1') IC (0)1 dr 

o 
and it is this value which remains constant for all covariance functions in Fig. 2. 
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Figure 1. Dependence of covariance function associated with the d = 2 norm 011 length parameter l. 
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Figure 2. Smoothing norm equivalent covariance functions for d = 2 (I = 1.3) and d = 5 (I = O.!)) compared 
to a Gaussian profile. The integral length scale (area under the curve) has the value 2 for all functions. 



One reason for dwelling at some length on the covariance function interpretation of the 

smoothing norm method is that the solution will shortly be interpreted as being composed of 

a sum of covariance functions. This in turn gives some idea of the consequences of choosing 

large or small values for 1. 

In the underdetermined case, it is always possible to satisfy the equations exactly. 

However, one can allow for equation error by minimizing an augmented version of (10): 

where e = Ax - b is the equation error and fL is " parameter which trades-off 

against satisfaction of the equations. Two forms of the solution which minimizes (16) are: 

(17) 

and 

(18) 

It is clear from this last form that the solution is represented in terms of a linear combination 

of the columns of W; 1, that as a linear combination of covariance functions. The same 

interpretation is made in the case of data interpolation based on the Gauss-Markov theorem 

(statistical interpolation or objective mapping) [12]. 

It is believed that mixing coefficients should be positive. However, most of the early 

solutions obtained had negative mixing coefficients in some places. It is possible to enforce 

positivity on the mixing coefficients (and on the consumption coefficient). where applicable, 

as is the case when the tracer is oxygen), using programs provided by Menke [13]. One of 

the disadvantages of this procedure is that it is no longer possible to explicitly write down 

the solution in a form like (17) or (18), and so it is harder to see the structure of the solution. 

In particular, it is entirely possible that the solution will no longer be representable as a 

linear combination of the data, because one could envision a case where the data is all zero, 
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but the solution is restricted to be non-trivial. However, an advantage of using positivity 

constraints is that they will show whether the information at hand is consistent with positive 

mixing coefficients. 

5. NORTH ATLANTIC MODEL 

The data set and region studied here are the same as used by Hogg [5]. That is, a subset 

of the 1 ° Levitus [7] data set in the eastern North Atlantic is used, over which an 8 x8 grid is 

defined with a spacing of 3°, from 43.5°W to 22.SoW, and from 22.soN to 43.SoN. Neutral 

surfaces are chosen to match the depth of Hoggs' potential density surfaces at the centre of 

the region. The tracer equation is written in finite-difference form at each of the grid 

for which a centred-difference estimate of 1/; and K horizontal derivatives is available. Hence 

all and comers of the are "~'"~"U'-"-', as well as points surrounding a seamount in the 

northeast corner of the region. The Levitus data set has already been smoothed horizontally 

with a of 700-1000 km. No further O""'VU'UUHf', was done here. 

9; 

The discretized tracer equation is written for the three tracers: potential temperature, 

S; and dissolved oxygen, O2. This leads to a system of 96 equations in 238 

variables. The vatiables comprise 55 each of 1/; and K on the full but excluding comers 

and a region around the seamount, and 32 each of Do, 

an equation is written. 

eo and )\ at each point for which 

The norm length scale I is chosen to be comparable to the averaging of the Levitus 

data set 

variables 

700km), and to be the same for each variable. The relative weightings between 

b etc.) are chosen to be inversely proportional to an estimate of the size of the 

valiable. This is an unsatisfactory procedure. The values chosen are very estimates, 

particularly in the case of 1/;, and the solution tends to have a magnitude of about these 

estimates. 

Results were accordingly disappointing. Although it was possible to obtain a solution 



when positivity constraints were enforced, the solution could look quite different depending 

on the relative weighting between different variables. Two solutions for the streamfunction 

only are shown in Fig. 3 and Fig. 4. There is a considerable difference between them, and 

neither resemble Hoggs' solution (not shown here). 
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Figure 3. Streamfunction on reference surface. Typical velocity is 0.1 mm/s. 

- -·0.0 

40 

=:= --002 

25 

-40 

" "\ , 
'-

/ 
/ 

"---=--

-35 -30 

Longitude (W) 
-25 

Figure 4. Streamfunction on reference surface. Typical velocity is 1.0 mm/s. 
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It would appear that there is much to be learnt about choosing parameters in underdeter­

mined inverse problems. To gain some experience in a simple problem where the answer is 

known, a two-dimensional advective/diffusive problem is studied. 

6. SIMPLJlJFIED TEST PROBLEM 

Fiadeiro and Veronis [4] and Lee and Veronis [6] have studied a simplified advec-

tive/di.ffusive inverse problem in a two-dimensional channel. Their 

servation equation is 

'\7. eve) - 'V . 

where e is the tracer f'nn<,pn;t,-" v is J{ is the 

consumption or coefficient Conservation of mass is ensured 

Iracer con-

coefficient and )\ is a 

the introduction of 

a streamfunction v 1<: x where k is normal to the of the channel. The tracer 

conservation C'.~IUtUVH beCOInes 

xVc-'\7· == -AC 

The forward problem is: 4) and J( and values of c or its derivatives on the 

find y) in the interior, 

The inverse problem is: knowing y) (maybe more than one in an interior 

region of the ·~H<HH'\.o', estimate 'IjJ and J( in that 

It should be noted that if two linearly independent tracers are available, then the 

factor the estimation of .;jJ and ]{ as a forward problem is the 

absence of suitable conditions. 

The imposed sireamfunction tnor,,1"I·,p.1r with the solution of the forward problem for two 

tracers are shown in Fig. 5, Fig. 6 and Fig. 7 respectively. 
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Figllre 5. True streamfllnction in the 2-D channel. 
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Figllre 6. Distribution of the first tracer. 
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Figure 7. Distriblltion of the second tracer. 

Two inversion regions are considered: one in the uniform flow region at the eastern end 

of the channel, and the other containing the smaller of the two eddies. Data is taken at every 

second numerical grid point used in the forward calculation to introduce truncation error. 

The reader is referred to the work by Lee and Veronis [6] for further details. 
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Many experiments were carried out, of which only a few are shown here. The stream-

function and diffusivity in the uniform flow region are shown in Fig. 8 and Fig. 9 respectively. 

The goal of the inversions is to reproduce these figures as accurately as possible. 
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Figure 8. Tme memnfunctiol1 in unifonn flow region. 
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Figure 9. True diffusivity in uniform flow region. 
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Figure IGo LeasHquares sueamfUliClio!1 in uniform flow region 0 
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Figure 1l. Least-squares diffusivity ill uniform flow region. 

The first experiment is to calculate the standard solution. This is shown in 

10 and Fig. 1 L Clearly it is a bad estimate of the true solution. 

A much better solution is obtained by using a smoothing norm with d = 2 and the length 

scale I chosen to be 10 grid units 0 The relative weighting between V' and II. was chosen to 

be the true value, but a factor of 3 either way made little difference to the 

solution. The solution is shown in Fig. 12 and 13. This may be seen to be an unfair 

test because the solution is JW'VV'C"', but it does indicate the utility of the 
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smoothing norm approach in obtaining a smooth solution. Note that the diffusivity is positive 

everywhere, and that no positivity constraints were used. 
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Figure 12. d = 2, I = 10 norm streamfunction in uniform flow region. 
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Figure 13. d = 2, I = 10 norm diffusivity in uniform flow region. 

The second experiment involved the small eddy region; the true solution is shown in 

Fig. 14 and Fig. 15, while one of the best solutions obtained by trial-and-error is shown in 

Fig. 16 and Fig. 17. This solution used different length scales for 'if; (I = 2) and J{ (l = 14). 

If a uniform length scale of 1 = 10 was used, the 'if; solution hardly resolved the eddy 

(it looked very like the uniform flow region solution), and the diffusivity was smooth but 
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negative in some places, Clearly it is necessary to have a good idea about the length scales 

expected in the solution. In this case, there is milch more detail in the flow field than in the 

diffusivity, and choosing norm length scales to reflect this gives good results. 
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Figure 14. True strearnfullction in small eddy region. 
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Figure 15. True diffllsivity in small eddy region. 

Many more experiments were conducted, and all indicated the same thing: it is important 

to estimate the various parameters such as length-scales, norm differential order, relative 

weighting between different variables, and equation error in a consistent and accurate manner 

in order to get an acceptable solution to an underdetermined inverse problem. 
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Figure 16. d = 2, 11/1 = 2, If{ = 14 streamfunction in small eddy region. 
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Figure 17. d = 2, I", = 2, 1I{ = 14 diffusivity in small eddy region. 

7. PARAMETER ESTIMATION 

Generalized cross-validation (GCV) provides a measure of the error in predicting the 

"data" (right-hand side of the equations) when they are excluded one at a time from the 

inversion [3] [14]. The average prediction error may be approximated without repeatedly 
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inverting the matrix A with one row missing. The expression is: 

(21) 

N-1eTWe v- e 
- IIN-I tr [I - AA -gl112 
= (Mean weighted equation error) 2 

\ Mean diagonal non-resolution 

The second expression comes from noting that AA-g is the "data" resolution matrix [13] 

relating the observed and predicted "data" values according to 

(22) 

Ideally, the resolution matrix should equal the unit matrix, so that the observed data are 

reproduced by the model. The extent to which the diagonal elements of AA -g are different 

from unity is one measure of the inability of the system to perfectly resolve the "data". Hence 

GCV can be interpreted as optimizing the "data" fit (that the error) relative to 

the systems ability to resolve the "data". 

GCV can be used to estimate unknown parameters such as length scales, highest 

derivative in the smoothing norm and the amount of smoothing.. Each parameter choice 

will generally require one inversion of the original system of equations, except that only one 

inversion is required to optimize f-l. 

Experimentation with GCV has just started, but the results so far are quite encouraging. 

Fixing the norm differential order at d = 2 leaves four parameters to estimate: the 

streamfunction and diffusivity length scales, the relative weighting between streamfunction 

and diffusivity fields, and the smoothing parameter fJ. Fig. 18 and Fig. 19 show the 

best possible inverse solution for the streamfunction and diffusivity respectively, obtained 

by choosing the parameters to minimize the nTIS en-or between it and the true solution. 

Fig. 20 and Fig. 21 show the solution obtained using GCV. The streamfunction field is quite 

acceptable, while the diffusivity field is positive everywhere and of about the right magnitude. 
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Figure 180 Optimum rrns stremnfllnc,iofl in small eddy region. 
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Figure 19. Optimum nTIS diffllSivity in small eddy region. 

8. CONCLUSION 

The tin 'Ie-averaged ocean circulation and mixing coefficients may in principle be de-

termined inverting tracer conservation equations together wiLl} the dynamical constraints 

continuity and geostrophy. Venical integration of the tracer equation between two quasi-

horizontal surfaces IS desirable because: 

1. Vertical second derivadves of the tracer field need not be calculated; 

2. e and S may be used as independent tracers; 
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Figure 20. GCV streamfunction in small eddy region. 

Figure 21. GCV diffusivity in small eddy region. 

3. The number of unknowns is reduced; 

4. Tracer data within the layer is utilized. 

Continuity is enforced implicitly by the use of a streamfunction together with the linear 

vorticity balance. 

The problem is underdetermined, and so a minimum norm solution is sought. The solution 

depends on parameters such as norm length scale, differential order, relative weighting 

between different variable types, and signal-to-noise ratio. 
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A simple two-dimensional advection/diffusion model was used to test if good solutions 

were possible, and also whether generalized cross-validation (GCV) was a useful param-

eter estimation tooL Preliminary experiments indicate that GCV is capable of estimating 

parameters sufficiently accurately to obtain a useful solution. 
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