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LOCAL TECHNIQUES FOR MEAN CURVATURE FLOW 

Klaus Ed::er 

Consider immersions 

of ann-dimensional manifold without boundary into Euclidean space. We say Af = x(Mn) 

moves by mean curvature if there exists a one-parameter family Xt = x( ·, t) of immersions 

with corresponding images J..!I1 = x 1(lvfn) satisfying 

d 
dtx(p,t) = -H(p,t)v(p,t) 

(1) 

x(p,O) = xo(P) 

for some initial data xo. Here H(p,t) and v(p,t) denote mean curvature and outer unit 

normal of the hypersurface M 1 at x(p, t). Using the well-known formula .0-x = -Hv for 

hypersurfaces Af in R n+I we obtain the parabolic system of differential equations 

onMt (2) 

where~ denotes the Laplace-Beltrami operator on Aft. 

Let us first mention a number of global results about mean curvature flow: In 1984, 

G.Huisken [11] proved that compact, convex initial surfaces converge asymptotically to 

round spheres. A corresponding result for convex curves in the plane was established by 

Gage and Hamilton [7]. Grayson [8] extended this to arbitrary embedded planar curves. 
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In the non compact case it was shown in [5] that entire graphs over R n of linear growth 

"flatten out" and asymptotically converge to "expanding" selfsimilar solutions of (1 ). 

'Without the convexity assumption an initial surface A1o will in general develop singularities 

in finite time before shrinking to a point. M. Grayson [9] proved this for initial surfaces 

which are in part contained inside a long thin cylinder and admit two large enough internal 

spherical barriers near either end of this cylinder. Dziuk and Kawohl [4] showed that under 

certain additional conditions rotationally symmetric surfaces form an isolated singularity. 

Isolated singularities near which the mean curvature of the surfaces lvft "blows up" at a 

certain rate in time have been classified by G.Huisken [13]. 

In this talk we would like to concentrate on localization techniques for mean curvature 

flow. In particular, we want to obtain some control on the rate at which "far away bad 

behaviour" enters a certain confined region of space. An important tool for determining 

the local behaviour of geometric quantities during the evolution is the parabolic maximum 

principle: 

Proposition 1. Suppose the function f = f( x, t) satisfies tl1e inequality 

(:::': 0) 

on compact hypersurfaces 1\ft moving by mean curvature. Tl1en 

sup.f :S: supf 
M, Mo 

( inf .f 2: inf .f) 
kl, Aio 

for all t ~ 0. 
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Note that for some applications it is important to allow an additional linear term in the 

tangential gradient of f. \Ve refer to [6] for a noncompact version o:fthe maximum principle. 

Let us now eonsider the evolution equation 

d 
( [x [2 + 2ni) = 0 (4) 

derived in [5]. This identity corresponds to the fact that the radius of a sphere shrinking 

concentrically under (1) is given by = .j;="2 (0) -· 2nt. From Proposition 1 which in 

this case also applies to noncompact hypersurfaces we immediately obtain the following 

well-known sphere comparison result [2]) 

Proposition 2, Let ]1/ft be a of .hypersmfaces moving by mean curvature. Then 

the following statements hold: 

(i) If Mo C BR(O) then C B .JR2 -2nt(O) · 

c 

In [3] U. Dierkes showed that the function [x[ 2 - nx;,+l is subharmonic on minimal 

persurfaces in R n+l and used this to establish certain nonexistence results for connected 

minimal hypersurfaces having more than one boundary component. Let us apply his idea 

to mean curvature flow. Usirig the identity 
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from [5] as well as the fact that J'Vxn+ll:::; 1 (here \7 denotes the tangential gradient on 

1Vlt ) we obtain 

d \ 
dt - L1) ( \x\ 2 - (n- ,6)x~+1 + 2(3t):::; 0 

for 0 :::; (3 :::; n . Proposition 1 then yields 

Proposition 3. Let 1'.1t be a family of compact l1ypersurfaces moving by mean curvature. 

Then for 0 :::; (3 :S:: n and t :S:: 2~ 

Mo C { x E R n+l / - 1- (3) x;1+1 ;:::: xi + ... +X~-- €} 

implies 

Mt C { x E R n+l / ( n - 1 - (3) x~+l ;:::: xi + ... + x~ - f + 2(3t} . 

Remark. For (3 = n - 1 this yields that Mt will remain inside a shrinking cylinder of 

radius y c - 2( n - 1 )t . For 0 $ (3 < n - 1 we infer that M 7ft; will lie inside a cone with 

vertex x = 0. Using two appropriately positioned internal spherical barriers of radius R 

for Nlo as in Proposition 2 (ii) and assuming that Mo is contained inside a hyperboloid as 

in Proposition 3 where E is small enough compared with R we obtain a "neck-pinching" 

result for a wide class of initial surfaces. 

In (2] Brakke studied mean curvature flow for varifolds using a weak version of the evolution 

equation for the surface measure f-it of .~1t , 

(5) 

An important local result he obtained is the "clearing out lemma" which we state here in 

the case of smooth hypersurfaces: 
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Proposition 4. ([2]) Let be a family of hypersuri:'tces moving by mean curvature. 

Suppose Mo satisfies 

for some x 0 E Rn+l, R > 0 and sufficiently small e > 0 where I · l denotes 

n - dimensional Hausdorff measure. Tl1en there exist constants c > 0 and 0 < a < 1 

depending on n such that 

IMt nEE 1 = o 
4 

Remark In case n = 2 we can choose a = 1. 

Proof. By scaling and translating we may assume that xo = 0 and R = 1. We 

give separate proofs for the cases n = 2 and n ~ 3. The use of the p-Sobolev inequality in 

the case n ~ 3 is due to J. Hutchinson. 

n = 2 : In this case the argument can be based on the standard result that in two 

dimensions a local £ 2 -bound on the mean curvature implies a lower density bound for the 

surface ([1]). For the convenience of the reader we include a short outline of the argument: 

Let Bp = Bp(O), p > 0 where 0 EM. Then by the Sobolev inequality ([14], [1]) 

INI n Bpi~ :::; co ( IM n oBpi + j' IHidf.!·),, 
\ MnBp 

holds for a.e. p where c0 is the two dimensional isoperimetric constant. Using the coarea 

formula and Holder's inequality we obtain 
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1 

Let Po> 0 be such that (JMnBPo H 2dp) 2 < c;;- 1 and IM n B.E:f-1 > 0. Integrating yields 

(6) 

We now proceed in the following way: Let 1/;(r) = (1- r)~ where the subscript denotes 

the positive part of a function and set T = lxi2 + 2nt. Using ( 4) and (5) one readily checks 

the inequality 

d r 1 2 - } 1/Jdf-lt :S: - H 1/;dpt 
dt M, M, 

(7) 

which implies, in particular, 

This yields 

!Aft n B1.l :s: 4€ 
2 

(8) 

for all t :S: 1~ in view of the fact that 1/; 2:: i in B~ for those t. We want to show that for 

{j > 0 small enough the inequality 

!!.. { 1/J < -8 
dt Jft,'l, - (9) 

holds for all t :S: 116 unless the integral already vanishes at an earlier time. For t :S: f6 

inequality (9) implies n B~ I= 0 when t = 1, hence the result. 

Suppose (9) does not hold. Then for any 8 > 0, by the above properties of 1/;, there exists 

a time t :S: {6 for which 
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If IMt n Bi J = 0 for one of these t we are done. Otherwise we use (6) with po = f to 

obtain 

which obviously contradicts (8) for E $ t6 and small enough 8. 

n 2:: 3: Consider 'P = (1- r)+ as above where now r = Jxl2 + (2n + m- 1)t form > 1. 

Then one derives using (4) and (5) 

where for reasons of exposition we also require m(m -1) $ 1. The Sobolev inequality for 

A > 0 , 1 $ p < 2 yields 

= 
(JM, 'P).~ dttt) n $ c(n,p,A) [!M, ( 'Pp(A-l)JV'r.pJP + JHJPr.pAP) dttt] 

$ c(n,p, A) [ JM, ( 'Pm-2JV'r.pJ2 + H2r.pm + 'P-G;(2A-m)) dttt] 

in view of Young's inequality. Let now A = m~ and p = n~~m. ( Note that for n 2:: 3 

this is possible with m > 1.) Since then '7 = 1 - n+22m we arrive at 

where c = c( n, m) > 0. Integrating this inequality implies the result in view of the 

definition of 'P· 
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Let us now turn to local results for higher order geometric quantities such as gradient and 

curvature which were obtained in joint work with G.Huisken. In the case of the Ricciflow 

on Riemannian manifolds introduced by R. Hamilton [lO]local estimates have been derived 

by W.-X. Shi [15]. 

Suppose lvio can be locally written as a graph over its tangent plane at some point. Define 

v = v;;-~1 for a choice of normal such that Vn+I > 0. If A11 = graph Ut then v = .)1 + JDut 12 

up to tangential diffeomorphisms. In [6] the following gradient estimate is derived: 

Theorem 1. ([6]) Let R > 0 and x 0 E Rn+I be arbitrary. Then 

as long as v(x, t) is defined eve.rywbere in Mt n {x E Rn+l /Jxl 2 + 2nt:::; R2 }. 

The of this theorem is again based on the maximum principle. Using the evolution 

equation for v 

( d ) 2 -1 2 \dt -b... . v = -lA. I v -· 2v jV'vj 

from [5] and equation ( 4) one can show that the function f = v(R2 - jxj2 - 2nt)+ satisfies 

the inequality 

for some vectorfield a on A1t. 
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Remark. One can also prove a gradient estimate in terms of the height of Aft over an 

n-dimensional ball in the tangent space of M 1• In this case the radius of the ball is time -

independent a.s long as there is a well-defined height-function for 1\!lt inside the cylinder 

over this ball (see [6], Theorem 2.3). 

Having obtained local gradient estimates we are then able to establish local bounds for 

the second fundamental form and all its derivatives. This can be achieved using a variety 

of distance functions for the localization of the problem. Admissible distance functions 

r = t) ;::: 0 satisfy the conditions 

I / d 
(- -­
\dt 

and 

as well as compactness of { x E .Mt / r(x, t) ::; R 2 } for R > 0 and t :::0: 0. We may choose 

r = lxl2 + 2nt for estimates inside n-dimensiona.l shrinking spheres or r = lxl2 - x~+l for 

estimates inside cylinders over n-dimensional balls of fixed radius. The following curvature 

and higher order estimates hold: 

Theorem 2. ([6]) Let R > 0 and assume that { x E / r(x, t) ::; R 2 } can be written as 

a graph over some hyperpla11e for t E T]. Let t) ;::: 0 be as above. Then for any 

t E [0, T] the estimate 

") ( 1 1 \ 
sup IAI~ ::; c(n) \ -:; + 2) sup 

{ xEM, J r(x,t):S;R2 } \ < R { xEM, f r'(x,s):SR2,sEf0,tJ} 

holds. 

Remark. Note that using r = lxl2 + '2nt we obtain IAI 2 ""'t- 1 . 
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Theorem 3. ((6]) Under tbe assumptions of tbe previous theorem tbe estimate 

( 
1 1 '\ m+l 

sup \V'mA\ 2 ::::; Cm - + -ry 
{ xEMt / r(x,t)::;R2} t R· ) 

balds for any m 2:: 0 where em = em ( n, sup . v \) . 
, { xEM, / r(x ,s) =:;R2 , sE[O,t] } 

To prove Theorem 2 we establish an i11equality of the type 

+ lower order terms 

where f = j.4.j\::-(v2 ) for some suitable choice of c.p. The -liP - term then allows us to 

multiply f by a cut-off function rt = 17( r) such that g = satisfies an inequality of the 

type 

to which we can apply the parabolic maximum principle. 

Finally we would like to. mention an application of the interior estimates to the mean 

curvature evolution of entire graphs. 

Let 1vf0 = graph u0 , where u0 : Rn --> R. In the class of graphs problem (1) is up to 

tangential diffeomorphisms equivalent to the parabolic equation 

dd u = V1 + \Du\2 div ( Du ) 
t \/1 + jDuj2 (10) 

u(O) = uo. 

Y.le prove the following theorem: 
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Theoren1 4. ([6]) Let tto be locally Lipschitz continuous on Rn. Then (10) (and therefore 

(1)) has a smooth solution for all t > 0. 

Remark. Note that in contrast to the above result a solution of the Cauchy problem for the 

ordinary heat equation becomes unbounded in finite time, unless certain growth conditions 

at infinity are imposed on the initial data. 

To prove Theorem 4 we solve the Dirichlet problem with initial and boundary data uo on 

increasing balls BR C R". The results in [2] guarantee that the solution UR on BR exists 

for all times. Using spherical barriers which depend on a fixed time T > 0 and the initial 

height u0 over a fixed compact set D: C R n we establish a bound of the form 

sup JuRI:::;; c(D:,T,uo) 
!1>([0,TJ 

which is independent of R. Vve then use the interior estimates to prove bounds for IDmu.RI 

on n x [0, T] for all m ~ 0 independent of R. Letting R --> oo we may now select a 

subsequence of radii -+ oo for which 'URk converges to a solution of (10) on compact 

subsets of R"' >< oo). 
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