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Abstract 

Loca.l spline approximants offer a means for constructing finite difference formulae for numer­

ica.l solution of PDEs. These formulae seem particularly well suited to situations in which 

the use of conventiona.l formulae leads to non-linear computationa.l instability of the time 

integration. This is explained in terms of frequency responses of the FDF. 

1. Introduction 

This is a brief summary of (12], the main theme of which is the study of a two parameter 

family of finite difference formulae (FDF) with the aim of determining which (if any) are 

useful for the numerica.l solution of PDEs. 

The family of FDF in question arise from a scheme for loca.l approximation by splines . . 
~here are several such schemes (see for example [1], (2], (4), (6], (7], (11] and (18]). The 

scheme discussed here is perhaps the simplest. It is certainly the oldest and has as its origins 

the theory of what used to be ca.lled osculatory interpolation [8], (10). In terms of centra.l 

B-splines it first appears in Schoenberg's well known papers (13] and (14]. 

Although this loca.l spline approximation scheme has been with us for over 50 years it 

has received little attention from those interested in the numerical solution of PDEs (as yet 

I have found no references to its use). By way of explanation it should be pointed out that 

the work described in (12] made extensive use of REDUCE for computing a data base of 

FDF coefficients, as well as special purpose graphics programs for reading the data base 

and ploting transfer functions, frequency response functions, kernel functions, etc. Without 

these tools it would be difficult to study all but the simplest of schemes and those are not 

of high enough order of accuracy to be of va.lue in the solution of PDEs. 
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2. Sampling kernels via: B-splines 

The local spline approximants used here are constructed from samples taken at the 

integers. A function g(x) and its derivatives are approximated by the sampling sums, 

g0>(x) = Lg(n)¢0>(x- n), j = 0, ... ,jma::· (I) 
n 

The kernel </>( x) is a C" spline (peicewise polynomial of degree k + 1 ) with support w + 1 

and knots at the integers. We take w+l even and let supp(<f>(x)) = ( -(w+l)/2,(w+l)/2). 

The kernel is then a linear combination of central B-splines of the form, 

r/2 

</>(x)= L amM~c+2(x-m), r=w-k-1. (2) 
m=-r/2 

The constants am are fixed by the r + 1 independent conditions g{0>(0) = g(O) where 

g(x) =xq, q = 0, ... ,r. 

For suitable band-limited functions and reasonable choices of the pair of integers (k, r) 

one finds that expressions (1) for j = 0, 1, ... ,j= are useful approximations to g(x) a.nd 

its derivatives (4], (12). 

On combining (1) and (2) one sees that· local spline approximants of the above type 

provide us with central finite difference approximations g0>(m) for the derivatives g0>(m) 

in terms of thew function values g(m-(w-1)/2), g(m-(w-1)/2+1), ... , g(m+(w-1)/2). 

We call these spline-typ.e FDF. 

As an example we cite the case (k, r) = (2, 2) which has appeared a number of times in 

the literature (e.g. (2] equation (6.10); {17} p~ge 569). Here 

4 1 </>(x) = 3M4(x)- 6(M4(x- 1) + M4(x + 1) 

and corresponding central finite difference coeffecients are, 

Oth derivative: -1/36, 1/9, 5/6, 1/9, -1/36 

1st derivative: 1/12, -2/3, 0, 2/3, -1/12. 

See (4] for plots of the above kernel and its Fourier transform. 
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3. Frequency :responses of FDF 

Numerical experiments have shown that spline-type finite difference formulae can be used 

in some situations where compact formulae are subject to non-linear computational instabil­

ity 112]. Compact finite difference formulae are those conventionaly used (their coefficients 

can be found via differentiation of a Lagrange interpolation polynomial). Computational in­

stability refers to the spurious growth (over a small number of time steps) of high frequency 

components of a solution, in particular, of so called 2-h waves !3],115]. Computational in­

stability is a non-linea,r phenomenon thought to be caused by aliasing. The following is an 

attempt to explain why spline-type FDF perform better in this respect. 

There are at least two sources for aliasing error in finite difference computations. The 

first and obvious is the presence of non-linear terms in the equa"tions to be solved. This is 

also the well knov.rn source of aliasing error for spectral collocation methods and is discussed 

at length in !3] and [5j. For both spectral and finite difference methods the way to avoid 

problems caused by this type of aliasing error is to band-limit the solution to some fraction 

of the Nyquist interval. For finite difference methods this can be done by periodicaly filtering 

the solution using a low-paas digital filter !9], !15]. The Oth derivative FDF given in the last 

section is such a filter. In fact the filters described in !16] for this purpose are all spline-v;pe 

Oth derivative FDF. They may be obtained with k = 1 and r = 1,:3,5, .... 

The second source of aliasing error depends only on the particular set of finite difference 

formulae used. It shows up as miss-matching between the frequency responses of the FDF 

for different derivatives. The frequency response of a FDF for jth deriva,tives is defined by 

the following ratio of numerical and exact derivatives. Let g(x) = e2"ifx then 

R(j) (f) = (g(Jl ( x) \) 
g(J)(x) x=O 

= - 1 -. n0g )(O) 
(27rif)J ' 

f E (-1/2,1/2). 

For central FDF Rul(f) is real and is symmetric about f = 0. 

Fourier transforms of functions and their derivatives should be related by factors of 27ri f. 

It is clear then that if there are significant differences between response functions within a 

set of FDF then numerical derivatives calculated using the formulae will be inconsistent. 
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Figure 1 Typical frequency response functions R(j)(J) of central FDF for j = 0, ... ,4. 

(a) 9 point compact FDF. (b) 17 point spline-type FDF with (k,r) = (9, 7) 
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They will be inconsistent in the sense that there can exist no function band-limited to the 

Nyquist interval which has as its derivatives those calculated numerically. 

Miss-matched frequency responses can be explained in terms of aliasing of the high 

frequency components of the kernel function !12]. For spline kernels these components decay 

as f-(k+Z) since ¢(x) is Ck. This causes matching between spline-type FDF to improve as 

one increases k . 

Figures la and lb show frequency response functions for Oth, ... ,4th derivatives. The 

general features of these curves are typical of compact and spline-type FDF respectively and 

show that spline-type FDF can be well matched even for high order derivatives. The finite 

difference coefficients for these and other spline-type FDF are given in !12] as well as plots 

of kernel functions and their derivativs. 
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