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PLATEAU'S PROBLEM FOR MINIMAL SURFACES 
WITH A CATENOIDAL END 

Friedrich Tomi* 

In a preceding paper R Ye and the author have shown that every rectifiable Jordan 
curve in JR3 bounds a minimal immersion of the punctured disc which stretches out to 
infinity and has a flat end, i.e. outside some ball the surface is the graph of a bounded 
function defined on some exterior domain in the asymptotic tangent plane [TY]. In the 
present paper we are concerned with the corresponding problem for minimal surfaces 
with a catenoidal end, which means that at infinity the surface is required to be the 
graph of a logarithmically growing function and therefore ressembles the shape of a half 
catenoid. 

We introduce the following notation: C denotes the standard catenoid in JR3 , i.e. 

and T the closure of the non-simply connected component of lR3 \C; by (cosh)-1 we 
mean the positive branch of the inverse to cosh, i.e. (cos h)-1(p) = £n(p + Q=-1). 

Setting Dr:= {z E <C[[z[::; we state our result in the following. 

Theorem. Let r be a rectifiable Jordan curve contained in T which generates 1r1 (T). 
Then, for every ..\ E [ -1, + 1] there exists p > 0 and a conformal minimal immersion 
u: D~\{0}-+ JR.3 such that 

(i) u extends continuously to D 1 \{0} and u maps aD1 onto r topologically, 

(ii) [u(z)[-+ +oo(z-+ 0), 

for some r > 0, ujD,.\{0} is embedded and u(Dr\{0}) is the graph of a function 
r.p which is defined on an exterior domain in the (XI, '-r2 )-plane and satisfies 

(1) 
[r.p(x1, xz)[ ::; p, if,\= 0, 

[r.p(x1, xz)- >.(cos h)-1(p/[X[)'I::; p if..\ f- 0, 

h v? ) w ere p = XI + x;;. 

It would be interesting to study the corresponding existence problem in the class of 
graphs, i.e. to solve the exterior Dirichlet problem for the minimal surface equation. 
Some new results in this direction have been proved by Krust [K]. 

The proof of the above theorem is based on the same principle as in the flat case: the 
solution is obtained as the limit of a sequence of expanding minimal annuli spanned by 
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f and certain round circles f R which this time, however, are not contained in a fixed 
plane but instead lie on suitable catenoids. The crucial area estimates (see Lemma 4 
below) rely on the classical theory of field em beddings. Barrier arguments will play an 
important role in this paper. 

The case ,\ = 0 in the theorem corrsponds to a flat end and therefore is a special case 
of the result in [TY]. By reflection across the plane X3 = 0 the case of negative ..\ may be 
reduced to /\ > 0 and it is therefore enough to consider this case. We set A,. := D,. \D~ 
and start with 

Lemma L Let f' c T be a further rectifiable Jordan curve disjoint from r and such 
that r and f' are homotopic in T. Then there exists r· > 1 and a conformal minimal 
immersion u : A~ --Jo 1R3 such that 'U extends continuously to A,., u(A,.) C T, and 
u/8D1 and ujfJD,. are one-to-one mappings onto r and f' respectively. Uloreover, u 
has minimal area amongst all mappings u : A,. -? T satisfying the same boundary 
conditions. 

Proof. Since rr1 (T) = r.1 f generates 1r1 (T) by hypothesis, and fJT = C is mean 
convex, the existence of a minimizing conformal branched annulus u spanning rand f' 
results as an application of the concept of incompressible surfaces, cf. [TT]. It follows 
from [0] and [GT] that u is immersed in the interior. D 

We need some further notation: 

·-,Jx2 +x2 ZR­.- v 1 2' - E :IR3 Jp(x):::; R}, 

c+ := {x E CJx3 > 0}, 

C,+ ·- 'c+ 'o o \tt .- /\ + \ ' ' where 0:::; ), :::; 1) and 1-l E lR, 

We novv choose Ro > 1 such that r c z Ro and define 

We may clearly find a number ;:: R0 such that l'R c T for R;:: R 1 • We then denote 
'UR: Ar(R) --l- T SOlTle minimal annulus spanning rand rR the existence of ·which is 

guaranteed by Lemma. 1. 

Proof. We consider the family of half catenoids Cj:11 , v E lR, which foliates 1R3 \Z1. 
Clearly u R( Ar(R)) n C"J:v = 0 if v is suffienciently negative. Let us now increase the value 
of v until C"J:v contacts UR(A,.(R)) for the first time, say at v = Vo. Since rR c ct,_IL 
we must have Vo :::; -1-l and by the choice of J.l we haver n ctllo = 0. Hence if Vo < -1-l 
then the surface UR would lie 011 one side of Ctvo and would contact Cj:,_,0 at an interior 
point, contradicting the maximum principle. It follows that vo = -p and hence the 
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image of UR lies above ct,_Jt" By a similar argument one shows that UR(Ar(R)) lies 

below Ct,· D 

Let us now consider an open set U C 1R3 which is foliated by a smooth family Sl' 
of embedded minimal surfaces and let N be a smooth unit length vectorfield in U such 
that N(p) is a normal vector to Sl' if p E Sw Let us pick some specific surface Sp, from 
the given family and let us assume that the trajectories of N starting from any point in 
some subregion V of U reach S11 after finite time. Then there is a well defined, smooth 
projection map 

n": v-+ s" 
which assigns to each point p E V the first intersection point of the trajectory starting 
from p with Sw It follows from the classical theory of field embeddings that Til' is area 
decreasing. In our special case this property of III' results from Stokes's theorem and 
the observation that div N = 0. We shall now apply these considerations to the family 
Ct"' v E JR, in the open set U = 1R3 \Z1 . In cylindrical coordinates 

x1 = pcosEl,x2 = psinEl,x3 = z 

the vector field N is given 

N(p,El,z) = (:l.jp,O,-"}:_Jp2- ,\2). 
. p 

We have 

Lemma 3. The trajectory of N starting from a point in T>..l' reaches Ct,_" before time 

1 + 2J2fL Hence the corresponding projection 

is well defined and smooth. Moreover, the estimate 

(2) p(IL~t(P)) ~ p(p) +Po 

holds for every p E T>..p,, where po only depends on p,. 

Proof. In cylindrical coordinates the trajectories satisfy 

p = A/p, e = o, i = -J1- (>-.fp)Z. 

By direct integration we get p(t) = J p(0)2 + 2).t, in particular, p is increasing and 
p(t)::?: 1 for any initial point p E T>..w If therefore 0 < ,\ ~ t we obtain 

(3) z(t)- z(O) < -11 
/3/4ds ~ -2p, fort::?: 4[L/Vi 

If t < ,\ ~ 1 then p(l) > J2 and hence 

(4) 



243 

Combining (3) and ( 4) it follows that the trajectory starting from p after time 1 + 2,J2p 
has reached a position below ct,_l' and hence has hit ct,_l' before that time. It follows 
finally that 

proving (2) and the lemma. 0 

vVe are now ready to establish the local area estimates analogous to Lemma 2.2 
in [TY], where however the linear orthogonal projection onto the x 1 , x2 -plane has to 
be replaced by our II-w Let us remark that the linear projection corresponds to the 
foliation by parallel planes. We define 

a(p) := area (Ct, 0 n Zp),p > 1. 

By enlargening the constant R1 chosen after Lemma 1 we may assume that 

(5) 

With the notation 
~(u, p) =(ILl' o u)-1(Zp), 

where tt is any mapping into T>.l', we then have 

Lemma 4. (i) area. (ttR) ~ a1 + a(R)- a(R1) for R;:::: R1, where a.1 :=area (ttR1 ). 

(ii) area (uRJ~(uR,pz)\~(uR,Pl));:::: a(p2)- a(pl) for R1 ~ Pl < P2 ~ R. 

(iii) area (ttRJI::(uR,P)) ~ a(p)- a(RI) + a1 for R1 ~ p ~ R. 

Proof. (i) We may join the surfaces UR, and c,t_l' n (Zr\ZR,) along their common 
boundary component r R, to obtain an annular type surface v R in T spanning r and r R· 

By the minimality of UR (Lemma 1) we have area (uR) ~area (vR) = a1 +a(R)-a(RI). 

(ii) The map rr_i-' 0 UR is a homeomorphism from aDr(R) onto LR and we conclude, 
also using (5), that the topological degree of rr_l' oUR with respect to any point p E 
ct,_!, n (ZR\ZR,) must be ±1. Hence II-.u 0 UR covers ZR\ZR, and by the area 
decreasing property of II-·.u the assertion (ii) follows. Setting Pl = p and p2 = R in (ii) 
we obtain (iii) from (i) and (ii) by subtraction. 0 

Once the uniform local area estimates for the surfaces UR are established we find it 
technically convenient to replace rr_l' again by the linear orthogonal projection p from 
IR3 onto the ( x1, x2 )-plane, in particular, since this allows a direct application of the 
results of [TY]. In accordance with the notations of the latter paper we introduce the 
sets 

A( UR, p) = the connected component of fl( UR, p) containing aD1. 

It follows from Lemma 3, (2), that 
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and hence we obtain from Lemma 4, (iii) the estimate 

(6) 

for R 1 ::; p ::; R By direct calculation one finds a(p) = 1r(RJR2 -- ,\2 + .>.Z.Cnt(R + 
JR2- ,\2)). In particular, there is a constant co such that 

Let us now introduce Dirichtlet 's energy ··· 

E(u) = ~ J J 1Vul2 

and remark that for conformal mappings like UR Dirichlet energy and area coincide. 
vVe also remark that by the maximum principle A( uR, p) is an annular region with two 
boundary components, one of them of course aD1 • For abbreviation we define 

On the basis of the estimate (7) the proof of the next lemma is identical with that for 
Lemma 2.2 and Lemma 2.3 in [TY] and may therefore be omitted. 

Lemma 5. There is a positive constant c such that 

(i) dist (a*A(uR,p),a'A(uR,2P)) 2: c for R1::; p::; tR, 

(ii) dist ( aDh a* A( UR, p)) 2: dnp for 2Rl ::; p S R, 

(iii) E(uRIAr) S co exp (r/c). 

On the basis of the last lemma we can now perform the limit R -t +oo. The 
arguments are the same as those in Proposition 2.1 in [TY] except that the "condition 
of cohesion" used in the proof ofthe equicontinuity of uRI8D1 is in the present situation 
a direct consequence of the incompressibility of the surfaces UR in T. We formulate the 
result as 

Proposition. For any sequence R1, -t +oo there is a subsequence of URk, denoted by 

Vk, and a conformal, harmonic map u E C0(A, lR3 ) n ccoc4, lR3 ), A:= ([;\rh' with the 
following properties: 

(i) Vk converges to u in C 0 (A,.) for every r > 1 and in C 00(D,.\D.) for all r > s > 1, 

(ii) u : aA. --+ r is one-to-one, 

(iii) u(A) c T>..1, 

(iv) u has least area in the following sense: for any r > 1 and any map v E C0 n 
HHA,., T) such that vi8D1 parametrizes r monotonically and vloD,. = ·ulaD,. it follows 
that area (u!A,.)::; area (v), 
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(v) dist (8Dr,8"A(u,p))?: 

(vi) E(uJrl(u, p)) :S: a(p +Po)- a(Rl) + a1. 

In the examination of the a.symptotical behavior of the solution to the exterior Plateau 
problem obtained in the above proposition we use some arguments which are different 
from those in [TY] and, in fact, make the proof considera.bly simpler. The proof of 
statement (ii) in Lemma 6 below is essentially due to a student of the author, Th. 
:Nehring [N], who, in his Diploma thesis studied the exterior problem under free bound­
ary conditions. 

Lemma 6. p) is bounded for each p, 

(ii) IP o u(z)J-+ +oo(z -+ oo). 

Proof. Since u Inaps {)Dl onto r topologically, u is also incompressible in T and therefore 
(i) follows by the same argument as in Lemma 3.2 of [TY]. The statement in (ii) is 
equivalent to the boundedness of the sets p) for any fixed p. We claim that any 
component of rl(u,p) is bounded. Otherwise, by (i) and Propsition, (v), it would have 
to intersect 8* A( u, a) for a.ll sufficiently large a, in particular for 0' > p, an absurdity. 
Let us now assume that f2( u, p) were unbounded. Since rt( u, p) c Sl( u, 2p) and the 
components of n( u, 2p) are also bounded, it follows that there is an infinite sequence 
of different components ll2p,k of k E o/= A( u, such that each 
f2 2 p,k contains some component of rt( u, in particular llzp,k contains some point w 
with JP o u(w )J :::; p. From this and the monotonicity formula [S] we conclude that 
area (u,f22p,k)?: r.p2 for all k .. This contradicts the finiteness of area Jrl(u,2p)), see 
Proposition, D 

The next lemma is elementary. 

Lemma 7. Let 1\11 be a surface without boundary, v : lvf -> IR3 an immersion, p0 E 1Vl, 
r > 0, and 0 < <' < ~ such that the unit normal n of v satisfies Jn(p) - n(p0 )J < e 
for all p EM and such that the geodesic disc (w.r.t. the induced m.etric) Br(P) C 1\/I 
is compact. Then contains the Cartesian graph of a function f dei1ned on the 
Euclidean disc Dr;vr;/u(po)) in the tangent plane at v(po). Furthermore, Jf(x)J :::; 
2eJx- v(po)J for x E Dr;fi.(v(po)). 

Lemma 8. vVith a suitable choice of the orientation the unit normal n of u converges 
toe= (0,0, 1) if z--+ oo. 

Proof. Lemma 3.3 of [TY] is directly applicable and gives that the total Gauss curvature 
of u is finite on A\D,.* for some r* > 1. It is well known that n is a holomorphic map 
to S 2 and the total Gauss curvature is its mapping area. The latter being finite it 
follmvs from Picard's theorem that n can only have a removable singularity at z = oo. 
Hence N := lim n(z) exists. Let us now assume that N =/=e. Let e, and p be positive 

z--;.oo 

numbers, 0 < c < ~· We may then chooser> 1 such that u is immersed on A\D,. and 

ln(z)- NJ < E Vz E A\D,.. 
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By Lemma 6, (ii) we can choose a point w E A \Dr such that 

IP(p)l 2:: 2p,p := u(w) 

and such that A\Dr contains a compact geodesic disc Bp(w). It follows then from 
Lemma 7 that u(A \Dr) contains the Cartesian graph of a function f defined on the 
disc DP/vz(P) in the tangent plane ofu at p and that lf(x)l ::; 2elx-pl for x E De;vz(p). 
We may clearly choose a point q E D pf,;2(P) such that 

and hence, denoting by y the point in the graph off lying over q we obtain from Lemma 
7 that 

(8) 

On the other handy and p belong to the set T;...p. and settings:= IP(p)l, t := IP(y)l we 
conclude from the definition of T;...p. that 

I Y3 - P31 ::; A I (cos h) -l ( t I,\) - (cos h) -l ( s I,\) I + 2 fl 

_ , I " t /). + J ( t / >. )2 - 1 I ') '£· 2 max( s, t) 2 - A -Ln + ~fl < " n . . + p. sl). + J(s/ >.)2- 1 - mm(s, t) 

Since is- t! ::; IP- Yl ::; (1 + 2E)p/ J2::; y'2p we obtain, taking into account that s 2:: 2p, 

< .\Cn sthe + .\Cn2 + 2p 
- s-Vzp 

< >..en l±Vz/2 + 'A£n2 + 211 - 1-VZ/2 n 

what clearly is incompatible with (8) if e is sufficiently small and p sufficiently big. It 
follows that N3 = ±L D 

Proof of Theorell!. Statement (i) follows from Proposition, (ii), and (ii) from Lemma 
6 (ii). It remains to show (iii) and the immersed character of u. We conclude from 
Lemma 6, (ii) and from Lemma 8 that there is a p > 1 such that Po uiA\fl(u,p) is 
a local diffeomorphism with Jacobian of fixed sign. Since the map Po u is proper its 
topological degree is well defined and hence d := I deg (Po uiA\fl( u, p ), x) I is a positive 
constant for x E IR.2 \D p· It follows that 

(9) 

for all R > p. From (9) and Proposition, (vi) we infer that d = 1 since a(R):::; (1r+e)R2 

for arbitrary small E > 0 and sufficiently largeR. This proves that uiA\fl(u,p) is the 
graph of a function t.p defined on R2\De· The estimate (1) follows from the fact that 

u(A) C T:\v· By a classical result of Ossermann [0] u has no true branch points in A 
since u is locally area minimizing (Proposition, (iv) ). 
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Concerning false branch points we remark that ujD(u, p) w·ith p as above is an annulus 
type incompressible minimal surface in T with uiorl( u, p) injective. It follows from the 
result in [GT] that ujH(u,p) has no fa.lse branch points either. 

Acknowledgements: The author wants to thank Rugang Ye for a useful remark. 
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