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REGRESSION WITH CORRELATED ERRORS 

C.A. GLASBEY 

SYSTEMATIC RESIDUALS 

When data exhibit systematic departures from a fitted 

regression line (see for example Figs 1 and 2), either the 

regression function is inappropriate, or the errors are 

correlated, or both. In most cases it is assumed that the 

function is deficient, and it is changed. But there are 

situations where the assumption of independent errors is not 

wholly plausible. For example, some sources of error will 

persist over several observations when repeated measurements are 

made on a single experimental unit. 

Systematic departures may be modelled either by another 

regression function, or by correlated errors. 

consider 

To illustrate, 

a + bxi + c sin xi + ei i=l, ... , n, 

where a, b, xu ... , xn are constants, c is normally distributed 

vJith mean 0, variance 1: 2 , and elP en are independently 

normally distributed with means 0, variances a2 • Two models are 

equally valid for the y' s, either they are independently normally 

distributed with means a+bxi + csinxi, variances a2 , or they are 

correlated, with means a+bxi, variances 1: 2 sin2 xi + a2 and 

covariances 1: 2 sin xi sin xj between Yi and yj. 

In general the modelling objective determines the choice: 

for a simple summary it may be preferable for the regression 

function to explain all systematic variability, whereas a 

correlated stochastic component may be of more assistance in 

understanding the data generating mechanism. A succinct summary 

of data is often achieved by using the regression function to 

describe the long-term trends and the correlations the short-term 

fluctuations. This will be the assumed case from now on. 

CORRELATED ERRORS 

In the presence of correlated errors, ordinary least squares 

regression parameter estimators remain unbiased, but they may be 

inefficient, and the conventional estimators of the variances of 
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these estimators are usually biased. For example, consider 

a + b (i - 5.5) + ei i=l, • • • 1 10, 

where e 1 , e 10 are normally distributed with means 0, 

variances 1, and the correlation between ei and ei is rli-il. The 

least squares estimators of a and b are 

a 0.1 (yl + Y2 + Y3 + Y4 + Ys + YG + Y7 + Ys + Y9 + Y1o) 

b 0.055 (y10 - y 1 ) + 0.042 (y 9 - y 2 ) + 0.030 (Ya- Y3) 

+ 0 • 0 18 ( y 7 - y 4 ) + 0 • 0 0 6 ( Y6 - Y s) 

If r 0.9 then 

var (a) 0.73 var (b) 0.017 

The generalised least squares estimators, that is those with 

minimum variance, are 

and 

b = 0.107 (y10 - y 1 ) + 0.003 (y9 - y 2) + 0.002 (y8 - y3) 

+ 0.001 (y7 - y 4 ) + 0.0004 (y 6 - Ys) 

var (a) 0.68 var(b) 0.015 

Therefore a is 93% efficient and b is 88% efficient. However the 

least squares estimators of the variances, based on the 

assumptions of independent e's, have expectations 

E (var (a)) 0.016 E (var (b)) 0.0020 

and are therefore very biased. Results for other values of r are 

given below 
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1000 X 1000 X 1000 X 
r var (a) var (a) efficiency % E (var (a l l bias % 

-0.9 9 6 68 121 1318 
-0.6 30 27 91 116 292 
-0.3 57 56 98 110 91 

0.0 100 100 100 100 0 
0.3 173 171 99 85 -51 
0.6 325 308 95 59 -82 
0.9 728 679 93 16 -98 

10000 X 10000 X 10000 X 
r var (b) var (b) efficiency % E (var (b)) bias % 

-0.9 31 9 28 146 370 
-0.6 48 38 81 141 196 
-0.3 78 75 96 133 70 

0.0 121 121 100 121 0 
0.3 182 176 97 103 -44 
0.6 250 226 90 71 -72 
0.9 172 151 88 20 -88 

These results show that least squares estimators are not too 

inefficient provided that r is positive, but that estimated 

variances can be severely biased, typically downwards for 

positive r. 

The simplest solution, in general, is to discard the biased 

standard errors. This approach is most useful when no estimate 

of precision is required, for example when data are available 

from independent units and within-unit variability is of little 

importance (Rowell and Walters, 1976). Alternatively, if it can 

be assumed that the errors arose from a particular stochastic 

model, any parameters can be estimated jointly with the 

regression ones by maximising the 

either empirical or mechanistic. 

likelihood. Models may be 

The mechanistic approach 

requires knowledge of the processes by which the data were 

generated, whereas the empirical method is purely data-based. 

Seber and Wild (1989) discuss and review a wide range of possible 

models. 

EMPIRICAL MODELS 

To adopt an empirical approach, gross assumptions have to 

be made about the correlation structure. Otherwise there are 
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far too many possible models for one to be identified from a 

single set of observations. For serially-structured data it may 

be reasonable to assume that the error process is stationary, in 

which case the correlations between errors depend solely on the 

time separation between them. Further, it may be possible to 

assume that the errors are a sample record from an 

autoregressive-moving average process of low order (Gallant and 

Goebel, 1976). 

However, maximum likelihood estimators are not as efficient 

as generalised least squares would suggest, because covariance 

parameters have to be estimated. For example, in the previously 

considered first-order autoregressive case, the maximum 

likelihood estimator of r can be approximated by 

and an approximately unbiased estimate of the error variances is 

given by 

where elf elO are the regression residuals. Commencing from 

the least squares estimate ~~ r and a 2 are estimated, and used 

to re-estimate~ by generalised least squares. Then rand 0 2 are 

re-estimated, and so on until convergence. From 1000 simulations 

with r = 0.9, 

var (a) 0.73, 

which is no less than the variance of the least squares 

estimator. Further, standard errors are biased: 

E (var (a)) 0.08. 

This is mainly a consequence of r being underestimated. The 

average value from the simulations was 0.2. 

Residual maximum likelihood estimation (Cooper and Thompson, 

1977) is more complicated, but does reduce the bias in r, the 

average result being 0.6. Also, r was sometimes estimated to be 

1, which implied that a could not be estimated with any accuracy 

at all. However, the slope parameter was still estimable, and 



45 

resulted in 

var (b) 0. 016, E (var (b)) 0.012. 

Little improvement in efficiency has been gained over least 

squares, but standard errors are of the right magnitude. An 

alternative, is to simply modify the least squares standard 

errors, based on 

var (b) 

where b I: wi Yi· Therefore 

var (b) 

From the simulations 

E (var (b)) 0.013. 

If the assumed error model is incorrect, then least squares 

can be more efficient than supposed maximum likelihood 

estimation. For example, if the above case is modified so that 

Y1 and Y10 are independent of the remaining eight data values, but 

the first-order autoregressive model is still assumed to hold, 

then 

var (b) 0.012 var (b) 0.021 

MECHANISTIC MODELS 

The mechanisms by which errors are correlated are sometimes 

known precisely; for instance, when data are obtained by applying 

algebraic operations such as summing, averaging or differencing 

to independent observations. On other occasions the covariances 

are known to within a few parameters. Many non-linear regression 

equations have some justification in terms of underlying 

deterministic models such as differential equations (Sandland and 

McGilchrist, 1979) or compartment systems (Matis and Wehrly, 

1979) . By making these models stochastic, regression functions 

and error processes can be generated with shared parameters. If 

a stochastic model is appropriate, then, in fitting it to data, 
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the most efficient parameter estimators are obtained, because 

the regression curve is fitted efficiently, and also because 

extra information on the parameter values is recovered from the 

error covariances. 

Glasbey (1988) used two data sets to illustrate the methods 

and problems encountered. Drug-induced currents in ion-channels, 

as in Fig 1, were satisfactorily represented by a stochastic 

compartment system. First-order linear stochastic difference 

equations were used to model milk yield of cows, as for example 

in Fig 2. In this case, the proposed model did not fit 

adequately, and the results it produced were potentially very 

misleading. 

In general, for mechanistic error models it is recommended 

t.hat (i) an independent observation error is included, (ii) the 

goodness-of-fit is tested by refitting the model with separate 

parameters in the regression and error components, and (iii) a 

stochastic model is not used unless it has a sound scientific 

basis. It should not be assumed that a particular stochastic 

model is appropriate simply because its deterministic 

counterpart fits well. Sources of error are usually many and 

varied and it is safer to model them separately from the 

regression model. 

CONCLUSIONS 

Maximum likelihood estimators which are based on the wrong 

error variance model may be even less efficient, and the 

estimated standard errors even more biased, than the ordinary 

least squares ones (Engle, 1974) Moreover, regression 

parameters can have a different interpretation when errors are 

modelled by a correlated process. The conjunction of regression 

model and error model describe a data set, so a change in the 

error model forces a compensatory change in the regression 

model. For example, the fitted regression will make larger 

systematic departures from the data if errors are assumed to be 

highly correlated than if they are assumed to be independent. 

Therefore, although the estimation of regression parameters with 

almost any choice of variance matrix has become computationally 

easy, it is beset with statistical difficulties. 
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Current through end-plate membrane of muscle fibre after a 
voltage jump, and least squares fit of exponential curve. 
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Daily milk yields of a cow at weekly intervals, and least 
squares fit of a lactation curve (exponential plus linear trend) . 
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