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HOW TO ANALYSE YOUR REPEATED MEASURES DATA 

DAVID J. HAND 

INTRODUCTION 

A fundamental assumption in many statistical models is that the 

observations are independent. However, in studies involving repeated 

measurement of the same variable on each experimental unit (on different 

occasions or under different conditions, for example) this assumption is unlikely 

to hold: observations on the same experimental unit are likely to be correlated. 

Data sets with this kind of structure are remarkably ubiquitous, arising in a broad 

range of disciplines. For this reason, especially in recent years, a great deal of 

research effort has been made in developing statistical techniques permitting the 
effective and valid analysis of such data. Moreover, because of the diversity of 

the different origins of such data, many different approaches to their analysis 

have been developed. 

This presents the researcher with a problem of choice: which of the various 

methods are best suited to the data and research issues at hand? 

It is this question which is the motivating force behind this review - Instead 

of a simple technical catalogue of the various methods, we have attempted to 

identify the important factors in determining appropriate choice of technique 

and then to describe methods of analysis with emphasis on these factors. For 

reasons of space we have restricted the discussion to the most popular methods 

and only to 'measured' on 'continuous' data. For similar reasons the 

descriptions are necessarily rather superficial. For more detail and numerical 

examples see Crowder and Hand (1990). 

The body of this paper falls into two parts: first the discussion of the factors 

and second the descriptions of methods. 

FACTORS INFLUENCING CHOICE OF METHOD 

THE RESEARCH OBJECTIVE 

It seems almost fatuous to state it, but choice of method is critically 

determined by the research question. Careful consideration must be given to 



4 

precisely what the researcher wants to know before a method can be selected. All 
too often, however, a method is chosen which addresses a similar but different 

research question. This may lead to loss of power in tests, to bias, and indeed, in 
worst cases, to incorrect conclusions. (This is not a problem unique to repeated 

measures analysis- see Hand (1991) for an example comparing two groups with 
only a single observation on each subject.) 

Research questions can be positioned on a continuum ranging from general at 
one end to specific at the other. For example, in a repeated measures study 

involving comparing two groups we could ask general questions such as: 

Ql: Do the group means change irl different ways over time? 

or we could move along the continuum becoming more specific: 

Q2: I;)oes group A get better faster than group B? 

Q3: Is the linear trend over time in A greater than that in B? 

Of course, many different specific questions can be asked. For example. 

Q4: Are the linear trends equal? 

QS: Is the highest value reached by A greater than that reached by B? 
Q6: Does A peak at the same time as B? 

and so on. 

Only the researcher can know which question is really to be addressed. 

Questions such as these can be tackled by a general model building strategy in 
which an unconstrained model is compared to one constrained by the research 
question. For example, to address Ql we would see how much better a fit to the 

data was provided by a model in which the means at each time were estimated 
separately within each group compared wlth a model in which the group means 
were constrained to follow the same pattern over time. Unfortunately, this does 
not completely determine the method., There are many possible models which 

might be fitted to the data. While fitting models will smooth away superfluous 

variation, yielding more powerful tests, to the extent that the model is incorrect 
bias will be introduced. 

The questions used as illustrations above are examples of perhaps the more 

common kind of question, involving comparing the features of response curves 
in differentgroups. However, there are other types, and some of them are more 
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complex. For example, the researcher may wish to understand how 

relationships between variables (such as correlations) change over time. Even 

questions involving two groups may not be expressible as a comparison of 

features of the two curves. In a comparison of a group of extravert subjects with 

a group of introvert subjects galvanic skin response was measured hourly from 7 

am until 11 pm. The question was not "Are the curves of means different?" (ie. 

is there an interaction?) but "Do the mean curves cross over?'' The analysis also 

had to contend with some of the extra complexities to be discussed below since 

the numbers in the groups changed as time progressed because the subjects woke 

and went to sleep at different times. 

DATA STRUCTURE 

Data structure is a subset of the known properties of the data. For example, 

we may know that the experimental units were randomly allocated to groups. 

We may suspect a Markov dependence of measurement errors, but such a 

suspicion would arise from background theory and not from known properties 

of the data, not from the data structure. In repeated measures studies we can 

make the usual distinction between and within subjects structures. The former 

refers to the between experimental unit grouping structure and the latter to the 

structure of measurements on each unit. Examples of the latter include spacing 

over time (regular? the same for each unit?) and whether there are multiple 

measurements at each time. One distinction which can usefully be regarded as 

an aspect of data structure is between sequential treatment administration and 

situations where subjects are monitored without intervention. Laird and Ware 

(1982) call the former repeated measures studies and the latter growth curve 

studies. Covariate structure (once, at baseline? multiple times? etc) is also an 

aspect of data structure. 

Missing values are a crucial aspect of data structure as far as choice of 

techniques goes - some methods of repeated measures analysis can only handle 

incomplete data in a clumsy and unsatisfactory way. Missing values can pose a 

serious problem with studies of this kind since the fact of multiple 

measurements often means that few subjects are complete. Rejecting incomplete 

subjects can lead to small sample size, not to mention the risk of bias. As a 

general principle, one should look particularly carefully at accounts of analyses 

undertaken with methods which cannot handle missing values- and ask oneself 

whether the data really were originally complete. 
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BACKGROUND THEORY 

Background theory will lead to expectations regarding the shapes of the 

curves of the experimental units: should they asymptote to zero? will they 

increase over time? will they peak? If a method involving fitting individual 

curves to each unit is adopted then theory may suggest suitable families of 

curves. 

Theory may also indicate what sort of error structure to fit. For example, 

sequential observations on humans (as in psychology) are unlikely to have 

compound symmetric structure. 

COMPREHENSIBILITY 

A statistical consultant's ultimate responsibility is to the client and as such it 

is important that the model, its assumptions, and its predictions should be 

comprehensible to the client. One implication is that the mathematically most 

sophisticated, "statistically optimal" technique may not be the practically best. A 

question statisticians should ask themselves when advising on choice of 

method is whether two alternatives (the "statistically best'' and a simpler 

approximate method) are likely to yield essentially the same conclusions. 

There is also a sociological issue of acceptability by journal editors. 

Comprehensibility sometimes, unfortunately, means doing it the way it has been 

done in the past. Of course, if the old way was inappropriate then persuasion is 

necessary. 

ROBUSTNESS 

Confidence in one's assumptions and the extent to which a method will yield 

incorrect conclusions should the assumptions be wrong will naturally influence 

choice of method. 

PRACTICAL PERFORMANCE 

Much statistical theory is based on asymptotic results and it may be that for 

small sample studies (often the case for repeated measures problems) the 

conclusions are not quite valid. Moreover there may be practical aspects beyond 

currently understood theory. A good example of this, though not in repeated 

measures, occurred in applying classical linear discriminant analysis to 

multivariate binary data. In this case different mean vectors necessarily implies 
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that the assumption of equal covariance matrices breaks down (except in certain 

special cases) so that theory tells us the method is inappropriate. And yet it can 

perform well in practice. 

PARSIMONY 

Increasing the complexity of a statistical model in general means that it will be 

able to fit the data more accurately. But, of course, it is not the data per se that we 

are trying to fit in inferential models - it is the mechanism generating the data. 

There is a risk, as complexity is increased, of overfitting, with consequent loss in 

power. 

FLEXIBILITY 

The chosen model, while being as parsimonious as possible, must also be as 

flexible as necessary. One could combine restrictions of comprehensibility and 

parsimony with information from background knowledge, data structure and 

other factors and adopt the simplest model yielding adequate flexibility. 

Alternatively, Diggle (1988) suggests using a single, general, flexible but 

parsimonious model. He bases his suggestions on the following criteria: 

Specification of the mean profile must be sufficiently 

flexible to reflect 

(a) time trends within groups. 

(b) difference by trends between groups. 

(ii) The specification of the error covariance matrix should 

be flexible but economical. 

(iii) The method must be able to accommodate arbitrary 

patterns of occasions. 

(iv) The method must be accompanied by diagnostics to assess 

goodness of fit. 

SOFTWARE AVAILABILITY 

In general, a statistical technique, no matter how appropriate, original, or 

powerful, will only be used if suitable software exists. While a consultant 

statistician may be able to use APL, S+, etc. to perform an unusual analysis, by far 

the vast majority of users will have to use one of the readily available packages. 

A brief review of what is available for repeated measures analysis in BMDP, 

SPSSX, and SAS is given in Crowder and Hand (1990). 
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A BRIEF REVIEW OF METHODS 

BETWEEN GROUPS COMPARISONS AT EACH TIME 

This method has very little to recommend it. The fact that many tests are 

being performed inflates the overall type I error rate, and moreover the inflation 

is in an unquanfifiable way because of the dependencies between the tests. The 

method does not permit examination of patterns of change over time, which are 

often of central interest, and it also requires that observations are made at the 

same time on each experimental unit. 

Sometimes this method is used to address the question "At what time do the 

groups begin to differ?" In fact this question probably does not have meaning as 

often as it is asked - differences often develop gradually. Where it is meaningful 

(for example, in detecting time of ovulation from body temperature 

measurements) other methods, such as the antedependence approach, are more 

suitable. 

RESPONSE FEATURE ANALYSIS 

Often researchers can identify particular features of the response curves which 

are of central interest to their research question. 

Some examples of curve shapes are given in Figures 1 to 4 (taken, with 

permission, from Crowder and Hand, 1990). 

Figure 1 (Figure 2.4 of Crowder and Hand) shows the body weights of rats 

measured on several occasions. The linear trend may be of interest. Figure 2 

(Figure 5.1 of Crowder and Hand) shows growth curves of chicks. This 

demonstrates the typical fan shape obtained in such studies (and also shows the 

possibilities of bias since the lighter chicks seem to drop out of the study). Here a 

quadratic component might also be of interest. In Figure 3 (Figure 2.3 of Crowder 

and Hand), showing blood glucose levels at various times after a meal, peak, 

time to peak, or time to return to normal might be features of interest. Figure 4 

(Figure 3.3 of Crowder and Hand) shows plasma ascorbic acid of patients on a 

particular diet. Here perhaps the time above some level would be a feature of 

interest. 

The research question will, of course, determine what feature will be used, 

and this will often depend partly on background theory. For example, in 

pharmacokinetics the area under the curve (AUC) has a substantive meaning 
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and in many areas growth rate or peak level has significance. However, it 
should be recognised that, even having identified the feature of interest, 

complications can arise. Choice of baseline can radically influence the AUC 

measure. One study the author was involved in had the later measurements 
spread very sparsely over a very long time period, by which time the level had 
returned almost to baseline, so that the curves had a very long right tail. Slight 

errors in measuring the later values had a substantial effect on the accuracy of 

the AUC feature. 

This method does have a number of major advantages. It can handle 
different patterns of times for each unit including missing values, and it is also 

conceptually straightforward. Moreover, by reducing the multiple 
measurements on each individual to single feature scores, straightforward 
methods of analysis such as univariate analysis of variance of these single 

derived scores are possible. Software is thus readily available. 

Although conceptually straightforward and easy to apply, the method may 
conceal latent problems. For example, with missing values, units with fewer 

observations will have their derived features estimated less accurately and 
ideally some account of this should be taken in the analysis. One can regard the 
random regression model, outlined below, as a more formal (conceptually less 
simple) extension of this method. 

UNIVARIATE ANALYSIS OF VARIANCE 

Response feature analysis combines all observations on each experimental 
unit into one (or more) scores summarising aspects of particular interest for each 
unit. 

Unfortunately, not all researchers are able or willing to identify particular 
features in this way and instead want a more global analysis. The univariate 

analysis of variance approach does just this by regarding time as a factor in a 
mixed effects analysis of variance: subjects as a random effect and time as a fixed 

effect. This means that one can use standard packages to perform the analysis 
and this approach has been very popular in some disciplines (such as 
psychology). Unfortunately the method is not always valid. Tlte F-tests are only 
valid if a condition termed "sphericity" holds. 
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If 1.. is the error covariance matrix and P is a p x (p -1) matrix of orthonormal 

contrasts (there being p measurements on each unit) then 1.. is said to satisfy 

sphericity if: 

' 2 
PL:P=al 

Alternatively, we require the ij th element of I, aii' to satisfy crii = o:i + o:i + A oij 

(A >1) with o:1, ... ap, A constants. Note that this means that if all variances are 

equal then all covariances are equal, a special case termed "compound symmetry" 

(which is sufficient/ but not necessary, as is sometimes stated). 

Sphericity is a rather special condition. It is, for example, equivalent to the 

condition that the variances of the differences between measurements at any 

time should be the same. This is unlikely to be true in situations involving 

repeated measurements over time where one might expect the variance of the 

difference between scores at nearby times to be smaller than the variance of the 

difference between scores at distant times. When the condition breaks down the 

type I error rate of the F-tests is inflated: too many true null hypotheses are 

rejected. 

Fortunately a simple adjustment to the F-tests can be made to correct for non­

sphericity. This is achieved by multiplying both numerator and denominator 

degrees of freedom by a measure of non-sphericity - a sphericity parameter, 

usually denoted by E and defined as 

2 2 
E =(trace P 2.:) /(p -1) trace (P 2.:) 

Of course, to do this in practice e must be estimated. One such estimate is 

obtained by plugging the usual maximum likelihood estimate for I in the above 

expression for e, to yield the Greenhouse-Geisser estimate (Greenhouse & 

Geisser, 1959). Huynh & Feldt (1976), noting that this estimate was biased if e > 
0.75, suggested as an alternative 

e =min [1, {n (p -1) £-2}/(p-1) {n- g- (p-1) e} 

where 8 is the Greenhouse and Geisser estimate and g is the number of groups. 

Non-sphericity may not always present problems. If there are only two 

measurements, of course, then the requirement vanishes (tests on patterns of 

change over time reduce to univariate tests) and this is true in general if a single 

contrast over measurements is being analysed. Sometimes more complex 
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analyses can be formulated as a sequence of univariate analyses on derived 

variables. 

If there is a factorial structure to the within subjects design then derived 

variables can be produced, being contrasts of the original variables, which fall 
into natural groups which will be tested separately. In such a case sphericity will 

only be required within each of the groups. 

The univariate analysis of variance method has the property that it can be 

applied if p :<:: n - g, a property not shared by the multivariate approach outlined 
below. However, missing values cause a problem and it cannot be applied if the 

units have different time patterns. 

Background theory may lead to ideas about the likely covarian~e structure and 
in this case one may be able to choose a more appropriate alternative technique. 

MULTIVARIATE ANALYSIS OF VARIANCE 

This approach has become more popular in recent years with the widespread 
availability of computer software $UCh as MUL TIV ARIANCE and SPSSX­

MANOV A. Here the p measurements on each unit are regarded as the 
components of a vector and between group comparisons are made using 
multivariate extensions of t-tests and analysis of variance. Particular aspects of 
the profiles over time can be studied by transforming the raw variables to yield 

suitable linear combinations. 

The method is very flexible, making no restrictive assumptions about the 

covariance matrix I,. However, unless pis small it is not parsimonious and will 
have low power. Similarly, since the tests involve inverting I. it cannot be used 
if p ;;:: n - g since then r will be singular. 

Another problem is that whereas the F-test in univariate analysis of variance 
is the uniformly most powerful test invariant to rescaling there is no test in the 

multivariate case which is uniformly most powerful invariant to rescaling and 

rotation. Here the relative power of the tests depends on the type of departure 
from the null hypothesis. In general, however, any test based on A ... A , the 

1 p 

eigenvalues of BI.-1 (B being the between groups covariance matrix) will be 

invariant to rescaling and rotation. Four such tests are in common use and are 

typically given as computer output: 



(i) Pillai - Bartlett trace 

(ii) Wilk's Lambda 

(iii) Hotelling Lawley trace 
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(iv) Roy's largest eigenvalue statistic 

L. \I (1 + 1\) 

n <1 + A.i) -1 

L.\ 
A.l 

These have complicated distributions, but may be approximated by i or F 

distributions. 

The abundance of tests here leads to a question of choice. However, it seems 

that power is influenced by the "noncentrality structure" of the data: whether the 

group means lie in an approximately linear relationship or have a more diffuse 

distribution under the alternate hypothesis. In the former case (a "concentrated" 

noncentrality structure) power appears to decrease in order (iv), (iii), (ii), (i) while 

in the diffuse case it decreases as (i), (ii), (iii), (iv). 

Of course, being able to choose between these structures requires a lot of 

background knowledge and one might instead like to rely on the suggestion that 

concentration must be extreme before it changes the ordering - hence (i) might be 

favoured. These issues are discussed further in Hand & Taylor (1987). The 

multivariate approach requires observations to be made at the same times for 

each unit (though the spacing can be irregular) and cannot handle missing 

values- the most common approach being to drop incomplete cases. 

REGRESSION MODELS 

The general multivariate analysis of variance model of section 3.4 can be 

written as: 

Where X is then x p data matrix, A is the between experimental units design 

matrix, ~ is the g x r parameter matrix, D is the r x p within units design matrix, 

and e is then x p error matrix. Hypotheses, both between and within, on the 

values of the parameters can be specified in terms of matrices as H0 : C ~ M = 0. 

Alternatively, letting y' be a row of X, we can write 

=A~ D + e' 
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where here A is 1 x p and e' is 1 x p. This can be expressed as y = D' )l + e with 

)l =~·A' (r X 1). 

We can now apply standard regression ideas and choose the parameters J.l to 

minimise 

n 
2:, (y· - D' J.!)' I,-1 (y· - D'J.!) . 1 1 1 

1= 

For multigroup problems we extend J.l to berg x 1 (r parameters for each 

group). 

We can also let D vary from subject to subject (replacing D by Di in the above). 

This permits this approach to handle missing values (I, needs to be replaced by 
I,.). 

1 

An important property of this approach is that I, can be structured - for 

example in terms of a few parameters as I,= I, (0). So, for example, the method 

includes the usual independence model (2:, = a2 I), compound symmetry 

(I, = cr2IP + a~ Jp), antedependence (observations at times .i and j (j > i) are 

independent given the intervening (j - i - 1) observations whenever (j - i - 1). > s 

where sis a parameter to be chosen), and other Markov type models. 

The possibility for structuring the covariance matrix leads us on to the next 

subsection which, in a sense, generalises the above. 

RANDOM REGRESSION MODELS 

An assumption which is often realistic is that the units in a group have the 

same basic shape but with the parameters specifying the curve varying from unit 

to unit. In particular, we might assume that each curve follows a straight line, 

but with its own slope and intercept parameters. 

This idea leads to a model of the form 

where P is a vector of fixed regression coefficients and bi is a vector of random 

regression coefficients. Here we will assume ei ~ N (O,Ei) and bi-N (O,B). 
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Ei must be constrained in some way, or else the model does not restrict ~ at all 

and a common constraint is to Ei = o2 I, the conditional independence approach. 

Note that the above expression for Yi can alternatively be expressed as Yi =Xi p 
+ ui with - N (0, ZiP Zi + Ei), from which we see that the model is as in 

section 3.5 with Li = 2.:. (0i) and 0i = {B,Ei}. 

Such models are sometimes called two stage models because random 
variation occurs both within units (ei) and between units (bJ 

Models of this kind are very attractive, permitting more extensive use to be 

made of background knowledge in choosing appropriate covariance machines. 

The idea that each unit is following its own curve, apart from random variation 

about that curve, and that each curve is sampled from a distribution is also 

appealing. The models are more parsimonious than methods using a full 

unstructured covariance matrix. At present they may not be so comprehensible 

to researchers, but this is due to lack of familiarity and this can be expected to 

change. In particular, the lack of familiarity has arisen from lack of accessible 

software to drive researchers to use this approach and this has now been 

remedied with BMDP SV. (Of course, software which can be used by experts has 

long been available, but such programs do not open the technique to the wider 

community.) Such models can also easily handle missing values and irregular 

measurements patterns, perhaps differing between subjects. 

CONCLUSION 

A great deal of work has been done on repeated measures analysis in recent 

years, as is demonstrated by the extensive biblography in Crowder and Hand 

(1990). 

Here we have only attempted to review the basis and there are many areas we 

have not touched upon, such as categorical data, nonlinear growth curves, and 

non-normal observations. However, it will be apparent from the methods that 

are described above that the range does permit a good match to be made between 

the problem and the technique. The factors outlined in section 2 are useful to 

consider when making such a match. 
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