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Clifford analysis has proved in the last few years to be particularly useful in the 

study of singular integrals on curves and surfaces [13), [14], [16], [17], [18] . While 

Clifford algebras have enjoyed a deal of popularity and success in mathematical physics 

[2, Notes to Chap. 1], [11] and were a subject of much attention from the 1930's on­

wards [20], the impetus for using them in the study of analysis on curves and surfaces is 

recent, and due toR. Coifman. 

The purpose of this article is to give some indications of recent work by the author, 

in collaboration with R. Long and T. Qian, on Clifford martingales and their application 

to the proof of a suitable version of the T(b) theorem for Clifford-valued functions, and 

to the L2-boundedness of the Cauchy principal value integral on Lipschitz surfaces. The 

full details are to appear elsewhere. The results are not new, but the methods of proof 

are. They are inspired by the paper of Coifman, Jones and Semmes [3). One half of their 

paper gives a proof of the boundedness of the Cauchy integral on Lipschitz curves using 

dyadic partitions with respect to arc-length, and the corresponding Haar functions and 

martingales. There are significant differences in the present context, in that it is necessary 

to construct a novel dual system of left- and right-martingales in order to cope with the 

noncommutativity of the Clifford algebra. Full details are to appear elsewhere [11]. 

It is a pleasure to acknowledge the influence of Michael Cowling and Alan Mcintosh, 

who encouraged us to carry through this programme of research. 
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2. THE CLIFFORD ALGEBRA Ad 

We begin with the Euclidean space JRl+d, with basis eo, e1 , ... , ed. The Clifford algebra 

Ad is the 2d-dimensional algebra generated by { e 0 , e1, ... , ed}, subject to the relations 

(i) e 0 = 1; 

(ii) e~ = -1 for 1 < y· < d· 
J - - ' 

A basis of Ad. This is formed as follows. Take any subset S <;;; { 1, ... , d}. Define the 

element es of Ad as follows. If S = 0, put e0 = e0 = 1. Otherwise, writeS= {h < h < 
... < Js}, and put es = eit ej, · · · ej,. 

Inner product structure. We declare the set { es: S <;;; {1, ... , d}} to be orthonormal. 

The length of the element x = I::Xses is jxj = (L x~) 1 12 . 

Notable special cases of the Clifford algebra are: d = 1, A1 ~ C; d = 2, A2 = Im, the 

algebra of quatemions; d = 3, A3 = the Pauli algebra. 

Conjugation. This is the real-linear mapping whose action on the basis is given by 

In particular, 

es = J es ~f lSI= 0,3 (mod 4) 
l-es IfjSj=:1,2(mod4) 

d 

(~= Xjej)- = xoeo- x1e1- · · ·- xaea. 
j=O 

One of the most important elementary reasons for the utility of the algebra Ad is that it 

is possible to invert nonzero vectors within Ad: 

-1 x 
x = lxl2' 

If G is the group generated by the nonzero elements of JRl+d_the so-called Clifford group­

then lxyi = lxiiYI for all x,y E G [1]. 
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Some vector analysis. Let S1 be an open subset of JRHd, and f = ~sfses a C(l)_ 

function with values in Ad. The left Dirac operator 

d a 
Dz=Lei-

j=O axj 

acts on f as follows: 

The function f is said to be left monogenic if Dd = 0 in Q. The concepts of right 

Dirac operator and right monogenic function are defined similarly. In particular, 

d ajs 
Drf = L Lax. esej. 

j=O S J 

We write Df in place of Dd and JD in place of Drf. 

Each Dirac operator has a conjugate operator. For instance, D1 = ~f=0(8jaxj)ej. A 

basic fact about a Dirac operator and its conjugate (for both operators acting on the left, 

or both on the right) is that 

DD = DD = .6-d+I, 

where fld+l is the Laplacian on JRl+d. 

A function is said to be monogenic in the. open set Q s;;; JRHd if it is both left- and 

right-monogenic in n. 

THEOREM {GREEN'S THEOREM). Let Q s;;; JRHd be an open set, U an open set 

wbose closure lies in n, and is sucb tbat au is an orientable d-manifold, witb consistently 

de:fined exterior normal n(y) (y E au). Tben if j, g E C(ll(Q; Ad), 

{ f(y)n(y)g(y) da(y) = { (JD)g + f(Dg) dx. lau lu 

The Caucy kernel is the kernel 

-1 x 
C(x) = cd lxii+d' 

where ca is the volume of the unit d-sphere. The Cauchy kernel is monogenic where defined, 

and is a fundamental solution forD: DC= CD= 80 in the distributional sense. 
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THEOREM. The notation being as in the preceding theorem, we have 

1 1 { f(x), x E U 
C(y- x)n(y)f(y) dCJ(y)- C(y- x)(Df)(y) dy = _ 

au u 0, x E f'l\U 

COROLLARY (CAUCHY'S THEOREM). Iff is left-monogenic, then 

1 { f(x), X E U 
C(y- x)n(y)f(y) dCJ(y) = -

au 0, x E f'l\U 

Proofs of these and other results about basic Clifford analysis can be found in [2]. 

3. THE CAUCHY SINGULAR INTEGRAL OPERATOR 

Let :8 be an oriented d-dimensional surface in R_Hd, n(y) (y E :8) the unit normal consistent 

with the orientation. The Cauchy (principal value) singular integral is given, for suitable 

Ad-valued functions on E, by the formula 

1 y-x 
Tr;f(x) = p.v. I ll.J..dn(y)f(y) dCJ(y). 

r; y-x ' 

For simplicity, we drop "p.v." from the various integrals in the sequel. 

The Cauchy singular integral lies at the heart of the boundary behaviour of harmonic 

functions and their conjugates [16]. 

The theorem, which is proved by Clifford martingale methods, is the following. 

THEOREM. The Cauchy singular integral operator is bounded on L2 (:8; Ad) if E is a 

Lipschitz graph. 

The manifold E is a Lipschitz graph if 1: = {A( v )eo + v : v E R_d} and A is a scalar­

valued function R_d such that IV A( v )I ::::; M. Note that if tf( v) =A( v )eo+ v, then n can be 

chosen to be 
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and 
. { rp(v)- rp(u) 

Tr:,f(rp(u)) = Jw.d i¢(v)- ¢(u)1Hd7f(v)f(¢(v)) dv, 

where 1/;( v) = e0 - \7 A( v ). So we study the mapping 

h r---t f K(u,v)'lj;(v)h(v) dv = Th(u), 
lw.• 

noting that 17fl is both bounded and bounded away from 0. 

The boundedness of the Cauchy singular integral operator has already been proved 

by a number of other authors, beginning with the breakthrough in [4], using different 

approaches. See e.g. [6], [18] and the references given there. 

4. CLIFFORD MARTINGALES 

Let X be a set, B a a-field of subsets of X, v a nonnegative measure on B, and {Fn}~00 

a nondecreasing family of a-fields satisfying the following conditions: 

(i) U~=Fn generates B; 

(iii) the measure v is a-finite on B, and on each Fn· 

The standard conditional expectation. If :F is a sub-a-field of B such that vis a-finite 

on F, then we can write X = Ui Uj where Uj E F and v(Uj) < +oo. Iff is an Ad-valued 

B-measurable function which is integrable on each set of finite v-measure, we say that it is 

locally integrable and write f E Lfoc(B, v, Aa) or, when B is understood, f E Lfoc(X, Ad)· 

We can define the standard conditional expectation of such a function "given F" E(fi:F) 

by defining it on each Uj. We get this way a function that is F-measurable, and such that 

(1) i E(fiF) dv = if dv 

for each set A E F of finite v-measure. Iff is integrable, (1) holds for all A E F. 

Clifford right- and left-conditional expectations. Keeping in mind the discussion 

in §3, let 7f E L00(X;Ad), and suppose that E(7f'IF) =f. 0 a.e .. Iff E Lloc(B,v,Ad), the 
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left- and right-conditional expectations E 1 and Er off with respect to :Fare given by: 

E1(f) = E1(fi:F) = E( 1/JI:F)-1 E( 1/J fi:F) 

Er(f) = Er(fi:F) = E(f'!f;I:F)E('!f;I:F)-1 . 

If h and k are appropriately restricted Aa-valued functions, we define 

(h, k),p = i h'lj;k dv. 

The pseudo-accretivity condition. Naturally enough, the operators E 1 and Er do 

not behave well without some further restriction on 1/J. 

PROPOSITION 1. If 1 :::; p :::; oo, tl1e operator E 1 (resp. Er) is bounded on £P if and 

only if there exists a constant C0 > 0 such that 

(2) for a.e. x. 

A function that satisfies the condition (2) is called pseudo-accretive. We assume that 

the function 1/; is pseudo-accretive with respect to all of our sub-17-fields of B, with a 

uniform constant C0 . Under this assumption, standard martingale formulas have their 

analogues in the new setting, with appropriate changes. E.g. 

(i) fA 1j;E1(f) dv =fA 1/Jf dv 

:F, v(A) < +oo). 

(ii) If g E L00 (:F, dv; Aa), then 

Denote by E~(f) the left-conditional expectation E 1(fi:Fn)· 



98 

Definition (Littlewood-Paley square function). Iff E Lfoc(X; Aa), the left-martin­

gale toith respect to {Fn}:::'00 generated by f is the sequence {!~}:::'00 = {E~(f)}:::'00 • The 

left-Littlewood-Paley square function is 

-co 

if the limit f!.._oo = limn-->-oo E~(f) exists pointwise a.e .. (If v(X) < +oo, fl_oo is constant; 

if v(X) = +oo, and f is integrable, then f!__oo = 0.) 

Everything that we have described for left martingales applies, with appropriate 

changes, to right martingales. 

Littlewood-Paley estimates for L 2 • In the case of the standard martingales { Enf} :::'00 , 

L 2-estimates for the Littlewood-Paley square function are quite straightforward to prove. 

In the Clifford case, there are some technical difficulties to overcome. This can be done 

by using variants of techniques that appear in [9], and in Garsia's book [10]. See also [5] 

and [15]. 

THEOREM (LITTLEWOOD-PALEY). There exists a constant C > 0, depending 

only on C0 and d, such that 

(3) 

for all f E V(X; Aa), where s denotes either S 1 or sr. 

There are variants of (3) for LP (1 < p < +oo ), but we shall not need them. 
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5. A PAIR-BASIS CLIFFORD-HAAR SYSTEM IN JRd 

Let X = JRd, 13 be the Borel a--field, and v be Lebesgue measure. Start with :F0 the a--field 

generated by the family I 0 of cubes of side length 1, having corners at the points of the 

integer lattice. 

Bisect each cube IE I 0 : I= I 1 U I 2 , as shown in Fig. 1 (illustration in JR.2): 

Fig. 1. 

~ 
[£J 

Let I1 be the collection of such sets Ij, (j = 1, 2) formed from atoms IE Io, and let 

:F1 = o-(II). 

Next divide each atom IE :F1 by dissection by a hyperplane orthogonal to the x2-axis, 

as illustrated in Fig. 2. 

X 
2 

Fig. 2. 
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Let I 2 be the collection of such sets Ij, (j = 1,2), and let :Fz = a-(I2). Continue in 

this manner, passing at each stage to dissection by a hyperplane orthogonal to the next 

axis, proceeding cyclically around the set of axes. 

The atoms in the a--field :F-1 are constructed by doubling atoms of :Fo in the Xd­

direction, and then generating the corresponding a--field :F -1; then doubling the resulting 

atoms in the x d-1-direction-and so on. The collection of all of the atoms (of the various 

sizes) is denoted I. Its elements are called dyadic quasi-cubes. 

Haa:r functions: classical case. If I is a dyadic interval of R., of length 2-n, which is 

bisected as shown in Fig. 3, 

say. 

2 -n-1 

Fig. 3. 

then the standard martingale difference on I is given by 

En+lf- Enf = (2nf2xh- 2nf2xJ,,f)(2nf2xi1- 2nfzxi2) 

= ou(cq,f) 

Clifford Haa:r system (left-martingales). We consider a typical atom I E In_ 1 , 

which has been bisected as illustrated in Fig. 1: I= !1 U Iz, (I1,l2 E In)· 

LEMMA. For each IE In-1, I= ! 1 U ! 2 , (Ij E In), there is a pair Of> f3I of Ad-valued 

functions and a positive constant C such that 
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(i) 

(x E I); 

(iii) c-1 III-~ ::; lai(x)l ::; CIII-~ and c-1 III-~ ::; I,BI(x)l ::; CIII-~ for all X E I 

and all I; 

(iv) I '1/Jai dx =I ,Bit/; dx = 0. 

Proof. This amounts to choosing the coefficients a1, a 2 and b1, b2 so that (ii) holds, and 

then normalising so that (iii) holds. Care needs to be taken with noncommutativity. 

6. PROOF OF L2-BOUNDEDNESS OF THE CAUCHY OPERATOR 

Recall that we are dealing with the operator 

f f---t [ K(u,v)tj;(v)f(v) dv = T(tf;f), 
lm.d 

say. Iff E L2 (1Rd; Ad), then by the Littlewood-Paley theorem, 

00 

f = 2>~nf = Lai(,BI,f).p 
-oo I 

and, at least formally, 

T(tj;f) = LT(t/;aJ)(,BJ,J).p = Lai(,BI,T(t/;aJ)).p(,BJ,f).p 
JEI J,I 

= L ai L(,BI, T(t/;aJ)).p(,BJ,J).p. 
I J 

So, if f rv { (,8 J, f) .p} J, then T( tj; f) is determined by multiplication of the coefficient 

sequence { (,BJ, f).p} J by the matrix ( (,BI, T( t/;aJ)).p) I,J" Proving L2-boundedness is there­

fore equivalent to proving boundedness, on £2(1; Ad), of the operator determined by the 

matrix ( u I J) = ( (,8 I, T( tf;a J)) .p) I r In proving this, we use the following variant of Schur's 
' 

lemma. 
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LEMMA (SCHUR'S LEMMA). Suppose there exists a family of positive numbers 

( w JJ) and a constant C such that 

( i) (IE I) 

and 

( ii) (J E I). 

Then the matrix ( UIJ) defines a bounded operator on £2(I; Ad)· 

In fact, it is shown that the conditions (i) and (ii) hold, with WJ = Ill\ where tis any 

number between ~ - ~ and ~. 

Crucial properties of]{ (standard kernel conditions). The kernel ]{ obtained 

by transporting the Cauchy integral to an integral on JRd (see Section 3) satisfies certain 

standard estimates, usually known as "standard kernel conditions". They are as follows: 

(a) IK(x,y)l ~ Clx- ul-d (x # y); 

(b) I err ) ( , )I C lx- x'l 
1>\x,y -Kx,y ~ lx-yiHd' provided 0 < lx- x'l ~ ~lx- Yli 

(c) under the same conditions as in (b). 

The verification of the Schur lemma conditions for ( (/3 I, T( '1/Jo: J)) ,p) rests on (a)-( c) 

and the monogenicity of the Cauchy kernel. One has to take careful account of the relative 

sizes of the atoms I, J, and their relative disposition (e.g. whether one meets the other). 

These estimates are lengthy. For complete details, see [11]. 
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7. THE CLIFFORD T(B) THEOREM 

The systematic use which we have made of the "coefficients" 

(ar, T('I/Jfh)).;, = j j ar(x)'lj;(x)K(x, y)'lj;(y)fh(y) dxdy 

gives a pointer to the T(b) theorem. (The expression above is of course only formal, as it 

stands.) See (18] for an account of various forms of the T(b) theorem. 

Let b1 and b2 be two pseudoaccretive functions. (In the Cauchy theorem setting, we 

had b1 = b2 = 'lj;.) Denote by S the span, over Aa, of the set of characteristic functions of 

dyadic quasi-cubes. Suppose that T is a right-Clifford-linear mapping from b1S into the 

space (Sb2 )* of left-Clifford-linear functionals on Sb2 • 

Definition. Let L'l = {(x,y) : x -=/:. y}. We say that T is associated with a standard 

Calderon-Zygmund kernel K if there is a c= function K on JRd x JRd\fl, with values in 

A a, and a number 8: 0 < 5 :::; 1, such that 

(a) 
1 

IK(x, y)l :::; C I ld x-y 
(x-=/:. y); 

(b) IK(x, y)- K(x, Yo) I+ IK(y,x)- K(yo,x)l :S: C I:~ ~~~6 

if 0 < IY- Yo!< ~IY- xi; and 

(c) T(bd)(gb2) = JJ g(x)b2(x)K(x,y)b1(y)j(y) dxdy 

for all j, g E S having disjoint supports. Note that, under these assumptions, there is no 

problem with the convergence oft he right-hand side of (c). 

Dually, let Tt be a left-Clifford-linear mapping from Sb2 into the space of right-linear 

functionals on b1S. Suppose that 

for all j, g E S. Then Tt is associated, in the obvious way, with the kernel K(y, x ). 
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Definition of T(b 1 ). The function b1 is in L00 , so T(b1) has no a prwrz meaning. 

Following David-Journe [7], it is defined as follows. Fix g E S; so g vanishes off a compact 

set. We want to make sense of Tb 1(gb2 ). This cannot be done, in general, but it can if 

I gb2 dx = 0. Choose h E S so that h = 1 on a neighbourhood of supp (g), say a set 

twice the size. See Fig. 5. 

r -,· 
• y 

Fig.4. 

Then T(bd1 ) makes sense, by hypothesis. So we have to define T(bd2 )(gb2 ), where 

h = 1- fi. This is where the condition I gb2 dx = 0 comes in. Fix xo E supp (g), and 

write formally 

(#) jg(x)b2(x)K(x,y) dx = 1 g(x)bz(x)[K(x,y)- K(xo,y)] dx 
supp (g) 

Now the point is that the right side of(#) can be integrated against bl(Y)h(y), because 

Jx- xo\ < tlx- yJ and JK(x,y)- K(xo,y)\ is 0(\x- yJdH), while x ranges over the set 

enclosed in the solid line above. In summary, Tb1 makes sense as a left-linear functional 

on the subspace (Sb2 ) 0 consisting of functions having integral 0. 

Definition. If ¢ E LfocC dv; Aa), the BMO-norm of¢ is defined to be 

- - 2 1 \1¢1\BMO =sup 1\En(l¢- En-1</J\ )II~· 
n 

Definition. We say that Tb1 E BMO if there is a function ¢, say, that is locally in­

tegrable, belongs to BMO, and is such that (g, T(b1)}h 2 = (g, ¢)b2 for all g E (Sbz)o. A 

similar interpretation applies to Tt(b2 ). 
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Definition. The operator T, associated with a standard Calder6n-Zygmund kernel, is 

weakly bounded if there is a constant C such that 

for all dyadic quasi-cubes Q. 

THEOREM (CLIFFORD T(B) THEOREM). LetT and Tt be as above. Then the 

operator Tis extendible to a bounded linear operator from h12 (.1RJ; AJ)) to V(lt~d; AJ)b2 

if and only if 

(b) T is weakly bounded. 

The proof uses rather similar estimates to those used to prove the boundedness of the 

Cauchy singular integral . See [11] for complete details. The one-dimensional case of the 

theorem appears in [6]. Some of our estimates follow the lines of arguments given in [6]. 

REFERENCES 

[1] L. V. Ahlfors, Mobius transforms and Clifford numbers, Differential Geometry and 
Complex Analysis: H.E. Rauch Memorial Volume. Springer-Verlag, Berlin· Heidel­
berg ·New York. (1985), 65-73. 

[2] F. Brackx, R. Delanghe and F. Sommen, Clifford Analysis, Research Notes in 
Mathematics. VoL 76. Pitman Advanced Publishing Company, Boston, London, 
Melbourne. 1982. 

[3] R. R. Coifman, P. W. Jones and S. Semmes, Two elementary proofs of the 1 2 

boundedness of Cauchy integrals on Lipschitz curves, J. Amer. Math. Soc. 2(1989), 
553-564. 

[4] R. R. Coifman, Y. Meyer and A. Mcintosh, L 'integrale de Cauchy definit un oper·­
ateur borne sur les courbes lipschitziennes, Ann. of Math. 116, 361-387. 

[5] M. G. Cowling, G. I. Gaudry, and T. Qian, A Note on martingales with respect to 
complex measures<, Mini conference on Operators in Analysis, Macquarie University, 
September 1989. Yroceedings of the Centre for Mathematical Analysis, Australian 
National University 24 (1989), 10-27. 

[6] G. David, Wavelets, Calderon-Zygmund operators, and singular integrals on cu.rves 
and surfaces, Proceedings of the fu>ecial Year on Harmonic Analysis at Nankai 
Institute of Mathematics, Tianjin, China. Lecture Notes in Mathematics, Springer­
Verlag, Berlin. To appear. 

[7] G. David and J.-1. Journe, A boundedness criterion for generalized Calder6n­
Zygmund operators, Annals of Math. 120 (1984), 371-397. 



106 

[8] G. David, J.-L. Journe and S. Semmes, Operateurs de Calderon- Zygmund sur les 
espaces de nature homog(me, preprint. 

[9] R. E. Edwards and G. I. Gaudry, Littlewood-Paley and multiplier theory, Springer­
Verlag, Berlin · Heidelberg · New York. 1977. 

[10] A. M. Garsia, Martingale inequalities, W. A. Benjamin, Inc .. New York. 1973. 

[11] G. I. Gaudry, R. Long and T. Qian, A martingale proof of L2-boundedness of 
Clifford-valued singular integrals, submitted. 

[12] D. Hestenes, Space-time algebra, Gordon and Breach, New York, 1966. 

[13] C. Li, A. Mcintosh and T. Qian, Singular integral operators on Lipschitz surfaces, 
in preparation. 

[14] C. Li, A. Mcintosh and S. Semmes, Convolution singular integrals on Lipschitz 
surfaces, preprint. 

[15] R. Long and T. Qian, Clifford martingale Cf!-equivalence between S(f) and j, pre-
print. . 

[16] A. Mcintosh, Clifford alflebras and the high-dimensional Cauchy Integral, Approx­
imation and Function Spaces, Banach· Centre Publications. Vol. 22 Pwn-Polish 
Scientific Publishers, Warsaw. 1989. 

[17] A. Mcintosh and T. Qian, Convolution singular integral operators on Lipschitz 
curves, Proceedings of the Special Year on Harmonic Analysis at Nankai Institute of 
Mathematics, Tianjin, China. To appear in Lecture Notes m Mathematics, Springer-
Verlag, Berlin. · 

[18] Y. Meyer, Odelettes et operateurs. II Operateurs de Calderon-Zygmund, Hermann 
et Cie, Paris. 1990. 

[19] M. A. M. Murray, The Cauchy integral, Calderon commutators and conjugations of 
singular integrals in lRn , Trans. Amer. Math. Soc. 289 (1985), 497-518. 

[20] M. Riesz, Clifford numbers and spinors, Lecture Series No. 38 Institute for Physical 
Science and Technology, Maryland, 1958. 

Flinders University of South Australia 




