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ON WEAK SOLUTIONS OF STOCHASTIC EVOLUTION EQUATIONS 

WITH UNBOUNDED COEFFICIENTS 

Beniamin GOWYS 

0. Introduction. We shall consider in this paper weak solutions of the 

following stochastic evolution equation: 

{ 
dX=[AX+f(X)]dt+g(X)dW , 

x { O)=x 0, o::::.;t::::.;l , 
(1) 

where A is a generator of c0-semigroup S(t), ~. of bounded operators on a 

Hilbert space H and W is a cylindrical Wiener process on another Hilbert space 

K with covariance operator I. It is well-known that if dim H < oo then (1) has 

a global weak solution provided f and g are continuous functions of linear 

growth. On the other hand, if dim H = oo then a solution to (1) need not exist 

even if g=O and f is uniformly continuous and bounded and hence some 

additional assumptions are necessary. 

There are not many results on weak solutions to (1) in infinite 

dimension. In those existing two types of conditions appear. Either it is 

assumed that A is a coercive operator on some Gelfand triple with compact 

injections or (loosely speaking) some invertibility property is imposed on g 

in order to allow the use of the Girsanov transformation. This last assumption 

is quite restrictive. Recently in [7] an existence result for the equation (1) 

was proved under the more general assumption that A is a generator of a 

compact semigroup, and f and g are weakly continuous mappings of linear growth 

defined on H. 
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The aim of this note is to extend the results of [7] to equations with 

unbounded coefficients. More precisely it will be assumed that A generates an 

analytic and compact semi group and f and g are defined on some interpolation 

spaces of A. Such equations have been the object of extensive study for some 

time but the pathwise solutions only were considered, [4], [6]. 

I.Preliminaries. The following conditions are standing assumptions for 

the rest of this paper: 

- A is a generator of the compact and analytic semi group S(t), ~, of bounded 

operators on H. Without loss of generality it can be assumed that for some M2::1 

and positive a 

IIS(t)1I :s;; Me-at. 

- The drift coefficient f is a measurable mapping from D A (8,2) to H (see 

below for the definition of D A (0,2). 

- The diffusion coefficient g is a measurable mapping from D A (8,2) to the 

space of Hilbert-Schmidt operators E2(K,H) acting from K to H. 

The spaces D A (0,2) introduced above are real interpolation spaces between 

DCA) and H defined, for O<Ekl as follows: 

Let us recall the following properties of these spaces which will be useful in 

future: We have, for 0<0<1 

DCA) c DACEl,2) c H 

with continuous and dense injections. Moreover, if the injection of D(A) in H 

is compact then the above injections are also compact. 
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Let us notice that in some important cases we have an explicit representation 

of the spaces D A (9,2). Let D be a bounded open domain in Rn with sufficiently 

smooth boundary. Let A be a second order strongly elliptic differential 

operator in D with coefficients which are continuous in the closure of D. This 

operator, when considered in H=L 2(D) with the domain D(A)=H2(D)nH6(D) 

(Dirichlet boundary conditions), is a generator of analytic and compact 

semigroup in H (see for example [1]). It is wen-known also that in this case 

if 

10f 1 e 1 4< < 0 

For more details on the interpolation spaces D A (9,2) see for example [2]. 

We shall use the following definition of a solution to (1): 

Definition. A predictable H-valued process X defined on some filtered 

probability space (n'~'(~t)'P) is said to be a solution to (1) if 

a) For t>O trajectories of X belong to D A (8,2) aos. and X is a predictable 

process with values in D A (6,2). 

b) There exists on (Q,:1'(~t)'P) a K-valued cylindrical Wiener process W such 

that the following equation is satisfied in H for any t a.s.: 

t t 
X(t) == S(t)xO + I S(t-s)f(X(s})ds + I S(t-s)g(X(s))dW(s). 

o 0 

It is well-known [3] that if the process X is a solution to (1) then 

t t t 
X(t) = Xo + AI X(s)ds + I f(X(s)ds + I g(X(s))dW(s). 

o 0 0 
(2) 

In order to prove existence of solutions to (1) we shaH make use of the 

following infinite-dimensional version of the Riemann-Liouville operator Ra 
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t 
R f(t) = S (t-s)a-lS(t-s)f(s)ds . 

a 0 

The properties of the operator Ra given in the lemma below are crucial for the 

existence proof in the next section. 

Lemma 1. a) For any c0-semigroup S, the operator Ra is bounded from Lp(O,l;H) 

into C(O,l;H) provided ap>l; 

b) If the operators S(t) are compact for t>O then the operator Ra is also 

compact from Lp(O,l;H) into C(O,l;H) provided ap>l; 

c) If S is an analytic semigroup, then Ra is a bounded operator from Lp(O,l;H) 

to d\o,l;DA (9,2)) (the space of holder--continuous functions with exponent A.) 

with 71. < a- e - ~ provided a > e + ~ 

Part a) of this lemma is well-known (see [5]). Part b) was proved in [7]. The 

last part is an easy consequence of Lemma 2 from [5]. 

Now lei us consider an H-valued stochastic process Z defined as follows: 

t 
Z(t) = f S(t-s)ll>(s)dW(s). 

0 

The process ll> is a predictable E2(K,H)-valued process with the property: 

where E2(K,H) denotes the space of Hilbert-Schmidt operators with the norm 

11 n2 . We shaH need the following lemma which was proved in [5]. 



120 

1 Lemma 2. Assume that a< T . Then 

sinn:a 
Z(t) = -1t- Ret Y(t) 

with 
t -a 

Y(t) = I (t-s) S(t-s)<I>(s)dW(s). 
0 

2. Existence result. In this section we shall formulate and prove the main 

result of this note. 

Theorem 1. Assume that the two conditions below are satisfied. 

a) Mappings f and g are defined on some D A (8,2) with !k -} and moreover 

llf(x)ll + 11g(x)11 2 :5 c(l + llxi1 8). 

b) For any yeH the mappings x-.<f(x),y> and x-+<g(x)y,y> are continuous on 

D A(8,2). 

Then there exists a solution to the equation (1). Moreover the process l)X(t) 

is continuous in D A (9,2), and for t>O, the process X is HOlder continuous in 

D A (8,2) with any exponent A. < + p - 9 provided i - ~ -e > 0. 

This theorem generalizes to the nonlipschitz case some results from [4] and 

[6]. However, the method of the proof does not allow one to consider the 

1 limiting case B= T. It is well known that in this case some additional 

assumptions on g are necessary. 

Proof. In order to prove this theorem we start with a definition of Peano-like 

approximations for the solution of the equation (1). For n;;:;l the sequence of 

D A (9,2)-valued processes Xn is defined in the following way: 

t t 
X (t) = S(t)x0 + I S(t-s)f (s)ds + I S(t-s)g (s)dW(s) n 0 n 0 n 
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We assume at first that x0e D A (9,2). Then it can be easily checked that the 

processes Xn are well-defined and continuous in D A (9,2). A much stronger 

property of these approximations is proved below. 

Lemma 3. For any 9 < + we have 

provided 

2 . 4 
< p <"2l:HT. 

Proof. Clearly we have 

We shall estimate now each of the terms 11, 12, 13separately. Since x0e D A (9,2) 

and the semigroup S is a contraction on D A (9,2), 

Now we consider 12: 

t [ t lp/2 12 = E II b S(t-s)fn(s)ds 111) ::;; E b 11 S(t-s)fn(s) 11~ ds = 
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= E J J v1-28 11 AS(t-s+v)f (s) 11 2 dvds $; ( 
t 00 ]p/2 
0 0 n 

:S: Mp E J f v1-28 (t-s+vf2 llf (s) 11 2 dvds = [ 
t 00 ]p/2 
0 0 n 

= c E J (t-sr9 11f (s)n2 ds :s: C J (t-sfP Euf (s)nP ds, [ 
t ]p/2 t 8 
0 n 0 n 

where 

( 
t ]p/2 

C = Mp b u l-28 (l+uf2 du . 

The last estimate is a bit more complicated. Let us denote 

t 
Z(t) = f S(t-s)g (s)dW(s). 

0 n 

Then we have 

( 

00 lp/2 
I3 = E II Z(t) II~ = E b v1-28 11 AS(v)Z(t) 11 2 dv $; 

[ 
oo 2bv lp/2 = E b )-Ze ~II AS(v)Z(t) 11 2 (2be-Zbvdv) , 

where O<b<a. Now it follows from Jensen's inequality that 

$; C1 ~ vp(l-ZS)/2 epbv E II AS(v)Z(t) uP dv 
0 

with C1 =(2b)(Z-p)/Z_ Now using known properties of stochastic integrals (see 

for example [8]) we get 
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00 t 
s; c1 J vp(l-20}/2 epbv E J nAS(t-s+v)g (s)nP2 dsdv s; 

0 0 n 

00 t 
s; c1c J vp(l-20}/2 epbv E J nAS(t-s+v)nP ng (s)nP2 dsdv s; 

p 0 0 n 

00 t 
s;c1c MP Jvp(l-29>12 J (t-s+vfP Eng (s)nP2 dsdv = 

P 0 0 n 

t 
= C C C J (t-s)l-p(20+l)/2 Eng (s)nP ds 

lpe 0 n 2 

with 
_ oo [ u(l-20)/2 lp 

Ce- b l+u du. 

Now taking into account all the above estimates and using the assumptions of 

the theorem, we get, for some constant D independent of n, 

t 
+ J (t-s)l-p(20+l}/2 EnX (~ (s))nP ds. 

0 n n e 

Let us define.now the function Fn(t) = sup EnXn(s)llb . It can be easily seen 
ss;t 

that 

EIIX (t)nP9 s; D[l + } (t-s)~-l F (s)ds ], 
n 0 n 

where 

A = 2 _ p(29+1) 
1-' 2 
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We need now the simple 

Lemma 4. For a function u, let v be defined as 

follows: 
t 

=I 
0 

b-1 s 

with a,b > 0, a+b-1>0. Then v is nondecreasing. 

It follows immediately from this lemma that 

Lemma 7. 1.2. from 

Lemma 3 follows. 

t 
:;; D[l + J (t-s)~-l Fn(s)ds ]. 

0 

implies that 

1 
Let us introduce now, for a< ·T the sequence of processes 

fommla 

Then 

t 
y (t) = f 

n 0 
S(t-s)gn (Xn,s)dW(s). 

:;; A + BE } (}(t-sr2a11X (~ (s))ll~)ds) dt 
0 0 n n o 

by the 
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for some constants A and B. Now Young's inequality yields 

1 1 1 
JEllY (t)uPdt S: A + B1 S EuX (~ (s))uP9 ds S: A + B1 S F (s)ds 
0 n 0 nn on 

with 

( 
1 2a )p/2 

B1 = B b s- ds . 

Hence the processes Y n are uniformly bounded in Lp for p satisfying the 

assumptions of Lemma 3. It follows from Lemma 2 that 

Processes Y n and fn have their laws concentrated on LP(0,1;H) and in fact it 

follows from Lemma 3 that those laws form a tight family on Lp(O,l;H). Now 

Lemma 2 implies that the family of measures corresponding to the processes Xn 

is tight on C(O,l;H). But in view of Lemma 3 and Lemma 1 an appropriate 

version of Dubinsky's Lemma (see for example [10]) implies that this family of 

measures is also tight on Lp(O,l;D A (9,2)). Skorochod's theorem implies that we 

can, eventually changing the probability space, pick up a subsequence of Xn 

which is convergent to a certain process X in LP(O,l;D A (9,2)) and C(O,l;H) 

simultaneously. Standard arguments, see [7], show that X is a solution to (1). 

Let us assume now that the initial condition x0 lies in H. Take a sequence of 

initial conditions xneD A (9,2) and such that xn converges to x in H. It follows 

from the first part of the proof that for each xn we can choose a solution Xn 

to equation (1) starting from xn (in fact this choice can be made measurable). 

Our aim now is to find uniform bounds for Xn similar to those obtained in 

Lemma 3. We start from an obvious inequality 

t 
EuX uP < 3p-l [IIS(t)x uP9 + E II S S(t-s)f(X (s))ds uP + 

n9- n 0 n 9 
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t 
+ Ell ~ S(t-s)g(Xn(s))dW(s) nl) ] = 3P-1 [11 + 12 + 13]. 

We can estimate 12 and 13 in the same way as in the proof of Lemma 3 and 

obtain 

t 
I < C C C cP S (t-s) 1-P(28+1)12 (1+EuX (s)uP) ds 3- 1p8 0 n e . 

The first term has to be estimated differently: 

( 
t 1 28 2 ]P'2 

:s; Mp ~ v - (t+vf dv uxnuP = 

Taking those estimates together we get 

t 
EuX (t)uP8 :s; D[ (Pe + S(t-sfP8 EuX (s)uP8 ds + n 0 n 

t 
+ S (t-s) 1-P(28+1)12 EuXn(s)llb ds. 

0 

Let us define now the function 

Then in view of Lemma 4 we have 
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G (t) ~ D[1 + } (t-s)~- 1 s-pe Gn(s)ds ]. 
n 0 

All constants in the above inequalities have the same meaning as in the first 

part of the proof. Once more Lemma 7.1.2. of [9] implies that 

sup sup G (t) ~ oo. 

n;:::1 t~1 n 

Given the above estimate the remaining part of the proof is exactly the same 

as for x0e D A (9,2). 

Regularity properties of a solution follow easily from its continuity in 

H and Lemmas 1 and 2. 
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