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FRAGMENTABILITY OF ROTUND BANACH SPACES 

Scott Sciffer 

Introduction 

A topological. space X is said to be fragmented by a metric p if for every e > 0 and 

every subset Y of X there exists a nonempty relatively open subset U of Y such that 

p-diam(U) < e. The space is said to be fragmentable if there exists such a metric. 

The concept of fragmentability was introduced by Jayne and Rogers in 1985 [1]. 

Further work has been done by Namioka [2], and Ribarska [3, 4]. A major application of 

fragmentability is in the study of differentiability of convex functions. 

A continuous convex function $ on an open convex subset A of a Banach space X is 

said to be Gateaux differentiable at x e A if 

lim <Jl(x+A.y)- $(x) 

A-tO A 

exists for all y eX. The function is said to be Frechet differentiable at x if the above limit 

exists and is approached uniformly for an y eX, II y II = 1. A Banach space X is said to be 

Asplund (weak Asplund) if every continuous convex function on an open convex domain is 

Frechet (Gateaux) differentiable on a dense G0 subset of its domain. 

In 1975 Namioka and Phelps, [5, p.739], established that a Banach space is Asplund 

if and only if the wealc * topology on its dual is fragmented by the dual norm, although their 

result was not couched in these terms. Weak* fragmentability of the dual by some metric is 

still the most general known condition implying a Banach space is weak Asplund, [3]. 

Ribarska, [4], has shown that rotund Banach spaces are weakly fragmentable, and that Banach 

spaces with rotund dual have weak* fragmentable dual, and hence are weak Asplund. Using 

techniques developed by Preiss, Phelps and Namioka, [6], she has also shown that a Banach 

space with an equivalent norm Gateaux differentiable away from 0 has a weak * fragmentable 

dual, and hence is weak Asplund. Whether or not weak Asplund spaces are characterized by 

having a weak * fragmentable dual remains an open question. 
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The aim of this paper is to provide an alternative proof of the fragmentability of rotund 

spaces. Section 1 reviews Ribarska's work on a characterization of fragmentability [3]. In 

Section 2 we introduce the concept of a fragmenting pre-metric and show that a fragmenting 

metric can be generated from it. In Section 3 we defme pre-metrics which fragment rotund 

Banach spaces, and finally in Section 4 we use the ideas developed for Banach spaces to 

weakly fragment a class of locally convex spaces. 

1. Internal characterization of fragmentability 

In 1987, Ribarska [3] produced a characterization theorem for fragmentability which 

relies on the concept of relatively open partitionings. This section outlines that part of her work 

which is necessary for our present purpose. 

A relatively open partitioning of a topological space X is a well-ordered family of 

subsets of X, U = {U;: 0 S ~ < ~0}, satisfying 

(i) u0 = 0. 

(ii) 

(iii) 

U; c X\ ( U u11) and is relatively open in it . 
11<~ 

X= U U; 
11<~o . 

A separating cr relatively open partitioning of a topological space X is a countable family 

of relatively open partitionings un which separates points. That is, for any x,y eX, x "# y, 

there is an no eN such that X andy are in different elements of the partitioning uno. 

Theorem 1.1 (Ribarska 1987) 

A topological space X admits a separating cr relatively open partitioning if and only if 

there exists a metric which fragments X. 

Proof 

Let X be fragmented by the metric p. For every no eN, construct a relatively open 

partitioning un = { u~ : 0 s ~ < ~ n } inductively as follows: 
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(i) Set ug = 0 . 

(ii) Suppose U~ have been constructed for every '11 < ~. Consider the set R =X\( U U~) . 
'11<~ 

If R is empty then let ~n =~and we have finished constructing un. If R is not empty it 

has a non-empty relatively open subset of p-diameter < ~ . This subset becomes U~. 

(iii) Since every U~ is non-empty, there exists a ~n such that R =X\( U U~) is empty. 
'11<~ 

The countable family of relatively open partitionings un separates points, since if x ::~: y then 

p(x,y) > 1_ for some no, and hence x and y are in different elements of uno. Hence no 

{ un : n e N } is a separating cr relatively open partitioning of X. 

Conversely let { un : n e N} be a separating cr relatively open partitioning of X. Defme, 

ifx=y 

p(x,y) = {: 
!10 

n 
if x ::~; y, where n0 is the smallest integer such that U 0 separates x andy. 

(i) p(x,y) ;;::: 0. 

(ii) p(x,y) = 0 if and only if x = y. 

(iii) if p(x,y) =: then for z eX at least one of p(x,z) or p(y,z) is;;:::; , so p satisfies the 
0 0 

triangle inequality. 

So p is a metric on X. To show p fragments X, let Yo be a non-empty subset of X, and 

E > 0. Defme Y 11 inductively by 

~n =min{~< ~ 11 : Yn-1 n U~ ::~: 0} 

y = y n ( U U 11 
) • 

n n-1 j;;" 11 
'11~ ... 11 

Then for any n > 1. we have Y n is relatively open in Y0, and p-diam (Y 11) ~ ~ < e. II 
e 
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Observe that in the proof of Theorem 1.1 it was not necessary that the function p be a 

rnetric in order to create the separating cr relatively open partitionings. It suffices for p to be a 

non-negative, sepal'ating function which fragments X. The existence of such a function would 

guarantee the existence of a fragmenting metric via the second half of the proof of Ribarska's 

Theorem. This observation motivates the following definition. 

A fragmenting pre-metric for a topological space X is a function 1.: X x X ~ lR 

satisfying 

;::o: 0, and A(x,y) = 0 if and only if x = y, 

(ii) for every e > 0 and non-empty subset Y of X there exists a non--empty relatively open 

subset U of Y such that :\-diam(U) =sup { :\(x,y): x.,y E U} <e. 

From the above observation there is an immediate corollary to Theorem 1.1. 

Coronary 2.1 

A topological space X isfragmentable if and only if X has a fragmenting pre-metric. 

The following Lemma will be needed in Section 3. 

Lemma 2.2 

A linear topological space X is fragmentable if and only has an absorbing subset Y 

which isfragmentable in the relative topology. 

Proof 

If X is fragmented by a metric p, then ply fragments any absorbing subset Y of X. 

Conversely, if Y is fragmented by a metric p, then 

{ 
p(x,y) 

A.(x,y) = 1 
if p(x,y) < 1 

if p(x,y);;::: 1 

is a fragmenting pre-metric for Y. Define X on X by 
00 

I(x,y) = L 2~ Am(x,y) 
m=l 
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where 
~ {'-(..!L,.Lm)ifx,ye mY 
~~,m(x,y) = m 

0 otherwise . 

Since Y is absorbing, ~ is non-negative and separating. Also given e > 0 and a non-empty 

subset V of X, there exists an open subset U of X such that A.-diam ( ku n ~V n Y) < ~ 

(Adopting the convention that the A.-diameter of the empty set is zero.) It follows that 

A.m-diam (U n V) < i Define Urn inductively by setting Uo = V and letting Um be relatively 

open in Um-1• and hence in V, with A.m-diam (Urn)<~ . Then, 

mo "" 
I-diam (Um0) ~ I, 2!11 ~ + L ;m ~ e 

m=l m=m0+1 

for ITIQ E N such that - 1- < ~2. Hence ~ is a fragmenting pre-metric for X and by Corollary 
2m0 

2.1 there exists a metric which fragments X. II 

3. Fragmenting pre-metrics for rotund Banach spaces 

Recall that a Banach space X is said to be rotund if for all x.,y e X, II x. II = II y II, x if:. y 

we have II x+y II <II x II + II y II. Given a non-empty, bounded set C in a Banach space X, a 

continuous linear functional f eX*, and an e > 0, the set 

S(C, f, e)= {x eC: f(x) >M-e} 

where M = sup{ f(x): xe C} is called a slice of C of depth e. 

Theorem 3.1 

If X is a Banach space with an equivalent rotund norm, then X is weakly 

fragmentahle. 
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Proof 

Consider X so renormed. It suffices from Lemma 2.2 to exhibit a pre-metric which 

fragments bounded sets. Consider, 

A.(x,y) = inf { e > 0: 3f eX*, II f II = 1 such that x,y e S(Br, f, e)} 

where Br is the closed ball radius r = max { II x II, II y II}. 

(i) A.(x,x) = 0 since there is an f eX* supporting Brat x. 

If x '# y then by rotundity II x? II < r. Since any slice of Br containing both x andy must also 

contain x? we have A.(x,y) ~ r- II x? II > 0. 

(ii) Let Y be a non-empty bounded subset of X and let s = sup{ II x II : xe Y}, then for 

any e > 0 there exists f eX*, II f II= 1 such that U = Y n S(B8, f, e) is non-empty. U is a 

weakly relatively open subset of Y. For any x,y e U let r =max {II x II, II y II} ~ s and observe 

that x,y e S(Bp f, e+r-s), so A.-diam(U) < e. II 

Theorem 3.2 

!IX is a Banach space which can be equivalently renormed to have a rotund dual 

norm, then X* is weak * fragmentable. 

Proof 

Consider X so renonned. Once again by Lemma 2.2 it suffices to exhibit a pre-metric 

which fragments bounded sets. In an analogous way to Theorem 3.1 we defme, 

{ A A A *A} 
A.(f,g) = inf e > 0: 3x eX, II x II= 1 such that f,g e S(Br, x, e) 

* where B is the closed dual norm ball radius r = max { II f II, II g II}. 
r 

The details of checking that A. is a fragmenting pre-metric are identical to those in Theorem 3.1 

except in one regard. Now A.(f,t) = 0 since for any e > 0, 

* n{ A A A A } 
fe ~lfll-e= geX*:x(g)~llfll-£,xeX,IIxll=1 

A A A *A 
So there is an x e X, II x II= 1 such that f e S(B , x, e). Note that to fulfil this condition it is 

r 

necessary that the rotund norm on X* be a dual norm. II 
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Coronary 3.3 

If a Banach space X can be equivalently renormed to have a rotund dual, then X is 

weak Asplund. 

Of course this result is already known via different approaches. For an alternative 

proof see [7, p.249]. For a proof that weak * fragmentability of the dual implies X is weak 

Asplund see [3]. 

A Banach space with a rotund dual norm must itself have a smooth norm, although the 

dual of a smooth norm need not be rotund. Ri.barska [4] has shown that Banach spaces with 

an equivalent smooth norm have weak * fragmentable dual. Unfortunately in the smooth case 

the pre-metric of Theorem 3.2 may fail to separate points in the dual, depending as it does on 

the rotundity of the dual ball, and there is no obvious generalization of this pre-metric. It 

therefore seems unlikely that this method can be used to simplify Ribarska's proof. 

But there is another situation in which this method may be useful. Imagine a Banach 

space which can not be renormed to be rotund, but has a countable family of equivalent norms, 

Pn' with the property that given x,y eX, x of- y there exists n0 e ~ such that 

Pn (x+y) < P11 (x) + p.,_ (y). In such a case define 
0 0 "U 

where An is defined as in Theorem 3.1 for each nonn p11• Such a A is a weakl.y fragmenting 

pre~netric for the Banach space. This observation is of use when we generalize to the setting 

of locally convex spaces. 

4. Some locally convex spaces which are weakly fragmentabie 

In this section we extend the concept of a fragmenting pre-metric developed above for 

Banach spaces to exhibit a class of locally convex spaces which are weakly fragmentable. 

Let X be a topological space and C(X) be the continuous real-valued functions on X. 

The compact-open topology on C(X) is the locally convex topology generated by the family of 

semi-norms of the form 

pK(x) =sup{ x(t): t e K} 

for compact subsets K. 
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Theorem 4.1 

IfXisa compactHausdmffspace with a countable base lB, and C(X) has the 

compact-open topology, then C(X) is weakly fragmentable. 

Proof 

For any compact set Kin X let Br(K) = E C(X): pK(x) S: For any x,y E Br(K) 

define 

A,k(x,y) = inf {e > 0 : 3f e C(X)*, p ~(f) = 1 such that x,y e S(B,(K), f, e)} , 

where p~(f) = sup{f(x): pK(x) S: 1} and r = max{pK(x), pK(y)}. Note the analogy to 

Theorem 3. 1. For each positive integer m and x,y e C(X) define 

A,~ (x,y) = {A,~ (0~ , -i;i-) if x,y E Bm (K) 

otherwise . 

and 
00 

,, ( . "" 1 ~ m( ) A.K x,y) == ."-' 2m A.K x,y 
m=l 

Let { Bn} be the elements of the countable base lB of X, where each B0 is compact. Finally let 

,......, 1 "" 1 ("" 1 m ) l(x,y) = L n A,_ (x,y) = £,.., n ~ m A_B (x,y) 
2 Bn 2 2 !l 

We claim that A, is a weakly fragmenting pre-metric for C(X). Note that A, is well-defined 

since each ~ S: 1. 

(i) A.(x,x) = 0 because for any compact K there is a k E K where x(k) = pK(x). Then 

~(x) = x(k) is in C(X)*, p~(~) = 1 and ~ supports Br(K) at x. If x if= y then there is k E K 

such that x(k) if= y(k), and by continuity of x andy there exists BE JB such that p_(x) if= p_(y), 
B B 

and hence l.._(x,y) if= 0. Therefore A.(x,y) = 0 if and only if x=y, so 1.. is separating. 
B 

(ii) To prove/.. is fragmenting it suffices to show that any subset Y of B1 (K) has weakly 

relatively open subsets of arbitrarily small ~-diameter, since then an inductive procedure 

similar to that of Lemma 2.2 allows us to achieve a weakly relatively open subset of arbitrarily 

small AK-diameter, and a further application of the procedure results in a weakly relatively 

open subset of arbitrarily small A.-diameter. 
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To construct a weakly relatively open set of small AJc-diameter lets= sup{pK(y): y e Y}, 

then for any e > 0 there is a y e Y such that pK(y) > s-e, and hence there is k E K such that 

y(k) > s-£. Then U = Y n S(Bs(K), <5t, e) is a relatively weak open, non-empty subset of Y 

with Ai_ -diameter < e. II 

Example- C(lR) with the compact--<>pen topology is weakly fragmentable. 

The author wishes to thank John Giles and Warren Moors for many fruitful 

suggestions and discussions on these matters. 

References 

[1] lE. Jayne, C.A. Rogers, "Borel selectors for upper semicontinuous set-valued maps". 

Acta Math. 155 (1985), 41-79. 

[2] I. Namioka, "Radon-Nikodym compact spaces and fragmentability". Mathematika 34 

(1987), 258-281. 

[3] N. Ribarska, "Internal characterization of fragmentable spaces". Mathematika 34 

(1987), 243-257. 

[4] N. Ribarska, "The dual of a Gateaux smooth Banach space is weak* fragmentable". 

Proc. Amer. Math. Soc. (To appear). 

[51 L Namioka, R.R. Phelps, "Banach spaces which are Asplund spaces". Duke Math. 

Journal42 (1975), 735-749. 

[6] D. Preiss, R.R. Phelps, I. Namioka, "Smooth Banach spaces, weak Asplund spaces 

and monotone or usco mappings". Israel J. Math. (to appear). 

[7] J. Borwein, S. Fitzpatrick, P. Kenderov, "Minimal convex uscos and monotone 

operators on small sets". Canad. Math. J. (to appear). 

Department of Mathematics 
University of Newcastle, 
NSW 2308, AUSTRALIA. 




