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4. ABSORPTION OF WATER UNDER A POND 

Consider water being supplied, under positive pressure head W 0 , at the surface 

of an initially dry semi-infinite soil. The positive pressure may be due to a pond 

of depth 'li 0 • The zone of positive pressure extends to some depth f(t) within the 

saturated zone. In the deeper unsaturated zone, the water content is less than its 

maximum value, 8 < 8 8 and W is negative. In some hydrological models, there is a 

tension-saturated zone, in which W < 0 and 8 = 88 • This will be ignored here but 

it would be a simple matter to incorporate it in the following analysis, by assigning 

some negative value W 8 , to the saturated/unsaturated interface. 

From the general argument of Philip (20], the main effect of the positive pressure 

head 'lio is to be seen at early times, when gravity is negligible. Therefore, in order to 

investigate this main effect, we may neglect gravity in the governing flow equations. 

In terms of dimensionless variables, the appropriate free boundary problem is 

( 4.1) 

(4.2) 0 = 1 

(4.3) 

( 4.4) 80 = .!_[c(c-1) 80] 
8t 8z* (c- 0)2 8z* 

(4.5) 

0-+ e; z*-+ oo 

(4.6) 
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Here, W * = W /As . 

Equation 4.1 expresses the fact that the one-dimensional flux must be uniform 

throughout the saturated zone, where concentration is constant. Statement 4.3 is an 

expression of the continuity of flux at the free interface z* = £*(t*). 

Now it is convenient to define a new coordinate y* = z*- £*(t*), whose origin 

is at the moving interface. The unknown function £*(t*) will then appear in the 

governing partial differential equation rather than in a boundary condition. This 

results in a boundary value problem 

( 4.7) e = 1 

(4.8) 
-c(c- 1) 88 1¥0* + 
( ) -l- n*(t*) as y* -+ 0 c- e 2 By* {. 

( 4.9) 

(4.10) 

(4.11) e -joe; 

(4.12) 

The above problem is amenable to a symmetry analysis. Provided 

( 4.13) 

with m* = m/ >... (constant), there is a consistent similarity reduction e f( if;)' 
1 

where if; is the Boltzmann similarity invariant, if;= y*t-; 2 • 
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From Equations 4.1 and 4.13, the flux of water entering through the saturated 

zone 1s 

Hence, the cumulative amount of water having been absorbed is 

(4.14) 

i(t) =lot v(O,t)dt 

= St~ 

where S = 2K• Wo 
m 

S is known as the sorptivity [21] a quantity that can be directly measured. 

As in the unponded (m = 0) case [10], Equation 4.9 may be linearised by 

applying consecutively the Kirchhoff transformation [22] 

( 4.15) J.l= 
c( c- 1) 
c- e 

and the Storm transformation [23] 

(4.16) 

In terms of the new variables, the left hand side of the governing Equation 4.9 is 

( 4.17) 

whereas the right hand side is 

( 4.18) 



164 

After equating 4.17 and 4.18, it is the cencellation of the nonlinear p, - 3 ( ~) 2 
terms 

that enables the governing flow equation to be transformed to a linear canonical form 

when m* = 0 (10]. Even for ponded absorption (m* =F 0), the extra nonlinear term 

im*r-![c(c-1)]~p,-3~ cancels when 4.17 and 4.18 are equated. By equating 4.17 

and 4.18 and then multiplying throughout by [c( c -1 )]-1 p,2 , we are left with a linear 

equation 

{4.19) 
op, 1 _! op. o2 p. 
- - -IT 2- - - = 0 or 2 ax ox2 

where 

The initial and boundary conditions are 

(4.20) P, = C -1, T = 0 

( 4.21) p. ~ c-1, 

(4.22) 

(4.23) P, ~ C1 X~ 0 

In ( 4.22), the dimensionless sorptivity is 

[c(c -1)] t s* = s -a 

The similarity solution, a function of cfo = xr-t, is 

(4.24) 

(4.25) 

p.=g(cfo) 

= ( c - 1) - A erfc ( cfo ; 1 ) 

tCc -1}n·h-t where A = --:----:'"-'--....,;,_ ____ _ 
t7rth-lerfc(h) -exp(-i"f2) 
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with h the solution of 

(4.26) 

Equation 4.26 is very close to the trascendental equation that determines the position 

of the phase boundary in the classical Stefan problem (see e.g. [24]). Given the values 

of c and Wo*, Equation 4.26 may be readily inverted numerically to obtain h. With 

h viewed as a function of '!1 0* and c, we have 

( 4.27) 

The length and time scales, introduced in Section 3, may be expressed [15] 

( 4.28) "· = h(O, c)S~ I c( c- 1 )(e. - Bn)K. 

and 

( 4.29) 

Therefore, from Equations 4.14 and 4.27, we obtain 

(4.30) 

Given f..L from Equation 4.24, the rescaled water content is 

( 4.31) e = c(1- (c -1)/f..L(x,r)] 

Inverting the Storm transformation 4.16, the depth is 

(4.32) 
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Equations 4.31 and 4.32 constitute an exact parametric solution. In Figure 1, we 
1 

plot normalized water content (8- 8;)/(88 - 8;) against reduced depth -x*t;;~ for a 

highly nonlinear soi~ ( c = 1.05) and for dimensionless pond depths Wo* = 0, 2 and 8. 
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B 

Figure 1. 

Analytic solution of soil water absorption under a pond, for the nonlinear soil 

with c = 1.05 and with dimensionless pond depths 0, 2 and 8. 

5. INFILTRATION INTO A FINITE SOIL COLUMN 

We consider one-dimensional unsaturated flow into a finite layer of soil, underlain 

by an impermeable rock layer. The boundary value problem to be solved is 

(5.1) 

(5.2) e = e;, t. =O 

(5.3) 
ae 

K*(e)- D.( e)~ = R., z. = 0 
uz. 
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(5.4) 

In this particular problem, we are interested in the sudden change in the water content 

profile when a wetting front reaches the lower boundary. By the time it takes a 

wetting front to traverse a macroscopic later, gravity should become a significant 

driving force, relative to capillarity. Hence, the governing Equation (5.1) includes 

a nonlinear convection term, due to gravity. The uniform initial water content 8; 

is not necessarily zero, so that there may be an initial non-zero flux I<*(El), due to 

gravity. The boundary condition 5.3 denotes uniform flux v = R at the surface z = 0. 

The dimensionless flux R* is R/ I<s, where Ks is the soil hydraulic conductivity at 

saturation. The boundary condition 5.4 specifies zero flux at the impervious basement 

As m Section 4, we apply the Kirchhoff transformation 4.15 and the Storm 

transformation 4.16. The governing Equation 5.1 becomes 

(5.5) 
a~ a2 ~ 1 a~ 
- = --m2[1-2p(1+1/p)+~/(c-1)]ar ax2 ax 

where m = 4c( c-1) and p = R*/m. The extra nonlinearity in Equation 5.5 originates 

from the nonlinear convection term in 5.1. However, this model convection term has 

been chosen so that the transformed Equation 5.5 is essentially Burgers' equation, 

which can be linearised by a further transformation. Now we apply the Hopf-Cole 

transformation [25, 26] 

(5.6) 
au 

1- 2p(1 + 1/ p) + ~/(c- 1) = -2u-1 a( 

with ( = m ~X. In order for Equation 5.5 to be satisfied, it is sufficient that u( (, T) 

satisfies the linear diffusion equation, 

(5.7) 



168 

with T = mT. 

The initial and boundary conditions transform to 

(5.8) u = exp(Q(), T = 0 

(5.9) u = exp(p(p + l]T), ( = 0 

(5.10) 

where Q = ~ + p - ~ c-ce, . 

Now we face a linear boundary value problem on a domain that shrinks linearly 

in time. Curiously, King [27) found an efficient method for solving a similar problem 

using Laplace transforms in the T variable, even though T is bounded by the time 

at which the spatial domain shrinks to nothing. Applying the Laplace transform to 

Equations 5. 7 to 5.9, we obtain 

u((, T)-> u((,p) 

(5.11) 

with 

(5.12) 
1 1 

B=-A+ ---
P - p(p + 1) P - Q2 

Following King [27], in order to implement the lower boundary condition 5.10, 

we define a moving coordinate 

(5.13) c = ( +2pT 

v( ~, T) = u( (, T) 
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so that e is fixed at the lower boundary. The lower boundary condition is 

(5.14) 

Equation 5.7 transforms to 

av av 82v 
aT + 2P a~ - ae = o. 

After applying the Laplace transform v( ~, T) ---* v( ~' p), the general solution is 

(5.15) 

v = E exp(p + J p2 + p )~ + F exp(p - J p2 + p )~ 
eQt; 

+ p- Q(Q-2p) 

King's theorem on Laplace transform boosts [27] allows us to compare Laplace trans-

forms u and v obtained in different reference frames and to incorporate all boundary 

conditions in the same transform. The Laplace transform boost yields 

+ p + - Q2 

5.15 and the coefficients E and F may be related to 

and B( ... (P) (here viewed as functions of 

After defining v = Vfi1 = -.}p2 + p and H(v) = , the full set of 

bounda:ry conditions implies a difference equation 

H(v)- H(v- sp) exp( -4[c- 8;]£*[v- p]) 

(5.17) 
4 . 3 

= ): Sj _1_ + "\.""" w; exp( -2[c- 8;]£*v), 
"-"' v-b· L-- v-a· 
j=l J i=l ' 
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and 
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bi = .jp(p + 1), -../ p(p + 1), Q, -Q for j = 1,2,3,4 

w1 = - exp(2fc- 0i]l.Q) 

1 
w2 =w3 = -2w1 

a; = p, 2p- Q, Q for i = 1, 2, 3 

The exponential terms on the right hand side of (5.17) are due entirely to the non-zero 

initial water content 0;, ignored in the earlier analysis of Broadbridge et al. [2]. To 

find a particular solution to Equation (5.17), we first recast it in the form 

(5.18) 

where 

exp( -2[c- 0i]l.v) 
w; 

v -a; 

L = 1 - exp( -4[c- 0;]l.[v- 'R.]) exp( -2'R a) av 

The operator L is not invertible, as it has an infinite-dimensional kernel (28]. However, 

a formal geometric series inversion gives a large- v asymptotic expansion for a useful 

solution H(v) [M. King, personal communication]. The result is 

-cr ) _ -1 { -pic:_ pi'} { ~ . ~ exp( -4n[c- 0;]l.(p~ - np]) u ., , p - p 2 e e L...J s J L...J --''-'--~1---=---....::_----'~ 
j=l n=O p2 - 2np - bj 

~ . ~ exp( -2[c- 0;]f.[(2n + 1)p! - 2n(n + 1)p])} 
+ L...Jw, L...J 1 

i=l n=O p2 - 2np- ai 

1 ir 1 lr 1 rv + eP ' - --eP ' + ---e'"'' 
p - p(p + 1) p - Q2 p - Q2 

(5.19) 

Although this is a large-p asymptotic expansion rather than a convergent series, 

the term by term Laplace inversion yields a series that converges at all physically 
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meaningful times: 

00 4 

+ L L Sj {exp( 4n2 [c- 8;]£*p- [4n[c- 8;]£* + (]2/4T 
n=l j=l 

00 3 

+ L L w; {exp([4n2 + 4n][c- - [[L!n + 2][c -- 8;]£,. + (j2 /4T 
n=O i=l 

x f ( [4n + 2][c- 8;]£. + ( _ + 
" ' 2vT 

- exp([4n2 + 4n][c- 8i]e.p- [[4n + 2][c- 8;]£* - /4T 

(5.20) 

f ( [4n + 2][c- 8;]£. -- ( _ ( ..L ·) r;:;:;T) } x = 2np , a, v 1. 
2·,/T 

The function f in Equation 5.20 is defined by 

f(x) = erfc(x) 

Since this function is bounded, it can be seen, by comparison with L en-•, that the 

above series converge provided T is less than the time taken to fill all initial pore 

space, 

The function u( (, T) can be differentiated explicitly, and 8 can be obtained 

from Equations 4.15 and 5.6, as 

(5.21) 8=c[1-(c-1)/p] 



( 5.22) 
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~ _ 1 8u 
-- = 1 + 2p- 2u -
c-1 8( 

Finally, from Equations 4.16 and 5.6, we deduce 

(5.23) 

Equations 5.21 to 5.23 provide an exact parametric solution to the boundary value 

problem posed at the beginning of this section. An example is shown in Figure 2. 

Content 

Figure 2. Analytic solution for infiltration into a finite column. c = 1.2, R* = 

0.5, C* = 2.0, 6; = 0.2. Output times for the three curves are t* = 1.0, 2.0 and 2. 7. 

6. AlTERNATIVE APPROACH TO THE FINITE COLUMN 

In section 5, a nonlinear boundary value problem on a rigid domain was trans-

formed to a linear boundary value problem on a shrinking domain. It is the linear 

boundary value problem on the shrinking domain that offers the additional challenge. 
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The solution method used in Section 5 raises many questions. Firstly, the Laplace 

transform has been applied to a function u( (, T) defined only on a finite time domain. 

For what boundary value problems can the Laplace transform technique succeed in 

producing a correct solution u( (, T) even though the Laplace transform u( (, T) can-

not exist!? In familiar applications of the Laplace transform, the boundary conditions 

lead to algebraic equations which uniquely determine the free parameters of a general 

solution. However, in Section 5, the boundary condition led to a difference Equation 

5.17, 

(6.1) (1- L1)H(v) = J(v) 

for which there is an infinite dimensional solution space to the homogeneous equation. 

In this case, a formal operator inversion 

00 

(6.2) H(v) = {1 + :z= LnJ(ll) 
n=1 

led to a good solution. The formal sums in Equation 5.19 are large- p asymptotic 

expansions, rather than convergent series, corresponding to the series in Equation 5.20 

having only a finite radius of convergence in T. A formal Laplace inversion could be 

applied term by term to Equation 5.19. However this is not always possible, following 

the formal inversion expressed in Equation 6.2. In a related practical problem with 

different boundary conditions [29], the solution obtained by Equation 6.2 could not 

be inverted. Before the inverse Laplace transform could be applied, an appropriate 

solution to the homogeneous difference equation was added. There is at this time 

no rigorously justified criterion for uniquely selecting an appropriate solution of the 

difference Equation 5.17 so that the inverse Laplace transform can be applied to the 

constructed expression 5.19. 

King's Laplace transform boost theorem [27] applies to a change of Galilean 

reference frame. If it cannot be applied to two reference frames which are accelerating 
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relative to each other, then perhaps an alternative special technique should be found 

for treating domains that expand or shrink linearly in time. The difficult questions 

raised above might then be avoided. The best way to treat a moving boundary 

problem is to transform it to a fixed boundary problem. If we inspect the group of 

point symmetries of the linear heat equation [30], we find a transformation that does 

the job. Let 

Then the boundary value problem given by Equations 5.7 to 5.10 transforms to a 

linear boundary value problem on a rigid domain defined at all positive times. 

au EPu 
-= = _2 on [0, 2( c- E>;)£*] x [0, oo) 
aT ac 

-2 

u((, 0) = f(() = exp ( Q(,- 4[c ~(E>;]£*) 
u(O, T) = rP1(T) 

- 1 [ T ] = [1 + Tp/[c- E>;]£*r2 exp p(p + 1) /[ ] 
1 + pT c- e; e* 

u(2[c- 8i]£*, T) = ¢2(T) 

(6.4) 

This reformulation should dispel any doubts about uniqueness of the solution. In 

terms of Fourier expansions, the solution is 

(6.5) 
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The integrals in Equation 6.5 have not been evaluated explicitly and it is doubtful 

whether any sequence of commonly used approximate integration schemes, with 

progressively finer discretization, would converge faster than the partial sums in 

Equation 5.20. Neither approach has yet been adapted to treat a domain that shrinks 

or expands nonlinearly in time. 
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