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A PRIORI ERROR ESTIMATES FOR FINITE ELEMENT 
GALERKIN APPROXIMATIONS TO A FREE BOUNDARY 

PROBLEM IN POLYMER TECHNOLOGY 

A.K.Pani and R.S.Anderssen 

1. INTRODUCTION. 

In this paper, we examine a finite element Galerkin method for a free boundary problem 

arising in the polymer industry which models the penetration of a solvent into a glassy 

polymer. Initially, we briefly discuss the model proposed by Astarita and Sarti[l], and the 

related existence and uniqueness results. 

Consider a semi-infinite slab of glassy polymer occupying the half space x ;:::: 0, which 

is in contact with a solvent. When the solvent concentration at the face of the polymer 

at x = 0 exceeds some threshold, the solvent moves into the polymer creating a swollen 

zone through which the solvent diffuses according to Fick's law. The interface that is 

the free boundary between the swollen zone and the glassy polymer obeys an empirical 

penetration law, which guarantees that the speed of the penetration increases with the 

excess of concentration above the threshold. In addition, in order to fully specify the free 

boundary, an additional condition must be imposed in the form of a. mass conservation 

condition. In the present model, we assume that the penetration process has commenced so 

that a free boundary has already formed and that the swelling takes place instantaneously 

at the interface. With appropriate non-dimensional normalised variables, the above model 

leads to the following parabolic free boundary problem. 

Problem P. Find a pair {U(y,t),s(t)} such that 

(1.1) Ut- Uyy = 0, 0 < y < s(t), 0 < t:::; T 

(1.2) U(y,O) = g(y), 0 < y:::; 1, 
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(1.3) U(O,t)=U*, O<t~T, 

(1.4) 
· ds 

Uy(s(t),t) =- dt[U(s(t),t)+q(t)J, 

and 

(1.5) 
ds 
dt = J(U(s(t),t)), 0 < t ~ T 

with 

s(O) = 1. 

Here, U(y, t) represents the concentration of the solvent, and equation (1.5) states the 

empirical penetration law where f(r) may be of the form arm, with both a and m pos­

itive constants. The additional condition (1.4), on the free boundary s(t), is the mass 

conservation with q 2:: 0 defining the threshhold concentration for penetration. The term 

U* in equation (1.3) denotes the normalised concentration so that the normalised solvent 

concentration is given by U + q. By redefining U, we henceforth assume that U* = 0. 

This parabolic free boundary problem is non-standard because of the unusual boundary 

conditions (1.4) and (1.5). 

We make the following assumptions about the Problem f>: 
AI. Problem f> has a unique smooth solution pair {U,s}, with s(t) 2:: co, for 0 ~ t ~ T, 

where co is a positive constant. 

A2 • The initial function g 2:: 0 is sufficiently smooth and satisfies certain compatibility 

conditions like g(O) = 0. 

Ag. The function f in (1.5) belongs to 0 1(0, oo) with its derivative f'(r) 2:: 0, for 

r > 0, and f(O) = 0. Further, it is assumed that f'(r) is bounded for bounded r like 

IJ'(r)l:::; K(r), where K is an increasing function of r. 

With respect to AI, the global existence and regularity results have been established 

by Fasano et al.[4] for the Problem P with a degenerate free boundary condition that 

satisfies s(O) = 0. Thus, for the present problem, with non-degenerate free boundary and 

appropriate compatibility condition on g, the global existence, uniqueness and regularity 
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conditions (given below in (2.8)) can be proved using Fasano et al.[4]. Conrad et al.[2] 

have discussed the well-posedness of a similar problem arising in a dissolution-growth 

process. Further, the restriction s(t) ~ c0 , based on physical considerations, precludes the 

disappearance of any phase in [O,T]. The assumptions A2 and A3 apply even when the 

problem is well-posed. We note that on the free boundary s(t), U is taken to be positive. 

This can be motived on physical grounds (see Fasano et al.[4] or Conrad et al.[2]) and 

therefore, f is differentiable on s(t). 

For numerical methods, Fasano et al.[4] have discussed a convergent finite difference 

numerical algorithm based on a shooting method for a time discretization of Problem P 

with s(O) = 0. Quite recently, Murray and Carey [5] have developed a moving finite element 

method using a predictor-corrector scheme and have examined the numerical accuracy 

and stability numerically. The present contribution developes error estimates for the finite 

element Galerkin method using fixed domain techniques. 

2. THE FIXED DOMAIN AND GALERKIN METHODS. 

The major difficulty with solving Problem P numerically is the moving free boundary. 

The obvious solution is to transform the problem to an appropriate fixed domain formula­

tion (Crank [3]). However, such formulations are not achieved without a trade-off which, 

in one way or another, complicates the underlying pde structure by introducing additional 

non-linearity to compensate for fixing the moving free boundary. For Problem P, a fixed 

domain formulation is derived using the Landau-type transformation 

(2.1) y = xs(t). 

In ~his yvay, on setting u( x, t) = U(y, t), Problem Pis replaced by the following fixed domain 

formulation, Problem P, which consists of a coupled system of a parabolic equation in u 

with a typical nonlinearity and an ordinary differential equation in s. 

Problem P. Find {u(x,t),s(t)} such that 

(2.2) s(t?ut- Uxx = XUxs(t)f( u(l, t)), (x, t) E I X (0, T], 
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(2.3) u(x,O)=g(x), xEI, 

(2.4) u(O, t) = 0, 0 < t ~ T, 

(2.5) 
ds 

ux(l, t) = -s dt [u(l, t) + q(t)], 

(2.6) 
ds 
dt = f(u(l, t)), 0 < t ~ T, 

with s(O) = 1. 

Using (2.6), equation (2.5) can be rewritten as 

(2.7) ux(l, t) = -sf(u(l, t))[u(l,t) + q(t)], 0 < t ~ T. 

Let u, v E L 2(I), ( u, v) = J1 u v dx and llull 2 = ( u, u ). Let Hk = Hk(J) denote the 

corresponding Sobolev space Wk•2 (I) with norm denoted by ll·llk· If X is a normed linear 

space with norm ll·llx, and the mapping </> : (a, b) ~ X is strongly measurable and p-th 

integrable, then 

and, for p = oo, 

11</>IILP(a,b;X) = (1b 11</>11~ dt) 1fp, 1 ~ p < oo, 

II</>IIL00 (a,b;X) = sup 11</>(t)llx· 
a::;t::;:b 

Let us further assume that the following regularity conditions hold for the pair{ u,s} 

(2.8) 

The function u and s in the above mentioned spaces are bounded by a common constant 

say Kt. 

The Weak Formulation. Set HJ(I) = {v E H 1 : v(O) = 0}. Multiply both the sides of 

(2.2) by v E HJ and integrate the second term in the left hand side by parts to obtain 

(2.9) (s 2ut, v) + (ux,vx) = sf(u(l))(xux,v)- sf(u(l))[u(l) + q], t > 0 
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with 

( u(O), v) = (g, v ), v E HJ. 

Here, the notation u(l) is used in place of u(l, t). 

The Galerkin Procedure. Let S~ be a finite dimensional subspace of HJ with the 

following properties: 

(i) Approximation property. There is a positive constant I<o, independent of h, such 

that for v E Hm n HJ 

(ii) Inverse property. For XES~, 

The continuous time Galerkin approximation u h of u is now defined to be the mapping 

uh: [0, T] ,..... S~ such that 

(s~u~,x) + (u~,Xx) = shf(uh(l))(xu~,x) 

(2.10) - shf(uh(l))(uh(l) + q)x(l), XES~, t > 0, 

with 

where ph denotes an appropriate projection onto s~ to be defined below. 

Further, the continuous time Galerkin approximation Sh of s is given by 

(2.11) d;t = f(uh(l)), t E (O,T] 

with sh(O) = 1. 

For a given uh(O) as well as sh(O), (2.10) and (2,11) together yield a system of nonlinear 

ordinary differential equations. Because of the conditions on f, this system has at least a 

unique local solution by Picard's existence theorem. The global existence of a unique pair 

{ uh, sh} on the whole of [O,T] has been examined by Pani et al. [6]. 
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3. AUXILIARY PROJECTION AND RELATED ESTIMATES. 

Define 

(3.1) a(s, u; v,w) = (vx, 'Wx)- sf(u(l))(xvx, w), u E L00 , v, wE H 1 . 

This operator satisfies the following properties: 

( i) There is a constant 1{ 2 = I< 2 (I{ o, 1{ I) such that 

(ii) {Garding inequality} There exist positive constants a and p, with p depending on 

K 0 and K1, such that 

a(s,u;v,v) 2: allvlh- Pllvll 2 , v E H~. 

Fort 2: 0, let u E S~ be the projection of u defined by 

(3.2) a(s,u;u- u,x) = 0, XES~. 

The existence of a unique u E S~ can be shown using the analysis of Schatz [7]. 

Setting 17 = u- u, we state below in Theorem 3.1 some estimates for ry, 'f/t and 17(l) 

which will be required in the sequel. A proof can be found in Pani et al. [6]. 

Theorem 3.1. Fort E [0, T], the error 'fJ satisfies 

and 

where the generic constant K4 may depend on Ko,K1 and K2. 
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4. A PRIORI ERROR ESTIMATES. 

Let e = uh - u and e = u !!L uh = rt - e with et = s - Sh· In order to maintain a 

uniform degree of approximation, we define Phg = u(.,O), where u is the projection of u 

on to SZ,defined in (3.2). Thus ~(:~;,0) = 0. Before we compare uh and u, we introduce 

the following additional assumptions about u h; namely, there exists a positive constant 

K* ~ 2K1 such that 

(4.1) llluhlll :5 K*, 

where 

Since we shall show that 

• the bound in (4.1) is indeed not a restriction on uh. As a consequence of (4.1), we have 

and hence 

(4.2) 

We now turn to estimate e. 
Theorem 4.1. Assume that (4.1) holds along with the regularity conditions (2.8). Then 

there exists a constant Ks = Ks(Kt,K4,K*) such that 

(4.3) 

for2:5m:5r+l. 

Proof: From (2.9) with v = X and (3.2), it follows that 

s2( tit, x) + (u.,, Xx) -sf( u(1 ))( xii.,, x) = -s2(7]t, x) -sf( u(1 )){u(l) + q]x(1 ). 
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Substracting this last result from (2.10), we obtain 

s2 ( ~t, X) + ( ~x, Xx) = sf( u(l) )( X~x, X) + s[f( u h(l) - f( u(l )))(xu~, X) 

( 4.4) -elf( uh(l))(xu~, x) + e1 (s + sh)( u~, x) + s2(T/t, x) 

+ s[f( uh(l)) - f( u(l ))]( uh(l, t) + q)x(l) + ed( uh(l ))( u"(l, t) + q)x(l) 

+ sf(u(l))(ry(l)- ~(l))x(l). 

In addition, subtraction of (2.11) from (2.6) and multiply the resulting equation by e1 

yields 

(4.5) 
1 d 2 h 
--d !e1! = [f(u (1)- f(u(l))Jel· 
2 t 

From (4.4) with x =~and (4.5), it follows that 

~ ~ [ls\ 2 11~11 2 + le1l 2l + ll~xll 2 ~ K(K1,K*,s)[ll~ll 2 + le1! 2] + 3sllexll 2 

+ K(K1, K*, s)[IIT7tll 2 + lry(l)l 2 ) + K(K*, KI)I~(lW. 

Here, we have used Poincare's inequality and the obvious inequality that ab ~ 21ea2 + ~b2 , 

where a, b 2': 0 with E > 0. To estimate the last two terms, we shall use the inequality 

1~(1)1 2 ::::; 2ll~llll~xll, since~ E HJ. This yields 

~ ~t [Is 1 2 11~11 2 + le1I 2J + (1 - 5c )ll~x 11 2 ~ K( K1, K*, E )[ilrit 11 2 + \ry(l WJ 

+ K(KbK*,s)[ll~ll 2 + ie1l 2). 

Choosing E so that 2(1 - 5s) = (3 1 > 0, we obtain after integration with respect to t 

ls(tWII~(t)ll 2 + le1 (tW+/31 1t ll~x(t')ll 2 dt' ~ K(K1, K4, K*)[h 2m + h4m-4 ] 

+ K(K1, K*) 1t[IIW')II2 + le1(t'WJ dt'. 

Here, we have used the estimates for T/t and ry(l) given in Theorem 3.1. On using Gronwall's 

Lemma with s(t) 2': co, fortE [0, T], we obtain the required result for r 2': 1. 

Remark 4.1. If higher regularity is assumed for the elliptic problem associated with (3.1), 

negative norm estimate for T/t can be derived such as 

(4.6) 
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Consequently, the L 2 estimates for ~ can be improved to be of order hr+2 for r ~ 2. A 

subsequent application of the inverse property gives an estimate for~ in L 00(L 00). 

For an H 1 estimate, we have the following result. 

Theorem 4.2. Let all the assumptions in Theorem 4.1 hold. Then there exists a constant 

K6 = K6(k1, K4, Ks, K*) such that 

(4.7) 

for2:5m:5r+l. 

Proof: Choose x = ~t in ( 4.4) and use Schwartz inequality to obtain 

lsi 2 IIM 2 + ~ ~ ll~xll 2 :5 K1(ll~xll + ll11tll)li~tll + 3K(KI.K*)Ieiiii~tll 
+ K(K1, K*)(lry(1)1 + 1~(1)1)1l~tll 

+ K(Kb K*)(lry(1)1 + 1~(1)1 + lell)l~t(1)1. 

Appealing to the inverse property for the term contain in 1~(1)ll~t(1)1, it follows that 

lsl 2 1l~tll 2 + ~ ~~~~xll 2 :5 5ciiM 2 + K(Kl,K*,c)ll~xll 2 + K(KI.K*,c)[li11tll 2 

+ le1l 2 + lry(1W + h-1(111(1W + 11~11 2 + lell 2 )]. 

Since s ~ c0 , choose c so that 2( c~ - 5c) = fh > 0 and integrate with respect to t. Using 

the estimates in Theorem 3.1, it follows that 

Therefore an application of Gronwall's Lemma gives the desired results for m ~ 2. 

Since llell :5 11~11 + 111111, it follows from Theorems 3.1,4.1 and 4.2 that: 

Theorem 4.3. Let { u, s} be a smooth solution pair of Problem P satisfying the regularity 

conditions (2.8). Further, let the Galerkin approximation {u\sh} satisfy (4.1) and (4.2). 

Then the following estimates hold, for 2 :::; m :::; r + 1, 

(4.8) 

(4.9) 

lleiiL00 (Hi) :5 K1hm-j,j = 0, 1, 

lle111L00 (0,T) :5 K1hm, 
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where K1 = K7(Ko, K1, K4, Ks, ]{6, K*). In addition, for sufficiently small h a.nd m ;:=: 2, 

(4.10) 

and consequently, J( 7 can be chosen independently of]{*. 

Proof: The estimates (4.8) and (4.9) follow from Theorems 3.1, 4.1 and 4.2 using the 

triangle inequality. For the second part, 

IJJuhJJJ:::; IJJuJJJ + I!Je!JJ 

Consequently, for sufficiently small h and for m ;:=: 2, 

which completes the proof. 

Remark 4.2. It follows from Remark 4.1 that 

and 

w·e note that, for the above estimates, higher regularity conditions are needed for the pair 

{ u, s} than the regularity conditions ( 2.8). Further, using superconvergent result for 1Jt(l ), 

it is possible to improve the H 1 estimates of~ to be 

In this way, an optimal error estimate for JJeJJL=(L=) is obtained without using the inverse 

property. 

Now, the Galerkin approximation of U(y, t) is defined to be 

where y = ShX with Sh as in (2.11). 
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Finally, we state below the error estimates in terms of U- Uh. 

Theorem 4.4. For a suitably smootb solution pair {U, s }, 

and 

where n( t) = (o, min( s( t), sh( t)))' and r 2: 1. 

Remark 4.3. In this paper, we have only discussed the continuous time Galerkin method. 

Details about fully discrete schemes and numerical experimentation can be found in Pani 

et al. [6]. 
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