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EXAMPLES IN THE INVERSION OF SEAFLOOR 

MAGNETOTELLURIC DATA 

F.E.M. Lilley and G.S. Heinson 

1 . INTRODUCTION 

Much modern understanding of Earth's interior comes from 

marine geophysics; the study of various physical properties of 

Earth beneath the ocean floor. The present paper concerns a 

recently-developed marine method known as seafloor 

magnetotelluric (MT) measurement. The method, for which new 

interpretational procedures are still being developed, exploits 

the phenomenon of natural electromagnetic induction which occurs 

in Earth on a global scale. Fluctuations in the natural 

electric and magnetic fields are measured on the seafloor, and 

the ratio of the electric signal to the magnetic signal is 

termed the MT impedance. This quantity is frequency dependent, 

complex, a tensor, and a function of the electrical conductivity 

beneath the observing site and of the salt water in the ocean 

above. 

The inversion of such MT data, to obtain electrical 

conductivity values for the material beneath the seafloor, then 

becomes central to determining geophysical information. This 

paper presents and compares inversions of a single data set 
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(derived from actual sea-floor observations) .. by t:our· different, 

and published, method~. The methods ate 'those of Parker's o+, 

o+ layered, Fischer and Le Quang, and Constable et al. Each 

method approaches the inversion problem from a different 

viewpoint, and it is therefore of substantial significance that 

the results of the inversions are in agreement, especially 

concerning those characteristics of most importance to 

geophysics. The agreement gives confidence that such data can 

be inverted to give reliable information on the electrical 

conductivity structure beneath the seafloor. In particular, 

such one-dimensional inversions indicate that an asthenospheric 

layer of partial melt, with high electrical conductivity, at 

depth of order 100 km in the Earth, may be resolvable from 

seafloor magnetotelluric data. 

2. DATA 

The particular example to be studied in this paper comes 

from site TP3 of the Tasman Project of Seafloor Magnetotelluric 

Exploration (TPSME) or Tasman Experiment (Filloux et al. [7 J, 

Lilley et al. [10]). The MT impedance values were obtained by 

Ferguson [ 5] (and see Ferguson et al. [ 6] ) . Site TP3 is at 

geographic position. (38"54 'S, 159"50 'E) in mid-Tasman Sea, 

approximately -half-way between .Australia and New Zealand, as 

shown in Fig. 1. 
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Fig. 1 The location of the seafloor Tasman Project. Site TP3 
is shown in the centre of the Tasman Sea. 

The data inverted in this paper are for the component of 

the MT impedance which corresponds to alignment of the ~lectric 

field along the major axis of the Tasman Sea (approximately 

north-south) . It is this component of the MT impedance which is 

most reasonably inverted on the basis of a one-dimensional 

conductivity structure. 
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3. ONE-DIMENSIONAL INVERSION 

For the problem of -an electrically conducting layered half

space, the relationship between the observed magnetotelluric 

quantities and the unknown conductivity profile is non-linear. 

This consequence of the physics of electromagnetic induction 

renders the magnetotelluric inverse problem non-linear, and 

raises many important points in its execution (see, for example, 

Anderssen [1], [2]). 

To introduce the actual inversions carried out in this 

paper, it is instructive to first review the mathematical 

questions of a) existence of solutions, b) uniqueness, and c) 

construction of a suitable model. 

3 .1 Ex:ist&nce 

It is necessary to decide whether a given data set i.s 

compatible with a mathematical model, in this case the model of 

electromagnetic induction in a one-dimensional conductivity 

structure. The question of existence concerns finding any model 

which can adequately satisfy the observations. Weidelt [15] 

expressed the conditions necessary for existence in nineteen 

inequalities involving the real and imaginary parts of a 

frequency-dependent complex parameter c(ro), defined 

c (ffi) = -Ex/ (iroBy) 
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where Ex and By are the measured components of electric and 

magnetic field (orthogonal to each other), ro is the frequency, 

and i = ...r-:1. Weidelt [15] expressed c (ro) as a Stieltjes 

integral 

c(ro) 
00 

f da 0-> I (A + iro) 

0 

Parker [11], [12] used a discrete formulation of c (ro), 

00 

( 1) Cj J da (A) I (A + iroj) j 1,2, N 

0 

where the ffij are N discrete angular frequencies. It can be 

shown that if there are any solutions to equation (1) there must 

be one in which a(A) consists of a function which is constant 

except at J points of discontinuity, and J ~ 2N. In practice, 

the integral is approximated by a summation. If a solution does 

exist, then there will be one which generates a conductivity 

profile as a series of delta functions, 

(2) 0" ( z) k 1,2, . . . J 

where z is depth into Earth, ~k is the electrical conductance of 

the spike at z = Zk, and 8(z - zk) is a delta function at z = Zk· 

This class of solution is called o+ and its existence is thus a 

necessary and sufficient condition for the existence of a 

solution of the inverse problem, for some given set of data. 
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The question of acceptable agreement between theory and 

observation must be conside.red. Parker [12] introduced a chi-

squared misfit, in which if Fj are the model values and Dj are 

observations with independent Gaussian random variances at N 

discrete frequencies, then 

(3) 
N 
L (D·- FJ·) 2 /s2J. 

j=1 J 

where Sj is the uncertainty of Dj. The problem of existence is 

then reduced to finding the model with X2 as small as possible; 

if this model is considered unacceptable, in that its misfit is 

too large, then no other model will be compatible with the data. 

Parker and Whaler [13] adapted the existence theory for 

noisy data, minimizing a function 

N oo 

.I. I Cj - f da (A) 1 (A + iroj)j2;s~ 
]=1 0 

The importance of the papers by Parker [11] and Parker and 

Whaler [13] is that they show that the o+ model has the smallest 

possible x2. Thus, if a o+ model cannot satisfy some observed 

data, then no other model will be able to. 

3.2 Uniqueness 

If the response of a one-dimensional model is compatible 

with a set of observed data, it is pertinent to ask what other 
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models could also accomplish this feat. Bailey [3] showed that 

for exact data at all frequencies, a solution, if it exists, is 

unique. 

A 95% confidence limit on the misfit between predicted and 

observed data was introduced by Parker [11] as an "acceptable" 

level of misfit, dependent on the number of data poin.ts used. 

That is to say, the response of a model could misfit each data 

point by two standard deviations of the number of data points 

and still be considered acceptable. Such 95% confidence limits 

may seem a low level of accuracy, however, it is important that 

the data not be "over-fitted" by a conductivity structure which 

is not supported by the humber of observations. For N discrete 

observational frequencies, the 95% confidence limit on the chi

squared misfit is taken as 

(4) N + 2m 

If the misfit from the o+ model is less than this value of 

x2 ' then an infinite number of models will be compatible with 

the observed data. If it is larger, then no model exists which 

will fit the data satisfactorily. This problem is that of non

uniqueness. 
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Fig. 2 a) The basic MT data to be inverted are plotted as 
error bars, with the response of the model in Fig. 2b 
superimposed as lines. b) The n+ model obtained by inverting 
the observed data of Fig. 2a. 
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3.3 o+ model for MT data 

Figure 2 illustrates the data set described in section 2, 

and the result of a o+ inversion performed on this data set, 

using Parker's algorithm. A statistical X2 misfit between the 

response of the model (solid line) and the observed data (error 

bars) gives a value of 267. The MT parameters of .apparent 

resistivity and phase are calculated at 14 frequencies, and 

while these parameters are not strictly independent of each 

other, in practice, with noisy data, they are usually taken to 

be so. The 95% confidence limit for this set of data, with an N 

of 28, should be 43. Hence the observed data are not fitted 

well, and it must be concluded that no one-dimensional model is 

compatible with the observed data at this site. Ferguson [ 5] 

attributed this phenomenon to electromagnetic induction in the 

Tasman Sea. 

The o+ model in Fig. 2b is however the best model 

obtainable for the data, and its response is shown in Fig. 2a as 

continuous lines. 

4. CONSTRUCTION OF MODELS 

This section deals with the construction of a suitable one-

dimensional model which, if it <exists, provides geophysical 

information. The lack of uniqueness of solutions means that 

there is always a degree of arbitrariness about any general one-
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dimensional model, and this factor ~may, pl~ce reservat:..i.:ons··.on. the 

usefulness of the. model for geophysical interpretation .. 

Models should, as a rule, be kept as simple as possibl~; 

however the idea of simplicity may be subjective. One school of 

thought,. regards solutions consisting of a small number of layers 

separated by d:i,~continuities p.s being simple. Alternatively, 

smoothly varying models with smooth gradients are preferred by 

some geophysicists. There is independent geophysical evidence 

to suggest that dis.continuous layered models are appropriate for 

the upper crust, while deeper in the Earth, where temperatures 

primarily influence electrical conductivity, the changes will be 

relatively smooth. 

4.1 Layered models from o+ 

A simple layered model may be constructed directly from a 

o+ model, by taking the spikes which are. of infinite 

conductivity but finite . conductance, and distributing their 

conductances over suitable depth ranges. 

Figure 3 shows a layered profile thus constructed from the 

o+ model of Fig. 2. In this case the depth range over which a 

spike cond-uctance i$ .uniformly distributed is taken to be the 

mid~ay points between a spike and its upper and lower 

neighbours. For the uppermost spike, the distance halfway to 
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A layered model constructed from the o+ model in Fig. 

the surface is used, and for the bottom spike, half the distance 

to the perfect conductor. Smith and Booker [14] found that such 

simple layered models were a satisfactory inversion of synthetic 

data. 

4 . 2 Layered Models of Fischer and. Le Quang 

Fischer and Le Quang [8], [9] proposed an elegant layered 

modelling scheme, in which the least number of layers required 

to adequately model a set of data is found by a systematic 

search procedure. For that desired minimum number of layers, 

the best-fitting model is sought by a ridge regression scheme. 
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Fig. 4 a) Fischer and Le Quang results for a series of 
layered start models. The six-layer model shows the best 
misfit, whilst not introducing unnecessary layers that are not 
required by the data. b) The resulting six-layer model from 
Fischer and Le Quang's modelling scheme. 
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An arbitrary starting model of a fixed number of n layers 

is first constructed, with (2n ~ 1) parameters of thickness and 

conductivity (as the bottom layer is always indefinitely thick) . 

A ridge regression search is then undertaken in parameter space, 

so that the optimum parameters are found. The resulting 

conductivity profile will have ~he minimum chi-squared misfit 

with the observed data, for that number of layers. Checks are 

made to ensure that a global and not a local minimum has been 

located by the search routine. 

By altering the number of layers in the start model, the 

resulting misfit may be examined. Figure 4a illustrat.es this 

relationship for the data set of this paper. The model w~th the 

chosen number of layers must show a significant improvexnent :i,n 

chi-squared misfit over models with less layers, but 

insignificant improvement over models with more layers. A 

statistical technique 1 such as an F-Test, may be used to 

quantify such a judgement. Thus, in Fig. 4a, a six-layer model 

is chosen as the simplest model to fit the data adequately; and 

this six-layer model is shown in Fig. 4b. 

4. 3 Smooth models 

A very different approach to the problem of determining a 

simple model has been developed by Constable et al. [4]. This 

modelling scheme is known as "Occam inversion", after the 
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William of Occam ideal of simplicity (as expressed in "Occam's 

razor"). The line of thought followed is that as layered models 

rely on parameterization, such parameterization must be 

appropriate be£ore a layered-model solution will reflect true 

Earth structure. Further, excessively complex parameterization, 

as might be suggested generally by geological well-logging for 

example, may not be constrained by the observed data in any 

particular instance. The objective is therefore to construct 

models which reflect the limitations of the observing 

experiment. 

Constable et al. [4] allow their model to be as flexible as 

possible, but the complexity is suppressed explicitly by 

defining a term (R1l known as the roughness of the model, 

(5) 
00 

J (dm(z)/dz)2 dz 
0 

where m(z) is the electrical resistivity or its logarithm. The 

strategy is to find the solution agreeing with the measurements 

which has some desired level of roughness, a procedure of 

regularization which is common in the solution of ill-posed 

problems. 

The roughness in the present case can be written in the 

discrete form, for n layers, 

(6) 
n 
I <mi - mi-1> 2 

i=2 



135 

and for N observations D1, D2, .... DN with associated errors Sj 

the chi-squared misfit can be written as in equation (3) 

(7) 
N 

x2 = L (Dj- Fj(m)) 2 /s~ 
j=l 

where the model value Fj(m) is written as a functional of the 

geophysical structure. 

The optimisation proceeds by first defining a desired level 

of misfit, x*2. The constraint equation on the misfit is 

rearranged to form an expression equal to zero, which is then 

multiplied by a Lagrange multiplier, and added to the roughness 

value R1, which must also be minimized. 

The original function is a minimum where the new one, U, is 

stationary without constraint. This circumstance may be 

expressed 

(8) u 

where 1/~ is the Lagrange multiplier. For any value of m, this 

funct.i,onal q:f m is stationary when VmU the gradient of U with 

respect to m, vanishes. The Lagrange multiplier must be 

selected so that the desired x2, namely x*2, is obtained. 

The quantity ~ may be regarded as a smoothing parameter. As 

~ tends to zero, the roughness is of little significance and the 

solution will attempt to satisfy the observed data at the 

expense of smoothness. When ~ is large, the solution is 
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Fig. 5 a) Trade-off curve between the tolerance (reckoned as 
the normalized chi-squared misfit) and the corresponding 
roughness, for Occam inversion of the MT data. b) Resulting 
Occam inversion of the MT data. 
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influenced little by the data misfit, and the resulting profile 

is very smooth {in the limit, a uniform half-space). 

Figure 5 illustrates an Occam inversion for the MT data 

described in section 2. Sixty discrete layers, increasing in 

log thickness, form a starting model. Idea·lly the desired level 

of misfit X*2 could be set at the 95% confidence limit for the 

number of data points, however the o+ inversion in section 3.3 

showed that no one-dimensional model was compatible with the 

data. Thus some higher level of misfit must be chosen. A 

trade-off curve between desired misfit and roughness· can be 

constructed and is shown for the present in Fig. Sa. 

As the desired misfit is reduced, the roughness is 

increased. If the thickness of the layers tends to zero, the 

smallest misfit will correspond to the o+ model. At the other 

extreme, with large desired misfits, the roughness tends to 

zero, and the model to a uniform half space. 

The Occam model presented in Fig. Sb falls somewhat 

arbitrarily between these two extremes. Although smooth models 

are mathematically correct and avoid the a priori 

parameterization of layered models, they can be bland, and offer 

little insight into the geoelectric structure of Earth. 

Electromagnetic energy obeys the diffusion equation in the 

Earth, so that the effects of sharp geophysical boundaries will 

be smoothed over some depth scales. It is for this reason that 
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smooth models are perhaps the best interpretation of the 

information which can be recorded at Earth's surface. 

5. CONCLUSIONS 

The dichotomy between the philosophies of layered and 

smooth models cannot easily be resolved. The best approach 

appears to be to perform both types of modelling, and compare 

the information each provides. Good agreement will indicate 

features which are required by the data, as opposed to features 

which are artifacts of a modelling algorithm. 

Figure 6 shows superimposed the results of the four 

inversions: o+ I layered o+, minimum layers, and Occam. The 

agreement is generally excellent and shows the relative 

strengths of the different techniques. It is interesting to 

note that o+, which is physically unrealistic (specifying spikes 

of conductivity), nevertheless provides a layered model which is 

consistent with the others. 

In geophysical terms the set of inversions indicates the 

electrical conductivity of the upper mantle to be less than 

10-2.5 S.m-1 down to depth 100 km. Below that depth an increase 

in conductivity commences of some two orders of magnitude. 

There is then a reduction in conductivity again before a deeper 

increase to greater than 10' S.m-1 at depth 500 km. Beyond this 

depth the method does not penetrate. 
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Four Different Inversions 

102 
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Fig. 6. The models obtained by the four different inversion 
procedures superimposed for comparison. These are the models 
presented individually in Figs 2b, 3, 4b and Sb. 

The deeper increase is found commonly in global analyses of 

magnetic variation data, while the increase which commences at 

depth of order 100 km may be more local to the Tasman Sea 

region. Such a feature may be of major significance to 

geophysics, as it occurs in the depth range of the postulated 

asthenosphere, a zone in the Earth of reduced shear strength. 

That such a zone might be indicated by high electrical 

conductivity has been a major driving factor in seafloor 

magnetotelluric studies. 
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The inversion exercises presented in this paper have been 

on the basis of one-dimensional structure. That the original 

data set did not satisfy the one..,.dimensional criterion set up 

for it is an example of the commonplace nature of such 

departures of observed data from ideal models. In the wider 

study of the magnetotelluric inverse problem, understanding and 

allowing for more complicated induction geometries is a major 

present frontier. "Thin-sheet" modelling of ocean effects is 

one line of research currently being actively pursued. 
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