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FINITE ELEMENT METHODS FOR IDENTIFICATION 
OF PARAMETERS IN PARABOLIC PROBLEMS 

A.K.Pani and R.S.Anderssen 

!.INTRODUCTION 

In the present paper, we examine finite element Galerkin methods for the identification 

of unknown parameters in parabolic partial differential equations, and derive a number of 

optimal error estimates. In the first part of the paper, we consider the problem of finding, 

for a homogeneous material, a control parameter p(t), along with the temperature distri­

bution U(x,t), which yields a specified energy trajectory E(t) (see (1.4) below) pescribed 

on the whole of its spatial domain. The corresponding model gives rise to the following 

inverse problem: find p(t) and U(x, t) such that 

(1.1) 

(1.2) 

(1.3) 

Ut- Uxx + p(t)Ux = Jcx, t), (x, t) E (0, 1) X (0, T], 

U(x,O)=U0 (x), xE[0,1), 

U(O, t) = ft(t), U(1, t) = 12(t), t E [0, T] 

along with the over-specificed total internal energy condition 

(1.4) 11 U(x,t)dx = E(t), t E [O,T], 

where 1, ft, 12, Uo and E are given functions of their arguments with 12 - 11 -:f 0. 

In the literature, output error criteria procedures are regularly proposed and analysed 

(Banks and Kunish [2]) for the solution of inverse problems, including ones like that which 

is formulated above. The basis for such indirect approaches is optimization: the closeness 

(defined by a given objective function) with which computed estimates can be matched 

with observations of measurable quantities is minimized with respect to some admissable 

class of control parameters. Least squares is often used to define the closeness (objective 

function). The resulting methods are referred to as least squares output error criteria 

procedures. 
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Such procedures are not difficult to implement (Anderssen [1]), since computationally 

they reduce to the repeated solution of some underlying forward problem, and to analyse 

theoretically (Banks and Kunish [2]). However, such procedures have their drawbacks 

which includes: 

(i) The essential improperly posedness of the underlying inverse problem is now em­

bedded in the optimization. This is reflected in the fact that the required solution 

will be the global optimum of a multimodal objective function, with the nature of 

the multimodality a reflection of the degree of the improperly posedness. 

(ii) Even if the objective function is not too wild in its behaviour, some iterative pro­

cedure (gradient like search) will be needed to minimize the closeness numerically. 

This will tend to be time consuming computationally. In addition, there will be no 

a priori criteria for determining when the iteration process should be stopped (e.g. 

no estimate of the global order of convergence). 

(iii) Though each step in the iteration will reduce to the solution of some forward problem 

(with respect to the current choice for the control parameter), this will involve the 

numerical solution of some partial differential equation. 

Thus, there is a clear need to minimize the number of steps in the iteration as well 

as reduce the range of the global search. One way this can be achieved is to obtain an 

independent initial estimate of the structure of the control parameter. This is the point 

of focus of the present examination; namely, the construction of direct non-iterative nu­

merical procedures. The basic technique used in this paper is to transform the parameter 

identification problem into a non-classical forward problem, weakly coupled with a func­

tional equation in the control parameter. In most cases, the coupling is such that the 

forward problem can be solved independent of the unknown parameter. 

Existence, uniqueness and regularity results for a more general problem than (1.1)-(1.4), 

in its non-classical setting can be found in Cannon and Yin [3]. Cannon and Yin [4] have 

discussed a Galerkin method for a more general problem like the one in Section 3, when 

Ux is replaced by v. Even for the simplest case as in (1.1)-(1.4), their analyses would 

not establish optimal order of convergence in L=(L2 ) for v. Using the auxiliary Ritz 
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-projection technique of Wheeler [9], it is possible to recover optimality in the L00(L2 ) 

norm for v. But, this does not yield the optimality for u in the L 00(L2 ) norm. This is 

where negative norm estimates must be used for v, as well as a superconvergent result for 

v at the end points. 

In the second part of the paper, we consider the more general problem examined by 

Cannon and Yin [4]. Unlike the previous result, there is now a strong coupling between 

u and v, so it may not be possible to derive negative norm estimate for v. Therefore, we 

need a more general formulation, which takes care of the nonlinearity and yields optimal 

estimates for u in the L 2 norm in a more natural way. It is in this context that we introduce 

an H 1- Galerkin method. Through out this paper, K is taken to be a generic positive 

constant, whose dependence can be traced from the proofs. 

2. NON-CLASSICAL FORMULATION AND ERROR ESTIMATES 

Differentiate E(t) with respect tot and use equations (1.1) and (1.3) to obtain 

(2.1) p(t) = [Ux(1)- Ux(O)] ~ J: !(x,t)dx- E'(t)' 
h-h 

where E'(t) = ftE(t). Define 

u(x, t) = U(x, t)- [(1- x)fr(t) + x/2(t)], 

so that u(x, t) = 0, at x = 0 and 1. Using this transformation, (1.1)-(1.4) can be rewritten 

in the non-classical form 

(2.2) 

with 

where 

Ut - Uxx + g( t)( Ux(1) - Ux(O) + h( t))ux 

= -(ux(1)- ux(O))- f(x, t), (x, t) E (0, 1) X [0, T], 

1 
g(t) = ----' 

h-h 

u(x,O) = uo(x), 

h(t) = 11 J(x,t)dx- E'(t), 

f(x, t) = -J + (1- x)f{ + xf~ + h(t), uo(x) = Uo(x)- (1- x)/1(0)- x/2 (0). 
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vVe now introduce the function 

v(x, t) = ·ux(x, t), (x, t) E (0, 1) X [0, T], 

where u is a solution to the problem (2.1 )-(2.2). In order to construct a weak formulation 

for v, we form the inner product of (2.2) with Wx, and integrate the first as well as the 

third terms in the left hand side by parts with respect to x to obtain 

(vt,w) + (vx,wx) + g(t)[v(1)- v(O) + h(t)](vx,w) 

(2.3) = [v(l) - v(O)]( w(1) - w(O)) + (!, wx), t E (0, T], 

with 

(v(O), w) = (ux(O), w). 

The Galerkin Procedure. Let Sh be a finite dimensional subspaces of H 1 belonging 

to the S~' 1 family (for a definition, see Oden and Reddy [8]), and satisfying the following 

approximation and inverse properties: 

(i) For <ft E Hm(I) and mE [1, r + 1], 

inf II<P- xllj s I<hm-jii<PIIm, j = o, I. 
xESh 

(ii) For X E Sh, 

The mapping vh : (0, T] r-+ Sh is called a Galerkin approximation of v, if it satisfies 

(v;,x) + (v~,Xx) + g(t)[vh(1)- vh(O) + h(t)](v~,x) 

(2.4) = [vh(1)- vh(O)](x(1)- x(O)) + (f,xx), X E Sh, t E (0, T], 

along with the initial condition 

(2.5) 

where ph is an appropriate projection of Ux(O) on to sh, to be defined below. Since sh 

is finite dimensional, the equations (2.4) and (2.5) yield a system of nonlinear ordinary 

differential equations. It has a unique local solution. In order to establish the existence of 

a unique Galerkin approximation v" in a neighborhood of v, as well as in the domain of 

v, one can invoke the fixed point analysis given in Pani and Das [5]. 
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Set 

A(u; v, w) = (vx, wx) + g(t)[u(l)- u(O) + h(t)](vx, w), u E L00(I), v, wE H 1 • 

The bilinear form A( u; ., • ) satisfies the following properties 

JA(u;v,w)J ~ KllvlbllwJb, u E L00(I), v and wE H 1 , 

and 

where K,M and pare positive constants with]{ and p depending on llullv"'(l)· 
Define 

Ap(u;v,w) = A(u;v,w) + p(v,w), 

so that Ap is coercive in H 1 ; that is, 

Ap( u; v, v) ~ MJJvlli. 

Following Wheeler [9], we define an auxiliary projection v with respect to the form Ap; 

namely, 

(2.6) 

An application of the Lax-Milgram Lemma now establishes the existence of a unique 

solution v in S h • 

Let rt = v-v and~= vh-v. With the assistance of the Aubin-Nitsche duality argument, 

it is not diffucult to prove the following error estimates for fl· 

Lemma 2.1. .Fort E [0, T], the error rt satisfies 

and 

lrt(x )I ~ Kh2(m-l), x = 0, 1, 
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f~rm E [l,r+l]. 

From the above estimates, the following result is easily derived 

Here the dependance of K 1 can be easily traced. 

Error Esti:m:ates. Let e = v-vh = 17-e, and choose Phu.,(O) = v(., 0) so that e(x, 0) = 0. 

Here we state the following inequalities, which will be used to derive a priori error estimates 

and 
' f • • 1 

I<P(xo)l :::; II<PII + hii<PII~ II <Pili, 

for <P E H 1 and xo = 0, or 1. 

We are now in a position to state a superconvergent result for e. 
Theorem 2.2. Form E [2, r + 1], 

and 

Proof: Assume that, forK*> 2Kt, 

(2.7) 

From (2.3), (2.4) and (2.6), we obtain 

({t, X)+ (e.,, Xx) + g(t)[vh(l),- vh(O) + h(t)](e.,, X)= (1Jt, X)- g(t)(e(l)- e(O))(v.,,x) 

(2.8) + g(t)(17(1) - 17(o))(v.,, x)- p(r,, x) 

+ (1J(l) -'T](O))(e(l)- Wl))- (e(l) :..._ eco))2 • 
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Choose x = e in (2.8). The boundedness and coercivity .of Ap, along with the two inequal­

ities introduced above, yield 

The first estimates follow on integration with respect to t and using Gronwall's Lemma 

with the estimates for rJ given in Lemma 2.1. For the -second estimate, we set X = et in 

(2.8). Using the standard estimates as for the first result, we obtain the second. 

As far as (2. 7) is concerned, using inverse property we note that for sufficiently small h, 

llvhiiL00 (0,T;L 00 (l)) ~ lleiJLoo(o,T;Loo(I)) + lliiJI£oo(o,T;L00 (I)) 

~ K(K*)hm + K1 ~ 2K1 < K*. 

Therefore (2. 7) holds for sufficiently small h and this completes the proof. 

We define the Galerkin approximations uh and ph of u and p by 

and 

respectively. 

u~ = vh, (x,t) E I x (O,T], 

ph(t) = [vh(1)- vh(O)] ::- J: !(x, t)dx- E'(t), 

h-h 

The final error estimates are stated in the following Theorem. 

Theorem 2.3. Form E [2, r + 1], 

and 

t E [O,T], 

Remark 2.1. From Theorem 2.2 and Lemma 2.1, it follows that optimal estimates hold 

fore in the L00(L00 ) and the L00(H1 ). A slightly more refined analysis shows that the 

inverse property can be circumvented. 
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Fully Discrete Schemes. Let us define a fully discrete Galerkin procedure, based on 

the backward differencing in time. Let k > 0, ( 1)[) E Z and tn = nk, for n = 0, 1, ... N. 

Further, let <fn = <f(x, tn) and dt<fn = (.pn+~-.pn). Denote the time discretization of vh by 

V : { t0, t 1 , ... , tN} >-+ Sh and vn+l as the solution of the following discrete equation 

(2.9) 

with 

The error estimates for the fully discrete scheme (2.9) as well as for the parameter at 

t = tn are given in form of a Theorem. 

Theorem 2.4. Form E [2, r + 1] and for k = o( h), 

and 

where 

z; = vn, X E I 

and 

3. ERROR ESTIMATES FOR MORE GENERAL PROBLEMS 

In this section, we consider the following generalization of (2.1), (2.2) and (1.2) 

(3.1) 

(3.2) 

(3.3) 

Ut- a(x,t,u,ux;ux(xo,t))uxx = b(x,t,u,ux;ux(xo,t)), (x,t) E I X (O,T], 

u(x,O)=uo(x), xEI, 

u(O, t) = 0, and u(1, t) = 0, t E [0, T], 

where Xo E [0, 1] is a fixed point. 
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The framework of (3.1)-(3.3) includes the nonclassical formulation of a large class of 

parabolic inverse problems (see, for example, Cannon and Yin[3]). For most of these 

problems, the unknown parameters depend on the gradient of the solution at certain fixed 

points in their functional equation settings. Therefore, it is important to recover the 

superconvergent results for the gradient in order to achieve optimal rates of convergence 

for the unknown parameters. 

We shall now state our main assumptions on the coefficients and also on the solution 

and call them collectively condition R. 

Condition R. 

(i) For (x, t) E I x [0, T], [u[ S: I<, p E R 1 , and [q[ S: I<, 

a(x,t,u,p;q);::::: ao(K), 

where ao is a positive constant depending on K. 

(ii) The functions a and b are such that a E C 3 and b E C1 . Furthermore, they are 

bounded along with their respective derivatives by a common constant C(K) with K as 

in (i). 

(iii) There exists a smooth unique solution u to the problem (3.1)-(3.3) in I x [0, T]. 

The existence, uniqueness and regularity conditions given below are based on those of 

Cannon and Yin [3]. 

Regularity Conditions. For r ;::::: 1, 

As in the previous section, it may not be possible to obtain a negative norm estimate for v 

in order to achieve an optimal error estimate in L00(L2 ) for u. Therefore, we apply an H 1-

Galerkin method in order to tackle the nonlinearity and to obtain the required optimality. 

The only result available in the literature is due to Pani and Das {6] regarding an H 1-

Galerkin method for a quasilinear parabolic equation with the coefficients depending on 

u. Hence, the present work has an added significance. 
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To construct a weak formulation, we multiply both sides of (3.1) by Wxx and integrate 

only the first term on the left hand side with respect to x to obtain 

for w E H 2 n HJ. 

Let Sh be a finite dimensional subspace of H 2 n HJ with the following approximation 

and inverse properties: 

(i) For <P E Hm(I) n HJ and mE [2, r + 1], 

(ii) For X E Sh, 

The mapping uh : (0, T] f-+ sh is called an H 1- Galer kin approximation of u, if it satisfies 

along with 

where Qh is an appropriate projection to be defined below. 

For the global existence of a Galerkin approximation uh in [O,T], we refer to Pani et 

al. [7]. If there is no confusion, we simply write a(u), b(u) to represent the coefficients in 

(3.1). 

A priori Error Estimates. We now introduce the following form 

for u E W 2,oo and v,w E H 2 n HJ. Here ap(u) = ~a(x,t,u,p,q). 
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It is an easy matter to show that 

and 

A(u;v,v) ~ allvll~- Pllvlli, 

for u E W 2 •00 , v and wE H 2 n HJ. Here, the constants K, p may depend on llullw2.=. 
Furthermore, define 

Ap(u; v, w) = A(u; v, w) + p(vx, wx)· 

Note that AP is coercive in H 2 n HJ. 
Let u be an approximation to u with respect to the form Ap; i.e., 

Ap(u;u- u,x) = 0, X E Sh· 

We obtain the following error estimate for Tf = u- u (see Pani et al. [7]). 

Lemma 3.1. FortE [0, T] and mE [2, r + 1], 

and for any fixed xo E [0, 1], 

ITJx(xo)l :S: KhZ(m-Z). 

Further, 

Set Qhuo as the solution of 

Clearly, uh(x,O) = u(x,O). 

Let ~ = uh- u and e = u- uh = 1]- ~- We now state the following superconvergent 

results for ( 
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Theorem 3.1. FormE [4, r + 1], 

and 

For a detailed analysis, see Pani et al. [7]. The resulting error estimates are stated in 

the following Theorem. 

Theorem 3.2. Let u satisfy the regularity conditions R. Further, let uh be the unique 

approximate solution of (3.5). Then the following estimates hold formE [4, r + 1] 

ileliL=(Hi):":::Khm-j, j=0,1,2, 

and 

Retnark 3.1. The functional equations in the unknown parameters usually involve the 

gradient at some fixed points. But the superconvergent result in Theorem 3.2 allows one 

to obtain optimal estimates for the parameters. 

Let us define a fully discrete Galerkin procedure based on a linearised modification of 

the backward differencing in time which is only first order accuracy in temporal variable. 

Denote the time discretization of u h by the mapping z : { t0 ' t 1 ' ... ' tN} f-+ s h and zn+ 1 

as the solution of the following discrete equation 

(3.6) 

We note that higher regularity is needed for the solution u in order to achieve optimal 

error estimates. Below we shall only state the final error estimates for the fully discrete 

Galerkin scheme. 
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Theorem 3.3. FormE [4, r + 1] and k = o(h), 

sup IIZn- u(tn)lli:::; K(hm-j + k), 
n 

and 

sup{IIZn- u(tn)IIL= + IZ;,'(xo)- ux(tn, xo)l}:::; K(hm + k). 
n 

Remark 3.2. For optimal error estimates, C 1 cubic splines or better are needed. Since 

the evaluation of gradient plays an important role, we may consider both u and its gradient 

v = Ux of (3.1)-(3.3) as primary variables and apply an H 1-Galerkin method to the system 

as follows: find a pair { u, v} E HJ x H 1 such that 

and 

A finite element error analysis for the above system, along with numerical results, will be 

pursued elsewhere. 
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