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Preface 

Most of numerical analysis relies on algorithms for performing calculations on 
matrices and vectors. The operations most needed are ones which solve systems 
of linear equations, solve least squares problems, and eigenvalue and eigenvector 
calculations. These operations form the basis of most algorithms for solving systems 
of nonlinear equations, numerically computing the maximum or minimum of a function, 
or solving differential equations. 

The Meschach library contains routines to address all of the basic operations for 
dealing with matrices and vectors, and a number of other issues as well. I do not claim 
that it contains every useful algorithm in numerical linear algebra, but it does provide a 
basis on which to build more advanced algorithms. The library is intended for people 
who know something of the 'C' programming language, something ofhow to solve the 
numerical problem they are faced with (which involves matrices :md/or vectors) but 
don't want to have the hassle of building all the necessary operations from the ground 
up. I hope that researchers, mathematicians, engineers and programmers will find this 
library makes the task of developing and producing code for their numerical problems 
easier, and easier to maintain than would otherwise be possible. 

To this end the source code is available to be perused, used and passed on without 
cost, while ensuring that the quality of the software is not compromised. The software 
is copyrighted; however, the copyright agreement follows in the footsteps of the Free 
Software Foundation in preventing abuse that occurs with totally "public domain" 
software. 

This is not the first or only library of numerical routines in C. However, there are 
still a number of niches which have not been filled. Some of the currently available 
libraries are essentially translations of Fortran routines into C. Those that attempt to 
make use of C's features usually address a relatively small class of problems. There is a 
commercial package of C++ routines (and classes) for performing matrix computations, 
and NAG and llviSL are producing C versions of their libraries. None of these is "public 
domain". 

The Meschach library makes extensive use of C's special features (pointers, mem
ory allocation/deallocation, structures/records, low level operations) to ease use and 
ensure good performance. In addition, Meschach addresses the need for both dense 
and sparse matrix operations within a single framework. 

There is another issue which needs to be addressed by a matrix library like this. 
At one end, libraries that are essentially translations from Fortran will make little 
use of memory allocation. At the other end, interactive matrix "calculators" such as 
MATLAB and MATCALC use memory allocation and garbage collection as a matter 
of course and have to interpret your "program". This latter approach is very flexible, 
but resource hungry. These matrix calculator programs were not designed to deal with 
large problems. 

This matrix library is intended to provide a "middle ground" between efficient but 
inflexible Fortran-style programs, and flexible but resource hungry calculator/interpreter 
programs. When and how memory is allocated in Meschach can be controlled by us-
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ing the allocation/deallocation and resizing routines; result matrices and vectors can 
be created dynamically when needed, or allocated once, and then used as a static array. 
Unnecessary memory allocation is avoided where necessary. This means that proto
typing can often be done on MATLAB or MATCALC, and final code can be written 
that is efficient and can be incorporated into other C programs and routines without 
having to re~write all the basic routines from scratch. 

This documentation describes Meschach 1.2 which has a number of improvements 
over previous versions of Meschach. Amongst these improvements are: 

• easier installation (at least on Unix machines). 

• complex numbers, vectors and matrices, including complex matrix factorisation. 

• band matrix structures, and band factorise and solve routines. 

• better control of static workspace arrays. 

e' more iterative methods for large, sparse or structured matrices, and a compre
hensive "iteration" data structure. 

• more consistent naming schemes. 

• matrix polynomials and exponentials. 

• extensible error handling. 

Finally, we would like to thank all those at the University of Queensland Math
ematics Department, at Opcom, and at the Australian National University for their 
interest in and comments on this matrix library. In particular, we would like to thank 
Martin Sharry, Michael Forbes, Phil Kilby, John Holt, Phil Pollett and Tony Watts 
at the University of Queensland, and Mike Osborne, Teresa Leyk at the Australian 
National University and Karen George from the University of Canberra. Email has 
become significant part of work, and many people have pointed out bugs, inconsis
tencies and improvements to Meschach by email. These people include Ajay Shah of 
the University of Southern California, Dov Grobgeld of the Weizmann Institute, John 
Edstrom of the University of Calgary, Eric Grosse, one of the netlib organisers, Ole 
Saether of somewhere in Norway, Alfred Thiele and Pierre Asselin of Carnegie-Mellon 
Univeristy, Daniel Polani of the University of Mainz, Marian Slodicka of Slovakia, 
Kaifu Wu of Pomona, Hidetoshi Shimodaira of the University of Tokyo, Eng Siong of 
Edinburgh, Hirakawa Rui of the University of Tokyo, Marko Slyz of the University of 
Michigan, and Brook Milligan of the University of Texas. This list is only partial, and 
there are many others who have corresponded with me on details about Meschach and 
the like. Finally my thanks go to all those that have had to struggle with compilers and 
other things to get Meschach to work. 

David E. Stewart & Zbigniew Leyk, Canberra, Australia, 1993 
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Chapter 1 

Tutorial 

In this chapter, the basic data structures are introduced, and som~ of the more basic 
operations are illustrated. Then some examples of how to use the data structures and 
procedures to solve some simple problems are given. The first example program is a 
simple 4th order Runge-Kutta solver for Ordinary Differential Equations. The second 
is a general least squares equation solver for over-determined equations. The third 
example illustrates how to solve a problem involving sparse matrices. These exam
ples illustrate the use of matrices, matrix factorisations and solving systems of linear 
equations. The examples described in this chapter are implemented in tutorial. c. 

While the description of each aspect of the system is brief and far from compre
hensive, the aim is to show the different aspects of how to set up programs and routines 
and how these work in practice, which includes I/0 and error-handling issues. 

1.1 The data structures and some basic operations 

The three main data structures are those describing vectors, matrices and permuta
tions. These have been used to create data structures for simplex tableaus for linear 
programming, and used with data structures for sparse matrices etc. To use the system 
reliably, you should always use pointers to these data structures and use library routines 
to do all the necessary initialisation. In fact, for the operations that involve memory 
management (creation, destruction and resizing), it is essential that you use the routines 
provided. 

For example, to create a matrix A of size 3 x 4, a vector x of dimension 10, and a 
permutation p of size 10, use the following code: 

#include "matrix.h" 

main{) 
{ 

MAT *A; 
VEC *x; 
PERM *p; 
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} 

A= m_get(3,4); 
x = v_get(10); 
p = px_get(lO); 

CHAPTER!. TUTORIAL 

This initialises these data structures to have the given size. The matrix A and the 
vector x are initially all zero, while p is initially the identity permutation. They can 
be disposed of by calling M_FREE (A) , v _FREE { x) and PX_FREE ( p) respectively 
if you need to re-use the memory for something else. The elements of each data 
structure can be accessed directly using the members (or fields) of the corresponding 
structures. For example the (i,j) component of A is accessed by A->me [i] [j], xi 

byx->ve[i] andpibyp-:>pe[i]. 
Their sizes are also directly accessible: A- >m and A- >n are the number of rows and 

columns of A respectively, x->dim is the dimension of x, and size of pis p->size. 
Note that the indexes are zero relative just as they are in ordinary C, so that the index 
i in x- >ve [ i] can range from 0 to x- >dim- 1. Thus the total number of entries of 
a vector is exactly x- >dim. 

While this alone is sufficient to allow a prograrnmer to do any desired operation 
with vectors and matrices it is neither convenient for the programmer, nor efficient 
use of the CPU. A whole library has been implemented to reduce the burden on the 
programmer in implementing algorithms with vectors and matrices. For instance, to 
copy a vector from x toy it is sufficient to write y = v_copy(x, VNULL}. The 
VNULL is the NULL vector, and usually tells the routine called to create a vector for 
output. Thus, the v _copy function will create a vector which has the same size as x 
and all the components are equal to those of x. If y has already been created then you 
can write y = v _copy ( x, y) ; in general, writing "v _copy ( x, y) ; " is not enough! 
Ify is NULL, then it is created (to have the correct size, i.e. the same size as x), and if 
it is the wrong size, then it is resized to have the correct size (i.e. same size as x). Note 
that for all the following functions, the output value is returned, even if you have a 
non-NULL value as the output argument. This is the standard across the entire library. 

Addition, subtraction and scalar multiples of vectors can be computed by calls 
to library routines: v_add (x, y, out), v_sub (x,y, out), sv_mlt (s, x, out} 
where x andy are input vectors (with data type VEC *), out is the output vector 
(same data type) and sis a double precision number (data type double). There is also 
a special combination routine, which computes out = v1 + s v2 in a single routine: 
v _ml tadd ( vl, v2, s, out) . This is not only extremely useful, it is also more 
efficient than using the scalar-vector multiply and vector addition routines separately. 

Inner products can be computed directly: in_prod ( x, y) returns the inner prod
uct of x andy. Note that extended precision evaluation is not guaranteed. The standard 
installation options uses double precision operations throughout the library. 

Equivalent operations can be performed on matrices: m_add (A, B, C) which 
returns C = A + B, and sm_ml t ( s, A, c) which returns C = sA. The data types 
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of A, B and c are all MAT *, while that of s is type double as before. The matrix 
NULL is called MNULL. 

Multiplying matrices and vectors can be done by a single function call: 
mv_mlt(A,x,out) returns out= Ax while vm_mlt(A,x,out) returns out= 
AT x, or equivalently, outT = xT A. Note that there is no distinction between row 
and column vectors unlike certain interactive environments such as MATLAB or 
MATCALC. 

Permutations are also an essential part of the package. Vectors can be permuted 
by using px_ vee (p, x, p~x), rows and columns of matrices can be permuted by 
using px_rows (p, A, p_A), px_cols (p, A, A_p), and permutations can be mul
tiplied using px_mlt(pl,p2,pl_p2) and inverted using px_inv(p,p_inv). 

The NULL permutation is called PXNULL. 

There are also utility routines to initialise or re-initialise these data structures: 
v _zero (x), m._zero (A), m_ident (A) (which sets A = I of the correct size), 
v_rand(x), m_rand(A) which sets the entries of x and A respectively to be ran.~ 
domly and uniformly selected between zero and one, and px_ident (p) which sets 
p to be an identity permutation. 

Input and output are accomplished by library routines v·_inpu't (x), 

m_input (A}, and px_input (p). If a null object is passed to any of these input 
routines, aU data will be obtained from the input file, which is stdin. If input is 
taken from a keyboard then the user will be prompted for all the data items needed; 
if input is taken from a file, then the input will have to be of the same format as that 
produced by the output routines, ·which are: vc_out.put (x}, m_output (A) and 
px_output ) . This output is both human and machine readable! 

If you wish to send the data to a file other than the standard output device stdout, 

or receive input from a file or device other than the standard irtput device stdin, take 
the appropriate routine above, use the "foutpout" suffix instead of just "output", 
and add a file pointer as the first argument. For example, to send a matrix A to a file 
called "fred", use the following: 

#include "matrix.h" 

main() 
{ 

} 

FILE *fp; 
MAT *A,; 

fp = fopen("fred","w"); 
m_foutput(fp,A); 

These input routines allow for the presence ofcomments in the data. A comment in 
the input starts with a "hash" character"#", and continues to the end of the line. For 
example, the following is valid input for a 3~dimensional vector: 
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# The initial vector must not be zero 
# X = 
Vector: dim: 3 
-7 0 3 

CHAPTER 1. TUTORIAL 

For general input/output which conforms to this format, allowing comments in the 
input files, use the input () and finput () macros. These are used to print out a 
prompt message if stdin is a terminal (or "tty" in Unix jargon), and to skip over any 
comments if input is from a non-interactive device. An example of the usage of these 
macros is: 

input ("Input number of steps: ", "%d", &nsteps) ; 
fp = stdin; 
finput(fp,"Input number of steps: ","%d",&nsteps); 
fp = fopen("fred","r"); 
finput (fp, "Input number of steps: ", "%d" ,&nsteps); 

The "%d" strings are the format strings as used by scanf ( ) and f scanf ( ) ; the 
last argument is the pointer to the variable (unless the variable is a string) just as for 
scanf () and fscanf (). The first two macro calls read input from stdin, the last 
from the file fred. If, in the first two calls, stdin is a keyboard (a "tty" in Unix 
jargon) then the prompt string "Input number of steps: " is printed out on 
the terminal. 

The second part of the library contains routines for various factorisation methods. 
To use it put 

#include "matrix2.h" 

at the beginning of your program. It contains factorisation and solution routines for 
LU, Cholesky and QR-factorisation methods, as well as update routines for Cholesky 
and QR factorisations. Supporting these are a number of Householder transformation 
and Givens' rotation routines. Also there is a routine for generating the Q matrix for 
a QR-factorisation, if it is needed explicitly, as it often is. There are routines for band 
factorisation and solution for LU and LD LT factorisations. 

For using complex numbers, vectors and matrices include 

#include "zmatrix.h" 

for using the basic routines, and 

#include "zmatrix2.h" 

for the complex matrix factorisation routines. The zmatrix2. h file includes 
:matrix. h and z:matrix. h so you don't need these files included together. 

For using the sparse matrix routines in the library you need to put 

#include "sparse.h" 
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or, if you use any sparse factorisation routines 

#include "sparse2.h" 

at the beginning of your file. The routines contained in the library include routines 
for creating, destroying, initialising and updating sparse matrices, and also routines for 
sparse matrix-dense vector multiplication, sparse LU factorisation and sparse Cholesky 
factorisation. 

For using the iterative routines you need to use 

#include "iter.h" 

This includes the sparse. h and matrix. h file. There are also routines for apply
ing iterative methods such as pre-conditioned conjugate gradient methods to sparse 
matrices. 

And if you use the standard maths library (sin(), cosO, tan(), exp{), 
log (), sqrt (), acos () etc.) don't forget to include the standard mathematics 
header: 

#include <math.h> 

This file is not automatically included by any of the Meschach header files. 

1.2 How to manage memory 

Unlike many other numerical libraries, Meschach allows you to allocate, deallocate and 
resize the vectors, matrices and permutations that you are using. To gain maximum 
benefit from this it is sometimes necessary to think a little about where memory is 
allocated and deallocated. There are two reasons for this. 

1. Memory allocation, deallocation and resizing takes a significant amount of time 
compared with (say) vector operations, so it should not be done too frequently. 

2. Allocating memory but not deallocating it means that it can't be used by any other 
data structure. Data structures that are no longer needed should be explicitly 
deallocated, or kept as static variables for later use. Unlike other interpreted 
systems (such as Lisp) there is no implicit "garbage collection" of no-longer
used memory. 

There are three main strategies that are recommended for deciding how to allocate, 
deallocate and resize objects. These are "no deallocation" which is really only useful 
for demonstration programs, "allocate and deallocate" which minimises overall mem~ 
ory requirements at the expense of speed, and "resize on demand" which is useful for 
routines that are called repeatedly. A new technique for static workspace arrays is to 
"register workspace variables". 
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1.2.1 No deallocation 

This is the strategy of allocating but never deallocating data structures. This is only 
useful for demonstration programs run with small to medium size data structures. For 
example, there could be a line 

QR = m_copy(A,MNULL); I* allocate memory for QR *I 

to allocate the memory, but without the call M_FREE (QR); in it. This can be ac
ceptable if QR = m_ copy (A, MNULL) is only executed once, and so the allocated 
memory never needs to be explicitly deallocated. 

This would not be acceptable if QR = m_copy(A,MNULL) occurred inside a 
for loop. If this were so, then memory would be "lost" as far as the program is 
concerned until there was insufficient space for allocating the next matrix for QR. The 
next subsection shows how to avoid this. 

1.2.2 Allocate and deallocate 

This is the most straightforward way of ensuring that memory is not lost. With the 
example of allocating QR it would work like this: 

for ( . . . ; . . . ; . . . ) 
{ 

} 

QR = m_copy(A,MNULL); I* allocate memory for QR *I 
I* could have been allocated by m_get() *I 
I* use QR *I 

I* deallocate QR so memory can be reused *I 
M_FREE ( QR) ; 

The allocate and deallocate statements could also have come at the beginning and end 
of a function or procedure, so that when the function returns, all the memory that the 
function has allocated has been deallocated. 

This is most suitable for functions or sections of code that are called repeatedly 
but involve fairly extensive calculations (at least a matrix-matrix multiply, or solving 
a system of equations). 

1.2.3 Resize on demand 

This technique reduces the time involved in memory allocation for code that is repeat
edly called or used, especially where the same size matrix or vector is needed. For 
example, the vectors vl, v2, etc. in the Runge-Kutta routine rk4 ( ) are allocated 
according to this strategy: 
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rk4 ( .•. , x, ... ) 
{ 

} 

static VEC *vl=VNULL, *v2=VNULL, *v3=VNULL, 
*v4=VNULL, *temp=VNULL; 

vl = v_resize(vl,x->dim); 
v2 = v_resize(v2,x->dim); 
v3 = v_resize(v3,x->dim); 
v4 = v_resize(v4,x->dim); 
temp = v_resize(temp,x->dim); 

7 

The intention is that the rk4 () routine is called repeatedly with the same size x vector. 
It then doesn't make as much sense to allocate vl, v2 etc. whenever the function is 
called. Instead, v _resize () only performs memory allocation if the memory already 
allocated to vl, v2 etc. is smaller than x- >dim. 

The vectors vl, v2 etc. are declared to be static to ensure that their values are 
not lost between function calls. Variables that are declared static are set to NULL 
or zero by default So the declaration of vl, v2, etc., could be 

static VEC *vl, *v2, *v3, *v4, *temp; 

This strategy of resizing static workspace variables is not so useful if the object 
being allocated is extremely large. The previous "allocate and deallocate" strategy 
is much more efficient for memory in those circumstances. However, the following 
section shows how to get the best of both worlds. 

1.2.4 Registration of workspace 

From version 1.2 onwards, workspace variables can be registered so that the memory 
they reference can be freed up on demand. To do this, the function containing the static 
workspace variables has to include calls to MEM_STAT_REG (var, type) where var 
is a pointer to a Meschach data type (such as VEC or MAT). This call should be placed 
after the call to the appropriate resize function. The type parameter should be a 
TYPE_. • • macro where the " .•• " is the name of a Meschach type such as VEC or 
MAT. For example, 

rk4( ... ,x, ... ) 
{ 

static VEC *vl, *v2, *v3, *v4, *temp; 

vl = v_resize(vl,x->dim); 
MEM_STAT_REG(vl,TYPE_VEC); 
v2 = v_resize(v2,x->dim); 
MEM_STAT_REG(v2,TYPE_VEC); 
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} 

Normally, these registered workspace variables remain allocated. However, to 
implement the "deallocate on exit" approach, use the following code: 

mem_stat_mark(l); 
rk4( ••• ,x, ... ) 
mem_stat_free(l); 

To keep the workspace vectors allocated for the duration of a loop, but then deallocated, 
use 

mem_stat_mark(1); 
for (i = 0; i < N; i++ 

rk4{ ••• ,x, ... ); 
mem_stat_free(l); 

The number used in the mem_stat_mark () and mem_stat_free () calls is the 
workspace group number. The callmem_stat_mark ( 1) ; designates 1 as the current 
workspace group number; the call me:m_stat_free ( 1); deallocates (and sets to 
NULL) all static workspace variables registered as belonging to workspace group 1. 

1.3 Simple vector operations: An RK4 routine 

The main purpose of this example is to show how to deal with vectors and to compute 
linear combinations. 

The problem here is to implement the standard 4th order Runge-Kutta method for 
the ODE 

X1 = f(t, X), x(to) = Xo 

for x(ti), i = 1, 2, 3, ... where ti = t 0 + i hand his the step size. The formulae for 
the 4th order Runge-Kutta method are: 

h 
xi+l =xi+ 6{v1 + 2vz + 2v3 + v4} 

where 

Vt = f(ti, xi) 
1 1 

Vz = f(ti + 2h, xi+ 2hv1) 

1 1 
v3 = f(ti + 2h, xi+ 2hv2) 

V4 = f(ti + h, Xi+ hv3) 
(1.1) 
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where the vi are vectors. 
The procedure for implementing this method (rk4 ())will be passed (a pointer to) 

the function f; the implementation off could, in this system, create a vector to hold the 
return value each time it is called. However, such a scheme is memory intensive and 
the calls to the memory allocation functions could easily dominate the time performed 
doing numerical computations. So, the implementation of f will also be passed an 
already allocated vector to be filled in with the appropriate values. 

The procedure rk4 () will also be passed the current timet, the step size h, and 
the current value for x. The time after the step will be returned by rk4 (). 

The code that does this follows. 

#include "matrix.h" 

I* rk4 -- 4th order Runge--Kutta method *I 
double rk4(f,t,x,h) 
double t, h; 
VEC *(*f)(), *x; 
{ 

static VEC *vl=VNULL, *v2=VNULL, *v3=VNULL, *v4=VNULL; 
static VEC *temp=VNULL; 

I* do not work with NULL initial vector *I 
if ( x == VNULL ) 

error(E_NULL,"rk4"); 

I* ensure that vl, v2, etc. are of the correct size *I 
vl = v_resize(vl,x->dim); 
v2 = v_resize(v2,x->dim); 
v3 ~ v_resize(v3,x->dim); 
v4 = v_resize(v4,x->dim); 
temp= v_resize(temp,x->dim); 
I* register workspace variables *I 
MEM_STAT_REG(vl,TYPE_VEC); 
MEM_STAT_REG(v2,TYPE_VEC); 
MEM_STAT_REG(v3,TYPE_VEC); 
MEM_STAT_REG(v4,TYPE_VEC); 
MEM_STAT_REG(temp,TYPE_VEC); 
I* end of memory allocation *I 
(*f)(t,x,vl); I* most compilers allow: "f(t,x,vl);" *I 
v_mltadd(x,vl,O.S*h,temp); /*temp= X+.S*h*Vl */ 
(*f)(t+0.5*h,temp,v2); 
v_mltadd(x,v2,0.5*h,temp); I* temp = X+.5*h*v2 *I 
(*f)(t+0.5*h,temp,v3); 
v_mltadd(x,v3,h,temp); I* temp = x+h*v3 *I 
(*f) (t+h,temp.,v4); 
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I* now add: v1+2*v2+2*v3+v4 *I 
v_copy(vl,temp); I* temp = vl *I 
v_mltadd(temp,v2,2.0,temp); I* temp ::::: v1+2*v2 *I 
v_mltadd(temp,v3,2.0,temp); I* temp "" v1+2*v2+2*v3 *I 
v_add(temp,v4,temp); I* temp = v1+2*v2+2*v3+v4 *I 

I* adjust x */ 
v_mltadd(x,temp,h/6.0,x); I* x = x+(hl6)*temp *I 
return t+h; !* return the new time *I 

} 

Note that the last parameter off () is where the output is placed. Often this can 
be NOLL in which case the appropriate data structure is allocated and initialised. Note 
also that this routine can be used for problems of arbitrary size, and the dimension 
of the problem is determined directly from the data given. The vectors v1 , ... , v4 are 
created to have the correct size in the lines 

vl = v_resize(vl,x->dim); 
v-2 = v_resize(v2,x->dim); 

Here v_resize(v,dim) resizes the VEC structure v to hold a vector of length 
dim. If v is initially NULL, then this creates a new vector of dimension dim, just as 
v _get (dim) would do. For the above piece of code to work correctly, vl, v2 etc., 
must be initialised to be NULL vectors. This is done by the declaration 

static VEC *vl=VNULL, *v2=VNULL, *v3=VNULL, *v4=VNULL; 

or 

static VEC *vl, *v2, *v3, *v4; 

The operations of vector addition and scalar addition are really the only vector op
erations that need to be performed in rk4. Vector addition is done by v _add ( vl, v2, 
out), where out=vl+v2, and scalar multiplication by sv_mlt (scale,v, out), 
where out=scale*v. 

These can becombinedintoasingleoperationv_mltadd (vl, v2, scale, out), 
where out=v1+scale*v2. As many operations in numerical mathematics involve 
accumulating scalar multiples, this is an extremely useful operation, as we can see 
above. For example: 

v_mltadd(x,vl,O.S*h,temp); I* temp = X+.5*h*v1 */ 

We also need a number of "utility" operations. For example v _copy (in, out) 
copies the vector in to out. There is also v _zero {v) to zero a vector v. 
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Here is an implementation of the function f for simple harrrionic motion: 

I* f -- right-hand side of ODE solver */ 
VEC *f(t,x,out) 
VEC *x, *out; 
double t; 
{ 

} 

if ( x == VNULL I I out == VNULL 
error(E_NULL,"f"); 

if ( x->dim != 2 I I out->dim != 2 
error(E_SIZES,"f"); 

out->ve[O] = x->ve[l]; 
out->ve[l] = - x->ve[O]; 

return out; 
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As can be seen, most of this code is error checking code, which, of course, makes 
the routine safer but a little slower. For a procedure like f () it is probably not 
necessary, although then the main program would have to perform checking to ensure 
that the vectors involved have the correct size etc. The ith component of a vector x 
is x- >ve [ i 1 , and indexing is zero-relative (i.e., the "first" component is component 
0). The ODE described above is for simple harmonic motion: x~ = x1, x~ = -x0 , or 
eqqivalently, x~ + x 0 = 0. 

Here is the main program: 

#include <stdio.h> 
#include "matrix.h" 

main() 
{ 

VEC 
VEC 
double 
double 

*x; 
*f (); 
h, t, t_fin; 
rk4 (); 

input ("Input initial time: ", "%lf", &:t) ; 
input("Input final time: ", "%lf",&:t_fin); 
x = v_get(2); /*this is the size needed by f() *l 
prompter("Input initial state:\n"); x = v_input(VNULL); 
input ("Input step size: ", "%1£" 1 &:h); 

printf("# At time %g, the state is\ni',t); 
v_output (x); 
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while 
{ 
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t < t_fin ) 

t = rk4(f,t,x,min(h,t:_fin-t));/* newt is returned*/ 
printf("# At time %g, the state is\n",t); 
v_output (x); 
t += h; 

} 

} 

Here the initial values are entered as a vector by v _input ( ) . If v _input ( ) is 
passed a vector, then this vector will be used to store the input, and this vector has the 
size that x had on entry to v _input (). The original values of x are also used as a 
prompt on input from a tty. If a NOLL is passed to v_input () then v_input () 
will return a vector of whatever size the user inputs. So, to ensure that only a two
dimensional vector is used for the initial conditions (which is what f () is expecting) 
we use 

x = v_get(2); x = v_input (x); 

To compile the program under Unix™, if it is in a file tutorial. c is: 

cc -o tutorial tutorial.c meschach.a 

or, if you have an ANSI compiler, 

cc ~DANSI_C -o tutorial tutorial.c meschach.a 

Here is a sample session with the above program: 

% tutorial 

Input initial time: 0 
Input final time: 1 
Input initial state: 
Vector: dim: 2 
entry 0: -1 
entry 1: b 
entry 0: old -1 new: 1 
entry 1: old 0 new: 0 
Input step size: 0.1 
At time 0, the state is 
Vector: dim: 2 

1 0 
At time 0.1, the state is 
Vector: dim: 2 

0.995004167 -0.0998333333 
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At time 1, the state is 
Vector: dim: 2 

0.540302967 -0.841470478 
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By way of comparison, the state at t = 1 for the true solution is x 0 (1) = 0.5403023058, 
x1 (1) = -0.8414 709848, The "b" that is typed in entering the x vector allows the 
user to alter previously entered components; in this case once this is done, the user is 
prompted with the old values when entering the new values. The user can also type 
in "f" for skipping over the vector's components, which are then unchanged. If an 
incorrectly sized initial value vector xis given, the error handler comes into action: 

% tutorial 

Input initial time: 0 
Input final time~ 1 

Input initial state: 
Vector~ dim: 3 
entry 0: 3 

entry 1: 2 

entry 2: -1 

Input step size: 0.1 
At time 0, the state is 
Vector~ dim: 3 

3 -1 

"tutorial.c", line 79: sizes of objects don't match in 
function f (} 

Sorry, aborting program 
% 

The error handler prints out the error message giving the source code file and line 
number as well as the function name where the error was raised. The relevant section. 
off () in file testl. c is: 

if ( x->dim != 2 I I out->dim != 2 ) 
error(E_SIZES, "f"); I* line 79 */ 

The standard routines in this system perform error checking of this type, and also 
checking for undefined results such as division by zero in the routines for solving 
systems of linear equations. There are also error messages for incorrectly formatted 
input and end-of-file conditions. 

To round off the discussion of this program, note that we have seen interactive 
input of vectors. If the input file or stream is not a tty (e.g., a file, a pipeline or a device) 
then it expects the input to have the same form as the output for each of the data 
structures. Each of the input routines (v _input (), m_input (), px.....:input ()) 
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skips over "comments" in the input data, as do the macros input () and finput (). 
Anything from a '#' to the end of the line (or EOF) is considered to be a comment. For 
example, the initial value problem could be set up in a file i vp. da t as: 

# Initial time 
0 
# Final time 
1 
#Solution is x(t) = (cos(t),-sin(t)) 
# x(O) = 
Vector: dim: 2 
1 0 
# Step size 
0.1 

The output of the above program with the above input (from a file) gives essentially 
the same output as shown above on p. 12, except that no prompts are sent to the screen. 

1.4 Using routines for lists of arguments 

Some of the most common routines have vaariants that take a variable number of 
arguments. These are the routines •• get_vars (), •• _resize_vars () and 
•• _free_vars (). These correspond to the the basic routines •• _get (), 
•• _resize() and •• _free() respectively. Also there is the 
mem_stat_reg_ vars ( ) routine which registers a list of static workspace variables; 
this corresponds to mem_stat_reg_list () for a single variable. Here is an exam
ple of how to use these functions. This example, also uses the routine v_linlist {) 
to compute a linear combinartion. Note that the code is much more compact, but don't 
forget that these " ••• _ vars ()" routines usually need the address-of operator "&:" 
and NULL termination of the arguments for these to work correctly. 

#include "matrix.h" 

I* rk4 -- 4th order Runge--Kutta method */ 
double 
double 
VEC 

rk4(f,t,x,h) 
t, h; 
*(*f)(), *x; 

{ 

static VEC *v1, *v2, *v3, *v4, *temp; 

/* do not work with NULL initial vector */ 
if ( x == VNULL ) error(E_NULL,"rk4"); 

/* ensure that v1, v2 etc. are of the correct size */ 
v_resize_vars(x->dim,&:v1,&:v2,&:v3,&:v4,&:temp,NULL); 
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} 

I* register workspace variables */ 
mem_stat_reg_vars(O,TYPE_VEC,&vl,&v2,&v3,&v4,&temp,NULL); 
I* end of memory allocation *I 
(*f)(t,x,vl); v_mltadd(x,v1,0.5*h,temp); 
(*f)(t+0.5*h,temp,v2); 
(*f) (t+0.5*h,temp,v3); 
(*f) (t+h,temp,v4); 

v_mltadd(x,v2,0.5*h,temp); 
v_mltadd(x,v3,h,temp); 

I* now add: temp = v1+2*v2+2*v3+v4 *I 
v_linlist(temp,v1,1.0,v2,2.0,v3,2.0,v4,1.0,VNULL} 
I* adjust x *I 
v_mltadd(x,temp,h/6.0,x); I* x = X+{hl6)*temp *I 

return t+h; I* return the new time *I 

1.5 A least squares problem 

Here we need to use matrices and matrix factorisations (in particular, a QR factorisation) 
in order to find the best linear least squares solution to some data. Thus in order to 
solve the (approximate) equations 

Ax~ b for x 

where A is an m x n matrix (m > n) we really need to solve the optimisation problem 

min !lAx- bll~-
"' 

If we write A = Q R where Q is an orthogonal m x m matrix and R is an upper 
triangular m x n matrix then 

(1.2) I lAx - bll2 = IIRx - QTblb = II [ ~] x - [ ~f] bll2 . 

where R1 is an n x n upper triangular matrix. If A has full rank then R1 will be an 
invertible matrix, and the best least squares solution of Ax~ b is x = H11Qfb. 

These calculations can be be done quite easily as there is a QRfactor () function 
available with the system. QRfactor () is declared to have the prototype 

MAT *QRfactor(MAT *A, VEC *diag); 

The matrix A is overwritten with the factorisation of A "in compact form"; that is, while 
the upper triangular part of A is indeed the R matrix described above, the Q matrix is 
stored as a collection of Householder vectors in the strictly lower triangular part of A 

and in the diag vector. The QRsol ve ( ) function knows and uses this compact form 
and solves QRx ~ b with the call QRsolve (A, diag, b,x), which also returns x. 

Here is the code to obtain the matrix A, perform the QR factorisation, obtain the 
data vector b, solve for x, and determine what the norm of the errors (!lAx- bll 2 ) is. 
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#include "matrix2.h" 

main() 
{ 

} 

MAT *A, *QR; 
VEC *b, *x, *diag; 

/* read in A matrix */ 
print£ ("Input A matrix: \n·"); 

A= m_input(MNULL); /*A has whatever size is input */ 

if ( A->m < A->n 
{. 

printf("Need m >= n to obtain least squares fit\n"); 
exit(O); 

} 

print£ ( "# A =\n"); m_output (A); 
diag = v_get(A->m); 
/* QR is to be the QR factorisation of A */ 
QR = m_copy(A,MNULL); 
QRfactor(QR,diag); 
/* read in b vector */ 
print£ ("Input b vector: \n") ; 
b = v_get(A->m); 
b = v_input (b); 
print£("# b =\n"); v_output(b); 

I* solve for x */ 
x = QRsolve(QR,diag,b,VNULL); 
print£ ("Vector of best fit parameters is\n"); 
v_output(x); 
/* .•• and work out norm of errors ••• */ 
printf("IIA*x-bll = %g\n", 

v_norm2(v_sub(mv_mlt(A,x,VNULL),b,VNULL))); 

Note that as well as the usual memory allocation functions like m_get ( ) , the 1/0 
functions like m_input ( ) and m_output (), and the factorise-and-solve functions 
QRfactor () and QRsol ve (), there are also functions for matrix-vector multipli
cation: mv..mlt (MAT *A, VEC *x, VEC *out). and also vector-matrix multi
plication (with the vector on the left): vm..mlt (MAT *A, VEC *x, VEC *out), 
with out = xT A. There are also functions to perform matrix arithmetic - matrix 
addition m_add ( ) , matrix-scalar multiplication sm_ml t ( ) , matrix-matrix multipli
cation m_mlt (). 
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Several different sorts of matrix factorisation are supported: LU factorisation 
(also known as Gaussian elimination) with partial pivoting, by LUfactor () and 
LUsol ve (). Other factorisation methods include Cholesky factorisation CHfactor () 
and CHsol ve (), and QR factorisation with column pivoting QRCl?factor (). 

Pivoting involve permutations which have their own PERM data structure. Per
mutations can be created by px_get (), read and written by px_input () and 
px_output (), multiplied by px_mlt (), inverted by px_inv() and applied to 
vectors by px_ vee ( ) . 

The above program can be put into a file leastsq. c and compiled under Unix™ 
using 

cc -o leastsq leastsq.c meschach.a -lm 

A sample session using leastsq follows: 

% leastsq 
Input A matrix: 
Matrix: rows cols:S 3 

row 0: 

entry (0,0}: 3 
entry (0,1}: -1 
entry (0,2): 2 
Continue: 
row 1: 

entry (1, 0) : 2 

entry (l,l)g -1 
entry (1,2): 1 
Continue: n 
row 1: 
entry (1,0): old 
entry (1,1): old 
entry (1,2): old 
Continue: 
row 2: 
entry (2,0}: old 

2 new: 2 
-1 new: -1 

1 new: 1.2 

0 new: 2.5 

(Data entry) 

# A = 
Matrix: 5 by 3 

row 0: 3 -1 

row 1: 2 -1 

row 2: 2.5 1 

row 3: 3 1 

row 4: -1 1 

2 
1.2 

-1.5 

1 

-2.2 
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Input b vector: 
entry 0: old 
entry 1: old 
entry 2:i old 
entry 3: old 
entry 4: old 
# b = 
Vector: dim: 5 

5 

0 new: 
0 new: 
0 new: 
0 new: 
0 new~ 

3 
Vector of best fit parameters is 
Vector: dim: 3 

1.47241555 -0.402817858 

IIA*x-b!l = 6.78938 

CHAPTER 1. TUTORIAL 

5 

3 

2 
4 

6 

6 

-1.14411815 

The Q matrix can be obtained explicitly by the routine makeQ ( ) . The Q matrix 
can then be used to obtain an orthogonal basis for the range of A. An orthogonal basis 
for the null space of A can be obtained by finding the QR-factorisation of AT. 

1.6 A sparse matrix example 

To illustrate the sparse matrix routines, consider the problem of solving Poisson's 
equation on a square using finite differences, and incomplete Cholesky factorisation. 
The actual equations to solve are 

fori,j = l, ... ,lV 

where uo,j = ui,o = uN+l,j = ui,N+l = 0 for i,j = 1, ... , lV and his the common 
distance between grid points. 

The first task is to set up the matrix describing this system of linear equations. The 
next is to set up the right-hand side. The third is to form the incomplete Cholesky 
factorisation of this matrix, and finally to use the sparse matrix conjugate gradient 
routine with the incomplete Cholesky factorisation as preconditioner. 

Setting up the matrix and right-hand side can be done by the following code: 

#define N 100 
#define index(i,j) (N*((i)-l)+(j)-1} 

A= sp_get(N*N,N*N,5); 
b = v_get (N*N); 
h = 1.0/(N+l); /* for a unit square */ 

for ( i = 1; i <= N; i++ ) 
for j = 1; j <= N; j++ 
{ 
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} 

if ( i < N ) 
sp_set_val(A,index(i,j),index(i+l,j),-1.0}; 

if ( i > 1 ) 

sp_set~val (A, index(i, j), index(i-1, j), -1. 0}; 
if ( j < N ) 

sp_set_val(A,index(i,j),index(i,j+l),-1.0); 
if ( j > 1 ) 

sp_set;_val (A, index(i, j), index(i, j-1), -1. 0); 
sp_set_val(A,index(i,j},index(i,j),4.0); 
b->ve [index ( i, j)] = -h*h*f (h*i, h*j); 
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Once the matrix and right-hand side are set up, the next task is to compute the sparse 
incomplete Cholesky factorisation of A. This must be done in a different matrix, so A 

must be copied. 

LLT = sp_copy(A); 
spiCHfactor(LLT); 

Now when that is done, the remainder is easy: 

out = v_get(A->m); 

iter_spcg(A,LLT,b,le-6,out,1000,&num_steps); 
printf("Number of iterations = %d\n",num_steps); 

and the output can be used in whatever way desired. 
For graphical output of the results, the solution vector can be copied into a square 

matrix, which is then saved in MATLAB™ format using m_save (), and graphical 
output can be produced by MATLABTM. 
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1.7 How do I .... ? 

For the convenience of the user, here a number of common tasks that people need to 
perform frequently, and how to perform the computations using Meschach. 

1.7.1 •••• solve a system of linear equations 

If you wish to solve Ax = b for x given A and b (without 'destroying A), then the 
following code will do this: 

VEC *x, *b; 
MAT *A, *LU; 
PERM *pivot; 

LU = m_get(A->m,A->n); 
LU = m_copy(A,LU); 
pivot = px_get(A->m); 
LUfactor(LU,pivot); 
/* set values of b here */ 
x = LUsolve(LU,pivot,b,VNULL); 

1.7.2 •••• solve a least-squares problem 

To minimise IIAx- bll~ = :Ei((Ax)i - bi)2 , the most reliable method is based on 
the QR-factorisation. The following code performs this calculation assuming that A is 
m x n with m 2:: n: 

MAT *A, *QR; 
VEC *diag, *b, *x; 

QR = m_get(A->m,A->n); 
QR = m_copy(A,QR); 
diag = v_get(A->n); 
QRfactor(QR,diag); 
/* set values of b here */ 
x = QRsolve(QR,diag,b,x); 

1.7.3 •••• find all the eigenvalues (and eigenvectors) of a general matrix 

The best method is based on the Schur decomposition. For symmetric matrices, the 
eigenvalues and eigenvectors can be computed by a single call to symmeig ( ) . For 
non-symmetric matrices, the situation is more complex and the problem of finding 
eigenvalues and eigenvectors can become quite ill-conditioned. Provided the problem 
is not too ill-conditioned, the following code should give accurate results: 
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/* A is the matrix whose e-vals and e-vecs are sought */ 
MAT *A, *T, *Q, *X_re, *X_im; 
VEC *evals_re, *evals_im; 

Q = m_get(A->m,A->n); 
T = m_copy(A,MNULL); 
/* compute Schur form: A = Q.T.Q~T */ 
schur(T,Q); 
/* extract eigenvalues */ 
evals_re = v_get(A->m); 
evals_im = v_get(A->m); 
schur_evals(T,evals_re,evals_im); 
/* Q not needed for eiegenvalues */ 
X_re = m_get(A->m,A->n); 
X_im = m_get(A->m,A->n); 
schur_vecs(T,Q,X_re,X_im); 
/* k'th eigenvector is k'th column of (X_re + i*X_im) */ 

1. 7.4 •••• solve a large, sparse, positive definite system of equations 
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An example of a large, sparse, positive definite matrix is the matrix obtained from a 
finite-difference approximation of the Laplacian operator. If an explicit representation 
of such a matrix is available, then the following code is suggested as a reasonable way 
of computing solutions: 

/* A.x == b is the system to be solved */ 
sp_mat *A, *LLT; 
VEC *x, *b; 
int num_steps; 

/* set up A and b */ 

x = m_get (A->m); 
LLT = sp_copy(A); 
/* preconditioning using incomplete Cholesky */ 
spiCHfactor(LLT); 
/* now use pre-conditioned conjugate gradients */ 
x = iter_spcg(A,LLT,b,le-7,x,lOOO,&num_steps); 
/* solution computed with relative residual < 10~{-7} */ 

If explicitly storing such a matrix takes up too much memory, then if you can write 
a routine to perform the calculation of Ax for any given x, the following code may be 
more suitable (if slower): 

VEC *mult_routine(user_def,x,out) 
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void *user_def; 
VEC *x, *out; 
{ 

/* compute out = A*x */ 

return out; 
} 

main() 
{ 

} 

ITER *ip; 
VEC *x, *b; 

b = v_get(BIG_DIM); /* right-hand side*/ 
x = v_get(BIG_DIM); /* solution*/ 

I* set up b */ 

ip = iter_get(b->dim, x->dim); 
ip->rhs = v_copy(b,ip->rhs); 
ip->info = NULL; /* if you don't want information 

about solution process */ 
v_zero(ip->x); I* initial guess is zero */ 
iter_Ax(ip,mult_routine,user_def); 
iter_cg(ip); 
printf("# Solution is:\n"); v_output(ip->x); 

ITER_FREE(ip); I* destroy ip */ 

The user_def argument is for a pointer to a user-defined structure (possibly NULL, 
if you don't need this) so that you can write a common function for handling a large 
number of different circumstances. 
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Data structures 

2.1 General principles 

In this chapter an overview of the data structures is given, as well as indicating how 
memory management is undertaken. For more information about how to use and 
develop data structures, you should see chapter 8 on designing data structures. 

One of the main thrusts of Meschach is to use C's data structuring ability to 
"package" the objects so that they are self-contained and can be dealt with as single 
entities. This is combined with C's memory allocation and de-allocation techniques to 
make basic mathematical objects (vectors, matrices, permutations etc) work more like 
their mathematical counterparts. So, a vector structure contains not only the array of its 
components, but also the dimension of the vector, and the amount of allocated memory 
(which may be larger than the dimension). This vector can be used for ordinary vector 
operations, computing matrix-vector products, solving systems of linear equations, or 
just for storing data. If there is a mismatch in, say, the size of the vector and the vectors 
or matrices that it operates with, then an error is raised to indicate this. The vector can 
also be created when needed, and destroyed when not. It can be re-sized when desired 
to be larger or smaller. 

The type of floating point number is Real, which is one of the floating point types. 
The default floating point type is double. 

The integer vector and permutation data structures are very similar to the vector 
data structure, and contain not only the array of values, but also the current dimension 
or size of the integer vector or permutation and the amount of allocated memory in this 
array. Permutations are really restricted integer vectors; they are initialised differently 
(to the identity permutation, instead of all zeros) and the permutation routines preserve 
the property of being a permutation. 

Matrices are represented by a more complex data structures, and are essentially a 
two-level data structure. To have variable size 2-dimensional arrays inC, pointer-to
pointer structures are needed, such as 

Real **Aentries; 

23 
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Aentries[3] [4] = 2.0; 

The matrix data structure therefore has a pointer-to-pointer entry which can be used 
just as the Aentries variable can. The data structure also has entries containing the 
number of rows and columns of the matrix, and also the allocated number of rows, 
columns etc. 

Sparse matrices are the most complex data structures and are, in fact, a three 
level system of data structures. They are also the most dynamic, as. when operations 
are performed on sparse matrices, the number of non-zero entries in a row changes. 
There are also a number of additional components of the data structures that are used to 
facilitate operations, and are not needed to specify the sparse matrix that is represented. 

Iterative routines operate on a data structure that combines a number of items into 
a single package. These items include the defining data structures for the system to 
be solved, :preconditioners, current (approximate) solution7 desired accuracy, limits 
on the number of iterations, and functions implementing the stopping criterion and 
for providing information to the user. By packaging the information in this way, and 
providing suitable defaults on initialisation, it enables the user to use the iterative 
routines in either a simple way (just use the defaults), or in a very sophisticated way 
(by specifying limits, preconditioners, stopping criteria etc). 

2.2 Vectors 

The vector.data structure is the VEC structure: 

typedef unsigned int u_int; 
/* vector definition */ 
typedef struct { 

u_int dim, max_dim; 
Real *ve; 
} VEC; 

The type u_int is a short-hand for unsigned int. The field dim is the dimension 
of the vector, while ve is a pointer to the actual elements of the vector. The field 
max_ dim is the actual length of the ve array. Clearly we require dim :s; max_dim. 

The normal method of obtaining a vector of a specified length is to call v _get ( ) , 
which returns a pointer to VEC. To illustrate how this scheme operates, the code to 
obtain a vector of length n is shown below: 

#include "matrix.h" 

VEC *x; 
int n; 

x = v_get (n}; 
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To access the ith element of x we have to go through the ve field: 

x_i = x->ve [i]; 

Note that the array index i is understood to be "zero relative"; that is, the valid values 
of i are 0, 1, 2, ... , n- 1. 

The call v_resize (x, newdim) "resizes" the vector x to have dimension 
newdim. In this call, it is first checked if newdi:m ~ x- >max_dim. If so, then all that 
happens is that x->dim is set to newdim. Otherwise, memory is realloc () 'd for 
a vector of size newdim. Provided the realloc () is successful, both x->dim and 
x- >max_ dim are set to newdim. Note that under this "high-water mark" system, the 
physical size of the vector's allocated memory can never decrease. To regain the mem
ory that has been allocated, the vector must be deallocated entirely using v _FREE ( ) 

or v _free (). (The former is a safer macro that uses v _free () .) 
Usually, no objects of type VEC are declared within a program, routine or function. 

Rather, pointers to VEC structures are declared within a program, routine or function. 
Pointers are returned by v _get (), v _copy () and v _input () which also take care 
of any initialisation that is needed. Pointers (as returned by these functions) can also 
be freed up. You should not declare objects to be of type VEC (as opposed to objects 
of type VEC *) unless you know what you are doing. For example, 

VEC x; 

V_FREE (&x); 

will result in a compile-time error. Using v _free ( } instead of v _FREE ( ) would 
most likely result in a program crash! 

2.2.1 Integer vectors 

There are also integer vectors which are pointers to type IVEC. These are imple
mented an a way that is essentially equivalent to the VEC data structures. There is the 
allocation and initialisation routine i v _get (), resizing routine i v _resize (), and 
i v _free () to destroy an integer vector. 

The dimension (i.e. number of entries) of an integer vector iv is iv->dim. The 
ith entry of an integer vector i v is i v- > i ve [ i] , and indexing is zero relative so i 
must be in the range 0, 1, ... , iv->dim-1. 

These are useful for constructing index lists as well as other, general dat.a structures. 

2.2.2 Complex vectors 

Complex vectors and matrices have been included in Meschach version 1.2. The basic 
complex data type in Meschach is a standard pair of floating point numbers: 

typedef struct { Real re, im; } complex; 
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There are a number of routines for dealing with complex numbers. The most ba
sic is z = zmake (real, imag) ; which returns a complex number with real part 
real and imaginary part imag. There are also routines to add complex num
bers zadd(zl,z2), to subtract zsub(zl,z2), multiply zmlt(zl,z2), divide 
zdi v ( zl, z2), negate zneg ( z), conjugate zconj ( z), and compute square roots, 
exponentials and logarithms zsqrt ( z), zexp ( z), zlog ( z). There is also the 
magnitude function which returns a floating point number: zmag = zabs ( z) ; . 

Complex vectors are vectors of these complex data structures, and have the 
type ZVEC. The structure of these vectors is otherwise equivalent to that of ordi
nary floating point vectors. For example, the i 'th entry of a complex vector zv is 
zv->ve [i]; to extract its real part use zv->ve [i] .re, and for its imaginary part 
use zv->ve [i] • im. 

The operations on complex vectors are also very similar to that for ordinary vectors: 
zv = zv _get ( 10 ) ; to get a complex vector of length 1 0; 
zv3=zv_add(zvl, zv2, ZVNULL); to add two complex vectors (z3 = z1 + z2). 

2.3 Matrices 

Matrices are very important throughout numerical mathematics, so it is natural that we 
have a separate data structure for them: 

typedef unsigned int 
I* matrix definition *I 
typedef struct { 

u_int 

u_int; 

m, n; 
u_int max_m, max_n, max_size; 
Real **me, *base; 
I* base is base of alloc'd mem *I 
} MAT; 

Here m is the number of rows of the matrix, n is the number of columns of the matrix 
(i.e. it is m x n). The me field gives the actual means of accessing the elements of the 
matrix. For example, to access the ( i, j) element of the matrix A we use: 

MAT *A; 
Real A_ij; 

A_ij = A->me[i] [j]; 

The base field is the pointer to the beginning of the memory allocated for the entries 
of the matrix. The max_size field is the size of this area in terms of Real numbers. 

It should be noted that me is actually an array with elements of type Real *. 
The actual size of this array is given by the field max_m. This is a (usually small) 
memory overhead which speeds up the accessing of elements: only two additions are 
needed to locate me [ i] [ j ] , while a multiply and an addition are needed to locate 
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base [m*i+j]. The rows in a matrix are allocated contiguously, as long as this is 
reasonable, so that no problems arise from memory overhead or cache misses. Even 
if a matrix is resized, the rows are copied ·so that the rows of the resized matrix are 
contiguous. 

As with vectors, only pointers to matrices are used, and this· allows memory 
allocation and deallocation to be done conveniently. Also note that matrices are resized 
using a "high-water mark" approach so that the total amount of physical memory for 
row pointers and for entries of a matrix does not decrease unless the matrix is completely 
deallocated by ll/CFREE ( ) (which is a safe macro) or m_f ree ( ) . 

2.3.1 Complex matrices 

Complex matrices are also available and have the type ZMAT. These have the same 
structure as the ordinary MAT data type except that the entries are not of type Real, but 
of type complex. The operations that can be done to complex matrices are similar to 
those that· can be performed on ordinary matrices. For example, here is some code to 
set an entry and to print out the value: 

ZMAT *A; 
complex z; 

A= zm_get(10,10}; · 
A->me [2] [3] = z; 

printf("Real part = %g, imaginary part = %g\n", 
A->me[2] [3] .re, A->me[2] [3] .im); 

ZM_FREE (A) ; 

2.3.2 Band matrices 

Band matrices are a special class of sparse matrices where the nonzero entries all lie in 
a narrow band around the diagonal. Unlike general sparse matrices, these matrices can 
be factorised with well controlled fill-in. They can also be easily represented by listing 
the nonzero entries by their distance from the diagonal, and whether they lie above or 
below (or on) the diagonal. 

There are two factorisation routines for band matrices: an LDLT variant of the 
Cholesky factorisation, and an LU factorisation with partial pivoting. Rather than 
develop a complete new data structure for these two routines, the BAND data structure 
used is actually just a MAT structure together with the lower and upperbandwidths lb 
and ub respectively. This is the actual data structure: 

I* band matrix definition */ 
typedef struct { 

xaT *mat; 
int lb,ub; 
} BAND; 

I* matrix */ 
/* lower & upper bandwidth */ 
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The actual entries of A are stored as matrix entries in mat, which has the following 
layout. Let A be the n x n band matrix that is represented by this data structure. Then 
n is the number of columns of mat. Also, lb is the lower bandwidth of A (this is the 
number of sub-diagonals in A), and ub is the upper bandwidth of A (this is the number 
of super-diagonals in A). Note that for a general diagonal matrix, lb = ub = 0, while 
for a tridigonal matrix, lb = ub = 1. For 0 ~ i < lb, row lb- i of mat is the ith 
sub-diagonal of A; row lb of mat is the diagonal of A; and for lb < i ~ lb + ub, 
row i of mat is the (i - lb)th super-diagonal of A. The (i,j) entry of A (provided 
-lb ~ j- i ~ ub) is the (lb + j- i,j) entry of mat. This means that there are some 
wasted entries in mat, as is shown by this layout for lb = 3, ub = 2 and n = 10. A '.' 
denotes an unused entry of mat: 

0 a3o a41 a 52 a63 a74 ass a96 (lower part) 
1 azo a31 a42 a 53 a64 a15 as6 a97 

2 alO a21 a32 a43 a 54 a65 a76 as1 ags 
row 3 

aoo au a22 a33 a44 a 55 a66 a77 ass agg (main diagonal) 
4 ao1 a12 a23 a34 a45 a 56 a67 a7s agg 

5 ao2 a13 a24 a35 a46 a 57 a6s a79 (upper part) 

For creating a band matrix A, use A = bd_get ( lb, ub, n) , for resizing use 
bd_resize(A,lb,ub,n) (where lb etc. are the new values), for freeing use 
bd_free (A), and for transposing use bd_transp (A, B). 

2.4 Permutations 

Permutations are immensely useful in a number of matrix factorisation techniques, as 
well as for the representation of sets and so on. It was therefore decided that, as well as 
being important mathematical objects in their own right, they should be implemented 
as a concrete data structure in their own right. Here is the definition of the data structure 
used: 

typedef unsigned int u_int; 
I* permutation definition */ 
typedef struct { 

u_int size, max_size, *pe; 
} PERM; 

The field size is the size of the permutation. The field pe is the means by which the 
elements of the permutation are accessed: to access 7r( i) for a permutation 7r use 

PERM *pi; 

pi_i = pi->pe[i]; 

The actual size of the pe array is given by the field max_size. 
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As with vectors and matrices, only pointers to permutation data structures are used. 
Permutations may be resized and deallocated. A "high-water mark" method is used 
when resizing permutations, so that the physical memory used for storing entries does 
not decrease in size. 

Whether or not the elements of an array of integers forms a permutation clearly 
depends on the entries of that array. This, to some extent is up to the programmer. How
ever, there are a number of routines that try to help this aspect: px_get ( ) initialises 
the permutation to be the identity permutation; if the argument to px_resize () is 
a true permutation, the result will be a true permutation, though if a reduction of size 
is requested, all the old data will be overwritten. Also there is px_transp () which 
transposes two entries in a permutation; it is expected that this would be the most 
common means of modifying a permutation. Finally, the input routines check that 
what is input is indeed a permutation. 

2.5 Basic sparse operations and structures 

Sparse matrix data structures are somewhat more complex than dense matrix data 
structures. The form chosen here is a row oriented sparse matrix data structure. The 
matrix consists of an array of rows, and each row is an array of row elements. A row 
element contains a value, a column number and some other numbers to help access 
elements in the same column. (These latter data items are intended to improve· access 
speed for column oriented operations.) 

To use these sparse matrix data structures you need to have the following at the 
beginning of your program: 

#include "sparse.h" 

Sparse matrices are declared as pointers, as is done with other data structures in the 
system: 

SPMAT *A; 

Initialising a sparse matrix requires calling the sp_get () function: 

A= sp_get{m, n, maxlen); 

Herem is the number of rows in A, n is the number of columns, and maxlen is the 
number of non-zero elements expected in each row. If you add more than maxlen 
elements to a row, then more memory has to be allocated to that row, which can be 
time consuming if it is done very frequently. Also note that the NULL sparse matrix is 
called SMNULL. 

Unlike dense matrices, sparse matrices have a structure which can be understood 
as the pattern of nonzero entries. More accurately, it is the set of ( i, j) where memory 
for the aii entry is allocated. All entries outside this set are understood to have the 
value zero. The structure can be altered by processes such as fill-in during matrix fac
torisations or updates. However, all such alterations have a cost in terms of additional 
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time needed to update the data structures (as well as the values), overheads for memory 
reallocation, and in terms of the total amount of memory needed. Fill-in should be 
kept to a reasonable minimum. This can be done by using iterative methods, often in 
conjunction with incomplete factorisations, as are described later in this chapter. 

Setting values of A can be done using the sp_set_ val () function: To set the 
value of a;j to v, you should call sp_set_ val (A, i, j, v). The value of a;j is 
returned from the function call sp_get_ val (A, i, j ) . 

Copying sparse matrices can be done easily too: B = sp_copy (A) returns a 
copy of the sparse matrix A, while B = sp_copy2 (A, B) stores a copy of A in 
B, while preserving the structure of B. Preserving this structure can be extremely 
important in keeping the speed of factorisation algorithms high. 

Input/output is generally done by two pairs of routines: A = sp_input () 
and sp_output (A) for input and output respectively from stdin and to stdout. 
For sending the output to a different file, use sp_foutput ( fp, A), and for reading 
from a different file use A = sp_finput (fp) where fp is the corresponding file 
pointer. As for dense matrices and vectors, the printed output can be read back in from 
a file. If you are typing input from a keyboard, you will be prompted for all the relevant 
input. However, for both means of input there is a limit of 100 entries for each row. 

If worst comes to worst, and pointers are being mangled somewhere in the sparse 
matrix data structure, a sparse matrix can always be "dumped" out to a file by calling 
sp_dump ( fp, A) which will list all the pointer locations and column access numbers 
etc. as well as what is usually printed out by sp_foutput () and sp_output (). 

There are routines for multiplying sparse matrices by (dense) vectors, both from 
the right and from the left: sp_mv _ml t (A, x, out) forms Ax and stores the result 
in out, while sp_ v:m._ml t (A, x, out) forms AT x, which is stored in out. Here the 
data types for x and out are both VEC *, while A has type SPMAT *. However, there 
is currently no routine for multiplying sparse matrices together as there is always the 
danger that this will lead to dense matrices. (For example, if a row of A is all ones, 
and a column of B is all ones, then, unless cancellation occurs, AB will have every 
entry nonzero.) 

2.6 The sparse data structures 

The data structures used for representing sparse matrices is given below: 

typedef struct row_elt { 
int 
Real 

col, nxt_row, nxt_idx; 
val; 

} row_elt; 

typedef struct sp_row { 
int len, maxlen, diag; 
row_elt *elt; /* elt[maxlen] */ 

} SPROW; 
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typedef struct sp~at { 
int m, n, max_m, max_n; 
char flag_col, flag_diag; 
SPROW *row; /* row[max_m] */ 

int *start_row; /* start_row[max_n] */ 
int *start_idx; /* start_idx[max_n] */ 

} SPMAT; 

The sparse matrix data structure is the SPMAT data structure; this in tum is built on 
the sparse row SPROW data structure, and the row element row_el t data structure. 
Thus, the sparse matrix data structure used here is a row oriented data structure. (By 
contrast, see George and Liu's book "Computer Solution of Large, Sparse Positive 
Definite Systems", Prentice Hall (1981), which uses a column oriented data structure.) 

To scan the elements of a particular row a simple loop is all that is required: 

int i, j_idx, len; 

len= A->row[i].len; 
for ( j_idx = 0; j_idx < len; j_idx++ ) 

printf("A[%d] [%d] = %g\n", i, A->row[i].elt[j_idx].col, 
A->row[i].elt[j_idx].val); 

Alternatively, using intermediate variables: 

int i, j_idx, len; 
SPROW *r; 
row_elt *elt; 

r = &(A->row[i]); 
len = r->len; 
elt = r->elt; 
for ( j_idx = 0; j_idx < len; j_idx++, elt++ ) 

printf ( "A[%d] [%d] = %g\n", i, elt->col, elt->val); 

To alleviate potential problems due to this row-oriented approach, some additional 
access paths were included to ease column-based access. These take the form of the 
start_row and start_idx arrays, and the nxt_row and nxt_idx fields of the 
row_elt data structure. These work as follows. 

Suppose that A is a sparse matrix where this access path has been set up (i.e. 
A->flag_col is TRUE). To set the access paths, call sp_col_access (A). The first 
row that a non-zero entry appears in columnj is i = A- >start_row [ j], and the in
dex intotheA->row [i] • elt arraywhichgives this entry is k=A->start_idx [j] 

(i.e., A- >row [ i] . el t [k] . col == j ). 
Each entry (which has type row_elt) has its column number, and the row number 

nxt_row and the index number nxt_idx of the next non-zero entry in that column. 
If there is no remaining non~zero entry in that column, nxt_row has the value -1. 
Listing all the entries of a particular column can then be written as a loop: 
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int i, i_tmp, j, j_idx; 

sp_col_access(A); 

/* j is column number */ 
i = A->start_row[j]; 
j_idx = A->start_idx[j]; 
while i >= 0 ) 
{ 

} 

printf("A[%d] [%d] = %g\n", i, A->row[i].elt[j_id.x].col, 
A->row[i].elt[j_id.x].val); 

i_tmp = A->row[i].elt[j_id.x].nxt_row; 
j_idx = A~>row[i].elt[j_id.x].nxt_idx; 
i = i_tmp; 

Of course, the efficiency of this program fragment could be improved by doing the 
A->row[i] .elt [j_idx] calculation only once: 

int i, i_tmp, j, j_idx; 
row_elt *elt; 

/* j is column number */ 
i 
j_idx 
while 
{ 

= A->start_row[j]; 
= A->start_idx[j]; 

i >= 0 ) 

} 

elt = &(A->row[i].elt[j_idx]); 
printf ( "%g\n", elt->val); 
i_tmp = elt->nxt_row; 
j_idx = elt->nxt_idx; 
i = i_tmp; 

What is assumed about this data structure is that the column indices (the col field 
of the row_elt data structure) are in order along the rows. This allows the use of 
binary searching to locate items; Adding new non-zero entries thus usually results in 
copying blocks of memory. The theoretically better techniques, such as B-trees and 
2-3 trees, are considered too difficult to implement to be worthwhile in this context. 
Rather, we aim to avoid fill-in. 

Whenever fill-in takes place, the column access path is rendered incorrect, as is 
the diag entry for that row. The column access path for A can be reset by call
ing sp_col_a:ccess (A). Note, however, that calling sp_col_access (A) takes 
0( m + N) time where m is the number of rows of A, and N is the number of 
non-zero entries in A. The diag entries for the entire matrix can he reset by calling 
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sp_diag_access (). However, in some matrix factorisations (especially Cholesky 
factorisation) it is more efficient to update these extra fields nxt_row and nxt_idx 
as fill-in occurs. 

2. 7 Sparse matrix factorisation 

Two kinds of factorisations has been implemented, which are the sparse Cholesky 
and LU factorisations. The main routines are spCHfactor () and spLUfactor (). 
Both of these routines perform the full factorisation and create the fill-in as necessary. 
Supporting the sparse Cholesky factorisation is spCHsol ve ( ) which solves LLT x = 
b for x once the (sparse) Cholesky factorisation A = LLT is found for A. For the 
sparse LU factorisation is spLUsol ve ( } which solves pT LUx = b where P is the 
permutation defining the row pivots. Note that the sparse LU factorisation uses partial 
pivoting modified to avoid too much fill-in if this is possible. 

Two other variants of the sparse Cholesky factorisation are included. They are 
spiCHfactor () which fonns an incomplete factorisation of A - that is, it is 
assumed that no fill-in will take place during the Cholesky factorisation of A. There is 
also spCHsymb ( ) which does not do any floating point arithmetic, by rather does a 
symbolic factorisation of A. The routines spiCHfactor () and spCHsymb () can 
work together: If a number of matrices have the same pattern of zeros and non-zeros, 
then the pattern of zeros and non-zeros can be worked out using spCHsymb ( ) , and 
the matrices can be copied into the resulting matrix before using spiCHfactor () 
applied to the copied matrix. The code for this follows: 

SPMAT *pattern, *A; 

I* get original A matrix */ 

pattern= sp_copy(A); 
spCHsymb(pattern); 

sp_copy2(A,pattern); 
spiCHfactor(pattern); 

I* get new A matrix */ 

I* determine fill-in pattern */ 

/* preserve fill-in */ 
I* no additional fill-in */ 

I* assume same pattern of non-zeros in A *I 
sp_copy2(A,pattern); 
spiCHfactor(pattern); 

There is also an incomplete LU factorisation routine spiLUfactor (). This is 
actually a modified incomplete factorisation which modifies the diagonal entries to 
ensure they do not become less than a certain user-specified amount in magnitude; if 
this amount is set to zero then the method is just a standard incomplete factorisation. 



34 CHAPTER 2. DATA STRUCTURES 

2.8 Iterative techniques 

Dealing with large, sparse matrices often requires the use of iterative methods. How
ever, writing iterative routines that only operate on sparse matrices is unlikely to be 
very flexible. To this end a general data structure ITER is used for a wide class of 
iterative methods, which can be used for a wide class of problems. 

One of the basic types used in the ITER data structure is called Fun_Ax: this 
implements a "functional representation" of a matrix. An object Afn of type Fun_Ax 
is a function pointer where ( *Afn) (Aparams, x, y) computes y = Ax given x. 
The parameter Aparams is a pointer which can point to any user-defined data structure 
(or NULL if the function ignores it). Thus the user is completely freed from the trouble 
of having to deal with the built in sparse matrix data structures. If, for example, the 
matrix is defined in terms of networks, then the data structure describing the network 
can be passed as Aparams, and the matrix-vector multiply routine modified to work 
directly with the network data structure. Dealing with different networks doesn't 
require writing new functions: only the Aparams parameter needs to be changed. 
On the other hand, use of the standard sparse data structures isn't restricted: Afn is 
sp_mv_mlt, the sparse matrix-vector product routine, and Aparams is the actual 
sparse matrix data structure. 

This is the ITER data structure: 

typedef struct Iter_data { 
int shared_b, shared_x; 
/* TRUE if b, x aliased by other pointers *I 

unsigned k; I* no. of direction vectors; 0 = none *I 
int limit; I* upper bound on the no. of iter. 
int steps; I* no. of iter. steps done *I 
Real eps; I* accuracy required *I 

VEC *x; I* input: initial guess; 
output: approx. solution *I 

VEC *b; I* right hand side of A*x = b *I 

Fun_Ax Ax; I* function computing y = A*x */ 
void *A_par; I* parameters for Ax */ 

Fun_Ax ATx; I* function computing y = A~T*x *I 
void *AT_par;l* parameters for ATx *I 
I* B = preconditioner *I 
Fun_Ax Bx; I* function computing y = B*x *I 
void *B_par; I* parameters for Bx *I 

I* for the following two functions: res = residual; 
nres = norm of residual res; peres = B*res; */ 

steps *I 
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Field Value 
shared_b FALSE 
shared_x FALSE 
limit ITER_LIMIT _DEF = 1000 
k; steps 0 
eps ITER.EPS_DEF = 10-6 

x, b allocated 
Ax, Ax_ par NULL 
ATx, ATx_par NULL 
Bx, Bx_par NULL 
info iter _std_info () 
stop_crit iter_std_stop_crit () 

Table 2.1: Default values for the ITER structure 

/* function giving some information for a user */ 
void (*info)(struct Iter_data *ip, double nres, 

VEC *res, VEC *peres); 
/* stopping criterion: stop if TRUE returned; */ 
int (*stop_crit)(struct Iter_data *ip, double nres, 

VEC *res, VEC *peres); 

Real init_res; /* the norm of the initial residual */ 
} ITER; 
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Themainroutineforsettingupan ITER data structure is ip = iter_get (b_dim, 
x_dim) which creates an ITER data structure with NULL functions, default val
ues for the other components of the data structure, and with two vectors x and b 
created (of lengths x_dim and b_dim respectively). The other memory opera
tions involved are iter_resize ( ip, new_b_dim, new_x_dim) to resize ip, 
and iter_free(ip) (function) and ITER_FREE(ip) (macro) to free ip. The 
default values of the various entries of the ITER structure are given in Table 2.1: 

Setting the values in the data structure requires setting the fields of the ITER struc
ture directly. The function iter _dump ( fp, ip) prints out information about the 
the ITER data structure ip to stream/file fp. The routine iter_copy(ipl, ip2) 
copies the ITER structure and the x and b structures. (This is a deep copy.) The rou
tine i ter_copy2 ( ipl, ip2) copies all of the ITER structure's values but leaves 
ip2->x and ip2->b unchanged. 

These ITER data structures are used in the main iterative routines, such as 
i ter_cg ( ip) which implements (pre-conditioned) conjugate gradients; 
iter_lanczos (ip, .... ) which implements the basic Lanczos algorithm; 
i ter_cgs ( ip, rO) which implements Sonneveld's CGS algorithm; 
iter_gmres ( ip) which implements Saad and Schultz's GMRES algorithm. 
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There are some additional routines which provide a simplified interface for ap
plying iterative methods to sparse matrix data structures .. These routines are named 
iter_sp •.. ( .•• ),such as iter_spcg(A,LLT,b,eps,x,limit,steps) 
for (pre-conditioned) conjugate gradients. The i ter_sp •.. ( •.. ) routines work 
by setting up an ITER data structure and calling the appropriate main routine. 

The use of more than one level of interface means that simplicity is not sacrificed 
for the sake of more sophisticated users. 

2.9 Other data structures 

The above data structures can be used as parts of other data structures. For example, 
here is an data structur~for h?lding.simplex tableaus for linear programmes: 

typedef struct lp { 
MAT . ~tab; 
VEC *rhs, *cost; 
Real val; 
PERM *basis, *invbase, *allow; 
int card; 

} LP; 

Routines for creating and destroying; inputting and outputting, and using this data 
structure have been written, based on the corresponding routines for the component 
data structures. It may be of interest that basis is a permutation, and that during 
operations on the simplex tableau, in_base is maintained as the inverse permutation 
to basis. Finally, the permutation allow together with card act as a set which 
consists of the elements 

{allow->pe [0] ,allow->pe [1], allow->pe [2], 
... ,allow->pe [card-1] }. 

Meschach 1.2 allows you to incorporate your own data structures into various 
aspects of the library, such as tracking memory usage and deallocating static workspace 
when desired. For suggestions for implementing your own data structures and using 
Meschach routines in your applications, see chapter 8 on designing libraries in C. 



Chapter 3 

Numerical Linear Algebra 

This chapter aims to provide a brief introduction to numerical linear algebra. People 
who are unfamiliar with how to go about (say) solving linear equations, or how to 
compute eigenvalues and eigenvectors might find this useful for selecting the best 
routine(s) to solve their particular problem, and to understand the rationale for the way 
the routines are set up in the way they are. 

3.1 What numerical linear algebra is about 

There are a number of core operations and tasks that make up numerical linear algebra. 
At the lowest level these include calculating linear combinations of vectors and inner 
products, and at the higher level consists of solving linear equations, solving least
squares problems and finding eigenvalues and eigenvectors. 

The lower level operations are usually quite straightforward in terms of what they 
do and what the accuracy of the results are. However, with higher level operations 
more care must be taken with regard to both efficiency and the accuracy of the answers. 
The routines used to perform these higher level operations are more varied and allow a 
number of different ways of performing the same computation. The difference between 
them lies often in the speed (or lack of it) and the accuracy of the answers obtained. 

There are further complications because of some intrinsic limits to the computations 
that a computer can do accurately, at least with floating point arithmetic. Floating point 
arithmetic cannot store numbers to an accuracy (relative to the number stored) better 
than what is called "machine epsilon", or "unit roundoff'. This quantity is usually 
denoted by u, but is represented in the library by MACHEPS. It is also referred to 
in the ANSI C header file <float .h> as DBL_EPSILON for double precision and 
FLT_EPSILON for single precision. For most machines this quantity is about 2 x 10-16 

for double precision, and 10-7 for single precision. 
Practically all floating point calculations introduce errors of size of machine epsilon 

times the size of the quantities involved; for all intents and purposes, these errors are 
unavoidable. Perturbations in the data of a problem are essentially unavoidable. 
Algorithms that compute answers that would be exact for slightly perturbed data 

37 
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are called backward stable; algorithms which give answers that are close to the exact 
answer are called forward stable. Sometimes the problems that are solved are inherently 
unstable, or "ill conditioned" (see below). In these circumstances, no algorithm can 
be expected to be forward stable. However, well designed algorithms are at least 
backward stable; the answers are exact for slightly perturbed data The algorithms in 
Meschach are essentially all backward stable in this sense. Combining these algorithms 
in programs can sometimes lead to methods that are not stable in this sense. Careful 
analysis of the algorithm may need to be done to check this. 

3.2 Complex conjugates and adjoints 

Unlike real matrices, inner products of complex vectorS have to involve complex 
conjugates: 

(x, y) = L XiYi· 
i 

This cannot be written as xT y, but is often written as a;T y. The vector a;T not only 
is a row vector, but has the components replaced by their complex conjugates. (The 
complex number z = u + iv has complex conjugate z = u - iv where u and v are real 
numbers.) 

The vector a;T is cal\ed the adjoif!.t of x and is denoted in this documentation as x*. 
Some texts use this convention, others use related conventions. 

There are also adjoints of matrices: A* = _AT. Generally, where one would use a 
transpose for real matrices, one should use an adjoint for complex matrices. Of course, 
if x is a real vector, and A is a real matrix, then x* = xT and A* = AT. 

While real orthogonal matrices satisfy QT = Q-1 , their complex cousins, the 
unitary matrices, satisfy Q* = Q-1 • 

3.3 Vector and matrix norms 

While it is quite straightforward to talk about the magnitude of a number, it is less so 
with vectors and matrices as there are a number of different ways of defining it. These 
"magnitudes" or norms must have a number of basic properties in order to be of some 
use. These properties for vector norms are written out below; the norm itself is written 
as 1111. 

(3.1) 

llxll is a non-negative real number 

llx + Yll ~ llxll + IIYII 
!lax!! = lalllxll where a is a real or complex number. 

Matrix norms have not only these properties (with x andy replaced with matrices), but 
often have an additional one: 

IIXYII ~ IIXIIIIYII· 
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This inequality holds for all matrix norms implemented in Meschach. 
Some standard vector norms are 

(3.2) 

The last norm Cllll2 ) is actually the standard or "Euclidean" norm and is the definition of 
"magnitude" used in geometry and mechanics etc. However, different problems often 
have natural ways of measuring vectors related to the specific problem. For example, 
if e is a vector of errors, then llelloo :::; .01 means that no error is larger than .. 01. 

These vector norms can be computed by the routines v ~norml ( ) , v _norm2 ( ) 
and v _norm_inf () , for the II II 1 norm, the II II 2 norm and the II II 00 norm respectively. 

Associated with these vector norms are matrix norms that are defined by 

IIAII =max IIAxllfllxll. 
x~O 

The associated matrix norms for the above vector norms are: 

IIAII1 = m~ L laijl, IIAIIoo = m~ L ja,jl 
J • ' . 

' J 

IIAJja = (maximum eigenvalue of AT A) 112 • 

(3.3) 

Some matrix norms are not associated with any particular vector norm, such as the 
Frobenius norm: 

These matrix norms can be computed by the routines m_norml () for the II II 1 
norm, m_norm_inf () for the II lloo norm, and m_norm_frob () for the Frobenius 
norm II II F. The matrix 2-norm has not been implemented as it.is a rather expensive 
operation. The matrix 2-norm is best computed using the SVD, which is discussed 
later. 

3.4 : "Ill conditioning" or intrinsically bad problems 

Users of numerical routines sometimes . find that the results they get are erratic or 
obviously wrong for some reason or other. Barring programming errors, there are 
some reasons why this can happen. Often it comes under the heading ill conditioning, 
which means that the problem is inherently difficult.., 
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Whenever the computer does some calculation with real numbers (like 3.1415926 
. . . ) it almost always adds some error to the result whose magnitude is about "machine 
epsilon" times the magnitude of the result. If such a change in the data can radically 
change the answer, then the problem or task is called "ill conditioned". This is a 
property of the problem, not of any algorithm to solve it. 

As with most things in numerical analysis, it is a good idea to quantify "how badly 
conditioned". For the problem of solving linear systems of equations, the measure of 
conditioning for a particular norm 1111 is 

K(A) = II All IIA -1 11 

which is called the condition number of A. The condition numbers for the 1111 1, llll2 
or lllloo norms are usually denoted K1(A), K2(A) or K00 (A) respectively. 

A justification of why this is used as a measure of the conditiomng of a system of 
linear equations, is given in the following theorem: · 

Theorem 3.4.1 If A is nonsingular and IIA-1 IIIIEII < 1 and 

Ax= b, and (A+ E)(x +e)= b + j, 

then 
II ell K(A) [liE II 11!11 J w ~ 1- K(A)(IIEII/IIAII) .IIAII + lfbiT . 

A proof of this may be found in a number of numerical analysis textbooks such as 
Matrix Computations, by Golub and van Loan, §2.7, pp. 79-80, 2nd Edition, (1989), 
or in An Introduction to Numerical Analysis, by K. Atkinson, Ch. 8, pp. 462-463, 1st 
Edition, (1979). 

Do ill conditioned problems or tasks occur in practice? The answer is "All too 
often." One family of matrices that are notoriously ill-conditioned are the Hilbert 
matrices: 

1 
1/2 

Hn = 1/3 

1/2 
1/3 
1/4 

1/3 
1(4 
1/5 

1/n 1/(n + 1) 1/(n + 2) 

1/n 
1/(n + 1) 
1/(n + 2) 

1/(2n -1) 

These. matrices arise quite naturally in finding best integral-least square error fits for 
functions in terms of 1, x, x2 , ••• , xn-1 • The condition number of Hn for n = 5 is 
already ~ 4.8 x 105 and for n = 10 is ~ 1.6 x 1013 • In fact the condition number of 
Hn for large n increases super-exponentially inn. Because they are so ill-conditioned, 
they are a favourite family of matrices to test linear equation solvers. 

This condition number can be computed in O(n3 ) floating point operations essen
tially by calculating the inverse of the original matrix. Alternatively, it can be estimated 
relatively cheaply (in O(n2) operations) once the LU factors of the matrix are known. 
This can be done using the routine LUcondest ( ) . 
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3.5 Least squares and pseudo-inverses 

It is quite common, when analysing data, to perform a "least squares fit". For example, 
if there are three controlled quantities and one measured quantity in an experiment, it 
is common to fit a linear model: 

where each a1 is a parameter to be fitted, and Yi is the ith measured value, and xi,j is 
the ith value of the jth controlled quantity. 

The "least squares fit" is the a vector that minimises 

m 

L (Yi- (alxi,l + a2xi,2 + a3xi,3))2 . 
i=l 

This can be cast in terms of matrices and vectors by setting X to be the matrix of the 
xi,i• andy to be the vector [y1 , y2 , ••• , Ym]T. Then the approximation is y ~ X a, 

and more specifically, the least squares fit is obtained by minimising IIY - X all~ = 
(y- Xa)T(y- X a). By taking partial derivatives with respect to the a;'s gives the 
system of linear equations known as the normal equations: 

If the columns of X are linearly independent, then the matrix XT X is positive definite 
and the Cholesky factorisation can be used to solve this system of equation once XT X 
is formed. The following piece of code does this: 

MAT *X, *XTX; 
VEC *y, *XTy, *alpha; 

/* set up X and y */ 

XTX = mtr.m_mlt(X,X,MNULL); 
XTy = vm_mlt(X,y,VNULL); 
CHfactor(XTX); 
alpha= CHsolve(XTX,XTy,VNULL); 

If the columns of X are not linearly independent, then there are redundant variables 
being set in the experiment: at least one of the variables being set is just a linear 
combination of the others. In the above piece of code, this may result in an error being 
raised to the effect that the matrix XTX is not positive definite. Whether this happens 
or not depends on the way that the rounding errors go. 

In practice it may well be that some of the set quantities are nearly, but not exactly, 
redundant. The Cholesky factorisation may not be able to pick this up. However, 
there are other "factorisations" that can. These are the QR factorisation (with column 
pivoting) and the SVD. Later, we will return to the QR factorisation as another means 
of solving least squares problems. 
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3.5.1 Singular Value Decompositions 

The SVD or Singular Value Decomposition is analogous in some ways to finding 
eigenvalues and eigenvectors. The SVD of a matrix X is a decomposition X = UT~V 
where U and V are orthogonal matrices, and ~ is a diagonal matrix. The values on the 
diagonal of ~ are unique, except for their sign. If the entries of ~ are all nonnegative 
and ordered so that they are nonincreasing going down the diagonal, then the diagonal 
entries are called singular values, and are denoted by ui. The columns of U and V are 
called singular vectors. 

How well or ill conditioned a least squares problem is can be determined directly 
from the singular values. The usual condition number for least square problems is 
K-Ls(X) = udun where X ism x nand m ~ n. If Un = 0 then X has linearly 
dependent columns, and the problem cannot be solved to any degree of accuracy. Such 
a matrix is also referred to as being rank deficient. 

3.5.2. Pseudo;.inverses 

Whether a matrix is square or rectangular, rank deficient or has full rank, it always has 
a pseudo-inverse. This is the matrix x+ = VT~+u where the ith diagonal of~+ is 
1/ ui is ui =f. 0 and zero otherwise. This has a number of useful properties such as the 
Moore-Penrose properties: 

xx+x =X, · (xx+l =xx+ 
x+xx+ =x+, .(x+x)T =x+x. 

(3.4) 

This means that xx+ is an orthogonal projection onto range(X) and x+ X is an 
orthogonal projection onto range(XT). 

The least squares problem can, in general, be solved by setting a = x+y. This 
solution is, in fact, the smallest a that minimises the sum of errors squared. This 
approach appears quite simple for providing a way of solving least squares problems 
(and others) involving rank deficient matrices. However, there are a number of practi
cal difficulties. The first of these is that small perturbations to rank deficient matrices 
usually result in full rank matrices; the ui's that were formerly zero before the pertur
bation, become nonzero, but small after the perturbation. This means that where ~+ 
had a zero on the diagonal before the perturbation, after the perturbation it has 1/ ui 
which is quite large. In short, the pseudo-inverse is not a continuous function of the 
matrix entries; small perturbations can give very large changes in the results. 

While the SVD can be computed numerically, roundoff error will ensure that almost 
always the computed ui's are all nonzero. In these cases it is important to estimate the 
rank by considering the size of the ui 's. For such problems an error tolerance is needed 
to decide how small the u/s need to be before they are considered "too small". The 
choice of such an error tolerance should be based on the size of the errors in the matrix, 
and their source. If, for example, the values in the X matrix have a measurement error 
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of about 10-3 , then a tolerance of about 10 times this should detect near rank deficient 
matrices. If, on the other hand, the only errors are those from roundoff error, then a 
value of 100 times unit roundoff (MACHEPS in the library) should be adequate. 

3.5.3 QR factorisations and least squares 

An alternative approach to solving least squares problems for full rank matrices (i.e. 
those that are not rank deficient) is to use the QR factorisation. This method is also 
described in section 3 of the tutorial chapter. The QR factorisation of a matrix A is a 
factorisation A = Q R where Q is orthogonal and R is upper triangular. 

This QR factorisation is computed by means of Householder matrices. These are 
discussed in more detail in the manual entry for the routines that implements these 
operations, hhvec (), hhtrvec (), hhtrcols () and hhtrrows (). The QR 
factorisation can also be computed by using Givens' rotations which are discussed in 
the manual entries for givens (),rot_ vee (), rot_cols () and rot_rows (). 

To use this factorisation to solve a linear least squares problem X o: ;=::j y we 
compute, first, the QR factorisation of X= QR. For X m x nand m > n, as the R 
matrix is upper triangular, 

If X has full rank, then R1 is a nonsingular n x n matrix. The matrix Q should be split 
in a consistent way: Q = [Q1, Q2]· 

The residual vector's norm is then 

[Rll [Qfl 0 0:- Qf y 2. 

This means that 

IIX 0: - Yll~ = IIRl 0: - Qf Yll~ + II Qf Yll~. 
The minimum 2-norm of X o: - y (with respect to o:)is obtained by solving 

R1o: = Qfy 

and has the value IIQf Yll2· The code in section 3 of the chapter 1 provides a complete 
program for solving least squares problems of this sort. 

There are some advantages of this method over the "normal equations" approach, 
of which the main one is accuracy. In the normal equations approach, the system 
xr X o: = xr y is solved for o:. The error in the computed o: in the 2-norm is of 
the order of ux:2 (XT X). On the other hand, the error in the computed o: for the QR 
factorisation method is of the order of U11:Ls(X). Now if X = ur~v is the SVD of 
X, then 

xrx = VTETEV = vr diag(ai, ... , cr~)V 

and the eigenvalues of xr X are the squares of the singular values of X. So 
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and forming xr X effectively squares the condition number of the problem. This is 
particularly important for badly conditioned problems with "'Ls(X) ~ 1/ y'U; for such 
problems the QR factorisation method would work, but the normal equations approach 
would faiL 

3.6 Eigenvalues and eigenvectors 

There are two main classes of problems and algorithms for computing eigenvalues 
and eigenvectors. They are problems involving symmetric matrices, and problems 
involving nonsymmetric matrices. The case of symmetric matrices is easier both in 
theory and practice. It is also less vulnerable to the effects of roundoff errors. 

Symmetric matrices all have real eigenvalues, and the corresponding eigenvectors 
are both real and orthogonal. Thus for any symmetric matrix A there is an orthogonal 
matrix Q such that QT AQ = A where A is the diagonal matrix of eigenvalues. If the ith 
diagonal element of A is.\, and qi is the ith column of Q, then Aqi = >.iqi. Regarding 
stability of the eigenvalues to perturbations of the matrix A, the ith eigenvalue of 
A+ E, denoted .Xi, satisfies Ai - IIEII2 ::; xi ::; >.i + IIEIIz. 

The eigenvectors are not so stable with respect to perturbations of A, especially if 
eigenvalues are close together. The extreme case is where there is a repeated eigenvalue, 
in which case the eigenvalues are not essentially unique (up to a scale factor). Instead, 
there is a two or three or higher dimensional subspace of eigenvectors. If all the 
eigenvalues are distinct, then for a matrix A+ E, IIEII2 "small", the perturbation in 
the eigenvector qi is of size roughly bounded by 

As for previous problems, the perturbations in A due to roundoff error is roughly 
I!EIIz ~ ui!AII 2 • This means that the eigenvectors would not usually be reliably 
computed if its eigenvalue is no more than about u!IAI!z from other eigenvalues. 

The eigenvalues for a symmetric matrix can be computed using the symmeig ( ) 
library routine, which will compute the Q matrix of eigenvectors as well as a vector 
containing the eigenvalues if desired. 

For the nonsymmetric case, a rather different strategy has to be adopted for several 
reasons: 

1. The matrix A may not be diagonalisable; the Jordan canonical form is not 
numerically stable. 

2. The matrix of eigenvectors may not be well conditioned. 

3. The eigenvalues may not be real. 

The standard strategy used is to compute the real Schur decomposition. This is a 
variant of the complex Schur decomposition. The complex Schur decomposition is a 
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factorisation 

Q*AQ = T 

where T is upper triangular, and Q is unitary; that is, Q*Q = I where Q* is the 
adjoint of Q. The diagonal entries ofT are the eigenvalues of A. The complex Schur 
decomposition can be computed for complex matrices by the routine zschur (). 

For the real case, 

where T is block upper triangular with 1 x 1 and 2 x 2 blocks on the diagonal and 
Q is orthogonal. The eigenvalues of the 1 x 1 and 2 x 2 diagonal blocks of T are 
the eigenvalues of A. This real Schur decomposition is computed by the schur ( ) 
routine. If you wish to obtain the actual eigenvalues and eigenvectors, there are 
the auxiliary routines schur_vals () and schur_vecs (). The schur_vals () 
routine computes the (complex) eigenvalues and returns the real and imaginary parts of 
the eigenvalues. The schur_vecs () routine computes the eigenvectors of a matrix 
by means of its real Schur decomposition, by using one cycle of inverse iteration for 
each eigenvector. That is, the system 

(T- >.I)x = r 

is solved for x where 1' is a random real vector. 
Unfortunately, if there are repeated eigenvalues, this method cannot be expected 

to give good results: the matrix of eigenvectors would be ill-conditioned. Indeed, it is 
usually not possible to get a nonsingular matrix of eigenvectors if there are repeated 
eigenvalues. Consider the general 2 x 2 matrix 

[~ ~]· 
This matrix has repeated eigenvalues if and only if (a - d) 2 = -4bc. The repeated 
eigenvalue is (a + d)/ 2. If X is the matrix of eigenvectors, and is nonsingular,then 

x-1 [~ ~]X= (a+ d)/21 

which implies that 

[~ ~]=(a+d)/21 
and a = d and b = c = 0. Clearly, small perturbations of matrices with repeated 
eigenvalues usually result in matrices which do not have a nonsingular matrix of 
eigenvectors. 

The proper way to handle the situation of repeated eigenvalues is either to use the 
Schur decomposition (real or complex), or to use the Jordan Normal form. The Jordan 
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Normal form of the matrix A has the form 

[J, 0 0 

~.1 x-'AX = ~ J2 0 
0 J3 
0 0 

where each Ji (called a Jordan block) has the form 

.>..i 1 0 0 
0 .>..i 1 0 

Ji = 0 0 .>..i 0 

0 0 0 ).i 

Note that Ji may be as small as 1 x 1 or 2 x 2. 
This form is not favoured by numerical analysts as it is difficult to compute when 

roundoff errors are present, and the criterion for deciding how big a Jordan block 
should be is a difficult task as it requires numerically estimating the rank of a number 
of matrices. Golub and van Loan's Matrix Computations discusses the difficulties of 
computing the Jordan Normal form pp. 390-392 (2nd Edition, 1989). Also, the Schur 
form can be used for almost all the same purposes as the Jordan Normal form, such as 
computing matrix exponentials. 

3. 7 Sparse matrix operations 

Sparse matrices are simply matrices where most of the entries are zero. These are 
important as they can be stored in a more compact way by storing only the nonzero 
entries and their position in the matrix. The zero entries can usually be ignored for 
most computations. Thus far larger problems can be dealt with, and more quickly, than 
if array storage is used. 

While the previous discussion holds for all matrices whether sparse or not, if 
sparse matrices are to be used effectively then their sparsity needs to be preserved. 
This quickly rules out a lot of algorithms which work well for matrices that are not 
sparse (i.e. dense). For example, the Schur decomposition and explicit matrix inverses 
usually result in intermediate and result matrices where most of the entries are nonzero. 

Sparse matrices have a structure that dense·matrices don't. This is essentially the 
set of ( i, j) entries of a matrix that are nonzero, or at least that have memory allocated 
for a value. And it is often important to keep this structure and to prevent the number 
of nonzeros in intermediate matrices from increasing too quickly. The introduction of 
nonzero entries into sparse matrices is called fill-in. Not only does fill-in result in more 
space required to store the intermediate matrices and result indirectly in more floating 
point computations, but it also requires some sort of dynamic memory management. 
(This is easier in 'C' than in Fortran, but still has a cost in both time and memory 
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space.) The routines provided for manipulating sparse matrix data structures hides 
much of the complexity of the data structures and operations that needto be performed 
when there is fill-in. 

Sparse matrices are also important as they are often more suitable for iterative 
rather than the direct methods that have been discussed so far. Often some mix of 
iterative and direct methods will provide the best performance for solving some large 
problems. 

The direct routines implemented for sparse matrices include sparse Cholesky and 
sparse LU factorisation, with a number of variants which are provided for control the 
"structure" of the sparse factorisations. The iterative methods for solving systems of 
linear equations include pre-conditioned conjugate gradients for solving symmetric, 
positive definite systems, the CGS method of Sonneveld, the GMRES method of 
Saad and Schultz, the MGCR method of Leyk for solving systems of non-symmetric 
matrices, and the LSQR method of Paige and Saunders for non-square least squares 
problems. For eigenvalues, the Lanczos method is provided for symmetric matrices, 
and the Arnoldi method for nonsymmetric matrices. 

Those who are familiar with the standard "classical" iterative methods (Gauss
Jacobi, Gauss-Seidel and Successive Over-Relaxation etc.) may be disappointed that 
they are not implemented. There are three reasons for this. The first is that the iterative 
routines that have been implemented do not require an explicit representation c;f the 
matrix; aU that is needed is a way of fanning Ax for any vector x. That is, only a 
functional representation of the matrix (A) is needed. The second is the difficulty 
in obtaining good convergence with the classical methods. These classical methods 
require good estimates of convergence rates and the like, and are difficult to turn into 
general purpose routines when the "rate estimation code" is included. The third is that, 
for instance, conjugate gradients (without pre-conditioning) give the same order of 
convergence as that for SOR with the optimum over-relaxation parameter for standard 
test problems. It therefore appears that there is not a great deal of reason to implement 
SOR over conjugate gradient methods, although conjugate gradient methods can be 
modified to use an SSOR-based pre-conditioner M: 

M = (D + wL)D-1(D + wLf 

where D is the diagonal part of A, and L is the strictly lower triangular part of A and 
w is the ( over)relaxation parameter. Solving M z = w for z can be done essentially by 
backward and forward substitution and can be easily programmed without explicitly 
forming M. The Gauss-Seidel pre-conditioner is obtained by setting w = 1. 

The crucial point about iterative methods is that there is usually no natural limit to 
the number of iterations. A relative precision for the residual must usually be specified, 
and it needs to be significantly larger than u (or, as it is represented in the library 
MACHEP S). The number of iterations is also important for the speed with which a system 
of linear equations is solved. If the relative error tolerance is set toE, then the number of 
iterations is roughly proportional to J x:2 (A) ln(l/ E) for conjugate gradient methods. 
For LSQR, it is roughly proportional to x:Ls(A) ln(l/E). For finding eigenvalues of 
symmetric matrices, the Lanczos routine finds the bottom eigenvalue to an accuracy 
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of E in time roughly proportional to J(>.k- >.2)j(>.2- >.1) ln(n(>.k- >..1)/E) where 
>.1 < >.2 < 0 0 

• < >.k are the distinct eigenvalues of A. (i.e. >.k is the largest eigenvalue 
of A.) 

The use of functional representation also opens up the possibility of pre-conditioning 
for the CGS and LSQR, and even the Lanczos methods. Here incomplete factorisations 
may be able to improve performance, such as the incomplete Cholesky factorisation or 
the incomplete/modified LU factorisation. 



Chapter4 

Basic Dense Matrix Operations 

The following routines are described in the following pages: 

Catch errors 
Error handlers and extensions 
Error handling style 
Copy objects 
Input object from file 
Output to file 
General input/output 
Deallocate (destroy) objects 
Create and initialise objects 
Extract column/row from matrix 
Initialisation routines 
Input object from stdin 
Inner product 
Operations on integer vectors 
Resize data structures 
Machine epsilon 
Matrix addition and multiplication 
Memory allocation information 
Static workspace control functions 
Matrix transposes, adjoints and multiplication 
Matrix norms 
Matrix-vector multiplication 

Continued ... 
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Output object to stdout 
Permutation identity, multiplication and inverse 
Permute columns/rows & permute vectors 
Set column/row of matrix 
Scalar-vector multiplication/addition 
Componentwise operations 
Linear combinations of arrays and lists 
VectQJ:-~'norffis ~ ,~ 

Operations on complex numbers 
Core low level routines 

To use these routines use the include statement 
. 

#include "matrix.h" 

To use the complex variants use the include statement 

#include "zmatrix.h" 
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NAME 

catch, catchall, catch_FPE, tracecatch-catcherrors 

SYNOPSIS 

#include "matrix.h" 
catch(int err_num, normal_code_to_execute, 

code_to_execute_if_error) 
catchall(normal_code_to_execute, 

code_to_exectue_if_error) 
tracecatch(normal_code_to_execute, char *fn_name) 
catch_FPE() 

DESCRIPTION 
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The catch () macro provides a way of interposing your own error-handling 
routines and code in the usual error-handling procedures. The catch () macro works 
like this: The global variable restart (of type jmp_buf) is saved. Then the code 
normal_code_to_execute is executed. If an error with error number err_num 
is raised, then code_to_execute_if_error is executed. If an error with another 
error number is raised, an error will be raised with the same error number as the original 
error, but win appear to have come from the catch () macro. If no error is raised 
then the macro will exit and restart is reset to its old values. 

The catchall () macro works just like the catch () macro except that 
code_to_execute_if_error is executed if any error is raised. 

The tracecatch () macro is really a specialised version of the catchall () 
macro that sets the error-handling flag to print out the underlying error when it is raised. 

In every case the old error handling status will be restored on exiting the macro. 

The routine catch_FPE () sets up a signal handler so that if a SIGFPE signal 
is raised, it is caught and error ( } is called as appropriate. The error raised by 
error () is an E_SIGNAL en-or. 

EXAMPLE 

main() 
{ 

MAT *A; 
PERM *pivot; 
VEC *x, *b; 

tracecatch( 
LUfactor(A,pivot); 
LUsolve(A,pivot,b,x); 
, "main"); 
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would result in the error messages 

"lufactor.c", line 28: NULL objects passed in function 
LUfactor() 

"junk.c", line 20: NULL objects passed in function main() 
Sorry, exiting program 

being printed to stdout if one ofAorpivot orb were NULL. These messages would 
also be printed out to stderr if stdout is not a terminal. 

On the other hand, 

catch(E_NULL, 
LUfactor(A,pi); 
LUsolve(A,pi,b,x); 

, printf("Ooops, found a NULL object\n")); 

simply produces the message Ooops, found a NULL object in this case. 

However, if another error occurs (say, b is the wrong size) then LUsol ve () raises 
an e_SIZES error, and 

"junk.c", line 22: sizes of objects don't match in 
function catch () 

Sorry, exiting program 

is printed out. 

SEE ALSO 

signal (), error (), set_err_flag (), ERREXIT () etc. 

BUGS 

If a different error to the one caught in catch ( ) is raised, then the file and line 
numbers of the original error are lost. 

In an if-then-else statement, tracecatch () needs to be enclosed by braces 
( { ... } ). 

SOURCE FILE: matrix.h 
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NAME 
error, set_err_flag, ev_err, err_list_attach, 
err_is_list_attached, err_list_free, warning- raise errors and 
warnings 

SYNOPSIS 

#include "matrix.h" 
int error(int err_num, char *func_name) 
int ev_err(char *file, int err_num, int line_num, 

char *fn_name, int list_num) 
int set_err_flag(int new_flag) 
int err_list_attach(int list_num, int list_len, 

char **err_ptr, int warn) 
int err_list_free(int list_num) 
int err_is_list_attached(int list_num) 
int warning(int warn_num, char *func_name) 

DESCRIPTION 

This is where errors are flagged in the system. The call 
error ( err_num, func_name) is in fact a macro which expands to 

ev_err( __ FILE __ ,err_num, __ LINE __ ,func_name,O) 

This call does not return. 

Warnings are raised by warning (warn_num, func_name) which are expands 
to 

ev_err( __ FILE __ ,warn_num, __ LINE __ ,func_name,l) 

This call returns zero. 

The call to ev _err () prints out a message to stderr indicating that an error 
has occurred, and where in which function it occurred, and the list of error messages 
to use (0 is the default). For example, it could look like: 

"testl.c", line 79: sizes of objects donut match in 
function f () 

which indicates that an error was flagged in file "testl. c" at line 79, function "f" 

where the sizes of two objects (vectors in this case) were incompatible. 

Once this information is printed out, control is passed to the the address saved in the 
buffer called restart by the last associated call to setjmp. The most convenient 
way of setting up restart is to use a ••• catch .•. () macro or by an ERREXIT () 
or ERRABORT () macro. If restart has not been set then the program exits. 
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If you wish to do something particular if a certain error occurs, then you could 
include a code fragment into main () such as the following: 

if ( (code=setjmp(restart)) != 0 ) 
{ 

if ( code = E_MEM } /* memory error, say */ 
/* something particular */ 
{ . . . . } 

else 
exit(O); 

} 

else 
/* make sure that error handler does jump */ 
set_err_flag(EF_JUMP); 

The list of standard error numbers is given below: 

E_UNKNOWN 
E_SIZES 
E_BOUNDS 
E_MEM 
E_SING 
E_POSDEF 
E_FORMAT 
E_INPUT 
E_NULL 
E_SQUARE 
E_RANGE 
E_INSITU2 
E_INSITU 
E_ITER 
E_CONV 
E_START 
E_SIGNAL 
E_INTERN 
E_EOF 
E_SHARED_VECS 
E_NEG 
E_OVERWRITE 

0 /* unknown error (unused) */ 
1 /* incompatible sizes */ 
2 /* index out of bounds */ 
3 /* memory (de)allocation error */ 
4 /* singular matrix */ 
5 /* matrix not positive definite */ 
6 /* incorrect format input */ 
7 /* bad input file/device */ 
8 /* NULL object passed */ 
9 /* matrix not square */ 

10 /* object out of range */ 
11 /* only in-situ for square matrices */ 
12 /* can't do operation in-situ */ 
13 /* too many iterations */ 
14 /* convergence criterion failed */ 
15 /* bad starting value */ 
16 /* floating exception */ 
17 /* some internal error */ 
18 /* unexpected end~of-file */ 
19 /* cannot release shared vectors */ 
20 /* negative argument */ 
21 /* cannot overwrite object */ 

The set_err_flag () routine sets a flag which controls the behaviour of the 
error handling routine. The old value of this flag is returned, so that it can be restored 
if necessary. 

The list of values of this flag are given below: 
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EF_EXIT 0 I* exit on error default *I 
EF_ABORT 1 I* abort on error dump core *I 
EF_JUMP 2 I* do longjmp () see above code *I 
EF_SILENT 3 I* do not report error, but do longjmp() *I 

If there is a just a warning, then the default behaviour is to print out a message to 
stdout, and possibly stderr; the only value of the flag which has any effect is 
EF _SILENT. This suppresses the printing. 

The set of error messages, and the set of errors, can be expanded on demand 
by the user by means of err_list_attach(list_num, list_len, err_ptr, 
warn). The list number list_num should be greater than one (as numbers zero and 
one are taken by the standard system). The parameter list_len is the number of 
errors and error messages. The parameter err__ptr is an array of list_len strings. 
The parameter warn is TRUE or FALSE depending on whether this class of "errors" 
should be regarded as being just warnings, or whether they are (potentially) fatal. Then 
when an "error" should be raised, call 

ev_err( __ FILE __ ,err_num, __ LINE __ ,func_name,list_num); 

It may well be worthwhile to write a macro such as: 

#define my_error(my_err_num,func_name) \ 
ev_err( __ FILE __ ,err_num, __ LINE __ ,func_name,list_num) 

If when originally set, the warn parameter was TRUE, then these calls behave sim
ilarly to warning (), and if it was FALSE, then these calls behave similarly to 
error ( ) . These errors and exceptions are controlled using catch ( ) , catchall ( ) 
and tracecatch () (if warn was FALSE), just as for error () calls. 

The call err _list_free (list_num) unattaches the error list numbered 
list_num, and allows it to be re-used. 

The call err_is_list_attached ( list_num) returns TRUE if error list 
list_num is attached, and FALSE otherwise. This can be used to find the next 
available free list 

EXAMPLE 

Use of error ( ) and warning ( ) : 

if 
if 

! A ) 

A->m ! = A->n ) 
error(E_NULL, "my_function"); 
error(E_SQUARE,"my_function"); 

if i < 0 I I i >= A->m error (E_BOUNDS, "my_function"); 
I* this should never happen *I 
if ( panic && something_really_bad ) 

error ( E_INTERN, "my _function" ) ; 
/* issue a warning -- can still continue */ 
warning(WARN_UNKNOWN,"my_function"}; 



56 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS 

Use of err_list_attach(): 

char *my_list[] = { "short circuit", "open circuit" }; 
int my_list_num = 0; 

main() 
{ 

} 

for ( my_list_num = 0; ; my_list_num++ ) 
if ( ! err_is_list_attached(my_list_num) 

break; 
err_list_attach(my_list_num,2,my_list,FALSE); 

tracecatch(circuit_simulator( ...• ),"main"); 

err_list_free(my_list_num); 

void circuit_simulator( .... ) 
{ 

} 

/* open circuit error */ 
ev_err( __ FILE __ ,l, __ LINE __ , 

"circuit_simulator",my_list_num); 

SEE ALSO 

ERREXIT (), ERRABORT (), setjmp () and longjmp (). 

BUGS 

Not many routines use tracecatch (), so that the trace is far from complete. 
Debuggers are needed in this case, if only to obtain a backtrace. 

SOURCE FILE: err.c 



NAME 

ERREXIT, ERRABORT, ON_ERROR - what to do on error 

SYNOPSIS 

#include "matrix.h" 
ERREXIT(); 

ERRABORT{); 

ON_ERROR(); 

DESCRIPTION 
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If ERREXIT ( } is called, then the program exits once the error occurs, and the 
error message is printed. This is the default. 

If ERRABORT ( ) is called, then the program aborts once the error occurs, and the 
error message is printed. Aborting in Unix systems means that a core file is dumped 
and can be analysed, for example, by (symbolic) debuggers. Behaviour on non-Unix 
systems is undefined. 

If ON_ ERROR ( ) is called, the current place is set as the default return point if an 
error is raised, though this can be modified by the catch () macro. The ON_ ERROR () 

call can be put at the beginning of a main program so that control always returns to the 
start. One way of using it is as follows: 

main() 
{ 

} 

ON_ERROR(); 

printf("At start of program; restarts on error\n"); 
/* initialisation stuff here */ 

I* real work here */ 

This is a slightly dangerous way of doing things, but may be useful for implementing 
matrix calculator type programs. 

Other, more sophisticated, things can be done with error handlers and error han
dling, though the topic is too advanced to be treated in detail here. 

SEE ALSO 

error () and ev _err (). 

BUGS 

With all of these routines, care must be taken not to use them inside called functions, 
unless the calling function immediately re-sets the restart buffer after the called 
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function returns. Otherwise the restart buffer will reference a point on the stack 
which will be overwritten by subsequent calculations and function calls. This is a 
problem inherent in the use of setjmp {) and longjmp {). The only way around 
this problem is through the implementation of co-routines. 

With ON_ERROR { ) , infinite loops can occur very easily. 

SOURCE FILE: matrix.h 



NAME 
bd_copy, i v _copy, px_copy, m_copy, v _copy, zm_copy, 
zv _copy, m_move, v ..move, zm_move, zv _move - copy objects 

SYNOPSIS 

#include "matrix.h" 
BAND *bd_copy(BAND *in, BAND *out) 
IVEC * i v _copy ( IVEC *in, IVEC *out) 
MAT *m_copy (MAT *in, MAT *out) 
MAT *_m_copy(MAT *in, YJAT *out, int iO, int jO) 
PERM *px_copy(PERM *' l.ll, 
VEC *v_copy (VEC *in, 
VEC *_v_copy(VEC *in, 
MAT *m_move (MAT *in, 

MAT *out, 
VEC *v_move (VEC *in, 

VEC *out, 
VEC *mv_move(MAT *in, 

VEC *out, 
M.l\'I' *vm_move(VEC *in, 

MAT ~'out, 

#include "zmatrix.h" 
ZMAT *zm_copy{ZJliiAT * 

PERM *out) 
VEC *out) 
VEC *out, int iO) 
int iO, int j 0' int mO, int 
int il, int j 1) 

int iO, int dimO, 
int i1) 
int iO, int j 0' int mO, int 
int il) 
int iO, 
int il, int j 1, int ml, int 

ZMA.T *out) 
ZMJ!~T *_zm_copy(ZY.IAT *in, ZMAT *out, int iO, int jO) 

ZVEC '~<zv_copy(ZVEC * ZVEC *out) 
ZVEC * _zv _copy ( ZVEC '~in, ZVEC '~out) 
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nO, 

nO, 

nl) 

ZMAT *zm_move (Zl!..l.\.T 
ZifJll.T 

ZVEC *zv_move (ZVEC 
ZVEC 

ZVEC *zmv_move{Z~1AT 

ZVEC 
ZMAT *zvm_move(ZVEC 

ZMAT 

*in, ~ ' ~ l.nc.. iO int j 0' int mO, int nO, 
*out, int il, int j 1) 

*in, int iO, int dimO, 
*out, int il) 

*in, int iO, int j 0 f int mO, int nO, 
*ou·t, int il) 
*in, int iO, 
*out, int il, int jl, int ml, int nl) 

DESCRIPTION 

All theroutinesbd_copy(), iv_copy(), m_copy(}, px_copy(), v_copy(), 
zm_copy {) and zv _copy () copy all of the data from one data structure to another, 
creating a new object if necessary (i.e. a NULL object is passed or out is not suffi
ciently big), by means of a call to bd_get ( ) , i v _get ( ) , m_get ( ) , px_get ( } or 
v _get ( ) etc. as appropriate. 
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Form_ copy(), v_copy(), bd_copy(), iv_copy(), zm_copy(), and 
zv _copy ( ) if in is smaller than the object ou·t, then it is copied into a region in 
out of the same size. If the sizes of the permutations differ in px_copy() then a 
new permutation is created and returned. 

The "raw" copy routines are _m_copy (in, out, iO, j 0) and 
_ v _copy ( in, out , i 0 } . Here ( i 0 , j 0 ) is the position where the ( 0, 0) element 
of the in matrix is copied to; in is copied into a block of out. Similarly, for 
_ v __ copy ( ) , i 0 is the position of out where the zero element of in is copied to; in 
is copied to a block of components of out. 

The •• _copy() routines all work in situ with in == out, however, the 
_ •• _copy ( ) routines will only work in situ if i 0 (and also j 0 if this is also passed) 
is (are) zero. 

The complex routines zm_copy( out), zv_copy(in,out), and their 
"raw" versions _zm_copy( in, out, iO, j 0) and _zv_copy( int, out, iO) op
erate entirely analogously to their real counterparts. 

The routines •. _move ( ) move blocks between matrices and vectors. A source 
block in a matrix is identified by the matrix structure (in), the co-ordinates ( ( iO, j 0)) 
of the top left comer of the block and the number of rows (mO) and columns (nO) of 
the block. The target block of a matrix is identified by out and the co-ordinates of the 
top left comer of the block ( ( i 1, j 1) ), except in the case of moving a block from a 
vector to a matrix (vm_move () ). In that case the number of rows and columns of the 
target need to be specified. 

The source block of a vector is identified by the source vector (in), the starting 
index of the block (iO) and the dimension of the block (dimO). The target block of a 
vector is identified by the target vector out and the starting index (il). 

The routine m_move ( } moves blocks between matrices, v _move ( ) moves blocks 
between vectors, mv_m.ove () moves blocks from matrices to vectors (copying by 
rows), and vm_move () moves blocks from vectors to matrices (again copying by 
rows). The routine zm_move ( ) moves blocks between complex matrices, zv _move ( ) 
moves blocks between complex vectors, zmv _move ( ) moves blocks from complex 
matrices to complex vectors (copying by rows), and zvm_move () moves blocks from 
complex vectors to complex matrices (again copying by rows). 

EXAMPLE 

I* copy x to y */ 
v_copy(x,y); 
I* create a new vector z = x */ 
z = v_copy(x,VNULL); 
I* copy A to the block in B with top-left corner (3,5) */ 
_m_copy(A,B,3,5); 
I* an equivalent operation with m_move() */ 
m_move(A,O,O,A->m,A->n, B,3,5); 



I* copy a matrix into a block in a vector ... *I 
mv_move(A,O,O,A->m,A->n, y,3); 
I* ... and restore the matrix*/ 
vm_move(y,3,A->m*A->n, A,O,O,A->m,A->n); 
I* construct a block diagonal matrix C = diag(A,B) *! 
C = m_get(A->m+B->m,A->n+B->n); 
m_move(A,O,O,A->m,A->n, C,O, 0); 
m_move(B,O,O,B->m,B->n, C,A->m,A->n); 

SEE ALSO 

.. _get ( ) routines 

SOURCE FILE: copy.h, ivecop.c, zcopy.c, bdfactor.c 
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NAME 
iv_finput, m_finput, px_finput, v_finput, z_finput, 
zm_f input, zv _f input -input object from a file 

SYNOPSIS 

#include <stdio.h> 
#include "matrix.h" 
IVEC *iv_finput(FILE *fp, IVEC *iv) 
iv = iv_finput(fp,VNULL); 

MAT *m_finput(FILE *fp, MAT *A) 
A= m_finput(fp,MNULL); 

PERM *px_finput(FILE *fp, PERM *pi} 
pi = px_finput(fp,PXNULL); 

VEC *v_finput(FILE *fp, VEC *v) 
v = v_finput(fp,VNULL); 

complex z_finput(FILE *) 

z = z_finput(fp); 

ZMAT *zm_finput(FILE *fp, ZMAT *A) 
A= zm_finput(fp,ZMNULL); 

ZVEC *zv_finput(FILE *fp, ZVEC *v) 
v = zv_finput(fp,ZVNULL); 

DESCRIPTION 

These functions read in objects from the specified file. These functions first deter
mine if fp is a file pointer for a "tty" (i.e. keyboard/terminal). There are also the macros 
m_input(A),px_input(pi), v_input(x), zm_input(A), zv_input(x), 
and which are equivalent to m_finput (stdin,A), px __ finput (stdin,pi), 
v_finput (stdin,x), zm_finput (stdin,A), and zv_finput (stdin,x) 
respectively. If so, then an interactive version of the input functions is called; if 
not, then a "file" version of the input functions is called. 

The interactive input prompts the user for input for the various entries of an object; 
the file input simply reads input from the file (or pipe, or device etc.) and parses it as 
necessary. For complex numbers, the format is different between interactive and file 
input: interactive input has the format "x y" or just "x" for zero real part. File input of 
complex numbers uses (x, y). For example, -3.2 + 5.1i is entered as -3.2 +5 .1 

in interactive mode, and as (- 3 • 2, 5 • 1) in file mode. 
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Note that the format for file input is essentially the same as the output produced by 
the •• _foutput ( ) and •• _output () functions. This means that if the output is 
sent to a file or to a pipe, then it can be read in again without modification. Note also 
that for file input, that lines before the start of the data that begin with a "#" are treated 
as comments and ignored. For example, this might be the contents of a file my. dat: 

# this is an example 
# of a matrix input 
Matrix: 3 by 4 
row 0: 0 1 -2 
row 1:-2 0 1.5 
row 2: 5 -4 0.5 

# this is an example 
# a vector input 
Vector: dim: 4 

-1 

2 
0 

7 -1.372 3.4 

# this is an example 
# of a permutation input 
Permutation: size: 4 

0->1 1->3 2->0 3->2 

# this is a complex number 
(3.765, -1.465324) 
# this is a complex matrix 
ComplexMatrix: 3 by 4 
row 0 : ( 1 , 0 ) ( - 2 , 0 ) ( 3 , 0 ) ( -1 , 0 ) 
row 1 : ( 5 , 3 ) ( - 2 , - 3 ) ( 1 , - 4 ) ( 2 , 1 ) 
row 2 : ( 1 , 0 ) ( 2 • 5 , 0 ) ( 2 • 5 , - 3 • 5 6 ) ( 2 . 5 , 0 ) 
#and this is a complex vector •.. 
ComplexVector: dim: 3 

( -1.342235, -1.342) (2.3,-5} 
1, 1) 

Interactive input is read line by line. This means that only one data item can be 
entered at a time. A user can also go backwards and forwards through a matrix or 
vector by entering "b" or "f" instead of entering data. Entering invalid data (such as 
hitting the return key) is not accepted; you must enter valid data before going on to the 
next entry. When permutations are entered, the value given is checked to see if lies 
within the acceptable range, and if that value had been given previously. 

If the input routines are passed a NULL object, they create a new object of the size 
determined by the input. Otherwise, for interactive input, the size of the object passed 
must have the same size as the object being read, and the data is entered into the object 
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passed to the input routine. For file input, if the object passed to the input routine has 
a different size to that read in, a new object is created and data entered in it, which is 
then returned. 

EXAMPLE 

The above input file can be read in from stdin using: 

complex z; 
MAT *A; 
VEC *b; 
PERM *pi; 
ZMAT *zA; 
ZVEC *zv; 

esueoo 

A "" m_input(MNULL); 
b = v_input(VNULL); 
pi = px_input(PXNULL); 
z = z_input(); 
zA = zm_input(ZMNULL); 
zv -~ zv_input(ZVNULL); 

If you know that a vector must have dimension m for interactive input, use: . 

b = v_get (m); 
v_input(b); /*use b's allocated memory*/ 

SEE ALSO 

.. _output () entries, •• _input () entries 

BUGS 

Memory can be lost forever; objects should be resize'd. 

On end-of-file, an "unexpected end-of-file" error (E_EOF) is raised. 

Note that the test for whether the input is an interactive device is made by 
i sat ty ( f i leno ( fp) ) . This may not be portable to some systems. 

Interactive complex input does not allow ( x, y) format; nor does it allow entry of 
the imaginary part without the real part. 

SOURCE FILE: matrixio.c, zmatio.c 



65 

NAME 
iv_foutput, m_foutput, px_foutput, v_foutput, z_foutput, 
zm_foutput, zv_foutput, iv_dump, m_dump, px_dump, v_dump, 
zm_dump, zv _dump - output to a file or stream 

SYNOPSIS 

#include "matrix.h" 
void iv_foutput(FILE 
void m_foutput(FILE 
void px_foutput(FILE 
void v_foutput(FILE 

#include "zmatrix.h" 
void :z_foutput(FILE 
void zm_foutput(FILE 
void zv_foutput(FILE 

DESCRIPTION 

*fp, 
*fp, 
*fp, 
*fp, 

*fp, 
*fp, 
*fp, 

IVEC *v) 
MAT *A) 
PERM *pi) 
VEC *v) 

complex z) 
ZMAT *A) 
ZVEC *v) 

These output is a representation of the respective objects to the file (or device, or 
pipe etc.) designated by the file pointer fp. The format in which data is printed out is 
meant to be both human and machine readable; that is, there is sufficient information 
for people to understand what is printed out, and furthermore, the format can be read 
in by the •• _finput () and •• _input () routines. 

An example of the format for matrices is given in the entry for the •• _f input () 
routines. 

Therearealsotheroutinesm_output (A) ,px_output (pi) andv_output (x) 
which are equivalent to m_foutput (stdout,A), px_foutput (stdout,pi) 
and v_foutput (stdout,x) respectively. 

Note that the •• _output () routines are in fact just macros which translate into 
calls of these •• _foutput () routines with "fp = stdin". 

In addition there are a number of routines for dumping the data structures in their en
tiretyfordebuggingpurposes. These routines arem_dump ( fp, A) ,px_dump ( fp, px), 
v_dump (fp, x), zm_dump (fp, zA) and zv_dump (fp, zv) where fpisaFILE *, 

AisaMAT *,pxisaPERM *andxisaVEC *,zAisaZMAT *,andzvisaZVEC *. 
These print out pointers (as hex numbers), the maximum values of various quantities 
(such as max_ dim for a vector), as well as all the quantities normally printed out. The 
output from these routines is not machine readable, and can be quite verbose. 

EXAMPLE 

/* output A to stdout */ 
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m_output (A) ; 
I* ••• or to file junk.out */ 

if t (fp = fopen("junk.out","w")) --NULL) 
error(E_EOF,"my_function"); 

m_foutput(fp,A); 
I* ••• but for debugging, you may need ••• */ 
m_dump(stdout,A); 

SEE ALSO 

•. _finput (), .• _input 0 

SOURCE FILE: matrixio.c, zmatio.c 
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NAME 

f input, input, £prompter, prompter -general input/output routines 

SYNOPSIS 

#include <stdio.h> 
#include "matrix.h" 
int finput(FILE *fp, char *prompt, char *fmt, void *var) 
int input(char *prompt, char *fmt, void *var) 
int fprompter(FILE *fp, char *prompt} 
int prompter(char *prompt) 

DESCRIPTION 

The macros finput () and input () are for general input, allowing for com
ments as accepted by the •• _f input () routines. That is, if input is from a file, then 
comments (text following a '#' until the end of the line) are skipped, and if input is 
from a terminal, then the string prompt is printed to stderr. The input is read for 
the file/stream fp by finput () and by stdin by input (). The fmt argument 
is a string containing the scanf ( ) format, and var is the argument expected by 
scanf (} according to the format string fmt. 

For example, to read in a file name of no more than 30 characters from stdin, use 

char fname[31]; 

input("Input file name: ","%30s",fname); 

The macros fprompter () and prompter () send the prompt string to stderr 
if the input file/stream (fp in the case of fprompter (), stdin for prompter ()) 
is a terminal; otherwise any comments are skipped over. 

SEE ALSO 

scanf (), •• _finput () 

SOURCE FILE: matrix.h 
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NAME 
IV _FREE, M_FREE, PX_FREE, V _FREE, ZM_FREE, ZV _FREE, 
i v _free_ vars, m_f ree_ vars, px_f ree_ vars, v _free_ vars, 
zm_f ree_ vars, zv _free_ vars - destroy objects and free up memory 

SYNOPSIS 

#include "matrix.h" 
void IV_FREE(IVEC *iv) 
void M_FREE (MAT *A) 
void PX_FREE(PERM *pi) 
void V_FREE (VEC *v) 
int iv_free_vars(IVEC 
int m_free_vars(MAT 
int px_free_vars(PERM 
int v_free_vars(VEC 

#include "zmatrix.h" 
void ZM_FREE(ZMAT *A) 
void ZV_FREE(ZVEC *v) 
int 
int 

zm_free_vars(ZMAT 
zv_free_vars(ZVEC 

DESCRIPTION 

**ivl, IVEC **iv2, 
**Al, MAT **A2, 
**pil, PERM **pi2, 
**vl, VEC **v2, 

**Al, ZMAT **A2, 
**vl, ZVEC **v2, 

• • • I 

• • • I 

• • • I 

• • • I 

• • • I 

• • • I 

NULL) 
NULL) 
NULL) 
NULL) 

NULL) 
NULL) 

The •• _FREE ( ) routines are in fact all macros which result in calls to thje 
corresponding •• _free () function, so that IV _FREE ( i v) calls i v _free ( i v) . 
The effect of calling •• _free () is to release all the memory associated with the 
object passed. The effect of the macros •• _FREE (object) is to firstly release all 
the memory associated with the object passed, and to then set object to have the 
value NULL. The reason for using macros is to avoid the "dangling pointer" problem. 

The problems of dangling pointers cannot be entirely overcome within a conven
tional language, such as 'C', as the following code illustra~s; 

VEC *x, *y; 

x = v_get(lO); 
Y = x; 
V_FREE(x); 

/* y and x now point to the same place */ 
/* x is now VNULL */ 

/* y now "dangles" -- using y can be dangerous */ 
y->ve[9] = l.O; /* overwriting malloc area! */ 
V_FREE(y); /*program will probably crash here! */ 

The •• _free_ vars () functions free a NULL-terminated list of pointers to 
variables all of the same type. Calling 
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•• _free_vars(&xl,&x2, ••• ,&xN,NULL) 

is equivalent to 

•• _free (xl); xl = NULL; 

•• _free (x2); x2 :::: NULL; 

c • o a e • 

•• _free (xN); xN ::: NULL; 

The returned value of the •• _free_ vars ( ) routines is the number of objects freed. 

SEE ALSO 

.. _get ( ) routines 

BUGS 

Dangling pointer problem is neither entirely fixed, nor is it fixable. 

SOURCE FILE: memory.c, zmemory.c 
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NAME 
bd_get, i v _get, :m__get, px_get, v _get, zm_get, zv _get, 
i v _get_ vars, m_get_ vars, px_get_ vars, v _get_ vars, 
zm_get.:.vars, zv_get_vars- create and initialise objects 

SYNOPSIS 

#include "matrix.h" 
BAND *bd_get(int lb, int ub, int n) 
IVEC *iv_get(unsigned dim) 
MAT 
PERM 
VEC 
int 

* m_get(unsigned m, unsigned n) 
*px_get(unsigned size) 
* v_get(unsigned dim) 
*iv_get_vars(unsigned dim, 

IVEC **xl, IVEC **x2, ••• , NULL) 
int * m_get_vars(unsigned m, unsigned n, 

MAT **Al, MAT **A2, ••• , NULL) 
int *px_get_vars(unsigned size, 

PERM **pxl, PERM **px2, ••• , NULL) 
int * v_get_vars(unsigned dim, 

VEC **xl, VEC **x2, ••• , NULL) 

#include "zmatrix.h" 
ZMAT *zm_get(unsigned m, unsigned n) 
ZVEC *zv_get(unsigned dim) 
int *zm_get_vars(unsigned m, unsigned n, 

ZMAT **Al, ZMAT **A2, ••• , NULL) 
int *zv_get_vars(unsigned dim, 

ZVEC **xl, ZVEC **x2, • • • I NULL) 

DESCRIPTION 

All these routines create and initialise data structures for the associated type of 
objects. Any extra memory needed is obtained from malloc ( ) and its related routines. 

Also note that zero relative indexing ·is used; that is, the vector x returned by 
x = v_get ( 10) can have indexes x->ve [i] fori equal to 0, 1, 2, ... , 9, not 1, 
2, ... , 9, 10. This also applies for both the rows and columns of a matrix. 

The bd_get ( lb, ub, n) routine creates a band matrix of size n x n with a 
lower bandwidth of lb and an upper banwidth of ub. The i v _get (dim) routine 
creates an integer vector of dimension dim. Its entries are initialised to be zero. The 
m_get (m, n) routine creates a matrix of size m x n. That is, it has m rows and n 
columns. The matrix elements are all initialised to being zero. The px_get (size) 
routine creates and returns a permutation of size size. Its entries are initialised to 
being those of an identity permutation. Consistent with C's array index conventions, 
a permutation of the given size is a permutation on the set {0,1, ... ,size-1}. The 
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v _get (dim) routine creates and returns a vector of dimension dim. Its entries are 
all initialised to zero. 

The •• _get_ vars (} routines allocate and initialise a NULL-terminated list of 
pointers to variables, all of the same type. All of the variables are initialised to objects 
of the same size. Calling 

•• _get_vars([m,]n,&xl,&x2, ••• ,&xN,NULL) 

is equivalent to 

xl = •• _get([m,]n); 
x2 = •• _get { [m,] n); 

xN = •• _get([m,]n); 

(Note that "[m,]" indicates that ''m," might or might not be present, depending on 
whether the data structure involved is a matrix or not.) The returned value of the 
•• _get_ vars ( ) routines is the number of objects created. 

EXAMPLE 

MAT *A; 

I* allocate 10 x 15 matrix */ 

A= m_get(10,15); 

SEE ALSO 

.. _free(), .. _FREE(), and •• _resize 0. 

BUGS 

As dynamic memory allocation is used, and it is not possible to build garbage 
collection into C, memory can be lost. It is the programmer's responsibility to free 
allocated memory when it is no longer needed. 

SOURCE FILE: memory.c, zmemory.c, bdfactor.c 
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NAME 
get_col, get_row, zget_col, zget_row- extract columns or rows 
from matrices 

SYNOPSIS 

#include "matrix.h" 
VEC *get_col(MAT *A, int col_num, VEe *v) 
VEC *get_row(MAT *A, int row_num, VEC *v) 

#include "zmatrix.h" 
ZVEC *zget_col(ZMAT *A, int col_num, ZVEC *v) 
ZVEC *zget_row(ZMAT *A, int row_num, ZVEC *v) 

DESCRIPTION 

These put the designated column or row of the matrix A and puts it into the vector 
v. If v is NULL or too small,· then a new vector object is created and returned by 
get_col ( ) and get_row ( ) . Otherwise, v is filled with. th~ necessary data and 
is then returned. If v is larger than necessary, then the additional entries of v are 
unchanged. 

The complex routines operate exactly analogously to the real routines. 

EXAMPLE 

MAT *A; 
VEC *row, *col; 
int row_num, col_num; 

row= v_get(A->n); 
col = v_get(A->m); 
get_row(A, row_num, row); 
get_col(A, col_num, col); 

SEE ALSO 

set_col (), set_row(), and zset_col (), zset_row(). 

SOURCE FILE: matop.c, zmatop.c 



NAME 
m..ident, m..ones, v_ones, m..rand, v_rand, m..zero, v_zero, 
zm..rand, zv_rand, zm_zero, zv_zero, mrand, smrand, 
mrandlist- initialisation routines 

SYNOPSIS 

#include "matrix.h" 
MAT *m_ident(MAT *A) 
MAT *m_ones(MAT *A) 
VEC *v_ones(VEC *x) 
MAT *m_rand(MAT *A) 
VEC *v_rand(VEC *x) 
MAT *m_zero(MAT *A) 
VEC *v_zero(VEC *x) 
Real mrand() 
void smrand(int seed) 
void mrandlist(Real a[], 

#include "zmatrix.h" 
ZMAT *zm_rand(ZMAT *A) 
ZVEC 
ZMAT 
ZVEC 

*zv_rand(ZVEC *x) 
*zm_zero(ZMAT *A) 
*zv_zero(ZVEC *x) 

DESCRIPTION 

int len) 

The routine m_ident ( ) sets the matrix A to be the identity matrix. That is, the 
diagonal entries are set to 1, and the off-diagonal entries to 0. 

The routines m_ones ( ) , v _ones () fill A and x with ones. 

The routines v _rand ( ) , m_rand ( ) and zv _rand ( ) , zm_rand ( ) fill A and 
x with random entries. For real vectors or matrices the entries are between zero and 
one as determined by the mrand ( ) function. For complex vectors or matrices, the 
entries have both real and imaginary parts between zero and one as determined by the 
mrand ( ) function. 

The routines m_zero ( ) , v _zero () and zin_zero ( ) , zv _zero ( ) fill A and x 
with zeros. 

These routines will raise an E_NULL error if A is NULL. 

The routine mrand ( ) returns a pseudo-random number in the range [0, 1) using an 
algorithm based on Knuth's lagged Fibonacci method in Seminumerical Algorithms: 
The Art of Computer Programming, vol. 2 §§3.2-3.3. The implementation is based on 
that in Numerical Recipes inC, pp. 212-213, §7.1. Note that the seeds for mrand () 
are initialised using smrand ( ) with a fixed seed. Thus mrand ( ) will produce the 



74 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS 

same pseudo-random sequence (unless smrand ( ) is called) in different runs, different 
programs, and but for differences in floating point systems, on different machines. 

The routine smrand ( ) allows the user to re-set the seed values based on a user
specified seed. Thus mrand ( ) can produce a wide variety of reproducible pseudo
random numbers. 

The routine mrandlist () fills an array with pseudo-random numbers using the 
same algorithm as mrand ( ) , but is somewhat faster for reasonably long vectors. 

EXAMPLE 

Let e = [1, 1, ... , lf. 

MAT *A; 
ZMAT *zA; 
VEC *x; 
ZVEC *zx; 
PERM *pi; 

.. • e e • • 

m_zero(A); 
m_ident (A) ; 
m_ones (A); 

I* 

I* 

A == zero matrix */ 
I* A == identity matrix */ 
A == e.eAT */ 

m_rand(A); I* A[i] [j] is random in interval [0,1) */ 
zm_rand(zA);/* zA[i] [j] is random in [0,1) x [0,1) */ 
v_zero(x); /* x ==zero vector*/ 
v_ones(x); /* x == e */ 
v_rand(x); /* x[i] is random in interval [0,1) */ 
zv_rand(zx);/* zx[i] is random in [0,1) x [0,1) */ 

BUGS 

The routine m_ident ( ) "works" even if A is not square. 

There is also the observation of von Neumann, Various techniques used in connec
tion with random digits, National Bureau of Standards (1951), p. 36: 

"Any one who considers arithmetical methods of producing random digits is, of 
course, in a state of sin." 

SOURCE FILE: init.c, matop.c, zmatop.c, zmemory.c,zvecop.c 



NAME 

in_prod, zin_prod- inner product 

SYNOPSIS 

#include "matrix.h" 
double in_prod(VEC *x, VEC *y) 

#include "zmatrix.h" 
complex zin_prod(ZVEC *x, ZVEC *y) 

DESCRIPTION 

The inner product xT y = :Ei XiYi of x and y is returned by in _prod ( ) . The 
complex inner product xT y = :Ei XiYi of x andy is returned by zin_prod (). This 
will fail if x or y is NULL. . 

These are built on the "raw" inner product routines: 

double _in_prod (VEC *x, VEC *y, int iO) 
complex _zin_prod(ZVEC *x, ZVEC *y, int iO, int conj) 

which compute the inner products ignoring the first i 0 entries. For the routine 
_zin_prod() if the flag conj is Z_CONJ (or TRUE) then the entries in the x 
vector are conjugated and :Ei~io XiYi is returned; otherwise if conj is Z_NOCONJ (or 
FALSE) then :Ei~io XiYi is returned. 

EXAMPLE 

VEC *x, *y; 
ZVEC *zx, *zy; 
Real x_dot_y; 
complex zx_do_zy; 

x_dot_y = in_prod(x,y); 
zx_dot_zy = zin_prod(zx,zy); 

SEE ALSO 

_ip_ () , _zip_ ( ) and the core routines. 

BUGS 

The accumulation is not guaranteed to be done in a higher precision than Real, 
although the return type is double. To guarantee more than this, we would either 
need an explicit extended precision long double type or force the accumulation 
to be done in a single register. While this is in principle possible on IEEE standard 
hardware, the routines to ensure this are not standard, even for IEEE arithmetic. 

SOURCE FILE: vecop.c, zvecop.c 
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NAME 

iv_add, iv_sub- Integer vector operations 

SYNOPSIS 

#include 
IVEC 
IVEC 

"matrix.h" 
*iv_add(IVEC *ivl,IVEC *iv2, IVEC *out) 
*iv_sub(IVEC *ivl, IVEC *iv2, IVEC *out) 

DESCRIPTION 

The two arithmetic operations implemented for integer vectors are addition 
(i v _add ()) and subtraction (i v _sub () ). In each of these routines, out is resized 
to be of the correct size if it does not have the same dimension as i vl and i v2. 

This dearth of operations is because it is envisaged that the main purpose for using 
integer vectors is to hold indexes or to represent combinatorial objects. 

EXAMPLE 

IVEC *x, *y, *z; 

X= co,..; 

y ::: •.. ; 

I* z = x+y, allocate z */ 
z = iv_add(x,y,IVNULL); 
I* z = x-y, z already allocated */ 
iv_sub(x,y,z); 

SEE ALSO 

Vector operations v_ •.. () and iv_resize (). 

SOURCE FILE: ivecop.c 



NAME 
bd_resize, iv_resize, m_resize, px_resize, v_resize, 
zm_resize, zv_resize, iv_resize_vars, m_resize_vars, 
px_resize_vars, v_resize_vars, zm_resize_vars, 
zv_resize_vars- Resizing data structures 

SYNOPSIS 

#include "mat.ri:x:.h" 
BAND *bd_resize(BAND *A, 

int. new_lb, int new_ub, int new_n} 
IVEC *iv_resize(IVEC *iv, int new_dim) 
MAT *m_resize (MAT *A, int new_m, int new_n) 
PERM *px_resize(PERM *p:x:, int new_size) 
VEC *v_resize (VEC *:x:, int new_dim) 
int *iv_resize_vars(unsigned new_dim, 

IVEC **xl, IVEC **x2, ••• , NULL) 
int *m_resize __ vars (unsigned new_m, unsigned new_n, 

MAT **Al, MAT **A2, ••• , NULL) 
int *px_resize_vars(unsigned new_size, 

PERM **pxl, PERM **px2, ••• , NULL) 
int *v_resize_vars (unsigned new_dim, 

VEC **:x:l, VEC **:x:2, ••• , NULL) 

#include "zmatrix.h" 
ZMAT *zm_resize(ZMAT *A, int new_m, int new_n) 
ZVEC *zv_resize(ZVEC *x, int new_dim) 
int *zm_resize_vars(unsigned new_m, unsigned new_n, 

ZMAT **Al, ZMAT **A2, ••• , NULL) 
int *zv_resize_vars(unsigned new_dim, 

ZVEC **xl, ZVEC **x2, NULL) 

DESCRIPTION 

77 

Each of these routines sets the (apparent) size of data structure to be identical to 
that obtained by using •. _get (new_ •.• ). Thus the VEC *returned by 
v_resize (x, new_dim) has x~>dimequal tonew_dim. The MAT *returned by 
m_resize (A, new\_m, new\_n) is a new_m x new_n matrix. 

The following rules hold for all of the above functions except forpx_resize (). 
Whenever there is overlap between the object passed and the re-sized data structure, the 
entries of the new data structure are identical, and elsewhere the entries are zero. So if 
Aisa5 x 2matrixandnew_A = m_resize(A,2,5), thennew_A->me[l] [0] 
is identical to the old A->me [1] [0]. However, new_A->me [1] [3] is zero. 

For px_resize () the rules are somewhat different because permutations do not 
remain permutations under such arbitrary operations. Instead, if the size is reduced, 
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then the returned permutation is an identity permutation. If size is increased, then 
new_px->pe [ i'l , == · i for i greater than or equal to the old· size. 

Allocation or reallocation and copying of data structure entries is avoided if possible 
(except, to some extent, in m_r~size () ). Thefe.ls a "high-water mark" field con
tained within each data structure; for the VEC and IVEC data structures it is max_dim, 
which contains the actual amount of memory that has been allocated (at some tim:e) 
for this data structure. Thus resizing does not deallocate memory! To actually free 
up memory, use one of the •• _free ( ) routines or the •• _FREE () macros. 

You should not rely on the values of entries 'outside the apparent size of the data 
structures but inside the maximum allocated area. These areas may be zeroed or 
overwritten, especially by the m_resize () routine. , 

The •• _resize_ vars () routines resize a NULL-terminated list of pointers to 
variables, all of the same type. The new sizes of the a)l variables in the list are the 
same. Calling 

•• _resize_vars ([m,] n, &xl, &x2, .:- •• , &xN, NULL) 

is equivalent to 

xl = •• _resize(xl, [m,]n); 
x2 = •• _resize(x2, [m,]n); 

xN = •• _resize(xN, [m,]n); 

(Note that" [m, l" indicates that "m," might or might not be present, depending on 
whether the data· structure involved is a matrix or not.) The .returned value of the 
•• _resize_ vars ( ) mutines is the number of objects resized. 

EXAMPLE 

I* an alternative to workspace arrays */ 
my_function( ••• ) 

{ 

} 

static VEC *x = VNOLL; 

x = v_resize(x,new::_size)'; 
MEM~STAT::_REG(x,TYP~_VEC); 

...... 
v_copy( • .;·., x); 

BUGS 
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Note the above comment: resizing does not deallocate memory! To frt<e up 
the actual memory allocated you will need to use the •• _FREE ( ) macros or the 
.. _free () function calls. 

SEE ALSO 

•• _get ( ) routines; MEM_STAT_REG ( ) . 

SOURCE FILE: memory. c, zmemory. c, bdfactor. c and i vecop. c 
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NAME 

· MACHEPS -machine epsilon 

SYNOPSIS 

#include "matrix.h" 
Real macheps = MACHEPS; 

DESCRIPTION 

The quantity MACHEPS is a #define'd quantity which is the "machine epsilon" 
or "unit roundoff" for a given machine. For more information on this concept, see, e.g., 
Introduction to Numerical Analysis by K. Atkinson, or Matrix Computations by G. 
Golub and C. Van Loan. The value given is for the standard floating point type Real 
only. Normally the standard floating point type is double, but in the installation this 
can be changed to be float or long double. (See the chapter on installation.) 

For ANSI C implementations, this is set to the value of the DBL_EPSILON or 
FLT_EPSILON macro defined in <float. h>. 

EXAMPLE 

while ( residual > lOO*MACHEPS 

{ /* iterate */ } 

BUGS 

The value of MACHEPS has to be modified in the source whenever moving to 
another machine if the floating point processing is different. 

SOURCE FILE: machine.h 
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NAME 
m_add, m...mlt, m_sub, sm...mlt, zm_add, zm._mlt, zm_sub, 
zsm...ml t- matrix addition and multiplication 

SYNOPSIS 

#include "matrix.h" 
MAT *m_add{MAT *A, MAT *B, MAT *C) 
MAT *m_mlt(MAT *A, MAT *B, MAT *C) 
MAT *m_sub(MAT *A, MAT *B, MAT *C) 
MAT *sm_mlt(double s, MAT *A, MAT *OUT) 

#include "zmatrix.h" 
ZMAT *zm_add(ZMAT *A, ZMAT *B, ZMAT *C) 
ZMAT *zm_mlt(ZMAT *A, ZMAT *B, ZMAT *C) 
ZMAT *zm_sub(ZMAT *A, ZMAT *B, ZMAT *C) 
ZMAT *zsm_mlt(complex s, ZMAT *A, ZMAT *OUT) 

DESCRIPTION 

The functions m_add ( ) , zm_add ( ) adds the matrices A and Band puts the result 
in c. If c is NULL, or is too small to contain the sum of A and B, then the matrix is 
resized to the correct size, which is then returned. Otherwise the matrix c is returned. 

The functions, m_sub ( ) , zm_sub ( ) subtracts the matrix B from A and puts the 
result in c. If c is NULL, or is too small to contain the sum of A and B, then the matrix 
is resized to the correct size, which is then returned. Otherwise the matrix c is returned. 
Similarly, m_ml t ( ) multiplies the matrices A and B and puts the result in c. Again, if 
c is NULL or too small, then a matrix of the correct size is created which is returned. 

The routines sm_mlt (), zsm_mlt () above puts the results of multiplying the 
matrix A by the scalar s in the matrix OUT. If, on entry, OUT is NULL, or is too small 
to contain the results of this operation, then OUT is resized to have the correct size. 
The result of the operation is returned. This operation may be performed in situ. That 
is, you may use A == OUT. 

The routines m_add ( ) , m_sub ( ) and sm_ml t ( ) routines and their complex 
counterparts can work in situ; that is, c need not be different to either A or B. However, 
m_mlt () and zm_mlt () will raise an E_INSITU error if A == cor B == c. 

These routines avoid thrashing on virtual memory machines. 

EXAMPLE 

MAT *A, *B, *C; 
Real alpha; 

C = m_add(AsB,MNULL); /* C = A+B */ 
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m_sub(A,B,C); 
sm_mlt(alpha,A,C); 
m_mlt(A,B,C); 

CHAPTER 4. BASIC DENSE MATRIX OPERATIONS 

I* c ::: A-B */ 
l* c = alpha.A */ 
I* c "' A.B */ 

SEE ALSO 

v_add(},mv_mlt(),sv_mlt(),zv_add(),zmv_mlt(),zv_mlt{). 

SOURCE FILE: matop.c, zmatop.c 



NAME 
mem_info, mem_info_on, mem_info_is_on, mem_info_bytes, 
mem_info_numvar, mem_info_file, mem_attach_list, 
mem_free_list, mem_bytes_list, mem_numvar_list, 
mem_dump_list, mem_is_list_attached -Meschach dynamic memory 
information 

SYNOPSIS 

#include "matrix.h" 
void mem_info() 
int mem_info_on(int true_or __ false) 
int mem_info_is_on(void) 
void mem_info_file(FILE *fp, int list_num) 
void mem_dump_list(FILE *fp, int list_num) 
long mem_info_bytes (int type_num, int list_num) 
int mem_info_numvar(int type_num, int list_num) 
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int mem_attach_list(int list_num, int ntypes, char *names[], 
int (*frees[])(), MEM_ARRAY info_sum[]) 

int mem_free_list(int list_num) 
int mem_is_list_attached(int list_num) 
void mem_bytes(int type_num, int old_size, int new_size) 
void mem_bytes_list(int type_num, int old_size, int new_size, 

int list_num) 
void mem_numvar(int type_num, int diff_numvar) 
void mem_numvar_list(int type_num, int diff_numvar, 

int list_num) 

DESCRIPTION 

These routines allow the user to obtain information about the amount of memory 
allocated for the Meschach data structures (VEC, BAND, MAT, PERM, IVEC, ITER, 
SPMAT, SPROW, ZVECandZMAT). Thecallmem_info_on(TRUE); setsaftagwhich 
directs the allocation and deallocation and resizing routines to store information about 
the memory that is (de)allocated and resized. The call mem_info_on(FALSE); 
turns the flag off. 

The routine mem_info_is_on () returns the status of the memory information 
flag. 

To get a general picture of the state of the memory allocated by Meschach data 
structures call mem_info_file (fp,list_num) which prints a summary of the 
amount of memory used for the different types of data structures to the file or stream 
fp. The 1 is t _num parameter indicates which list of types to use; use zero for the list 
of standard Meschach data types. The printout for mem_info_file ( stdout, 0), 
or the equivalent macro mem_info () looks like this for one real and one complex 
vector of dimension 10 allocated (with the full system installed on an RS/6000): 
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MEMORY INFORMATION (standard types): 
type MAT 0 alloc. bytes 0 alloc. variables 
type BAND ·0 alloc. bytes ·o alloc. variables 
type PERM 0 alloc. bytes 0 alloc. variables 
type VEC 92 alloc. bytes 1 alloc. variable 
type IVEC 0 alloc. bytes 0 alloc. variables 
type ITER 0 alloc. bytes 0 alloc. variables 
type SPROW 0 alloc. bytes 0 alloc. variables 
type SPMAT 0 alloc. bytes 0 alloc. variables 
type ZVEC 204 alloc. bytes 1 alloc. variable 
type ZMAT 0 alloc. bytes 0 alloc. variables 
total: 296 alloc. bytes· 2 alloc. variables 

(Note that this is for the system built with all of Meschach, including the sparse 
part: ITER, SPMAT; and the complex part: ZVEC, ZMAT. The mem_info_ ••• () 
routines also work for partial installations of Meschach.) There is also the routine 
.mem:....:dump_list () which provides a more complete printout, which is suitable for 
debugging purposes. 

To obtain information about the amount of memory allocated for objects of a par
ticular type, use mem_info_bytes ( ) (with list_num equal to zero for a standard 
Meschach structures). To find out the amount of memory allocated for ordinary vectors, 
use 

printf("Bytes iii VEC'S = %ld = %ld\n", 
mem_info_bytes(TYPE_VEC,O)); 

The routine mem_info_numvar () returns the number of data structures that are 
allocated for each type. Use 1 is t_num equal to zero for standard Meschach structures. 

Each Meschach type. has an associated type macro TYPE_. • • which is a small 
integer. The " ••• " is the ordinary name of the type, such as VEC, MAT etc. This is the 
complete list of TYPE_. • • macros: 

TYPE_MAT 0 I* real dense matrix *I 
TYPE_BAND 1 I* real band matrix *I 
TYPE_PERM 2 I* permutation *I 
TYPE_VEC 3 I* real vector *I 
TYPE_IVEC 4 I* integer vector *I 
TYPE_ ITER 5 I* iteration structure *I 
TYPE_SPROW 6 I* real sparse matrix row *I 
TYPE_SPMAT 7 I* real sparse matrix *I 
TYPE~ZVEC 8 I* complex vector *I 
TYPE_ZMAT 9 I* complex dense matrix *I 

This is how different types are distinguished within the mem_info_ ••• system. 
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Note that SPROW is an auxiliary type; when an SPROW (sparse row) is allocated as 
part of a SPMAT (sparse matrix), then the memory allocation is entered under SPMAT; 
only "stand-alone" SPROW's have their memory allocation entered under the typer 
SPROW. 

The routine mem_attach_list (} can be used to add new lists of types to 
the Meschach system for both tracking memory usage, and also for registering static 
workspace arrays with MEM_STAT_REG ( } . The routine is passed a collection of 
arrays: names is an array of strings being the names of the different types, frees is 
an array of the •• _free ( } routines which deallocate and destroy objects of the cor
responding types, info_sum is an array in which the memory allocation information 
is stored. This array has the component type MEM_ARRAY which is defined as 

typedef struct { 
long bytes; /* # allocated bytes for each type */ 
int numvar; /* # allocated variables for each type */ 

} MEM_ARRAY; 

This is defined in matrix. h. 

The parameter ntypes is the number of types, which should also be the common 
length of the arrays. The parameter 1 i st_num is the list number used to identify which 
list of types should be used. The routine mem_attach_list (} returns the zero on 
successful completion, and ( -1) if there is an invalid parameter. An E_OVERWRITE 
error will be raised if the specified list_num has already been used. 

To track memory usage for any new types, the allocation, deallocation and resizing 
routines for these types you should use mem_bytes_list (} and 
mem_numvar _1 i st (} to inform the mem_inf o_ ••• (} system of the change in the 
number of bytes allocated, and number of structures allocated, respectively, of an object 
of a particular type (as specified by the type_num and list_num parameters). In 
mem_bytes_list (}, the parameter old_size should contain the old size in bytes, 
and new_size should contain the new size in bytes. Inmem_numvar_list (},the 
parameter diff_numvar is the change in the number of allocated structures: + 1 for 
allocating a new structure, and -1 for destroying a structure. 

The routines mem_bytes ( } and mem_numvar ( } are just macros that call 
mem_bytes_list (} and mem_numvar(} respectively, with list_num zero for 
the standard Meschach structures. 

The routine mem_attach_list (} should be used once at the beginning of a 
program using these additional types. 

Here is an example of how this might be used to extend Meschach with three types 
for nodes, edges and graphs: 

/* Example with three new types: NODE, EDGE and GRAPH */ 
#define MY_LIST 1 
#define TYPE_NODE 0 
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#define TYPE_EDGE 1 
#define TYPE_GRAPH 2 
static char *my_names[] = { "NODE", "EDGE", "GRAPH" }; 
static int (*my_frees[]) = { n_free, e_free, gr_free }; 
static MEM_ARRAY my_tnums[3]; I* initialised to zeros */ 

main( .•. ) 
{ 

} 

I* declarations */ 
mem_attach_list(MY_LIST,3,my_names,my_frees,my_tnums); 

...... I* actual work */ 
mem_info_file(stdout,MY_LIST); /* list memory used*/ 

/* n_get -- get a node data structure; 
NODE has type number 0 */ 

NODE *n_get( •.• ) 
{ 

} 

NODE *n; 

n = NEW(NODE); 
if ( n == NULL 

error(E_MEM,"n_get"); /*can't allocate memory*/ 
mem_bytes_list(TYPE_NODE,O,sizeof(NODE),MY_LIST); 
mem_numvar_list(TYPE_NODE,l,MY_LIST); 

I* n_free -- deallocate node data structure */ 
int n_free(NODE *n) 
{ 

} 

if ( n != NULL 
{ 

} 

free(n); 
mem_res_elem_list(TYPE_NODE,sizeof(NODE),O,MY_LIST); 
mem_numvar_list(TYPE_NODE,-l,MY_LIST); 

return 0; 

For more information see chapter 8. 

BUGS 

Memory used by the underlying memory (de)allocation system (malloc (), 
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calloc (), realloc (), sbrk () etc.) for headers are not included in the amounts 
of allocated memory. 

The numbers of vectors, matrices etc. currently allocated cannot be found by this 
system. 

SEE ALSO 

.. _get (), •. _free (), •. _resize () routines; MEM_STAT_REG () and the 
mem_stat_ ... () routines. 

SOURCE FILE: meminfo.c, meminfo.h 
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NAME 
MEM_STAT-REG, mem_stat_reg_list, menLstat_reg_vars, 
mem...stat_mark,. menLstat_free, mem...stat_dump, 
mem...stat_show_mark- Static workspace control routines 

SYNOPSIS 

·#include ."matrix.h" 
int MEM_STAT_REG(void *var, int type) . 
int mem_stat_reg_list(void **var, int type, int list_num) 
int mem_stat_reg_vars(int list_num, int type, 

void **var1, void **var2, ••• , NULL) 
int mem_stat_mark(int mark) 
int mem_stat_free(int mark) 
void mem_stat_dump(FILE *fp) 
int mem_stat_show_mark() 

DESCRIPTION 

Older versions ofMeschach (v.l.lb and previous) had a limitation in that it was es
sentially impossible to control the use of static workspace arrays used within Meschach 
functions. This can lead to problems where too much memory is taken up by these 
workspace arrays for memory intensive problems. The obvious alternative approach 
is to deallocate workspace at the end of every function, which can be quite expensive 
because of the time taken to deallocate and the reallocate the memory on every usage. 

These functions provide a way of avoiding these problems, by giving users control 
over the (selective) destruction of workspace vectors, matrices, etc. 

The simplest way to use this to deallocate workspace arrays in a routine hairy1 ( ••• ) 
is as follows: 

mem_stat_mark(1); /* ''group 1'' of workspace arrays */ 
for ( i = 0; i < n; i++ ) 

hairy1( .•• ); /*workspace registered as ''group 1'' */ 
mem_stat_free(1); /* deallocate ''group 1'' workspace */ 

The call mem_stat_mark (num) sets the current workspace group number. This 
number must be a positive integer. Provided the appropriate workspace registration 
routines are used in hairy1 ( ••• ) (seelater), then the workspace arrays are registered 
as being in the current workspace group as determined by mem_stat_mark ( ) . If 
mem_stat_mark () has not been called, then there is no current group number 
and the variables are not registered. The call mem_stat_free (num) deallocates 
all static workspace arrays allocated in workspace group num, and also onsets the 
current workspace group. So, to continue registering static workspace variables, 
mem_stat_mark(num),or 
mem_stat_mark (new_num) should follow. 
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Keeping two groups of registered static workspace variables (one for hairyl ( ) 
and another for hairy2 ( ) ) can be done as follows: 

for ( i = 0; i < n; i++ 
{ 

mem_stat_mark(l); 
hairyl( ••• ); 
mem_stat_mark(2); 
hairy2( ••• ); 

} 

mem_stat_free(2); 
hairyl( ••• ); 

I* don't want hairy2()'s workspace *I 
I* keep hairyl()'s workspace *I 

For the person writing routines to use workspace arrays, there are a number of rules 
that must be followed if these routines are to be used. 

e the workspace vari~bles must be static pointers to Meschach data structures. 

• they must be initialised to be NULL vectors in the type declaration. 

• they are allocated using a •• _resize() routine. 

• they are allocated before registering. 

• the pointer variable is passed to MEM_STAT_REG (), but 
mem_stat_reg_vars () andmem_stat_reg_vars (} require the address 
of the pointer to be passed. 

The type parameter ofMEM_STAT_REG ( ) should be a macro of the form TYPE_ ••• 
where the " ••• " is the name of the type used. An example of its use follows: 

VEC *hairyl(x, y, out) 
VEC *x, *y, *out; 
{ 

} 

static VEC *wkspace = VNULL; 
int new_dim; 

wkspace = v_resize{wkspace,new_dim); 
MEM_STAT_REG(wkspace,TYPE_VEC); 

mv_mlt( •••• ,wkspace); I* use of wkspace */ 

I* no need to deallocate wkspace */ 
return out; 
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MEM_STAT_REG() is a·macro which calls mem:.::_stat_reg_list () with 
list_num set to zero. 

The call mem_stat_dump ( fp) prints out a representation of the registered 
workspace variables onto the file or stream fp suitable for debugging purposes. It 
is not expected that this would be needed by most users of Meschach. 

The routine mem_stat_show_mark ( ) returns the current workspace group, and 
zero if no group is active. 

A NULL terminated list of variables can be registered at once using · 
mem_stat_reg_vars(). Thecall 

mem_stat_reg_vars(list_num,type_num,&xl,&x2, ••• ,&xN,NULL); 

is equivalent to 

mem_stat_reg_list(&xl,type_num,list_num); 
mem_stat_reg_list(&x2,type_num,list_num); 

mem_stat_reg_list(&xN,type_num,list_num); 
' . . . 

Note that xl, x2, ... , xN must be of the same type. 

For non-Meschach data structures, you can use mem_stat_reg_list 0 in 
conjunction with mem_attach_list (). For more information on the use of this 
function see chapter 8. 

SEE ALSO 

mem_info_ ••• () routines. 

BUGS 

There is a static registration area for workspace variables, so there is a limit on the 
number of variables that can be registered. The default limit is 509. If it is. too small, 
an appropriate message will appear and information on how to change the limit will 
follow. 

Attempts to register a workspace array that is neither static or global will most 
likely result in a crash when mem_stat_free () is called for the workspace group 
containing that variable. 

SOURCE FILE: memstat.c 



NAME 
m_load, m_save, v_save, d_save, zm_load, :Lsave, zm_save, 
zv_save- MATLAB save/load to file 

SYNOPSIS 

#include "matlab.h" 
MAT *m_load(FILE 
MAT *in_save(FILE 
VEC *v_save(FILE 
double d_save(FILE 

#include "matlab.h" 
ZMAT *zm_load(FILE 
ZMAT *zm_save(FILE 
ZVEC *zv_save(FILE 
complex z - save (FILE 

DESCRIPTION 

*fp, 
*fp, 
*fp, 
*fp, 

*fp, 
*fp, 
*fp, 
*.fp, 

char **name) 
MAT *A, char **name) 
VEC *x, char **name) 
double d, char **name) 

char **name) 
ZMAT *A, char **name) 
ZVEC *x, char **name) 
complex z, char **name) 
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These routines read and write MATLAB™ load/save files. This enables results to 
be transported between MATLAB and Meschach. The routine m_load ( ) loads in a 
matrix from file fp in MATLAB save format. The matrix read from the file is returned, 
and name is set to point to the saved MATLAB variable name of the matrix. Both the 
matrix returned and name have allocated memory as needed. An example of the use 
of the routine to load a matrix A and a vector x is 

MAT *A, *Xmat; 
VEC *x; 
FILE *fp; 
char *namel, *name2; 

if ( {fp=fopen("fred.mat","r")) !=NULL) 
{ 

} 

A = m_load(fp,&namel); 
Xmat = m_load(fp,&name2); 
if Xmat->n != 1 ) 
{ printf("Incorrect size matrix read in\n"); 

exit ( 0); } 
x = v_get(Xmat->m); 
x = mv_move(Xmat,O,O,Xmat->m,l,x,O}; 

The m_save ( ) routine saves the matrix A to the file/stream fp in MATLAB save 
format. The MATLAB variable name is name. 
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The v _save () routine saves the vector x to the file/stream fp as an x- >dim x 1 
matrix (i.e. as a column vector) in MATLAB save format. The MATLAB variable 
name is name. 

The d_save () routine saves the double precision number d to the file/stream fp 
in MATLAB save format The MATLAB variable name is name. 

The MATLAB save format can depend in subtle ways on the type of machine used, 
so you may need to set the machine type in machine . h. This should usually just 
mean adding a line to machine . h to be one of 

#define MACH_ID INTEL 
#define MACH_ID MOTOROLA 
#define MACH_ID VAX_D 
#define MACH_ID VAX_G 

I* 80x87 format */ 
I* 6888x format *I 
I* VAX D format */ 
I* VAX G format */ 

to be the appropriate machine. The machine· dependence involves both whether IEEE 
or non IEEE format floating point numbers are used, but also whether or not the 
machine is a "little-endian" or a "big-endian" machine. 

BUGS 

The m_load ( ) routine will only read in the real part of a complex matrix. 

The routines are machine-dependent as described above. 

SOURCE FILE: matlab.c, zmatlab.c 



NAME 
bd_transp, m_transp, mmtr..mlt, mtrm..mlt, zm...adjoint, 
zmma..ml t, zmam..ml t - matrix transposes, ad joints and multiplication 

SYNOPSIS 

#include "matrix.h" 
BAND *bd_transp(BAND *A, BAND *OUT} 
MAT *m_transp(MAT *A, MAT *OUT) 
MAT *mmtr_mlt(MAT *A, MAT *B, MAT *OUT) 
MAT *mtrm_mlt (MAT *A, MAT *B, MAT *OUT) 

#include "zmatrix.h" 
ZMAT *zm_adjoint(ZMAT *A, ZMAT *OUT) 
ZMAT *zmma_mlt(ZMAT *A, ZMAT *B, ZMAT *OUT) 
ZMAT *zmam_mlt(ZMAT *A, ZMAT *B, ZMAT *OUT) 

DESCRIPTION 
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The routine bd_transp () computes the transpose of the banded matrix A and 
puts the result in OUT. Both are BAND structures. 

The routine m_transp () transposes the matrix A and stores the result in OUT. The 
routine m_adjoint (} takes the complex conjugate transpose (or complex adjoint) 
of A and stores the result in OUT. These routines may be in situ (i.e. A == OUT) only 
if A is square. (Note that BAND matrices are always square.) The complex adjoint of 
A is denoted A*. 

The routine mmtr_mlt () forms the product ABT, which is stored in OUT. The 
routine mma_mlt () forms the product AB*, which is stored in OUT. The rou
tine mtrm_mlt () forms the product AT B, which is stored in OUT. The routine 
mam_mlt () forms the product A* B, which is stored in OUT. Neither of these routines 
can form the product in situ. This means that they must be used with A ! = OUT and 
B ! = OUT. However, you can still use A == B. 

For all the above routines, if OUT is NULL or too small to contain the result, then 
it is resized to the correct size, and is then returned. 

EXAMPLE 

MAT *A, *B, *C; 

• e e • • • 

c = m_transp(A,MNULL); I* c .. A~T *I 
:mmtr_mlt(A,B,C); I* c = A.BAT *I 
mtrm_mlt (A, B, C); I* c = A~T.B *I 

SOURCE FILE: matop.c, zmatop.c 
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NAME 
m_norml, nLnorm_inf, m...nornLfrob '· zm_norml, zm...norm_inf, 
zm_norm_frob...,. matrix norms 

SYNOPSIS 

#include "matrix.h" 
Real m_norml(MAT *A) 
Real m_norm_inf(MAT *A) 
Real m_norm_frob(MAT *A) 

#include "zmatrix.h" 
Real zm_norml{ZMAT *A) 
Real 
Real 

zm_norm_inf(ZMAT *A) 
zm_norm_frob(ZMAT *A) 

DESCRIPTION 

These routines compute matrix norms. The routines m_norml ( ) and zm_norml { ) 
compute the matrix norm of A in the matrix. 1-norm; m-'norm_inf ( ) and 
zm_norm_inf ( ) compute the matrix norm of A in the matrix oo-norm; 
m_norm_frob () and z:m_norm_frob {) compute the Frobenius norm of A. All of 
these routines are unsealed; that is, there is no scaling vector for weighting the elements 
of A. 

These norms are defined through the following formulae: 

(4.1) 

(4.2) IIAIIF = 

The matrix 2-norm is not included as it requires the calculation of eigenvalues or 
singular values. 

EXAMPLE 

MAT *A; 

printf ("I IAI 1_1 = %g\n", m_norml (A)); 
printf (" IIAII_inf = %g\n", m_norm_inf {A)); 
printf (" IIAII_F = %g\n", m_norm_frob(A)); 

SEE ALSO 

v _norml ( ) , v _norm_inf ( ) , zv _norml ( l, zy:_norm_inf ( ) . 
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BUGS 

The Frobenius nonn calculations may overflow if the elements of A are of order 
JHUGE. 

SOURCE FILE: norm.c, z:norm.c 
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NAME 
mv..mlt, .. vnunlt, mv..mltadd, VIlLlll.ltadd, zmv..mlt, ZVIlLlll.lt, 

. z~~ ~i t~dd,. , ·2!~:inlt~dd _:_ 1Ilatrix-~ector mrllrlplication ~ •. 

SYNOPSIS 

#include "matrix.h" 
VEC *mv_mlt(MAT *A, VEC *x, VEC *out) 
VEC *vm_mlt (MAT *A, VEC *x, VEC *out) 
VEC *mv_mltadd(VEC *vl, VEC *v2, MAT *A, 

double s, VEC *out) 
VEC *vm_mltadd(VEC *vl, VEC *v2, MAT *A, 

double s, VEC *out) 

#include "zmatrix.h" 
ZVEC *zmv_mlt(ZMAT *A, ZVEC *x, ZVEC *out) 
ZVEC *zvm_mlt (ZMAT *A, ZVEC *x, ZVEC *out) 
ZVEC *zmv_mltadd(ZVEC *vl, ZVEC *v2, ZMAT *A, 

complex s, ZVEC *out) 
ZVEC *zvm_mltadd(ZVEC *vl, ZVEC *v2, ZMAT *A, 

complex s, ZVEC *out) 

DESCRIPTION 

The routines mv _ml t {) and vm_ml t () form Ax and AT x = ( xT A) T respec
tively and store the result in out. The routines zmv_mlt () and zvm_mlt () 
form Ax and A*x = (x* A)* respectively and store the result in out. The routines 
mv_mltadd() and vm_mltadd() form v1 + sAv2 and v1 + sATv2 respectively, 
and stores the result in out. The routines zmv_mltadd() and zvm_mltadd() 
form v1 + sAv2 and v1 + sA*v2 respectively, and stores the result in out. If out is 
NULL or too small to contain the product, then it is resized to the correct size. 

These routines do not work in situ; that is, out must be different to x formv _ml t ( ) 
and vm_ml t ( ) , and in the case of mv _ml tadd ( ) and vm_ml tadd ( ) , out must be 
different to v2. 

These routines avoid thrashing virtual memory machines. 

EXAMPLE 

MAT 
VEC 
Real 

*A; 
*x, *y, *out; 
alpha; 

out = mv_mlt(A,x,VNULL); 
vm_mlt(A,x,out); 
mv_mltadd(x,y,A,out); 
vm_mltadd (x, y ,.A, out).; 

I* out 
I* out 
I* out 
I* out 

= A.x *I 
= A~T.x *I 
= X + A.y *I 
= X + A~T.y *I 



SOURCE FILE: matop.c, zmatop.c 
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NAME 
px_ident, px_inv, px...ml t, px_transp, px_sign- permutation 
identity, inverse and multiplication 

SYNOPSIS 

#include "matrix.h" 
PERM *px_ident(PERM *pi) 
PERM 
PERM 
PERM 
int 

*px_mlt(PERM *pil, PERM *pi2, PERM *out) 
*px_inv(PERM *pi, PERM *out) 
*px_transp(PERM *pi, int i, int j) 

px_sign(PERM *pi) 

DESCRIPTION 

The routine px_ident ( ) initialises pi to be the identity permutation of the size 
ofpi->size on entry. The permutation pi is returned. If pi is NULL then an error 
is generated. 

The routine px_mlt () multiplies pil by pi2 to give out. If out is NULL or 
too small, then out is resized to be a permutation of the correct size. This cannot be 
done in situ. 

The routine px_inv ( ) computes the inverse of the permutation pi. The result 
is stored in out. If out is NULL or is too small, a permutation of the correct size is 
created, which is returned. This can be done in situ if pi == out. 

The routine px_transp () swaps pi->pe [i] and pi->pe [j]; it is a multi
plication by the transposition i +-+ j. 

The routine px_sign (pi) computes the sign of the permutation pi. This sign 
is ( -1 )P where pi can be written as the product of p permutations. This is done by 
sorting the entries of pi using quicksort, and counting the number of transpositions 
used. This is also the determinant of the permutation matrix represented by pi. 

EXAMPLE 

PERM *pil, pi2, pi3; 

pil = px_get(lO); 
px_ident(pil); 
px_transp{pi1,3,5); 
px_inv(pil,pil); 
px_mlt(pil,pi2,pi3); 

I* sets pil to identity *I 
I* pil is now a transposition *I 

I* invert pil -- in situ *I 
I* pi3 = pil.pi2 *I 

printf("sign(pi3) =%d.= %d\n", 
px_sign(pil)*px_sign{pi2), px_sign(pi3)); 

SOURCE FILE: pxop.c 
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NAME 
px_cols, px_rows, px_vec, pxinv_vec, px_zvec, pxinv_zvec-
permute rows or columns of a matrix, or permute a vector 

SYNOPSIS 

#include "matrix.h" 
MAT *px_rows(PERM *pi, MAT *A, MAT *OUT) 
MAT *px_cols(PERM *pi, MAT *A, MAT *OUT) 
VEC *px_vec (PERM *pi, VEC *x, VEC *out) 
VEC *pxinv_vec(PERM *pi, VEC *x, VEC *out) 

#include "zmatrix.h" 
ZVEC 
ZVEC 

*px_zvec (PERM *pi, ZVEC *x, ZVEC *out) 
*pxinv_zvec(PERM *pi, ZVEC *x, ZVEC *out) 

DESCRIPTION 

The routines px_rows () and px_cols {} are for permuting matrices, permuting 
respectively the rows and columns of the matrix A. In particular, for px_rows () the 
i-th row of OUT is the pi- >pe [ i] -th row of A. Thus OUT = P A where P is the 
permutation matrix described by pi. The routine px_cols () computes OUT= AP. 

The result is stored in OUT provide it has sufficient space for the result. If OUT is 
NULL or too small to contain the result then it is replaced by a matrix of the appropriate 
size. In either case the result is returned. 

Similarly, px_ vee ( ) and px_zvec ( ) permute the entries of the vector x into 
the vector out by the rule that the i-th entry of out is the pi->pe [i] -th entry ofx. 
Conversely, pxinv _vee ( ) and pxinv _zvec ( ) permute x into out by the rule that 
the pi->pe [i] -th entry of out is the i-th entry ofx. This is equivalent to inverting 
the permutation pi and then applying px_ vee ( ) , respectively, px_zvec ( ) for real, 
resp., complex vectors. 

If out is NULL or too small to contain the result, then a new vector is created and 
the result stored in it In either case the result is returned. 

EXAMPLE 

PERM *pi; 
VEC *x, *tmp; 
ZVEC *z, *ztmp; 
MAT *A, *B; 

/* permute x to give tmp */ 
tmp = px_vec(pi,x,tmp); 
ztmp = px_zvec{pi,z,ZVNULL); 
I* restore x & z */ 
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x = pxinv_vec(pi,tmp,x); 
pxinv._zvec(pi,ztmp,z); 
I* symmetric permutation */ 

B = px_rows(pi,A,MNULL); 
A= px_cols(pi,B,A); 

SEE ALSO 

The px_ .•• ( ) operations; in particular px_inv { ) 

SOURCE FILE: pxop.c, zvecop.c 
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NAME 
set_col, set_row, zset_col, zset_row- set rows and columns of 
matrices 

SYNOPSIS 

#include "matrix.h" 
MAT *set_col(MAT *A, int k, VEC *out) 
MAT *set_row(MAT *A, int k, VEC *out) 

#include "zmatrix.h" 
ZMAT *zset_col(ZMAT *A, int k, ZVEC *out) 
ZMAT *zset_row(ZMAT *A, int k, ZVEC *out) 

DESCRIPTION 

The routines set_ col () and zset_col () above sets the value of the kth 
column of A to be the values of out. The A matrix so modified is returned. 

The routine set_row ( ) above sets the value of the kth row of A to be the values 
of out. The A matrix so modified is returned. 

If out is NULL, then an E_NULL error is raised. If k is negative or greater than 
or equal to the number of columns or rows respectively, an E_BOUNDS error is raised. 

As the MAT and ZMAT data structures are row-oriented data structures, the set_row ( ) 
routine is faster than the set_ col () routine. 

EXAMPLE 

MAT *A; 
VEC *tmp; 

I* scale row 3 df A by 2.0 *I 
tmp = get_row(A,3,VNULL); 
sv_mlt(2.0,tmp,tmp); 
set_row(A,3,tmp); 

SEE ALSO 

get_col () and get_row () 

SOURCE FILE: matop.c, zmatop.c 
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NAME 
sv..mlt, v_add, v..mltadd, v_sub, zv..mlt, zv_add, zv..mltadd, 
zv _sub - scalar-vector multiplication and addition 

SYNOPSIS 

#include ":matrix.h" 
VEC *sv_:mlt{double s, VEC *x, VEC *out) 
VEC *v_add(VEC *vl,VEC *v2, VEC *out) 
VEC *v_:mltadd(VEC *vl, VEC *v2, double s, VEC *out) 
VEC *v_sub(VEC *vl, VEC *v2, VEC *out) 

#include "z:matrix.h" 
ZVEC *zv_:mlt(co:mplex s, ZVEC *x, ZVEC *out) 
ZVEC *zv_add(ZVEC *vl, ZVEC *v2, ZVEC *out) 
ZVEC 
ZVEC 

*zv_:mltadd(ZVEC *v1, ZVEC *v2, complex s, ZVEC *out) 
*zv_sub(ZVEC *vl, ZVEC *v2, ZVEC *out) 

DESCRIPTION 

The routines sv_ml t ( ) and zv _ml t ( ) perform the scalar multiplication of the 
scalars and the vector x and the results are placed in out. 

The routines v _add ( ) and zv _add ( ) adds the vectors vl and v2, and the result 
is returned in out. 

The routines v_mltadd() and zv_:mltaddO set out to be the linear combi
nation vl+s. v2. 

The routines v _sub ( ) and zv _sub ( ) subtract v2 from vl, and the result is 
returned in out. 

For all of the above routines, if out is NULL, then a new vector of the appropriate 
size is created. For all routines the result (whether newly allocated or not) is returned. 
All these operations may be performed in situ. Errors are raised if vl or v2 are NULL, 
or if vl and v2 have different dimensions. 

EXAMPLE 

VEC *x, *y, *z, *tmp; 
ZVEC 
Real 

*v, *w; 
alpha; 

complex beta; 

t:mp = v_get(x->dim); 
z = v_get(x->dim); 
printf ( "# 2-Norm of x - y = %g\n", 

v_norm2(v_sub(x,y,tmp))); 



/* z = x + alpha.y */ 
v_mltadd(x,y,alpha,z); 
/* ••• or equivalently*/ 
sv_mlt(alpha,y,z); 
v_add(x,z,z); 
zv_mltadd(v,w,beta,v); 

SOURCE FILE: vecop.c, zvecop.c 
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NAME 
v_conv, v..map, v..max, v..min, v_pconv, v_star, v_slash, 
v_sort, v_swn, zv..map, zv_star, zv_slash, zv_swn
Componentwise operations 

SYNOPSIS 

#include "matrix.h" 
VEC *v_conv (VEC *x, VEC *y, VEC *out) 
VEC *v_pconv(VEC *x, VEC *y, VEC *out} 
VEC *v_map (double (*fn) (double), VEC *x, VEC 
double v_max (VEC *x, int *index) 
double v_min {VEC *x, int *index) 
VEC *v_star (VEC *x, VEC *y, VEC *out) 
VEC *v_slash(VEC *x, VEC *y, VEC *out) 
VEC *v_sort (VEC *x, PERM *order) 
double v_swn (VEC *x) 

#include "mzatrix.h" 

*out) 

ZVEC *zv_map(complex {*fn)(complex), ZVEC *x, ZVEC *out) 
ZVEC *zv_star(ZVEC *x, ZVEC *y, ZVEC *out) 
ZVEC *zv_slash(ZVEC *x, ZVEC *y, ZVEC *out) 
complex zv_sum(ZVEC *x) 

DESCRIPTION 

The routines v_conv(} and v_pconv{) compute convolution-type products of 
vectors. The routine v_conv() computes the vector z where zi = :Eo::;j::=;i XiYi-i· 

The routine v _pconv ( ) computes a periodic convolution with period y- >dim. The 
routine v _conv () can be used to compute the product of two polynomials, with the 
polynomial x(t) = 2::1~~"' xiti and y(t) = :E1~~Y Yiti. 

The routines v _map ( ) and zv _map ( ) apply the function ( * fn) ( ) to the com
ponents ofx to give the vector out. That is, out->ve [i] = ( *fn) (x->ve [i]). 

There are also versions 

VEC 

ZVEC 

*_v_map(double (*fn)(void *,double), 
void *fn_params, VEC *x, VEC *out) 

*_zv_map(complex (*fn) (void *,complex), 
void *fn_params, ZVEC *x, ZVEC *out) 

where out->ve[i] = (*fn) (fn_params,x->ve[i] ). This enables more 
flexible use of this function. Both of these functions may be used in situ with 
x == out. 

The routine v _max ( ) returns the maximum entry of the vector x, and sets 
index to be the index of this maximum value in x. Note that index is the in-
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dex for the .first entry with this value. Thus max_x = v_max(x, &i) means that 
x->ve[i] == max_x. 

The routine v _min ( ) returns the minimum entry of the vector x, and sets index 
to be the index of this minimum value similarly to v _max ( ) . Both v _min ( ) and 
v _max {) raise an E_SIZES error if they are passed zero dimensional vectors. 

The routines v _star ( ) and zv _star ( ) compute the componentwise, or Hadamard, 
product of x andy. That is, out·· >ve [ i] = x- >ve [ i] *y- >ve [ i] for all i. Note 
that v _star () is equivalent to multiplying y by a diagonal matrix whose diagonal 
entries are given by the entries of x. This routine may be used in situ with x == out. 

The routines v _slash () and zv _slash ( ) compute the componentwise ratio of 
entriesofyandx. (Note the order!) Thatis, out->ve [i] = y->ve [i] /x->ve [i] 

for all i. Note that this is equivalent to multiplying y by the inverse of the diagonal 
matrix described in the previous paragraph. This could be useful for preconditioning, 
for example. This routine rnay be used in situ with x """' out and/or y == out. 
The routine v _slash () raises an E_SING error if :x has a zero entry (the rationale 
bei.ng that it is really solving the system of equations Xz = y where z is out). 

The routine v _sort ( ) sorts the entries of the vector x in situ, and sets order to 
be the permutation that achieves this. Note that the old ordering of x can be obtained 
by using pxinv _vee ( ) as illustrated in the example below. The algorithm used 
is a version of quicksort based on that given in Algorithms in C, by R. Sedgewick, 
pp. 116-124 (1990). 

The routines v _sum ( ) and zv _sum { ) return the sum of the entries of x. 

Note that there are no complex "min", "max" or "sorting" routines, as there is no 
suitable ordering on the complex numbers. 

EXAMPLE 

An alternative way of computing llxlloo (but slower): 

VEC *x, *y, *z; 
PERM *order; 
Real norm; 
int i; 

y = v_map(fabs,x,VNULL); 
norm= v_max(y,&i); 

Sorting a vector: 

v_sort(x,order); 
I* x now sorted *I 
y = pxinv_vec(order,x,VNULL); 
I* y is now the original x */ 



106 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS 

Using the Hadamard product for setting Yi = wixi: 

VEC *weights; 

for ( i = 0; i < weights->dim; i++ ) 
weights->ve[i] = ... ; 

v_star(weights,x,y); 

SEE ALSO 

Other componentwise operations: v _add ( ) , v _sub ( ) , sv _ml t ( ) . 

Iterative routines benefiting from diagonal preconditioning: i ter_cg ( ) , 
iter_cgs (), and iter_lsqr (). 

SOURCE FILE: vecop.c, zvecop.c 



NAME 
v_lincomb, v_linlist, zv_lincomb, zv_linlist -linear 
combinations 

SYNOPSIS 

#include "matrix.h" 
VEC *v_lincomb(int n, VEC *v_list[], double a_list[], 

VEC *out) 
VEC *v_linlist(VEC *out, VEC *vl, double al, 

1'07 

VEC *v2, double a2, ••• , VNULL) 

#include "zmatrix.h" 
ZVEC *zv_lincomb(int n, ZVEC *v_list[], complex a_list[], 

ZVEC *out) 
ZVEC *zv_linlist(ZVEC *out, ZVEC *vl, complex al, 

ZVEC *v2, complex a2, • • • I ZVNULL) 

DESCRIPTION 

The routines v_lincomb() and zv_lincomb() compute the linear combi
nation 2:~,:-01 aivi where vi is identified with v_list [i] and ai is identified with 
a_list [i]. The result is stored in out, which is created or resized as necessary. 
Note that n is the length of the lists. 

An E_INSITU error will be raised if out == v_list [i] for any i other than 
i == 0. 

The routines v_linlist () and zv_linlist () are variants oftheabove which 
do not require setting up an array before hand. This returns :Ei aivi where the sum is 
over i = 1, 2, ... until a VNULL is reached, which should take the place of one of the 
vk's. 

An E_INSITU error will be raised if out == v2, v3, v4, •••. 

EXAMPLE 

VEC 
Real 

*x[lO], *vl, *v2, *v3, *v4, *out; 
a[lO], h; 

for ( i = 0; i < 10; i++ 
{ x[i] = ••• ; a[i] = ••• ; } 
out = v_lincomb(lO,x,a,VNULL) 
/* for Runge--Kutta code: 

out = h/6*(v1+2*v2+2*v3+v4) */ 
v_zero(out); 
out = v_linlist(out, vl, h/6.0, v2, h/3.0, 

v3, h/3.0, v4, h/6.0, 
VNULL); 
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SEE ALSO 

sv_mlt(),v_mltadd(),zv_mlt(),zv_mltadd() 

BUGS 

SOURCE FILE: vecop.c, zvecop.c 



NAME 
v _norml 1 v ..norm2 1 v ..noriiLinf 1 zv _norml 1 zv ..norm2 1 

zv _norm_inf - vector norms 

SYNOPSIS 

#include "matrix.h" 
double v _norml (VEC *x) 
double v_norm2(VEC *x) 
double v_norm_inf(VEC *x) 
double _v_norml(VEC *x1 VEC *scale). 
double _v_norm2(VEC *x1 VEC *scale) 
double _v_norm_inf(VEC *x1 VEC *scale) 

#include "zmatrix.h" 
double zv_norml(ZVEC *x) 
double zv_norm2(ZVEC *x) 
double zv_norm_inf(ZVEC *x) 
double _zv_norml(ZVEC *x1 VEC *scale) 
double _zv_norm2(ZVEC *x1 VEC *scale) 
double _zv_norm_inf(ZVEC *x1 VEC *scale) 

DESCRIPTION 

lgp 

These functions compute vector norms. In particular, v _norml ( ) and zv _norml ( ) 
give the 1-norm, v _norm2 ( ) and zv _norm2 ( ) give the 2-norm or Euclidean norm, 
and v _norm_inf ( ) and zv _norm_inf ( ) compute the oo-norm. These are defined 
by the following formulae: 

(4.3) 

(4.4) 

(4.5) 

1lxll1 = L:lxil 

llxlloo = m;:tx lxil 
t 

llxll2 = v~ lxil2· 

There are also scaled versions of these vector norms: _ v _norml ( ) , _ v _norm2 ( ) 
and_ v _norm_inf ( ) , and_zv _norml ( ) , _zv _norm2 () and_zv _norm_inf (). 
These take a vector x whose norm is to be computed, and a scaling vector. Each com
ponent of the x vector is divided by the corresponding component of the scale vector, 
and the norm is computed for the "scaled" version of x. Note that the scale vector is 
a (real) VEC since only the magnitudes are important. If the corresponding component 
of scale is zero for that component of x, or if scale is NULL, then no scaling is 
done. (In fact, v_norml (x) is a macro that expands to _v_norml (x~ VNULL) .) 

For example,_ v _norml (x~ scale) returns 

L lxijscaleil 
i 
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provided scale is not NULL, and no element of scale is zero. The behaviour of 
_ v _norm2 ( ) and _ v _norm_inf ( ) is similar. 

EXAMPLE 

VEC *x, *scale; 

printf("# 2-Norm of x = %g\n", v_norm2(x)); 
printf("# Scaled 2-norm of x = %g\n", 

_v_norm2(x,scale}); 

SEE ALSO 

m_norml(),m_nor.m_inf(), zm_norml(),zm_norm_inf(). 

BUGS 

There is the possibility that v _norm2 ( ) may overflow if x has components with 
size of order y'HUGE. 

SOURCE FILE: nor.m.c 



NAME 
zmake, zconj, zneg, zabs, zadd, zsub, zmlt, zinv, zdiv, 
zsqrt, 
zexp, zlog- Operations on complex numbers 

SYNOPSIS 

#include "zmatrix.h" 
complex zmake(double real, double im.ag) 
complex zconj(com.plex z) 
complex zneg{complex z) 
double zabs(complex z) 
complex zadd{complex zl, complex z2) 
complex zsub(com.plex zl, combl.lex z2) 
complex zmlt(complex zl, complex z2) 
complex zinv(complex z) 
complex zdiv(complex zl, complex z2) 
complex zsqrt(complex z) 
complex zexp(complex z) 
complex zlog(complex z) 

DESCRIPTION 

These routines provide the basic operations on complex numbers. 

Complex numbers are represented by the complex data structure which is defined 
as 

typedef struct { Real re, im; } complex; 

and the real part of complex z; is z. re and its imaginary part is z. im. Let 
Z =X+ iy. 

The routine zmake (real, imag) returns the complex number with real part 
real and imaginary part imag. 

The routine zconj ( z) returns z = x - iy 

The routine zneg(z) returns -z. 

The routine zabs ( z) returns lzl = .jx2 + y2 • Note that it is done safely to avoid 
overflow if lxl or IYI is close to floating point limits. 

The routine zadd(zl, z2) returns z1 + z2 • 

The routine zsub(zl, z2) returns z1 - z2 • 

The routine zmlt (zl, z2) returns z1 z2 • 

The routine zinv ( z) returns 1/ z. An E_SING erroris raised if z = 0. 

The routine zdiv(zl, z2) returns zdz2 • An E_SING error is raised if z2 = 0. 
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The routine zsqrt ( z) returns .Ji. The principle branch is used for a branch cut 
along the negative real axis, so the real part of .Ji as computed is not negative. 

The routine zexp(z) returns exp(z) = ez =ex( cosy+ isiny). 

The routine z log ( z) returns log( z). The principle branch is used for a branch 
cut along the negative real axis, so the imaginary part of log( z) lies between or on ±1r. 

EXAMPLE 

To compute log(z + ew)/Jl + z2 : 

complex w, z, result; 

result = zdiv(zlog(zadd(z,zexp(w))}, 
zsqrt(zadd(ONE,zmlt(z,z)))); 

where ONE is 1 + Oi; ONE = zmake ( 1. 0, 0. 0) ; . 

SOURCE FILE: zfunc.c 



NAME 
__ add __ , __ ip __ , _ _.mlt:add __ , __ smlt __ , __ sub __ , __ zero __ , 
__ zadd __ , __ zconj __ , __ zip __ , __ zmltadd __ , __ zmlt __ , __ zeub __ , 

__ zzero __ - core routines 

SYNOPSIS 

#include "machine.h" 
/* or #include "matrix.h" */ 
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void __ add __ (Real dpl[], Real dp2[], Real out[], int len) 
double __ ip __ (Real dpl[], Real dp2[], int len) 
void __ mltadd __ (Real dpl[], Real dp2[], doubles, int len) 
void __ smlt __ (Real dp[], doubles, Real out[], int len) 
void __ sub_._ (Real dpl[], Real dp2[], Real out[], int len) 
void __ zero __ (Real dp[], int len) 

#include "zmatrix.h" 
void __ zadd __ (complex zl[], complex z2[], 

•complex out[], int len); 
void __ zconj __ (complex z[], int len); 
complex __ zip __ (complex zl[], complex z2[], 

void 

void 

void 

void 

int len, int conj); 
zmlt (complex zl [], complex s, complex z.2 [], 

int len); 
__ zml tadd __ (complex z 1 [] , complex z2 [] , . complex s, 

int len, int conj); 
__ zsub__ (complex zl [], compleJ~; z2.[] , complex out [] , 

int len); 
__ zzero __ (complex z[], int len); 

DESCRIPTION 

These routines are the underlying routines for almost all dense matrix routines. 
Unlike the other routines in this library they do not take pointers to structures as 
arguments. Instead they work directly with arrays of Real's. It is intended that 
these routines should be fast. If you wish to take full advantage of a particular 
architecture, it is suggested that you modify these routines. 

The current implementation does not use any special techniques for boosting speed, 
such as loop unrolling or assembly code, in the interests of simplicity and portability. 

Note that zconj ( z), referred to below, returns the complex conjugate of z. 

The routine __ add_() sets out [i] = dpl [i] +dp2 [i] fori ranging from 
zero to len-1. The routine _zadd_() sets out [i] = zl [i] +z2 [i] fori 
ranging from zero to len-1. 

The routine __ ip_() returns the sum of dpl [i] *dp2 [i] fori ranging from 
zero to len-1. The routine _zip __ () returns the sum of zl [i] *z2 [i] for 
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i ranging from zero to len-1 if conj is Z_NOCONJ, and returns the sum of 
zconj ( z1 [i]) *z2 [i] fori ranging from zero to len-1 if conj is Z_CONJ. 

The routine _mltadd_() sets dp1 [i] = dp1 [i] +s*dp2 [i] fori rang
ing from zero to len-1. The routine _zmltadd_() sets 
z1 [i] = z1 [i] +s*z2 [i] fori rangingfromzeroto len-1if conj is Z_NOCONJ, 
and sets dp1 [i] = z1 [i] +s*zconj ( z2 [i]) fori ranging from zero to len-1 
if conj is Z_CONJ. 

The routine _sml t_ () sets out [ i l = s *dp [ i l for i ranging from zero 
to len-1. The routine _zmlt_() sets out [i] = s*z [i] fori ranging from 
zero to len-1. 

The routine _sub_ ( ) sets out [ i] = dp1 [ i] -dp2 [ i] for i ranging from 
zero to len-1. The routine _zsub_() sets out [i] = z1 [i] -z2 [i] fori 
ranging from zero to len-1. 

The routines _zero_() and _zzero_() set out [i] = 0. 0 fori rang
ing from zero to len-1. These routines should be used instead of the macro 
MEM_ZERO ( ) or the ANSI C routine memset ( ) for portability, in case the float
ing point zero is not represented by a bit string of zeros. 

EXAMPLE 

MAT 
ZVEC 
Real 

*A, *B; 
*x, *y; 
alpha; 

I* set A= A+ alpha.B.*I 
for ( i = 0; i < m; i++ ) 

_mltadd_(A->me[i],B->me[i],alpha,A->n); 
I* zero row 3 of A *I 
_zero_(A->me[3],A->n); 
I* quick complex inner product *I 
z_output(_zip_(x->ve,y->ve,x->dim,Z_CONJ)); 

SOURCE FILE: machine.c, zmachine.c 



Chapter 5 

Dense Matrix Factorisation 
Operations 

The following routines are described in the following pages: 

Bunch-Kaufman-ParleU factor and solve 
Cholesky, LD Lr factor and solve 
Band LDLT factor and solve 
LU factor (Gaussian elimination) and solve 
Band LU factor and solve 
QR factor and solve with/out column pivoting 
Extract matrices from compact form (QR only) 
Compute and apply Givens' rotations 
Householder transformations 
Solve for diagonal and triangular matrices 
Update routines for LDLT and QR factorisations 
Eigenvalue routines 
Eigenvalue/vector extraction routines 
Singular value decomposition 
Matrix polynomials and exponentials 
Fast Fourier Transform 

To use these routines use the include statement 

#include "matrix2.h" 

and for the complex routines 

#include "zmatrix2.h" 
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124 
126 
129 
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133 
135 
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139 
142 
143 
145 
147 
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NAME 
BKPfactor, BKPsol ve- Bunch-Kaufman-Parlett symmetric indefinite 
factorise and solve 

SYNOPSIS 

#include "matrix2.h" 
MAT *BKPfactor(MAT *A, PERM *pivot, PERM *blocks) 
VEC *BKPsolve(MAT *A, PERM *pivot, PERM *blocks, 

VEC *b, VEC *x) 

DESCRIPTION 

The routine BKPfactor () forms in situ a symmetric indefinite factorisation of 
the matrix A of the form 

pTAP=MDMT 

where P is a permutation matrix, M is lower triangular, and D is block diagonal, with 
1 x 1 or 2 x 2 blocks. The matrix Pis represented by the permutation pivot and Dii 
is a 1 x 1 block if and only if blocks- >pe [ i] == i; otherwise blocks- :>pe [ i] 
is the index of the other row/column in the 2 x 2 block. After the routine the D and 
M factors are stored in A in compact form. This avoids the requirement for additional 
vectors or matrices for storage. 

Note that pivot and blocks must both benon-NULLandpivot ! = blocks 
for both BKPfactor {) and BKPsol ve (}. 

The routine BKPsol ve () solves the equation Ax = b for x. The solve routine 
BKPsol ve () is designed specifically to work with BKPfactor () as they operate 
on the same compact storage scheme. Note that the factorisation may succeed when 
the matrix A passed is singular, and that the solve routine may then fail, raising an 
E_SING error. The solve routine may be used in situ with b == x. If xis NULL 
or too small to hold the result, then a new vector is created of the appropriate size for 
storing the result. In either case the resulting solution vector is returned. 

This factorisation routine, and the accompanying solve routine are derived from 
"Decomposition of a Symmetric Matrix" by J. Bunch, L. Kaufman and B. Parlett, 
Numerische Mathematik 27, 95-109 (1976). 

Errors will be raised if A or pivot or blocks are NULL, or if A is not square, or 
if the sizes of A, pivot or blocks are not compatible. 

EXAMPLE 

MAT 
PERM 

*A; 
*pivot, *blocks; 

VEC *x, *b; 

A= m_input(MNULL); 



b = v_input(VNULL); 
pivot = px_get(A->m); 
blocks = px_get(A->m); 
/* assuming A symmetric */ 
BKPfactor(A,pivot,blocks}; 
x = BKPsolve(A,pivot,blocks,b,VNULL); 

SEE ALSO 

CHfactor() and CHsolve () 

SOURCE FILE: BKPfactor.c 
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NAME 
CHfactor, MCHfactor, CHsolve, LDLfactor, LDLsolve
Cholesky factor and solve 

SYNOPSIS 

#include "matrix2.h" 
MAT *CHfactor(MAT *A) 
MAT 
VEC 
MAT 
VEC 

*MCHfactor(MAT *A, double tol) 
*CHsolve(MAT *A, VEC *b, VEC *x). 
*LDLfactor(MAT *A) 
*LDLsolve(MAT *A, VEC *b, VEC *x) 

DESCRIPTION 

Both CHfactor () and LDLfactor () factor the matrix A in situ and returns the 
factored matrix (in compact form). The Cholesky factorisation routine and the LDLT 
routines both use only the lower triangular part of A, but the Cholesky factorisation 
routine fills the upper triangular part of A also. 

These routines require that A is square. The Cholesky factorisation, in particular, 
requires that A be sufficiently positive definite (e.g. lowest eigenvalue of A is at least 
machine epsilon away from zero). If non-positive definiteness is detected during 
factorisation, then an E_POSDEF error will be raised. If you wish to catch such an 
error, see information on the catch ( ) macro. If your matrix is indefinite, then it 
would be best to use the BKPfactor () and BKPsol ve () routines. 

The routine MCHfactor ( ) computes a modified Cholesky factorisation. This is 
not a true Cholesky factorisation, but rather the Cholesky factorisation of A+ D where 
D is a diagonal matrix with non-negative entries. Whether the A matrix is modified 
in this way is determined by the tol parameter; the diagonal entry of the Cholesky 
factorisation is ensured to be ~ y'tOi. The D matrix is guaranteed to be zero in exact 
arithmetic if uT Au ~ toluT u for all u. 

EXAMPLE 

MAT *A, *LLT, *LDL; 
VEC *b, *x; 
double tol; 

A= m_input(MNULL); 
b = v_input(VNULL); 
input("Input tol for modified Cholesky: ", "%lf", &:tol); 
LLT = m_copy{A,MNULL); 
I* If A positive definite ••• */ 
CHfactor(LLT); 
X= CHsolve{LLT,b,VNULL); 



I* ••• otherwise, get approximate solution •.• *I 
LLT = m_copy(A,MNULL); 
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MCHfactor(LLT,tol); 
MCHsolve(LLT,b,x); 

I* LLT now has factors of A + D *I 

I* ... or use LDL factorisation *I 
LDL = m_copy(A,MNULL); 
LDLfactor(LDL); 
LDLsolve(LDL,b,x); 

SEE ALSO 

catch () and BKPfactor () 

SOURCE FILE: CHfactor.c 
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NAME 

band2mat, :m.at2band- Band matrix utility routines 

SYNOPSIS 

#include "matrix.h" 
MAT *band2mat(BAND *bdA, MAT *out) 
BAND *mat2band(MAT *A, int lb, int ub, BAND *out} 

DESCRIPTION 

The routine band2mat () creates an ordinary dense matrix out (aMeschach MAT 
structure) that is represented by the band matrix structure bdA represents. The returned 
matrix is square. 

The routine mat2band () extracts the banded part of A with lower bandwidth lb 
and upper bandwidth ub and stores the result in the BAND structure out. The input 
matrix A must be square; if not an E_SQUARE error is raised. 

For more infonnation about band matrix data structures and storage patterns see 
the chapter on data structures. 

Note that the conversion routines do not directly copy the mat field of the band 
structure. If you need efficient storage of band matrices, the routines band2mat (} 
and mat2band () should probably be avoided. 

SEE ALSO 

bdLDLfactor () and bdLUfactor (). 

SOURCE FILE: bdfactor.c 
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NAME 

bdLDLfactor, bdLDLsol ve -Band Cholesky factorise and solve 

SYNOPSIS 

#include "matrix2.h" 
BAND *bdLDLfactor(BAND *bdA) 
VEC *bdLDLsolve (BAND *bdA, VEC *b, VEC *x) 

DESCRIPTION 

These routines compute the LD LT factorisation, and solve, a symmetric system 
of banded equations. These routines only use the lower band and tne main diagonal of 
A. 

After the call bdLDLfactor (A), A is in factored form which compactly repre
sents both the diagonal matrix D, but also the unit lower triangular matrix L. 

If the matrix is exactly singular on factorisation, then an E_SING error is raised. 

EXAMPLE 

To extract a tridiagonal matrix from a dense matrix A, and to factorise and solve a 
system Ax = b: 

MAT *A; 
VEC *b, *x; 
BAND *bdA; 

I* Note: only need lower triangular part */ 
bdA = mat2band(A,l,O,(BAND *)NULL); 
bdLDLfactor(bdA); 
x = bdLDLsolve(bdA,b,VNULL); 

BUGS 

This method can be numerically unstable for matrices that are not positive definite. 

The routine bdLDLfa.ctor (} does not test for symmetry. 

SEE ALSO 

bdLUfactor(),LDLfactor() 

SOURCE FILE: bdfactor.c 
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NAME 
LUfactor, LU~olve, LUTsolve, LUcondest, m_inverse, 
zLUfactor, zLUsolve, zLUAsolve, zLUcondest, zm_inverse
LU factorisation (Gaussian elimination) and solve 

SYNOPSIS 

#include "matrix2.h" 
MAT *LUfactor(MAT *A, PERM *pivot) 
VEC 
VEC 
double 
MAT 

*LUsolve (MAT *A, PERM *pivot, VEC *b, VEC *x) 
*LUTsolve(MAT *A, PERM *pivot, VEC *b, VEC *x} 

LUcondest(MAT *LU, PERM *pivot) 
*m_inverse(MAT *A, MAT *out) 

#include "zmatrix2.h" 
ZMAT *zLUfactor(ZMAT *A, PERM *pivot) 
ZVEC *zLUsolve (ZMAT *A, PERM *pivot, ZVEC *b, ZVEC 
ZVEC *zLUAsolve(ZMAT *A, PERM *pivot, ZVEC *b, ZVEC 
double zLUcondest(ZMAT *LU, PERM *pivot) 
ZMAT *zm_inverse(ZMAT *A, ZMAT *out) 

DESCRIPTION 

*x) 
*x) 

The routines LUfactor () and zLUfactor () perform LU factorisation, which 
is otherwise known as Gaussian elimination with implicit scaled partial pivoting. The 
zLUfactor () performs the complex LU factorisation. The LU factors of A are 
stored in A in compact form. Once this is done, the routine LUsol ve ( ) can be used 
to solve equations of the fonn Ax = b for x by forward and back substitution. For 
real matrices, the system AT x = b can be solved by using LUTsol ve ( ) , while for 
complex matrices A*x = b can be solved using zLUAsolve 0. The code for a full 
factorisation and solving Ax = b and AT y = b is: 

I* set up A and b */ 

pivot = px_get(A->m); 
x = v_get(A->n); 
y = v_get(A->m); 
LU = m_copy(A,MNULL); 
LUfactor(LU,pivot}; 
x = LUsolve(LU,pivot,b,x); 
y = LUTsolve(LU,pivot,b,y}; 
condition = LUcondest{LU,pivot); 

A full description of Gaussian elimination with partial pivoting and its numerical 
behaviour can be found in a number of books, though we refer the reader specifically 
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to Matrix Computations by G.H. Golub and C. van Loan, North Oxford Academic, 
§§3.2-3.4, pp. 92-122, 2nd Edition (1989). The variant here is that scaling is used 
implicitly. That is, scaling is only used to decide which rows to swap during the partial 
pivoting process. 

Note that the factorisation routine LUfactor () may succeed where the solve 
routine LUsol ve ( ) fails if, for example, A is singular. Also note that LU factorisation 
also succeeds when A is not even square, though this is a requirement for the success of 
LUsol ve () or zLUsol ve (). Errors are raised by LUfactor () or zLUfactor () 
if A or pivot is NULL, or if the size of pivot is less than the number of rows of 
A. Errors are raised by LUsol ve, LUTsol ve ( ) , zLUsol ve ( ) or zLUAsol ve ( ) 
if these conditions occur, if b is NULL, or if A is not square. Then if x is NULL or 
too small to contain the result a new vector of the appropriate size is created. In either 
case the solution of Ax = b, x, is returned. The routines LUsol ve ( ) , LUTsol ve ( ) , 
zLUsol ve () or zLUAsol ve () may be used in situ (that is, with b == x) with 
version 1.2 or later. 

The condition number (relative to the infinity norm) can be estimated using the 
routine LUcondest () or the routine zLUcondest (). This estimate is not guaran
teed to under- or over-estimate the true condition number; however, it can usually be 
relied on to give an estimate correct to within an order of magnitude, which is usually 
all that is required. 

The routines m_inverse ( ) and zm_inverse ( ) compute the inverse of A and 
returns the result in out. This is carried out using the LU factorisation routines. As is 
usually noted in numerical analysis texts, inverse matrices should rarely be computed. 
If a system of equations need to be solved, use the above code calling LUfactor () 
and LUsol ve (), or zLUfactor () and zLUsol ve () directly. 

SOURCE FILE: lufactor.c, zlufctr.c 



124 CHAPTER 5. DENSE MATRIX FACTORISATION OPERATIONS 

NAME 

bdLUf actor, bdLUsol ve -Band LU factorise and solve 

SYNOPSIS 

#include "matrix2.h" 
BAND *bdLUfactor(BAND *bdA, PERM *pivot) 
VEC *bdLUsolve (BAND *bdA, PERM *pivot, VEC *b, VEC *x) 

DESCRIPTION 

The routine bdLUfactor () computes the LU factorisation of a band matrix 
A with partial pivoting. This routine performs essentially the same calculations as 
LUf actor ( ) . This operation is done in situ in bdA. Because partial pivoting is used, 
the (upper) bandwidth of the matrix being factorised increases. Specifically, the final 
upper bandwidth is lb + ub where lb is the original lower bandwidth and ub is the 
original upper bandwidth. 

The routine bdLUsol ve 0 computes the solution to the banded system Ax = b 
using the band matrix bdA in factored form. Note that only square matrices can be 
represented as banded matrices. This can be done in situ (x "'"" b). 

These routines raise an E_NULL error if either bdA or pivot is NULL. 

EXAMPLE 

To factor and solve Ax = b: 

BAND *bdA; 
PERM *pivot; 
VEC *x, *b; 

I* set up bdA */ 

I* get a random right-hand side */ 
b = v_rand(v_get(A->mat->n}); 
I* factor bdA ••. *I 
pivot = px_get(A->mat->n); 
bdLUfactor(bdA,pivot); 
I* ••• and solve system*/ 
x = v_get(b->dim); 
bdLUsolve(bdA,pivot,b,x); 

BUGS 

Unless bdA is resized to its original size (which can be done very efficiently by 
bd_resize ()) repeated calls to bdLUfactor (bdA, .•. ) will result in the upper 
bandwidth increasing until it is n - 1 where bdA represents an n x n matrix. 



SEE ALSO 

LUfactor() 

SOURCE FILE: 
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bdfactor.c 
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NAME 
QRfactor, QRCPfactor, QRsolve, QRCPsolve, QRTsolve, 
QRcondest, zQRfactor, zQRCPfactor, zQRsolve, 
zQRCPsolve, zQRAsolve, zQRcondest -QR factorisation and solve 

SYNOPSIS 

#include "matrix2.h" 
ldAT *QRfactor(MAT *A, VEC *diag) 
l~T *QRCPfactor(MAT VEC *diag, PERM *pivot) 
'1\I'EC 

1/'EC 

VEC 

double 

*QRsolve(MAT V"EC '"diag, VEC *b, VEC *x) 
*QRTsolve(MAT *A, VEC *diag, VEC *b, VEC *x} 
*QRCPsolve(MAT *A, VEC *diag, PERM *pivot, 

VEC *b, VEC *x) 
QRcondest(MAT *QR) 

#include "zmatrix2.h" 
ZMAT *zQRfactor(ZMAT *A, ZVEC *diag) 
ZMAT *zQRCPfactor(ZMAT *A, ZVEC *diag, PERM *pivot) 
ZVEC 
ZVEC 
ZVEC 

double 

*zQRsolve {ZMAT *A, ZVEC *diag, ZVEC *b, ZVEC 
*zQRAsolve(ZMAT *A, ZVEC *diag, ZVEC *b, ZVEC 
*zQRCPsolve(ZMAT *A, ZVEC *diag, PERM *pivot, 

ZVEC *b, ZVEC *x) 
zQRcondest(ZMAT *QR) 

DESCRIPTION 

The routines QRfactor () and zQRfactor () perform straightforward QR fac
torisations of A. The routine zQRfactor {) computes the complex QR factorisation. 
For those unfamiliar with the terminology, the Q R factorisation of A is a factorisation 
of the form 

A=QR 

where R is upper triangular, and Q is orthogonal in the real case and unitary in the 
complex case. That is Q-1 = QT and QT Q = I in the real case, and Q-1 = Q* 
and Q* Q = I in the complex case. This factorisation exists whether or not A 
is singular or even square. The Q R factorisation is performed using Householder 
transformations. (These are orthogonal matrices of the form Pi = I- aiviv[ (real 
case) or Pi = I- aiviv; (complex case) where ai = 2/vf vi (real case) or ai = 2/v;vi 
(complex case).) 

The routines QRCPfactor () and zQRCPfactor () perform a QR factorisation 
with column pivoting, which is a factorisation of the form 

ATIT = QR 

where additionally, TI is a permutation matrix. The TI matrix is represented by pivot. 
This is done exactly as for QRfactor () and zQRfactor () except for the pivoting. 
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Both of these factorisations are performed in situ, and store the Q and R factors 
compactly in A and diag. This compact form is used consistently within this package, 
and is essentially that of Golub and van Loan's Matrix Computations, §5.2, p. 212, 2nd 
edition, (1989), except that the v's are not normalised in this package. The dimensions 
of both diag must be at least as large as the minimum of the number of rows and 
columns of A. 

Once A and diag contain this compact representation of the Q R factors of A, we 
can use QRsol ve () to solve systems of linear equations, and indeed, find least square 
error solutions to overdetermined systems of equations. See Matrix Computations, 
§ 1.4, p. 11 for an example. Indeed, the code 

MAT *QR; 

QR = m_copy(A,MNULL); 
QRfactor(QR,diag}; 
QRsolve(QR,diag,b,x); 

finds the least squares solution x to 

Ax~b. 

Similarly, if QRCPfactor () is to be used to factor A, then QRCPsol ve () can be 
used to solve the least squares problem Ax~ b. The code to do this is: 

QR = m_copy(A,MNULL); 
QRCPfactor(QR,diag,pivot); 
QRCPsolve(QR,diag,pivot,b,x); 

The corresponding operations for complex matrices simply requires prefixing the func
tions by a "z" and replacing MAT by ZMAT. 

Note that in the real case, QRTsol ve ( QR, diag, b, x) solves the underdeter
mined problem Ax = b; that is, it computes the minimum 2-norm x that satisfies Ax = 

b form :S n. The corresponding complex routine is zQRAsolve (QR, diag, b, x). 

The condition number of a matrix factored using either QRfactor {) or 
QRCPfactor () can be estimated using QRcondest (): 

printf("2-norm condition no. approx. = %g\n", QRcondest(QR)); 

Thecorrespondingcomplexfunctionis zQRcondest (). ThefunctionQRcondest () 
returns a lower bound for the least squares condition number of the factored matrix A 

provided A has full rank. If A is square, then this is exactly equal to the 2-norm 
condition number 
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If the Q R factors are exactly singular, then QRcondest ( ) will return HUGE (HUGE_ VAL 
for ANSI C). 

The estimate is obtained by obtaining estimates for II Rib and 11 R-lu2. Note that 
Q and IT do not affect the 2-horm or least squares condition numbers. The estimate of 
IIR-1 11 2 is found using the techniques of LUcondest () to obtain a vector y with unit 
oo-norm such that IIR-1ylloo is quite small. This is described in Golub and van Loan, 
2nd Edition pp. 128-130, (1989). Then the power method is applied to the matrix 
(RT R)-1 (real case) or (R* R)-1 (complex case) a total of three times with initial 
vector y. The corresponding e_stimate of IIRib is obtained by a related method of 
finding a vector y with unit oo-norm and.IIRYIIoo quite large. The power method is 
applied to the matrix RT R (real case) orR* R (complex case). Taking square root of 
the estimated eigenvalues gives a lower bound to the 2-norm condition number of R. 

A simple, and usually reliable, estimate of the rank of a matrix is to factor the 
matrix A using QRCPfactor ( ) (real case) or zQRCPfactor ( ) (complex case), 
and then to count the number of diagonal entries of A greater than a certain tolerance 
in magnitude. A more reliable approach is to use the Singular Value Decomposition. 
See svd(). 

SEE ALSO 

Householder routines hhvec ( ) , hhtrvec ( ) , hhtrrows ( ) and hhtrcols ( ) , 
zhhvec ()' zhhtrvec ()' zhhtrrows () and zhhtrcols (); sva (). 

SOURCE FILE: qrfactor.c, zqrfctr.c 
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NAME 

makeQ, makeR, zmakeQ, zmakeR- explicitly form Q and R factors 

SYNOPSIS 

#include "matrix2.h" 
MAT *makeQ(MAT *QR, VEC *diag, MAT *Qout) 
MAT *makeR(MAT *QR, MAT *Rout) 

#include "zmatrix2.h" 
ZMAT *zmakeQ(ZMAT *QR, ZVRC *diag, ZMAT *Qout) 
ZMAT *zmakeR(ZMAT *QR, ZMAT *Rout) 

DESCRIPTION 

The routines makeQ ( ) and zmakeQ ( ) explicitly forms the real orthogonal Q or 
complex unitary Q of the Q R factorisation from the compact representation in QR and 
diag. The result is stored in Qout. This routine may not be used to form Qout in 
situ. 

The routines makeR ( ) and makeR ( ) explicitly forms the upper triangular R 
matrix of the QR factorisation. The result is stored in Rout. These two routines may 
be used in situ; that is, with QR == Rout. (Actually the routine just zeros the strictly 
lower triangular half of QR.) 

If Qou t or Rout is NULL or too small to contain the result then a new matrix is 
created and returned. 

EXAMPLE 

MAT *A, *QR, *Q, *R; 
VEC *diag; 

diag = v_get(A->m); 
QR = m_copy(A,MNULL); 
QRfactor(QR,diag); 
Q = makeQ(QR,diag,MNULL); 
R = makeR(QR,MNULL); 
/* makeR(QR,QR); replaces QR with the R matrix*/ 

SOURCE FILE: qrfactor.c, zqrfctr.c 
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NAME 
givens, rot_cols, rot_rows, .. rot_vec, zgivens, zrot_cols, 
zrot_rows, rot_zvec -Givens' rotations routines 

SYNOPSIS 

#include "matrix2.h" 
void givens(double x, double y, Real &c, Real &s) 
MAT *rot_cols(MAT *A, int i, int k, 

double c, double s, MAT *out) 
MAT *rot_rows(MAT *A, int i, int k, 

Real c, Real s, MAT *out) 
VEC *rot_vec (VEC *x, int i, int k, 

double c, double s, VEC *out) 

#include "zmatrix2.h" 
void zgivens(complex x, complex y, Real &c, complex &s) 
ZMAT 

ZMAT 

ZVEC 

*zrot_cols(ZMAT *A, int i, int k, 
double c, complex s, ZMAT *out) 

*zrot_rows(ZMAT *A, int i, int k, 
double c, complex s, ZMAT *out) 

*rot_zvec (ZVEC *x, int i, int k, 
double c, complex s, ZVEC *out) 

DESCRIPTION 

The routine gi vena ( ) computes a pair ( c, s) such that 

(5.1) 

where c2 + s2 = 1. The routine zgi vens ( ) computes a pair ( c, s ), c real and s 
complex where 

(5.2) 

The matrix formed from the ( c, s) pair is a real orthogonal or a complex unitary 
matrix, and is often referred to as a Givens' rotation. The other routines apply such 
an orthogonal matrix to vectors and matrices. The actual orthogonal matrix (from 
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givens ())that is applied to vectors and matrices is the matrix 

The routine rot_eols () forms AJik(c, s)T and stores the result in out. The 
routine zrot_eols () forms AJik(c, s)* and stores the result in out. 

The routines rot_rows ( ) and zrot_rows ( ) form Jik ( c, s )A and stores the 
result in out. 

The routines rot_ vee ( ) and rot_ vee ( ) form Jik ( c, s )x and stores the result 
in out. 

All of the •• rot_ ••• ( ) routines may be used in situ and create a new vector or 
matrix if the out parameter is NULL or is too small to contain the result. The result 
of the application of the Givens' rotation is returned by each of the •• rot_ ••• () 
routines. 

Note that Jik(c, s)T = Jik(c, -s) in the real case, and Jik(c, s)* = J;,k(c, -s) in 
the complex case. This makes pre- and post-multiplying by transposes of J;.k ( c, s) 
easy. 

EXAMPLE 

int i, k; 
VEC *x; 
MAT *A; 
Real e, s; 

...... 
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I* get Givens transformation *I 
givens(x->ve[i],x->ve[k],&c,&s); 
I* apply to x *I 
rot_vec(x,i,k,c,s); 
I* apply symmetrically to A *I 
rot_cols(A,i,k,c,s); 
rot_rows(A,i,k,c,s); 

BUGS 

The givens () routine may result in overflow if the x and/or y parameters are of 
size greater than VHUGE. 

SOURCE FiLE: givens.c, zgivens.c 
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NAME 
hhvec, hhtrcols, hhtrrows, hhtrvec, zhhvec, zhhtrcols, 
zhhtrrows, zhhtrvec - Householder transformation operations 

SYNOPSIS 

#include "matrix2.h" 
VEC *hhvec(VEC *x, unsigned iO, Real *beta, 

VEC *out, Real *newval) 
MAT *hhtrcols(MAT *A, int iO, int jO, VEC *hh, double beta} 
MAT *hhtrrows(MAT *A, int iO, int jO, VEC *hh, double beta) 
VEC *hhtrvec(VEC *hh, double beta, int iO, VEC *x, VEC *out) 

#include "zmatrix2.h" 
ZVEC *zhhvec(ZVEC *x, unsigned iO, Real *beta, 

ZVEC *out, complex *newval) 
ZMAT *zhhtrcols(ZMAT *A, int iO, int jO, ZVEC *hh, 

double beta) 
ZMAT *zhhtrrows(ZMAT *A, int iO, int jO, ZVEC *hh, 

double beta) 
ZVEC *zhhtrvec(ZVEC *hh, double beta, int iO, ZVEC *x, 

ZVEC *out) 

DESCRIPTION 

The routines hhvec ( ) and zhhvec ( ) compute the parameters for a Householder 
transformation. In particular, given a vector x, a vector v (== out) and a real 
numbers f3 (== beta) and a (possibly complex) number newval are computed where 
the Householder transformation P = I - f3vv* satisfies 

(5.5) 

Note that in the case of x a real vector, newval is real. Note also that zhhvec ( ) 
computes the parameters for a complex vector. 

The x parameter is not modified. The formulae used are taken from Matrix 
Computations by G. Golub and C. van Loan, p. 40, 1st Edition, (1983), §5.1, pp. 196-
196, 2nd Edition, (1989). 

If out is NULL or too small to hold the v vector, then a new vector is created to 
store the result. In either case, the result is returned. An error is raised if the x vector 
is NULL. 

The routine hhtrcols () forms the product APT where Pis the Householder 
transformation defined by hh and f3 (== beta). (That is, P =I- (3hhhhT.) The 
routine zhhtrcols () forms the product AP* where Pis the Householder transfor
mation defined by hh and f3 ( == beta). (That is, P = I - f3hh hh* .) All rows i with 
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i < i 0 and columns j with j < j 0 are ignored. The operations are performed in situ 
inA. 

The routines hhtrrows ( ) and zhhtrrows ( ) form the product P A where Pis 
the Householder transformation defined by hh and {3. Again, all rows i with i < iO 
and columns j with j < j 0 are ignored. The operations is performed in situ in A. 

Finally, the routines hhtrvec 0 and zhhtrvec ( ) forms the vector Px where 
Pis the Householder transformation defined by hh and {3. The result is stored in out. 
If out is NULL or too small to hold the results of the operation, then a new vector is 
created of the appropriate. size. In either case the result is returned. 

SOURCE FILE: hsehldr.c 
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NAME 
Dsolve, Lsolve, LTsolve, Usolve, UTsolve, zDsolve, 
zLsolve, zLAsolve, zUsolve, zUAsol ve -Basic solve routines 

SYNOPSIS 

#include "matrix2.h" 
VEC *Dsolve (MAT *A, VEC *b, VEC *x) 
VEC *Lsolve (MAT *A, VEC *b, VEC *x, double diag) 
VEC *LTsolve(MAT *A, VEC *b, VEC *x, double diag) 
VEC *Usolve {MAT *A, VEC *b, VEC *x, double diag) 
VEC *UTsolve(MAT *A, VEC *b, VEC *x, double diag) 

#include "zmatrix2.h" 
ZVEC *zDsolve (ZMAT *A, ZVEC *b, ZVEC *x) 
ZVEC *zLsolve {ZMAT *A, ZVEC *b, ZVEC *x, double diag) 
ZVEC *zLAsolve(ZMAT *A, ZVEC *b, ZVEC *x, double diag) 
ZVEC *zUsolve {ZMAT *A, ZVEC *b, ZVEC *x, double diag) 
ZVEC *zUAsolve(ZMAT *A, ZVEC *b, ZVEC *x, double diag) 

DESCRIPTION 

The routines Dsol ve ( ) and zDsol ve ( ) find and return the solution x of Dx = b 
where D is the diagonal part of the matrix A ( == A). 

The routines Lsol ve ( ) and zLsol ve ( ) find and return the solution x of Lx = b 
where L is the lower triangular part of A if diag is zero; Lis the strictly lower triangular 
part of A with diag on the diagonal if diag is not zero. These routines use forward 
substitution. 

The routines LTsol ve ( ) and zLAsol ve ( ) find and return the solutions x of 
LT x = b and L * x = b respectively where L is the lower triangular part of A if diag 
is zero; L is the strictly upper triangular part of A with diag on the diagonal if diag 
is not zero. 

The routines Usol ve ( ) and zUsol ve ( ) find and return the solution x of U x = b 
where U is the upper triangular part of A if diag is zero; U is the strictly upper 
triangular part of A with diag on the diagonal if diag is not zero. These routines use 
back substitution. 

The routines UTsol ve () and zUAsol ve () find and return the solution x of 
ur x = band U*x = b respectively where U is the upper triangular part of A if diag 
is zero; U is the strictly upper triangular part of A with diag on the diagonal if diag 
is not zero. These routines use back substitution. 

All of these routines may be used in situ; that is, they can be used with b == x. 

If x is too small to contain the result then a new vector is created of the appropriate 
dimension. In either case the solution of the equations is returned. 
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The rationale behind the use of the diag parameter is that often, as in LU factori
sation or LDLT factorisation, the diagonal entry for Lis implicit (usually one). The 
diag parameter enables these routines to be used generally, including for the results 
of Q R factorisation, for example. 

EXAMPLE 

For solving Ax = b using Cholesky factorisation, with only L: 

MAT *L; 
VEC *b, *;x; 

Lsolve(L,b,x,O.O); 
LTsolve(L,x,x,O.O); 

I* use L's diagonal entries */ 

For solving Ax = b using LU factorisation with L unit lower triangular and no 
pivoting: 

MAT *L, *U; 
VEC *b, *x; 

Lsolve(L,b,x,l.O); 
Usolve(U,b,x,O.O); 

SEE ALSO 

I* L unit lower triangular */ 

LUsolve(),zLUsolve(),CHsolve(),LDLsolve(),QRsolve(), 
zQRsolve() 

SOURCE FILE: solve.c, zsolve.c 
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NAME 

LDLupdate, QRupdate- factorisation update routiaes 

SYNOPSIS 

#include "matrix2.h" 
MAT *LDLupdate(MAT *LDL, VEC *w, double alpha) 
MAT *QRupdate (MAT *Q, MAT *R, VEC *u, VEC *v) 

DESCRIPTION 

The routine LDLupdate () modifies the matrix LDL which is assumed to cont~n 
(in compact form) the LD LT factorisation of a matrix A. The L matrix is the strictly 
lower triangular part of LDL, except with ones on the diagonal; while Dis the diagonal 
of LDL, so that A = LD LT. The matrix r.JDL is modified in situ so that if L+ and D + 
denote the factors described by LDL after the routine; then 

where a is the value of alpha and w is w. The modified LDL matrix is returned. 

The method used for updating the factorisation is given in "Methods for modifying 
matrix factorisations" by P. Gill, G. Golub, W. Murray and M. Saunders, Mathemat~ 
ics of Computations, 28, pp. 505-535 (1974). The particular algorithm used is the 
algorithm Cl of their paper. 

This routine may fail if A+ awwr is not sufficiently positive definite; if this failure 
occurs, then an E_POSDEF error is raised. 

The routine QRupdate () updates the QR factorisation of a matrix A = QR. 
Unlike the previous routine, this routine requires the explicit factors Q and R of A. 
These can be obtained from the compact form by means of the routines makeQ ( ) 
and makeR ( ) . If the matrices Q and R after the routine are denoted Q + and R+ 
respectively, then 

Q+R+ = Q(R + uvT) =A+ (Qu)vr. 

Setting u = QT w gives Q +R+ = A + wvT. 

If Q is NULL, then only the R matrix is modified. The R matrix is returned. 

The routine is based on one given in Matrix Computations by G. Golub and C. 
van Loan, pp. 437-443, 1st Edition (1983), pp. 593-594, 2nd Edition (1989). 

EXAMPLE 

Updating LD LT factorisation: 

MAT *A, *LDL; 
VEC *u; 
double alpha; 
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LDL = m_copy{A,MNULL); 
LDLfactor(LDL); 

I* A <- A + alpha.u.uAT */ 
LDLupdate(LDL,u,alpha); 

Updating Q R fact.orisation: 

MAT *A, *QR, *Q, *R; 
VEC *diag, *beta, *u, *v, *w; 

QR ""m_copy(A,MNULL); 
QRfactor(QR,diag,beta); 
Q = makeQ(QR,diag,beta,MNULL); 
R = makeR(QR,MNULL); 

I* A <- A + w.vAT */ 
u = v_get(Q->m); 
u = v.m_mlt(Q,w,u); 
QRupdate(Q,R,u,v}; 

SOURCE FILE: update.c 
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NAME 

schur, symmeig, trieig, zschur- Eigenvalue routines 

SYNOPSIS 

#include "matrix2.h" 
MAT *schur(MAT *A, MAT *Q) 
VEC *symmeig(MAT *A,-MAT *Q, VEC *out) 
VEC *trieig(VEC *a, VEC *b, MAT *Q) 

#include "zma1;:rix2.h" 
ZMAT _ *zschur(MAT *A, MAT *Q) 

DESCRIPTJON 

The routine schur ( ) computes the Real Schur decomposition of the matrix A. 
That is, it computes a block upper triangular matrix T and an orthogonal matrix Q such 
that 

The matrix T has diagonal blocks of sizes 1 x 1 and 2 x 2. The eigenvalues of these 
diagonal blocks are the eigenvalues of the original A matrix. The algorithm used to 
find the eigenvalues of A is the Francis QR algorithm. This algorithm is described in 
Matrix Computations by G. Golub and C. van Loan, pp. 231-236, 1st Edition (1983), 
pp. 377-381, 2nd Edition (1989). 

The matrix A is overwritten with T, and if Q is not NULL and the correct size, then 
the Q matrix is stored in it. 

The routine zschur () computes the complex Schur factorisation of A. That is, it 
computes an upper triangular matrix T and a unitary matrix Q such that 

Q*AQ=T. 

The eigenvalues of A are the diagonal entries ofT. The algorithm is a complex version 
of the Francis Q R algorithm, and is, in fact, somewhat simplified in the complex case. 

The routine symmeig ( ) computes the eigenvalues of a symmetric matrix. It also 
computes an orthogonal matrix Q such that 

where A is the diagmiai matrix of eigenvalues;·. The algorithm used to find the eigen
values of A consists of conversion to symmetric Hessenberg (symmetric tridiagonal) 
form, and then applying trieig ( ) to obtain the eigenvalues of the tridiagonal matrix. 

The eigenvalues are stored in out provided it is not NULL and is sufficiently large 
to contain all the eigenvalues. The vector containing the eigenvalues is_ returned. The 
matrix A is not overwritten. 
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The routine trieig ( ) computes the eigenvalues of the symmetric tridiagonal 
matrix 

ao bo 
bo a1 bl 

(5.6) T= bl a2 

bn-2 

bn-2 an-1 

The algorithm used is a "chasing" technique described in Matrix Computations, 
pp. 278-281, 1st Edition, pp. 421-424, 2nd Edition. It also-accumulates the ma
trix Q such that QTTQ is diagonal. To compute the correct Q matrix, Q should be 
initialised to the identity matrix on entry to trieig (). (See m_ident () .) 

The values in the a and b vectors are overwritten. At the end of the routine, a 
contains the eigenvalues, and the b vector is zero. 

In· all of the above routines, if the matrix Q is NULL on entry, then no calculation 
of the Q matrices is performed. This should speed up the routines somewhat if only 
the eigenvalues are needed. 

EXAMPLE 

_.Computing real Schur decomposition of (pos~ibly) nonsymmetric A: 

MAT *A, *S, *Q, *X_re, *X_im; 
VEC *evals_re, *evals_im; 

S = m_copy(A,MNULL); 
Q = m_get(A->m,A->m); 
schur(S,Q); 
I* get eigenvalues (real, imaginary parts) *I 
evals_re = v_get(A->m); 
evals_im = v~get (A-,>m); 
schur_evais ( s ,-~vals_re; evals_im) ; 

- . 

I* get eigenvectors (real, imaginary parts) *I 
X_re = m__:_get (A->m,A->m); 
X_im = m_get(A->m,A->m); 
schur_evecs(S,Q,X_re,X_im); 

, . Computing eigenvalues and eigenvectors of a real symmetric matrix: 

MAT *A, *Q; 
VEC *evals; 

evals = v_get(A->m); 
evals = symmeig(A,Q,evals); 
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The Q matrix contains the eigenvectors. 

Computing the eigenvalues and eigenvectors of a symmetric tridiagonal matrix 
defined by the vectors a (the diagonal entries) and b (the off-diagonal entries): 

MAT *Q; 
VEC *a, *b; 

Q = m_get(a->dim,a->dim); 
m_ident(Q); /*must initialise Q */ 
trieig(a,b,Q); 
I* a is now the vector of eigenvalues */ 

SEE ALSO 

The Hessenberg routines in hess en. c and zhessen. c . 

.BUGS 

It is up to the caller 0f s:ymmeig ( ) to ensure that the A matrix is symmetric. 
Symmetry of A is neither checked nor enforced in symmeig ( ) . 

SOURCE FILE: symmeig.c, schur.c, zschur.c 
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NAME 
schur_evals, schur_vecs- Extracting eigenvalues and eigenvectors from 
the Schur form 

SYNOPSIS 

#include "matrix2.h" 
void schur_evals(MAT *T, VEC *re_evals, VEC *im_evals) 
MAT *schur_vecs(MAT *T, MAT *Q, MAT *X_re, MAT *X_im) 

DESCRIPTION 

Both of these routines assume that T is the matrix computed by the schur ( ) 
routine; Q is the orthogonal matrix computed by schur ( ) . , 

The routine schur_evals () compute the eigenvalues of a matrix Tin Schur 
form (block diagonal with 1 x 1 or 2 x 2 blocks). The kth eigenvalue of A = QTQT is 
re_evals->ve [k] +iim_evals->ve [k]. At worst this requires solving a series 
of quadratics; however, it does simplify the task of computing eigenvalues. Complex 
eigenvalues come in complex conjugate pairs. 

The routine schur_ vecs ( ) computes the matrix X = x_re + i X_im such that 
x-1 AX is the diagonal matrix of eigenvalues where T = QT AQ as computed by the 
schur ( ) routine. The columns of X are computed by means of one step of inverse 
iteration using the eigenvalues as computed from the Schur form. This method is 
usually accurate provided the eigenvalues are not too close together. The computed kth 
column of X is real if the computed kth eigenvalue is real. The ordering of the columns 
is consistent with the ordering of the eigenvalues generated by schur_evals (). 

EXAMPLE 

See example for schur ( ) above. 

BUGS 

It is a bit difficult to check that the computed X is correct if it is complex. 

SEE ALSO 

schur() 

SOURCE FILE: schur.c 
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NAME 

svd., bisvd- Singular Value Decomposition routines 

SYNOPSIS 

#include "matrix2.h" 
VEC *svd(MAT *A, MAT *U, MAT *V, VEC *out) 
VEC *bisvd(VEC *d, VEC *f, MAT *U, MAT *V) 

DESCRIPTION 

The routine svd ( ) performs a complete Singular Value Decomposition (SVD) on 
the matrix A. That is, it computes orthogonal matrices U and V such that U AVT is 
diagonal and the diagonal entries are called the singular values of the matrix A. The 
first min( m, n) singular values are stored in the out vector which is also returned. 
Note that the SVD is defined for nonsquare as well as square matrices. 

If NULLs are passed for either or both u and v, then that orthogonal matrix will not 
be accumulated. This saves both time and space, if just the singular values are desired 
and not the U or V matrices. If out is NULL on entry to svd ( ) , then a vector of the 
appropriate size is created to store the singular values, which is returned. , 

The SVD is computed by first transforming the matrix into a bidiagonal matrix 
( c.f. schur ( ) where a matrix is transformed into Hessenberg form for eigenvalue 
calculations) and then applying bisvd ( ) . If a matrix is already in bidiagonal form, 
then bi svd ( ) can be called directly. The vector d contains· the diagonal entries and 
f contains the super-diagonal entries. As for svd ( ) , if NULLs are passed for either 
or both u and v, then that (or both) orthogonal matrix will not be accumulated. For 
correct results using bisvd ( ) , you should initialise u and v to be identity matrices 
using m_idc;mt ( ) before calling bisvd (). 

The rank of a matrix can be estimated by counting the number of singular values 
whose magnitude exceeds a specified tolerance. This tolerance for accurately computed 
matrices should probably be about 100 times MACHEPS; otherwise it should about an 
order of magnitude larger than the errors in the matrix. 

The algorithm used follows Matrix Computations by Golub and van Loan, pp. 430-
435, 2nd Edition (1989). 

EXAMPLE 

For computing the SVD of A: 

MAT *A, *U, *V; 
VEC *svdvals; 

U = m_get(A->m,A->m); 
v = m_get(A->n,A->n); 
svdvals = svd(A,U,V,VNULL); 
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For computing the SVD of the bidiagonal matrix defined by d (the diagonal entries) 
and f (the super-diagonal entries): 

MAT *U, *V; 

VEC *d, *f; 

U = m_get ( d- >dim, d- >dim) ; 
V = m_get(d->dim,d->dim); 
m_ident (U) ; 
m_ident (V) ; 
bisvd(d,f,U,V) 

/* must initialise U and V */ 

/* d now contains the singular values */ 

SOURCE FILE: svd.c 



NAME 

m_exp, m_poly, m_pow- Matrix exponentials, polynomials and powers 

SYNOPSIS 

#include "matrix2.h" 
MAT * m_pow(MAT *A, int p, MAT *out) 
MAT *_m_pow(MAT 
MAT * m_exp(MAT 
MAT *_m_exp(MAT 

int 
MAT *m__poly(MAT 

DESCRIPTION 

*A, int p, MAT *tmp, MAT *out) 
*A, double eps, MAT *out) 
*A, double eps, MAT *out, 
*qout, int *jout) 
*A, VEC *a, MAT *out) 

145 

The routine m_pow sets a matrix A E Rnxn to the power p, where p can be 
any non-negative integer. (Use m_inverse () for negative p.) The result is placed 
in the matrix out = AP. The routine is based on the binary powering algorithm (see 
Golub and Van Loan, Matrix computations, John Hopkins University Press, Baltimore, 
2nd edition,l989). The algorithm requires at most 2Llog2(p)Jn3 flops where n is the 
dimension of the matrix. 
_m_pow it is a variant of the routine m_pow which uses tmp as a workspace matrix. 

The routine m_exp computes an approximation of 

using the Pade approximation 

where 

q q 

Nq(A) = I:CkAk' Dq(A) = I>k(-A)k, 
k=O k=O 

and 
(2q- k)!q! 

Ck = (2q)!k!(q- k)!" 

The computed exponential is placed in out. The degree q is determined from an error 
tolerance eps given by the user. Pade approximation is good for A with a small nonn, 
therefore this condition can be ensured by applying repeated squaring ( Rqq ( Aj2i) )2;, 

where j is chosen so that I!Af2i II ~ 1/2. The Pade approximate can be more efficient 
by using special Horner regrouping techniques to evaluate matrix polynomial. The 
relative error of Pade approximate for a matrix with II All ~ 0.5 can be estimated by 

ileA- (Rqq(Aj2i))2; lloo < E(q q)IIAII e'(q,q)IIA!Ioo 
lleAIIoo - ' co ' 
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and t:(q, q) = 23-(2ql(q!) 2 /((2q)!(2q + 1)!). 
In _m_expthe degree q is returned in qout, and j is returned in jout. The routines 
m_exp and _m_exp are based on the paper: "Nineteen Dubious Ways to Compute 
The Exponential of the Matrix", SIAM Rev. 20(4), p.801-836, 1987 by C. Moler and 
C. Van Loan and the book G.H. Golub, C. Van Loan "Matrix Computations", Johns 
Hopkins University Press, Baltimore, 2nd edition, 1989. 

m_poly evaluates the polynomial of a matrix A 

where a0 , ab a2, ... , aq are given by the vector a with q = a->dim-1. The result 
is placed in out. The algorithm used to compute the matrix polynomials in the Pade 
approximation and in m_poly is based on the paper "A note on the Evaluation of 
Matrix Polynomials", IEEE Transactions on Automatic Control24 (1979), p. 209-228 
by C. Van Loan. The paper describes a method that is faster and more memory efficient 
than the standard Horner's method. 

SOURCE FILE: mfunc.c 



NAME 

fft, ifft -Fast Fourier Transform and inverse 

SYNOPSIS 

#include "matrix2.h" 
void 
void 

fft(VEC *x_re, VEC *x_im) 
ifft(VEC *x_re, VEC *x_im) 

DESCRIPTION 
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The routine fft () performs a fast Fourier transform on the vector x = x_re + 
ix_im. The transform is computed in situ. It does require that the dimension of x is a 
power of two. 

The routine ifft () performs the inverse fast Fourier transform of x = x_re + 
ix_im. As with fft () it is computed in situ, and the dimension of x must be a power 
of two. 

SOURCE FILE: fft.c 
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Sparse Matrix 
Operations 

Iterative 

The following routines are described in the following pages: 

Allocate, free, resize and compactify sparse matrix 
Copy sparse matrix 
Accessing sparse matrix entries 
Sparse matrix-vector multiplication 
Set up some access paths 
General sparse matrix operations 
Sparse matrix output 
Sparse matrix input 
Sparse row support routines 
Sparse Cholesky factorise and solve 
Sparse LU factorise and solve 
Sparse BKP factorise and solve 
Iteration structure initialisation 
Iterative methods 
Krylov subspace methods 

To use these routines use the include statement 

#include ~sparse.hw 

for the basic sparse routines (nnote that this includes matrix. h); use 

#include "sparse2.h" 

for the sparse factorisation routines (this includes sparse. h); use 

#include "iter.h" 

149 
151 
153 
154 
155 
157 
158 
160 
162 
165 
167 
169 
171 
173 
177 

for using the iterative routines (this includes sparse. h). Note that including 
sparse. h means that matrix. his automatically included. 

148 



NAME 
sp_get, sp_free, SP_FREE, sp_resize, sp_compact, 
sp_get_list, sp_free_list, sp_resize_list- allocate, free and 
resize sparse matrices 

SYNOPSIS 

#include "sparse.h" 
SPMAT *sp_get(int m, int n, int maxlen} 
void sp_free(SPMAT *A) 
void SP_FREE(SPMAT *A) 
SPMAT *sp_resize(SPMAT *A, int m, int n) 
SPMAT *sp_compact(SPMAT *A, double tol) 
int sp_get_vars(int m, int n, int maxlen, 

SPMAT **Al, SPMAT **A2, .•. , NULL) 
int sp_free_vars(SPMAT **Al, SPMAT **A2, ••• , NULL) 
int sp_resize_vars(int m, int n, 

SPMAT **Al, SPMAT **A2, ... , NULL) 

DESCRIPTION 
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The routine sp_get () allocates and initialises a SPMAT data structure. It is 
initialised so that the SPMAT returned is m x n, and that there are already maxlen 
elements allocated for each row. This is to avoid excessive memory allocation/de
allocation later on. Initially there are no elements in the matrix and so the len entry 
of every row will be zero just after calling this routine. 

The routine sp_free () deallocates all memory associated with the sparse matrix 
structure A. The macro SP _FREE () calls sp_free () to deallocate A, but also sets 
A to NULL, which makes this a safer way of freeing a sparse matrix. 

The routine sp_resize () re-sizes the matrix A to be size m x n. Rows are 
expanded as necessary, and information is not lost unless the matrix is reduced in size. 

It should be noted that the sparse matrix data structure requires a separate memory 
allocation for each row, unlike the dense matrix data structure. Thus more care must 
be taken with sparse matrix data structures to avoid excessive time spent in memory 
allocation and de-allocation. 

An E_MEM error will be raised if the memory cannot be allocated. 

Finally, the routine sp_compact () removes zero elements and elements with 
magnitude no more than tol from the sparse matrix A. It does this in situ and requires 
no additional storage. It may, however, raise an E_RANGE error if tol is negative. 

The routines sp_get_vars (), sp_free_vars () and sp_resize_vars () 
respectively allocate, free and resize NULL-terminated lists of sparse matrices. These 
operate in the same way as do the other •• _get_list (), •• _free_list () and 
•• _resize_list () routines; note that sp_free_vars () sets Al, A2, etc. to 
NULL pointers. 
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EXAMPLE 

SPMAT *A; 
int i, j, m, n; 

I* get sparse matrix, with room for 5 entires per row *I 
A= sp_get{m,n,S); 

sp_set_val{A,i,j,3.1415926); 

I* double size of A matrix *I 
sp_resize{A,2*m,2*n); 

I* remove entries of size <= lOA{-7} *I 
sp_compact{A,le-7); 

I* destroy A matrix *I 
sp_free{A) 

SOURCE FILE: sparse.c 
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NAME 

sp_copy, sp_copy2 - Spare matrix copy routines 

SYNOPSIS 

#include "sparse.h" 
SPMAT *sp_copy (SPMAT *A) 
SPMAT *sp_copy2(SPMAT *A, SPMAT *OUT) 

DESCRIPTION 

The routine sp_copy {) returns a copy of A so that the object returned can be 
freely modified without affecting A. (That is, it is a "deep" copy.) A new data structure 
is allocated and initialised in the process. 

The routine sp_copy2 () copies A into OUT, using all allocated entries in OUT in 
doing so. In this way it avoids memory allocation and preserves the structure of the 
nonzeros of OUT as much as possible. 

The routine sp_copy2 () is especially useful in conjunction with the symbolic 
and incomplete Cholesky factorisation routines. The idea is that the symbolic Cholesky 
factorisation allocates aU the necessary nonzero entries; if a matrix with the original 
nonzero pattern is to be factored, it can be copied using sp_copy2 () into the symbol
ically factored matrix, and the incomplete Cholesky factorisation routine can then be 
used to factor the copied matrix without fill-in or memory allocation. See the manual 
entries on spiCHfactor () and spCHsymb () for more details. 

EXAMPLE 

SPMAT *A, *B; 

A= sp_get(l00,100,4); 
for ( i = 0; i < A->m; i++ 

sp_set_val(A,i,i+l, .•. ); 

I* copy A matrix */ 
B = sp_copy(A); 

for ( i = 0; i < B->m; i++ ) 
sp_set_val(B,i,i+2, ••• ); 

sp_copy2(A,B); 
/* now B and A represent same matrix, 

but B has allocated (i,i+2) entries */ 

SEE ALSO 

sp_get () and sp_resize {) 
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SOURCE FILE: sparse. c 
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NAME 

sp_get_val, sp_set_val- Access to entries of a sparse matrix 

SYNOPSIS 

#include "sparse.h" 
double sp_get_val(SPMAT *A, int i, int j) 
double sp_set_val(SPMAT *A, int i, int j, double val) 

DESCRIPTION 

The routine sp_get_'Val() return!) the value in the (i,j)'th entry of A. If the 
(i,j)'thentryhas not been allocated, then zero is returned. The routine sp_set_val () 
sets the value of the (i,j)'th entry of A to vai. If the (i,j)'th entry is not already 
allocated, then if there is sufficient allocated space for the new entry, other entries will 
be shifted as needed; if there is not sufficient space, then the row will be expanded by 
sprow_xpd ( ) .. Setting the value of an entry to zero does not "de-allocate" the entry. 

If i or j are negative or larger than or equal to A->m or A->n respectively, then 
an E_BOUNDS error will be raised. 

EXAMPLE 

SPMAT *A; 
int i, j; 
double val; 

A= sp_get(100,100,4); 

sp_set_val(A,i,j, (double)(i+j)); 

val = sp_get_val(A,i,j); 

SEE ALSO 

row_set_val() 

BUGS 

A more efficient approach would be to use a balanced tree structure. 

SOURCE FILE: sparse.c 
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NAME 

sp_mv _ml t, sp_ vm_ml t - sparse matrix-vector multiplication routines 

SYNOPSIS 

#include "sparse.h" 
VEC *sp_mv_mlt{SPMAT *A, VEC *x, VEC *out) 
VEC *sp_vm_mlt(SPMAT *A, VEC *x, VEC *out) 

DESCRIPTION 

The routine sp_mv_mlt () sets out to be the matrix-vector product Ax, and 
sp_ vm_ml t () sets out to be the vector-matrix product xT A (or equivalently, AT x ). 
The vector out is created or resized if necessary, in particular, if out """' VNULL. 

Both avoid thrashing on virtual memory machines. Unlike the dense matrix rou
tines, there is no set of "core" routines for performing the underlying inner products 
and "saxpy" operations efficiently. 

EXAMPLE 

SPMAT *A; 
VEC *x, *y; 

A= sp_get(100,100,4); 
x = v_get(A->m}; 

I* compute y <- A.x */ 
y = sp_mv_mlt(A,x,VNULL); 
I* compute y~T <- x~T.A */ 
sp_vm_mlt(A,x,y); 

SOURCE FILE: sparse.c 



NAME 

sp_coLaccess, sp_diag_access- set up access paths 

SYNOPSIS 

#include "sparse.h" 
SPMAT *sp_col_access (SPMAT *A) 
SPMAT *sp_diag_access(SPMAT *A) 

DESCRIPTION 
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In order to achieve fast access down columns, extra access paths were added. 
However, operations such as setting values of (unallocated) entries upset these access 
paths. Rather than keep them up-to-date continuously, which is rather expensive in 
computational time, these access paths are only updated when requested. 

There are flags in the sparse matrix data structure which indicate if these access 
paths are still valid: they are A->flag_col and A->flag_:_diag respectively. 
(Nonzero indicates they are valid.) 

The fields of A that are set up by sp_col_access () are the A- >start_row [] 
and A->start_idx [] fields. The values A->start_row[col] and 
A->start_idx[col] give the first row, and index into that row where the first 
allocated entry of column col. The other fields set up by sp_col_access () are 
the nxt_row and nxt_idx fields of each row_elt data structure in the sparse 
matrix A. For a more thorough description of how these may be used, see §2.6. 

The sp_diag_access () function only sets the diag field of the SPROW data 
structure for each row in the sparse matrix A. 

EXAMPLE 

Using the column access fields to chase the entries in 

SPMAT *A; 
int i, j, idx; 
SPROW *r; 
row_elt *e; 

I* set up A matrix *I 
sp_set_val(A,i,j,3.1415926); 

sp_col_access(A); 
I* chase column j of A *I 
i = A->start_row[j]; 
idx = A->start_idx[j]; 
while ( i >= 0 ) 
{ 
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} 
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r = &(A->row[i]); 
e = &(r->elt[idx]); 
printf("Value A[%d] [%d] = %g\n", i, j, e->val); 
i = e->nxt_row; 
idx = e->nxt_idx; 

Getting diagonal values: 

SPMAT *A; 
int i, idx; 
double val; 

sp_diag_access(A); 

I* to get A[i] [i] */ 
idx = A->row[i] .diag; 
if ( idx < 0.0 ) 

val = 0.0; 
else 

val = A->row[i] .elt [idx] .val; 

BUGS 

The flags are not guaranteed to remain correct if you modify the sparse matrix data 
structures directly, only if you use sp_set_ val ( ) etc. is it guaranteed. 

SOURCE FILE: sparse.c 



NAME 
sp_zero, sp_add, sp_sub, sp_smlt, sp..mltadd- General sparse 
matrix operations 

SYNOPSIS 

#include "sparse.h" 
SPMAT *sp_zero(SPMAT *A) 
SPMAT *sp_add (SPMAT *A, SPMAT *B, SPMAT *out) 
SPMAT *sp_sub (SPMAT *A, SPMAT *B, SPMAT *out) 
SPMAT *sp_smlt(SPMAT *A, double alpha, SPMAT *out) 
SPMAT *sp_rnltadd(SPMAT *A, SPMAT *B, double alpha, 

SPMAT *.out) 

DESCRIPTION 
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The routine sp_zero () zeros the allocated entries of A. Does not change the 
"allocation" status of entries of A. 

The routine sp_add () adds the sparse matrices A and B, and puts the result in 
out. This routine may not be used in situ with either A == out orB == out. 

The routine sp_sub () subtracts B from A and puts the result in out. This routine 
may not be used in situ with either A == out orB == out. 

The routine sp_smlt () computes the scalar product of alpha and A and puts 
the result in out. 

The routine sp_mltadd() computes A+ aB and puts the result in out. This 
routine may not be used in situ with either A == out orB == out. 

EXAMPLE 

One way to clear the sparsity structure of a matrix follows: 

SPMAT *A; 

sp_zero (A) ; I* zeros entries */ 
sp_compact(A,O.O); /*removes zero entries */ 

SOURCE FILE: sparse.c 
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NAME 

sp_foutput, sp_output- Sparse matrix output 

SYNOPSIS 

#include <stdio.h> 
#include "sparse.h" 
void sp_foutput(FILE *fp, SPMAT *A) 
void sp_output(SPMAT *A) 

DESCRIPTION 

The routine sp _f output ( ) produces a printed representation of the sparse matrix 
A on the file or stream fp. This representation can also be read in by sp_finput (). 

The routine sp_output () is just a macro 

#define sp_output(A) sp_foutput(stdout,(A)) 

which sends the output to stdout. 

The form of the output consists of a header, a list of rows, each of which contains 
a sequence of entries. Each entry is made up of a column number, a colon, and the 
value for that entry. For example, the dense matrix 

Matrix: 3 by 4 
row 0: 0 1 0 

row 1: 1 2 0 

row 2: 0 0 1 

can be represented as the sparse matrix with printed representation 

SparseMatrix: 3 by 4 

row 0: 1:1 
row 1: 0:1 
row 2: 2:1 

EXAMPLE 

SPMAT *A; 
int i, j; 

FILE *fp; 

sp_set_val(A,i,j,3.1415926); 

3:-1 

1:2 
3:1 

sp_output (A) ; /* prints to stdout */ 

-1 

.0 

1 



if ( (fp=fopen("output.dat", "w")) == NULL 
error(E_EOF,"func_name"); 

sp_foutput(fp,A); /*prints to output.dat */ 

SEE ALSO 

sp_finput(),sp_input() 

SOURCE FILE: sparseio.c 
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NAME 

sp_finput, sp_input- Input sparse matrix 

SYNOPSIS 

#include <stdio.h> 
#include "sparse.h" 
SPMAT *sp_finput(FILE *fp) 
SPMAT *sp_input() 

DESCRIPTION 

The routine sp_finput {) allocates, initialises and inputs a sparse matrix of the 
size input from file/stream fp. The routine sp_input () is just a macro 

#define sp_input(} sp_finput(stdin) 

If the input is not from a terminal, then the format must be the same as that produced 
by sp_foutput () or sp_output (). If the input is from a terminal 
(isatty ( fileno ( fp)) ! = 0) then the user is prompted for the necessary values 
and information. 

EXAMPLE 

SPMAT *A; 
FILE *fp; 

A= sp_input(); I* read matrix from stdin */ 
if ( (fp=fopen("input.dat","r")) ==NULL) 

error(E_INPUT,"func_name")i 
A= sp_finput(fp); /*read matrix from input.dat */ 

Example of interactive input session: 

SparseMatrix~ input rows cols: 10 15 
Row 0: 

Enter <COl> <Val> 
Entry 0: 2 

Entry 1: 3 
Entry 2: 0 

Entry 2: 4 

Entry 3: e 
Row 1: 

-7.32 
1.5 
2.75 
1.3 

or 'e' to end row 

# Note: entry ignored 

Enter <col> <val> or 'e' to end row 
Entry 0: e # Note: empty row 



Row 2: 
Enter <col> <val> or 'e' to end row 
Entry 0: 

BUGS 

Does not allow more than a hundred entries per row. 

The simple "editing" facilities ofm_finput () are not provided. 

SOURCE FILE: sparseio.c 
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NAME 
sprow_add, sprow_sub, sprow_smlt, sprow_foutput, 

sprow_get_idx, sprow_get, sprow~d, sprow~erge, 
sprow~ltadd, sprow_set_val- Sparse row support routines 

SYNOPSIS 

#include "sparse.h" 
int sprow_get_idx{SPROW *r, int col) 

SPROW *sprow_get(int maxlen) 
SPROW *sprow_xpd(SPROW *r, int newlen, int type) 
SPROW *sprow_resize(SPROW *r, int newlen, int type) 
SPROW *sprow_merge(SPROW *rl, SPROW *r2, 

SPROW *r_out, int type) 
SPROW *sprow_add(SPROW *rl, SPROW *r2, int jO, 

SPROW *r_out, int type) 
SPROW *sprow_sub(SPROW *rl, SPROW *r2, int jO, 

SPROW *r_out, int type) 
SPROW *sprow_smlt(SPROW *r, double alpha, int jO, 

SPROW *r_out, int type) 
SPROW *sprow_mltadd(SPROW *rl, SPROW *r2, double alpha, 

int jO, SPROW *r_out, int type) 
double sprow_set_val(SPROW *r, int j, double val) 
void sprow_foutput(FILE *fp, SPROW *r) 
void sprow_dump(FILE *fp, SPROW *r) 

DESCRIPTION 

The routine sprow_get_idx () uses binary search to find the location. of the 
element in row r whose column number is col, which is returned. If the row r contains 
an entry with column number col, then the index idx into r->elt [idx] (being 
the entry in that row) is given by idx = sprow_get_idx ( r, col). If there is no 
element in row r whose column is col, then idx = sprow_get_idx ( r, col) is 
negative, but - ( idx+2) is the index where an entry with column number col would 
be inserted. An internal error is flagged by returning -1. 

The routine sprow_get ( ) allocates and initialises a sparse row data structure 
(type SPROW) with memory for maxlen entries. 

The routine sprow_xpd ( ) reallocates the row r to allocate room for at least 
newlen entries. If the current length (r->len) is already at least size newlen, then 
the row's allocated memory is approximately double in size. For this routine and the 
some of the following sprow_ •• ( ) routines the type parameter is TYPE_SPROW 
for a stand-alone sparse row, and TYPE_SPMAT for a sparse row in a sparse matrix 
(SPMAT) data structure. 

The routine sprow_resize () resizes the sparse row r to have length newlen; 
if r is NULL, then a sparse row is created and returned. 
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The routine sprow_merge ( ) merges two sparse rows, with values in rl taking 
precedence over values in r2 if they have the same column number. 

The routine sprow_add () adds rl to r2 to compute r_out by a "merging" 
process. The applies only to columns with column numbers greater than or equal to 
jO. 

Theroutinesprow_sub() subtractsr2fromrltocomputer_out = rl - r2 
by a "merging" process. The applies only to columns with column numbers greater 
than or equal to j 0. 

The routine sprow_smlt () computes the scalar product r_out = alpha*r. 

The routine sprow_mltadd() setsr_out toberl+alpha.r2, bya"merging" 
process. The applies only to columns with column numbers greater than or equal to 
jO. 

The routine sprow_set_ val () sets the j 'th element of row r to be val. 
Memory allocation and shifting of entries is done as needed. 

The routine sprow_foutput ( ) prints a representation of the sparse row r onto 
file/stream fp. This representation is not intended to be read back in. 

EXAMPLE 

Extracting a sparse matrix entry: 

SPMAT *A; 
SPROW *r, rl, r2; 
row_elt *e; 
int i, j, idx, idxl; 

/* compute A[i] [j] */ 
r = &(A->row[i]); 
idx = sprow_get_idx(r,j); 
if ( idx < 0 ) 

else 

/* -(idx+2) is where an entry in 
column j would go if there were one */ 

val = 0.0; 

val= r->elt[idx].val; 

Shuffling a row: 

/* build temporary sparse row rl 
containing shuffled entries of r */ 

rl = sprow_get(lO); 
for ( idx = 0; idx < r->len; idx++ ) 
{ 

e = &(r->elt[idx]); 



164 CHAPTER 6. SPARSE MATRIX & ITERATIVE OPERATIONS 

old_col = e->col; 

sprow_set_val(rl,new_col,e->val); 
/* rl will be expanded if necessary */ 

} 

Expanding a temporary row: 

rl = sprow_xpd(rl,2*rl->len + 1); 

Printing out a row as a separate structure for debugging: 

print f ( "Temporary row rl: \n" ) ; 
sprow_foutput(stdout,rl); 

SOURCE FILE: sparse.c 



NAME 
spCHfactor, spCHsolve, spiCHfactor, spCHsymb- Sparse 
Cholesky factorisation and solve 

SYNOPSIS 

#include "sparse2.h" 
SPMAT *spCHfactor(SPMAT *A) 

VEC *spCHsolve(SPMAT *LLT, VEC *b, VEC *out) 

SPMAT *spiCHfactor(SPMAT *A) 
SPMAT *spCHsymb(SPMAT *A) 

DESCRIPTION 
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The main routine of these is spCHfactor () which performs a sparse Cholesky 
factorisation of the matrix A, which is performed in situ. The resulting system can 
be solved by spCHsol ve () which returns out which is set to be the solution of 
A. out = b where LLT is the result of applying spCHfactor ( ) to A. To illustrate, 
the following code solves the system A. x = b for x: 

I* Initialise A and b */ 

spCHfactor (A) ; 

/* A is now the Cholesky factorisation of original A, 
stored in compact form */ 

spCHsolve(A,b,x); 

The other routines provide alternatives to spCHfactor (). The routine 
spCHfactor () allocates memory for fill-in as needed. As noted above regarding 
sp_col_access () etc, this destroys the column access data stmcture's validity, and 
so results in more time spent searching for elements within rows. This can be avoided 
if there is no fill-in. 

The routine spiCHfactor () performs Cholesky factorisation assuming no fill
in. It does not even check that fill-in would occur in a correct Cholesky factorisation. 
This routine is considerably faster than using spCHfactor (), but if the actual 
factorisation results in fill-in, the computed "Cholesky" factor used in spCHsol ve ( } 
will not give correct solutions. 

The routine spCHs:ymb ( ) performs a "symbolic" factorisation of A. That is, no 
numerical calculations are performed. Instead, the A matrix after spCHsymb ( ) has 
executed, contains allocated all entries where fill-in would occur. This means that 
spCHfactor () is effectively equivalent to spCHsymb () followed by 
spiCHfactor (). The advantage with having two separate routines is that the fill-in 
can be computed once for a given pattern of nonzeros, and used for a number of sparse 
matrices with just that pattem of nonzeros with spiCHfactor (). The code to do 
this would look something like this: 
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I* Initialise pattern matrix *I 

spCHsymb(pattern); 
for ( i = 0; i < num_matrices; i++ 
{ I* set up A matrix -- same nonzero pattern *I 

} 

sp_zero(pattern); 
sp_copy2(A,pattern); 
spiCHfactor(pqttern); 
I* set up b vector *I 

spCHsolve(pattern,b,x); 

The spiCHfactor () routine can also be used to provide a good pre-conditioner 
for the pre-conditioned conjugate gradient routines i ter_cg ( ) and i ter_spcg ( ) . 

BUGS 

An E_POSDEF error may be raised by spiCHfactor ( ) even if the A matrix is 
positive definite. 

An E_POSDEF error will be raised by spCHsymb ( ) if a diagonal entry is missing. 

SEE ALSO 

sp_copy2(),sp_zero(),iter_cg(),iter_spcg() 

SOURCE FILE: spCHfactor.c 
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NAME 
spLUfactor, spiLUfactor, spLUsolve, spLUTsolve- sparse LU 
factorisation (Gaussian elimination) 

SYNOPSIS 

#include "sparse2.h" 
SPMAT *spLUfactor (SPMAT *A, PERM *pivot, double alpha) 
SPMAT *spiLUfactor(SPMAT *A, double alpha) 
VEC *spLUsolve (SPMAT *LU, PERM *pivot, VEC *b, VEC *x) 
VEC *spLUTsolve(SPMAT *LU, PERM *pivot, VEC *b, VEC *x) 

DESCRIPTION 

The routine spLUfactor () performs Gaussian elimination with partial pivoting 
on A with a Markowitz type modification to avoid excessive fill-in. The alpha 
parameter determines the trade-off between fill-in and numerical stability; the row 
that is swapped with the pivot row is the one with the smallest number of nonzero 
entries after the pivot column which has magnitude at least alpha times the largest 
magnitude entry in the pivot column. This parameter must therefore be between zero 
and one inclusive. If it is set to zero then alpha is effectively set to machine epsilon, 
MACHEPS. 

Note that A is over-written during the factorisation, and that pivot must be set 
before being passed to spLUfactor (). 

The routine spiLUfactor () computes a modified incomplete LU factorisation 
without pivoting. Thus no fill-in is generated and all pivot (i.e. diagonal entries) are 
guaranteed to have magnitude ~ a by adding to the diagonal entries. Thus in exact 
arithmetic it computes LU = A+ D for some diagonal matrix D. Since it is not a 
factorisation of A, it cannot be used directly to solve systems of equations. 

The routine LUsol ve ( ) solves the system Ax = b. The routine LUTsol ve { ) 
solves the system AT x = b. Both of these use the the matrix as factored by 
spLUfactor (). They can also be used in situ with x == b. 

EXAMPLE 

Code for solving the sparse systems of equations Ax = band AT y = b is given 
below: 

I* Set up A and b */ 

pivot = px_get(A->m); 
x = v_get(A->n); 
y = v_get(A->m); 
spLUfactor(A,pivot,O.l); 
x = spLUsolve(A,pivot,b,x); 
y = spLUTsolve(A,pivot,b,y); 
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An example of the use of spiLUfactor () will be given under the entry for 
i ter_cg ( ) , i ter_cgs {) and i ter_lsqr (). 

BUGS 

There may be problems with spLUsol ve ( ) and spLUTsol ve ( ) if A is not 
square. 

The routine spLUfactor () does not implement a full Markowitz strategy. 

SEE ALSO 

spCHfactor (), MACHEPS, LUfactor () 

SOURCE FILE: spLUfctr.c 



NAME 
spBKPfactor, spBKPsol ve -sparse Burich-Kaufmann-Parlett 
factorisation 

SYNOPSIS 

#include "sparse2.h" 
SPMAT *spBKPfactor(SPMAT *A, PERM *pivot, PERM *blocks, 

double alpha) 
VEC *spBKPsolve (SPMAT *A, PERM *pivot, PERM *blocks, 

VEC *b, VEC *x) 

DESCRIPTION 
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The routine spBKPfactor ( ) performs the symmetric indefinite factorisation 
methods of Bunch, Kaufmann and Parlett as described for BKPfactor ( ) . However, 
this routine uses a Markowitz type strategy to determine what pivoting to do; the 
alpha argument is a lower limit on the relative size of the pivot block. The pivot 
which satisfies this lower limit and which has the smallest number of entires in the 
pivot row(s) is used. The value of alpha must be greater than zero but less or equal 
to one. The value of one gives essentially the pivoting as occurs in BKPfactor ( ) 
for the same matrix. 

The actual factored matrix is stored in the upper triangular part of A; the strictly 
lower triangular part of A is left unchanged. 

The routine spBKPsol ve ( ) is really just a translation of BKPsol ve ( ) to the 
sparse case, using just the upper triangular part of A. 

EXAMPLE 

A simple example of the use of these routines is 

SPMAT 
PERM 
VEC 

*A, *BKP; 
*pvt, *blks; 
*b, *x; 

/* set up A matrix */ 

pvt = px_get(A->m); 
blks = px_get(A->m); 
BKP = sp_copy(A); 
spBKPfactor(BKP,pvt,blks,O.l); 
/* set up b vector */ 

x = spBKPsolve(BKP,pvt,blks,b,VNULL); 

SEE ALSO 
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BKPfactor(),BKPsolve(),spLUfactor(),spLUsolve{). 

SOURCE FILE: spbkp.c 
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NAME 
iter_get, iter_free, iter_resize, iter_copy, iter_copy2, 
iter ...Ax, iter-ATx, iter_Bx, iter_dump -Iteration data structure 
initialisation 

SYNOPSIS 

#include "iter.h" 
ITER *iter_get(int m, int n) 
int iter_free(ITER *ip) 
ITER *iter_resize(ITER *ip, int 
ITER *iter_copy (ITER *in, ITER 
ITER *iter_copy2(ITER *in, ITER 
int iter_Ax (ITER *ip, Fun_Ax 
int iter_ATx(ITER *ip, Fun_Ax 
int iter_Bx (ITER *ip, Fun _Ax 

new_m, int new_n) 
*out) 
*out) 
Ax, void *Ax_par) 
ATx, void *ATx_par) 
Bx, void *Bx_par) 

void iter_dump(FILE *fp, ITER *ip) 

DESCRIPTION 

These routines initialise the ITER data structure for use in applying iterative meth
ods for large sparse or structured matrices. The routine iter_get {in, n) allocates 
and initialises an ITER data structure for an m x n linear system Ax = b. The 
ITER data structure can be deallocated by calling iter_free(ip). The routine 
iter_resize () resizes the vectors in the ITER data structure appropriately for a 
new_m x new_n matrix. 

The routine iter_copy{) copies all of the values stored in in to out, and also 
copies the vectors in->x and in->b to out->x and out->b respectively. The 
routine iter_copy2 () also copies all of the values stored in in to out, but the 
vectors out->x and out->b are unchanged. 

For the iterative routines matrices are represented by functions. In particular, the 
matrix A is represented by a function Ax which computes y = Ax given x by means 
of 

VEC *x, *y; 
void *Ax _par; 

y = (*Ax)(Ax_par, x, y); 

Indeed the type Fun_Ax is defined by 

typedef VEC *(*Fun_Ax)(void *Ax_par, VEC *x, VEC *out); 

That is, an object of type Fun_Ax is a function (or equivalently a pointer to a function) 
which takes a (user-definable) parameter Ax_par, the vector x and the destination 
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vector, and returns a vector. Strictly speaking the Ax_par parameter is not necessary 
as one can set a global variable with Ax...:,Par and use it directly in the function 
Ax. However, this requires communication through global variables (which is not a 
good software engineering practice), and also requires the user to set and unset global 
variables whenever the matrix changes. By using an extra (user-definable) parameter, 
general routines can be written which can deal with a general class of problems. 

While most of the values in the ITER structure must be set directly if you wish to 
override the default values, the i ter_Ax ( ) , i ter_ATx ( ) ·and i ter_Bx ( ) macros 
are provided to simplify setting the fields which define the matrix-A, its transpose AT, 
and the preconditioner B. For a list of the values stored in the ITER structure, and 
their default values, see §2.8. 

The contents of an. ITER dati ,struc~re cati. b~ durnped to a file or stream fp 
using iter_dump.(fp, ip). This representation is just for debugging purposes and 
cannot be rea,d back in. 

As an example, here is how sparse matrix data structures can be represented in an 
ITER data structure: 

SPMAT *A; 
ITER *ip; 

ip = iter_get(A->m,A->n); 
iter_Ax ( ip, sp_mv_mlt, A); 
iter_ATx(ip, sp_vm_mlt, A); 
I* some extra parameters *I 
ip->limit = 10000; I* limit to max number of steps *I 
ip- >e'ps 1 ;:: le-9; I* error tolerance *I 

The routine is sp_mv_mlt(A,x,out), which is the sparse matrix-vector,product 
routine;. the sparse matrix data structure A is the first parameter, and is the ''user
definable'' pointer. If the matrix AT is to be usedin an iterative routine, then the sparse 
matrix data structure does not have to be touched; instead the sp_mv _ml t ( ) routine 
just needs to be replaced by sp_vm_mlt (),which computes y =AT x. 

SEE ALSO 

iter _cg, iter _cgs and the other iterative methods 

SOURCE FILE: iterO.c 



NAME 
iter_cg, iter_cgne, it:er_cgs, iter....mgcr, iter_lsqr, 

iter _gmres, iter _spcg, iter _spcgne, iter _spcgs, 

iter _spmgcr, iter_spl:sqr- Iterative methods for linear equations 

SYNOPSIS 

#include "iter.h" 

VEC 

VEC 

VEC 

VEC 

VEC 

VEC 

*iter_cg (ITER 

*iter _cgne (ITER 

*iter _cgs (ITER 

*iter _lsqr {ITER 

*iter _gmres{ITER 

*iter_mgcr (ITER 

*ip) 

*ip) 

*ip, VEC *rO) 

*ip) 

*ip) 

*ip) 

VEC *iter_spcg (SPMA'J£' *A, SPl.'iAT *LLT, VEC *b, Real tol, 

\~C *x, int limit, int *steps} 

VEC *iter_spcgne(SPMAT *A, SPMAT *B, VEC *b, Real tol, 

VEC *x, int limit, int: *steps) 

VEC *iter_spcgs(SPMAT *A, SPMAT *B, VEC *b, VEC *rO, 

Real ·tol, VEC *x, int limit, int: *steps) 

VEC *iter_splsqr(SPMAT *A, VEC *b, Real tol, VEC *x, 
int limit, int *steps} 

VEC *iter __ spgmres (SPMA.T *A, Sl?MAT *B, VEC *b, Real tol, 

VEC *x, int k, int limit, int *steps) 

VEC '*iter __ spmgcr(SPMAT *A, SPMAT *B, VEC *b, Real tol, 

VEC *x, int k, int limit, int *steps) 

DESCRIPTION 
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These routines provide iterative methods for solving systems of linear equations, 
both symmetric and non-symmetric. The ITER data structure ip contains the informa
tion about the matrix along with preconditioners, error tolerances, limits on numbers 
of steps etc. The routines set some values in the ip data structure such as the solution 
and the number of steps of the iterative method actually taken. The solution vector 
ip- >X is returned. 

Of these routines, i ter_cg () is the method of choice for positive definite 
symmetric matrices; i ter_lsqr () is probably the most reliable; i ter_cgs (} 

probably the least stable, but relatively fast when it works; iter_mgcr() and 
iter_gmres ()I probably provides the best compromises between speed and relia
bility for most nonsymmetric systems. The routine iter_cg () and iter_lsqr () 

require the least amount of memory. 

The routine i ter_cg () implements the conjugate gradient method. This is for 
symmetric positive definite matrices only, with symmetric positive definite precon
ditioners. This is a well-known method for solving such systems since the 1970's. 
The routine i ter_cg () implements the standard (pre-conditioned) conjugate gradi-
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ent method as presented in Golub and Van Loan's Matrix Computations, § 10.3, 2nd 
Edition (1989). 

The routine i ter_cgne () implements the conjugate gradient method for the 
normal equations AT Ax = ATb. This requires the ATx and ATx_par fields of ip 
to be set. The preconditioner B (represented by Bx and Bx_par) must be symmetric 
and positive definite, and is interpreted as the preconditioner for (A+ AT) /2. In fact, 
this routine applies the conjugate gradient algorithm to AT BA using a modified inner 
product. One way to obtain a suitable preconditioner is to use imcplete Cholesky 
factorisation to get approximate factors of (A+ AT)/2. Note that an alternative to this 
routine for least squares and related problems is iter_lsqr (). 

The routine i ter_cgs () implements Sonneveld's CGS (Conjugate Gradients 
Squared) method as described in CGS: A fast Lanczos-type solver for nonsymmetric 
lilnear systems, SIAM l Scientific and Statistical Comp., lQ, pp. 36-52 (1989). This 
is a somewhat unstable but fast algorithm for non-symmetric systems. The vector rO 
passed to iter_cgs () is an auxiliary vector. A simple strategy is to set rO to be 
a random vector on entry. It does not contain any useful information on exit. The 
solution vector is returned. 

The routines i ter_lsqr () implements the LSQR method of Paige and Saunders 
as described in LSQR: an algorithm for sparse linear equations and sparse least 
squares, ACM Transactions on Mathematical Software, 8, pp. 43-71 (1982). This 
computes solutions to the least squares problem: achieving minx jjAx- bib. For this 
routine, the functional parameter ATx for computing y = AT x must also be set in 
the ip data structure as weU as the Ax parameter. The matrix A represented may be 
non-square. 

The routine i ter_gm.res () implements the Generalised Minimal RESidual 
method (GMRES) of Saad and Schultz as presented in GMRES: a generalized minimal 
residual algorithm for solving nonsymmetric linear systems, SIAM J. Scientific and 
Statistical Comp., 7, pp. 856-869 (1986). A single step of GMRES involves building 
up an approximation to A on a Krylov subspace span{r, Ar, A2r, ... , Ak-lr} where 
k is the dimension of the Krylov subspace and r is the current residual. The entry 
ip->k of ip contains the value of k used by iter_gmres (). 

The routine i ter_mgcr 0 implements a fast Modified Generalized Conjugate 
Residual algorithm of Leyk as presented in Modified generalized conjugate residuals 
method for nonsymmetric systems of linear equations, Technical Report CMA-MR33-
93 of the School of Mathematical Sciences, Australian National University (1993). 

There are also versions iter_sp .•. () which work with the sparse matrix data 
structures. Here A is the sparse matrix and b is the right-hand side vector for the linear 
system Ax = b; tol is the residual tolerance; limit is the maximum number of 
steps of the iterative method; steps is set to the actual number of steps of the iterative 
method actually used. If the last argument (for steps) is NULL, then it is not used. 

In i ter_spcg (), LLT is the sparse matrix structure containing an approxi
mate Cholesky factorisation of A; If LLT is NULL then no preconditioning is used. In 
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iter_spcgs (), rO is the auxiliary vector. In iter_spcgne (), iter_spcgs (), 
iter_spgmres () and iter_spmgcr (), B is the (explicit) preconditioner. If B 
is NULL then no preconditioning is used. In i ter_splsqr () there is no precon
ditioning. In i ter_spgmres () and i ter_spmgcr (), k is the dimension of the 
Krylov subspace used. 

EXAMPLE 

To implement Incomplete Cholesky/Conjugate Gradients (ICCG) for a sparse sym
metric positive definite matrix A: 

LLT = sp_copy(A); 
spiCHfactor(LLT); 
x = iter_spcg(A,LLT,b,le-6,VNULL,1000,&steps) 

An example of using incomplete LU preconditioners for a nonsymmetric system 
is: 

VEC *myiLUsolve(SPMAT *LU, VEC *x, VEC *y) 
{ 

return spLUsolve(LU,PXNULL,x,y); 
} 

main() 
{ 

ITER *ip; 

LU = sp_copy (A) ; 
spiLUfactor(LU,alpha); 
ip = iter_get(A->m,A->n); 
iter_Ax(ip,sp_mv_mlt, A); 
iter_Bx(ip,myiLUsolve,LU); 
rO = v_rand(v_get(A->m}); 
iter_cgs(ip,rO); I* using CGS ••• 
ip->k = 20; I* for GMRES *I 

*I 

iter_gmres ( ip); I* using GMRES ••• *I 
iter_mgcr(ip); I* using MGCR ••• *I 
iter_ATx(ip, sp_vm_mlt, A); 
iter_lsqr(ip); /*using LSQR ••. */ 
/* extract solution *I 
printf("Solution is:\n"); v_output(ip->x); 
printf ("Used %d steps\n", ip->steps); 
} 

SEE ALSO 
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iter _get () and related routines; spiCHfactor () , spiLUfactor ( ) 

SOURCE FILE: itersym.c, iternsym.c 
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NAME 
iter_lanczos, iter_lanczos2, iter_arnoldi, 
iter_arnoldi_iref, iter_splanczos, iter_splanczos2, 
iter_sparnoldi, iter_sparnoldLiref- Krylov subspace algorithms 

SYNOPSIS 

#include "iter.h" 
void iter_lanczos (ITER *ip, VEC *a, VEC *b, Real *beta2, 

MAT *Q) 
VEC 
MAT 
MAT 

void 

*iter_lanczos2(ITER *ip, VEC *evals, VEC *err_est) 
*iter_arnoldi (ITER *ip, Real *h_rem, MAT *Q, MAT *H) 
*iter_arnoldi_iref(ITER *ip, Real *h_rem, 

MAT *Q, MAT *H) 
iter_splanczos(SPMAT *A, int k, VEC *xO, 

VEC *a, VEC *b, Real *beta2, MAT *Q) 
VEC *iter_splanczos2{SPMAT *A, int k, VEC *xO, 

VEC *evals, VEC *err_est) 
MAT *iter_sparnoldi(SPMAT *A, VEC *xO, int k, 

Real *h_rem, MAT *Q, MAT *H) 
MAT *iter_sparnoldi_iref{SPMAT *A, VEC *xO, int k, 

Real *h_rem, MAT *Q, MAT *H) 

DESCRIPTION 

These routines implement the Lanczos and Arnoldi methods of extracting infor
mation about large matrices by computing Krylov subspaces, and the effect of the 
matrices on these subspaces. One of the main uses for these algorithms is to compute 
approximate eigenvalues. Of these, the Lanczos method is for symmetric matrices, 
and the Arnoldi method is for general matrices. For a matrix A and a start vector r, 
the Krylov subspace of dimension k generated is 

K(A, r, k) =span{ r Ar, ... , Ak-lr }. 

Both the Lanczos and Arnoldi methods construct orthonormal bases (at least in exact 
arithmetic) of the Krylov subspace K(A, r, k ). The orthonormal bases form the rows 
of Q. The approximation to A on the Krylov subspace generated is taken to be QAQT. 
Note that the results of the Lanczos and Arnoldi methods are the same (in exact 
arithmetic) for symmetric matrices. 

If A is symmetric thenT = QAQT is tridiagonal and is represented by the vectors 
a and b computed by the Lanczos algorithm: 

ao bo 
bo a1 bl 

T = bl a2 
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If the purpose is to compute approximate eigenvalues, but not eigenvectors, then Q can 
be NULL on entry to iter_lanczos (). Then Q is not accumulated and only a and 
bare computed. The eigenvalues of A can be approximated by.eigenvalues ofT. 

For general matrices H = QAQT is upper Hessenberg is computed by the Arnoldi 
algorithm. The matrix H is returned by i ter_arnoldi ( ) . That is, hij = 0 
whenever i > j + 1; or alternatively, all entries below the first sub-diagonal of Hare 
zero. The eigenvalues of A can be approximated by the eigenvalues of H. Unlike 
iter_lanczos (),the routine iter_arnoldi () requires Q to be non-NULL and 
of the correct size: k x n where A is n x n. 

In iter_lanczos (), beta2 is set to the valuebk-l which is thevalueofthenext 
off-diagonal entry should the process go one step further. If QT = [q0 , q11 ••• , qk-d 
and qk would be the next basis vector computed, then 

Thus, bk-l can be used to estimate errors in the eigenvalues and eigenvectors estimated 
by the Lanczos method. 

Similarly, in i ter_arnoldi (), h_rem is the value of the next sub-diagonal 
entry that would occur if k was increased by one. Again, the formula 

can be used to estimate errors in the eigenvalues and eigenvectors estimated by the 
Lanczos method. 

Note that for both the Lanczos and Arnoldi methods, the eigenvalues (and eigen
vectors) that are first estimated with greatest accuracy are the most extreme one. For the 
symmetric case, since the eigenvalues are real, the most positive and the most negative 
eigenvalues can be quickly computed to reasonable accuracy. Interior eigenvalues take 
considerably longer to obtain reasonable accuracy if at all. To compute approximate 
eigenvectors: Let v be an eigenvector forT (in the Lanczos case) or H (in the Arnoldi 
case). Then an approximate eigenvector for A is given by QT v. Note, however, then 
eigenvalues converge faster than eigenvectors. 

The Lanczos method is more efficient than the Arnoldi method. However, because 
of this it suffers from some numerical instabilities. The reason for both comes down 
to the fact that the Q matrix does not need to be stored for the Lanczos method. As a 
result, the computed Q need not contain even nearly orthonormal rows; nearby rows 
are nearly orthonormal, but widely separated rows of Q are not necessarily nearly 
orthonormal. For the Arnoldi method, however, since Q is stored in its entirety, 
orthogonality of each can be (and is) enforced against all other rows. In the context of 
the Lanczos algorithm, this would be called complete reorthogonalisation, but is not 
usually done because of its expense. The lack of orthonormality of Q's rows results in 
some surprising behaviour: occasional spurious eigenvalues, and repeated eigenvalues 
with multiplicities higher than in A. 
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Spurious eigenvalues can be detected by the Cullum and Willoughby algorithm 
implemented by i ter_lanczos2 (). This routine is based on the algorithm in 
Lanczos and the computation in specified intervals of the spectrum of large, sparse 
real symmetric matrices, in "Sparse Matrix Proceedings 1978" pp. 220-255 (1979). 
This routine produces error estimates for the eigenvalues based on the a, b and beta.2 
values prod~ced from iter_lanczos (). The error estimate of the approximate 
eigenvalue ,\i = eval-:>ve [i] is given by 'Tfi = err_est->ve [i]. If the error 
interval [>,i- 'Tfi, ,\i +rti] contains another interval [:\j -rti, );i +rti], then the eigenvalue 
is spurious. 

Complete reorthogonalisation avoids both spurious eigenvalues and repeated eigen
values. This can be achieved by using i ter_arnoldi () and then extracting just 
the tridiagonal part of H. 

The basic Arnoldi routine i ter_arnoldi ( ) has a slight numerical instability in 
that it uses unmodified Gram-Schmidt orthogonalisation. 

The routine i ter_arnoldi_iref () uses a relatively cheap iterative refinement 
extension which prevents problems with the Gram-Schmidt orthogonalisation. 

For more information about the Lanczos and Arnoldi methods see Golub and Van 
Loan's Matrix Computations, chapter 9, 2nd edition (1989). 

There are versions i ter_sp ••• ( ) which work with matrix data structures. 

EXAMPLE 

To get a good approximation to the smallest eigenvalue of a positive definite 
symmetric matrix A: 

SPMAT *A; 
ITER *ip; 
VEC *a, *b; 
Real dummy; 

ip = iter_get(A->m,A->n); 
iter_Ax(ip,sp_mv_mlt,A); 
ip->k = krylov_dim; 
v_rand(ip->x); 
iter_lanczos(ip,a,b,&dummy,MNULL); 
trieig(a,b,MNULL); /* eigenvalues left in a */ 
printf ("Min. e-val = %g\n", v_min{a)); 

The eigenvalues of A (A represented by a SPMAT data structure) can be approxi
mately computed by 

H = m_get (k, k); 
S = m_get(k,k); 
Q = m_get(A->m,k); 
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Q2 = m_get(k,k); 
evals_re = v_get(k); 
evals_im = v_get(k); 

ip = iter_get(A->m,A->n); 
iter_Ax(ip,sp_mv_mlt,A); 
ip->k = krylov_dim; 
v _rand ( ip- >X) ; 

iter_arnoldi_iref(ip,&dummy,Q,H); 
S = m_copy(H,S); 
schur{S,Q2); 
schur_evals(S,evals_re,evals_im); 

To go on to compute approximate eigenvectors: 

X2_re = m_get(k,k) 
X2_im = m_get(k,k); 
schur_vecs(S,Q2,X2_re,X2_im); 
X_re ~ mv_mlt(Q,X2_re,MNULL); 
X_im = mv_mlt(Q,X2_im,MNULL); 

SEE ALSO 

i ter_get, ... , iter _gmres 

SOURCE FILE: itersym.c iternsym.c 
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Installation and copyright 

7.1 Installation 

There are several different forms in which you might receive Meschach. To provide 
a shorthand for describing collections of files, the Unix convention of putting alterna
tive letters in [ ••• ] will be used. (So, fred[123] means the collection fred1, 
fred2 and fred3.) Meschach is available over Internet/AARnet via netlib, or at 
the anonymous ftp site thrain. anu. edu. au in the directory publmeschach. 
There are five .shar files: meschach[01234] .shar (which contain the library 
itself), of which meschachO . shar contains basic documentation and machine de
pendent files for a number of machines. Of the meschach [1234]. shar files, only 
meschach [ 12] • shar are needed for the basic Meschach library; the third • shar 
file contains the sparse matrix routines, and the the fourth contains the routines for 
complex numbers, vectors and matrices. There is also this README file that you 
should get directly, or extract it from meschachO. shar. 

If you need the old iterative routines, the file oldmeschach. shar contains the 
files conj grad. c, arnoldi. c and lanczos. c. 

To get the library from netlib, 

mail netlib@research.att.com 
send all from clmeschach 

There are a number of othernetlib sites which mirror the main netlib sites. These include 
netlib@ornl.gov (Oak Ridge, TN, USA), netlib@nac.no (Oslo, Norway), 
ftp. cs. uow. edu. au (Wollongong, Australia; ftp only), netlib@nchc. edu. tw 
(Taiwan), elib. zib-berlin.de (Berlin, Germany; ftp only). (For anonymous ftp 
sites the directory containing the Meschach • shar files is pub I net 1 ib I c lmeschach 
or similar, possibly depending on the site~) 

Meschach is available in other forms on thrain. anu. edu. au by ftp in the 
directory publmeschach. It is available as a. tar file (mesch12a. tar for version 
1.2a), or as a collection of • shar files, or as a • zip file. The • tar and • zip versions 
each contain the entire contents of the Meschach library. 

181 
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To extract the files from the • shar files, put them all into a suitable directory and 
use 

sh meschachO.shar 
sh meschach1.shar 
sh meschach2.shar 
sh meschach3.shar 
sh meschach4.shar 
sh meschachS.shar 

to expand the files. (Use one sh command per file; sh *. shar will not work in 
general.) 

For the • tar file, use 

tar xvf mesch12a.tar 

and for the • zip file use 

unzip mesch12a.zip 

(Or use pkunzip mesch12a. zip if you have pkunzip.) 
On a Unix system you can use the configure script to set up the machine

dependent files. The script takes a number of options which are used for installing 
different subsets of the full Meschach. For the basic system, which requires only 
meschach[012] .shar, use 

configure 
make basic 
make clean 

For including sparse operations, which requires meschach [0123]. shar, use 

configure --with-sparse 
make sparse 
make clean 

For including complex operations, which requires meschach [ 0124] . shar, use 

configure --with-complex 
make complex 
make clean 

For including everything, which requires meschach [ 012 3 4] • shar, use 

configure --with-all 
make all 
make clean 

To compile the library in single precision, add the --with-float option to configure 
(with Real equivalent to float); e.g. use 
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eonfigure· --with-all --with~float 
make all· 
make clean 
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Some Unix-like systems may have some problems with this due to bugs or incom
patibilities in,various parts of the system. To check this use make torture and run 
torture. In this case use the machine-dependent files from the ina chines directory. 
(This is the case for RS/6000 machines, the -o switch r.esults in failure of a routine in 
schur ~c. Compiling without the -0 switch results in correct results.) 

If you want to use the GNU gee compiler, use the configgnu configuration 
script. This works just like the configure script, except that it will use gee in 
preference to other compilers. ·· 

If you have problems using configure, or you use a non:-Unix system, check the. 
MACHINES directory (gener~ted by meschachO . shar) for your machine~ operating 
system and/or compiler. Save the machine dependent files makefile, mac:;hine. c 
and machine • h. Copy those files from the directory for your machine to the directory 
where the source code is. 

To link into a program prog. c, compile it using 

cc -o prog_name prog.c ••• (source files) ••. meschach.a -lm 

This code has been mostly developed on the University of Queensla..'ld, Australia's 
Pyramid 9810 running BSD4.3. Initial development was on a Zilog Zeus Z8000 
machine running Zeus, a Unix workalike operating system. Versions have also been 
successfully used on various Unix machines including Sun 3's, mM RT's, SPARe's 
and an ffiM RS/6000 running AIX. It has also been compiled.on an ffiM AT clone 
using Quick C. It has been designed to compile under either Kernighan and Richie, 
(Edition 1) C and under ANSI C. (And, indeed, it has been compiled in both ANSI C 
and non-ANSI C environments.) 

7.1.1 Installation on non-Unix systems 

First look in the machines directory for your system type. If it is there, then copy 
the machine dependent files machine. h, makef i 1 e (and possibly machine . c) to· 
the Meschach direc~ory .. 

If your machine type is not there, then you will need to either compile "by hand", 
or construct your own .makefile and possibly ;machine. h as well. The machine
dependent files for various systems should be used as a starting point, and the "vanilla" 
version of machine • h should be used. Information on the machine-dependent files 
follows in the next three subsections. 

On an ffiM PC clone, the source code would be on a floppy disk. Use 

xcopy a:* meschach 

to copy it to the meschach directory. Then cd meschach, and then compile the · 
source code. Different ·compilers on MSDOS machines will require different· instal
lation procedures. Check the directory meschach \machines for the appropriate · 



184 CHAPTER 7. INSTALLATION AND COPYRIGHT 

"makefile" for your compiler. If your compiler is not listed, then you should try 
compiling it "by hand", modifying the machine-dependent files as necessary. 

7.1.2 makefile 

This is setup by using the configure script on a Unix system, based on the 
makef i le. in file. However, if you want to modify how the library is compiled, you 
are free to change the makefile. 

The most likely change that you would want to make to this file is to change the 
line 

CFLAGS = -0 

to suit your particular compiler. 
The code is intended to be compilable by both ANSI and.non-ANSI compilers. To 

achieve this portability without sacrificing the ANSI function prototypes (which are 
very useful for avoiding problems with passing parameters) there is a token ANSI_C 
which must be #define'd in order to take full advantage of ANSI C. To do this you 
should do all compilations with 

#define ANSI_C 1 

This can also be doneat the compilation stage with a -DANSI_C flag. Again, you will 
have to use the -DANSI_C flag or its equivalent whenever you compile, or insert the 
line 

#define ANSI_C 1 

in machine • h, to make full use of ANSI C with this matrix library. 

7.1.3 machine.h 

Like makefile this is normally set up by the configure script on Unix machines. 
However, for non-Unix systems, or if you need to set some things "by hand", change 
machine.h. 

There are a few quantities in here that should be modified to suit your particular 
compiler. Firstly, the macros MEM_:COPY ( ) and MEM_ZERO ( ) need to be correctly 
defined here. The original library was compiled on BSD systems, and so it originally 
relied on bcopy ( ) and bzero ( ) . 

In machine. h you will find the definitions for using the standard ANSI C library 
routines: 

1*--------------------ANSI C--------------------*1 
#include 
#include 

<stddef.h> 
<stri:ng.h> 

#define MEM_COPY(from,to,size) memmove( (to), (from), (size)) 
#define MEM_ZB,:RO (where, size) memset ((where},' \0', (size).) 
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Delete or comment out the alternative definitions and it should compile correctly. 
The source files containing :m.e:mmove ( ) and/or memset ( ) are available by anony
mous ftp from some ftp sites (try archie to discover them). The files are usu
ally called me:rmnove. c or memset. c. Some ftp sites which currently (Jan '94) 
have a version of these files are munnari. oz. au (in Australia), ftp. uu. net, 
gatekeeper. dec. com (USA), and unix. hens a. ac. uk (in the UK). The di
rectory in which you will find memmove. c and memset . c typically looks like 
•.. /bsd-sources/lib/libc/ ... 

There are two further machine-dependent quantities that should be set. These 
are machine epsilon or the unit roundoff for double precision arithmetic, and the 
maximum value produced by the rand ( ) routine, which is used in rand_ vee ( ) and 
rand_mat (). The current definitions of these are 

#define MACHEPS 2.2e-16 
#define MAX_RAND 2.147483648e9 

The value of MACHEPS should be correct for all IEEE standard double precision 
arithmetic. 

However, ANSIC's <float .h> contains #define'd quantities DBL_EPSILON 

and RAND_MAX, so if you have an ANSI C compiler and headers, replace the above 
two lines of machine • h with 

#include <float.h> 
I* for Real == float */ 
#define MACHEPS DBL_EPSILON 

#define MAX_RAND RAND_MAX 

The default value given for MAX_RAND is 231 , as the Pyramid 9810 and the SPARC 2's 
both have 32 bit words. There is a program macheps. c which is included in your 
source files which computes and prints out the value of MACHEPS for your machine. 

Some other macros control some aspects ofMeschach. One of these is SEGMENTED 

which should be #define'd if you are working with a machine or compiler that 
does not allow large arrays to be allocated. For example, the most common mem
ory models for MS-DOS compilers do not allow more than 64Kbyte to be allocated 
in one block. This limits square matrices to be no more than 90 x 90. Inserting 
#define SEGMENTED 1 into machine. h will mean that matrices are allocated a 
row at a time. 

7 .1.4 machine.c 

The core routines in machine • c as they presently are, are adequate on scalar pro
cessors. However, they are not designed to make best use of the recent super-scalar 
processors, or of vector processors. If you wish to make best use of these features of 
your machine in using the matrix library, then you should re-write these appropriately, 
possibly in assembly language. This has already been done to some extent, using 
"loop-unrolling": 
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sumO = suml = sum2 = sum3 = 0 • 0; 

len4 = len I 4; 
len = len % 4; 

for ( i = 0; i 
{ 

sumO += 
sum.l += 
sum2 += 
sum3 += 

} 

< len4; i++ ) 

dp1[4*i]*dp2[4*i]; 
dp1[4*i+l]*dp2[4*i+l]; 
dp1[4*i+2]*dp2[4*i+2]; 
dp1[4*i+3]*dp2[4*i+3]; 

sum = sumO + suml + sum2 + sum3; 
dpl += 4*len4; dp2 += 4*len4; 

for ( i :b· .••. 0; i < len; i++ 
sum+= dpl[i]*dp2[i]; 

Itmayseemoddtousedpl [i] *dp2 [i] instead'(*dpl++) * (*dp2++) inthequest 
for speed, but optimising compilers cannot be trusted to do what you intend. The ex
pression dpl [ i] *dp2 [ i] was recognised for what it is, but ( *dpl++) * ( *dp2++) 
was not, by the RS/6000 optimising compiler. This may be a matter of taste by the 
compiler writers, so check it out on your own system before making any terminal 
decisions about what is fastest on your machine. 

Also note that the _zero_ ( ) routine is defined from machine. c. This uses 
the MEM_ZERO ( ) macro in ma.chine. h in the standard release. However, if the 
double precision zero is not represented by a bitstring of zeros, the body of this routine 
would need to be replaced by 

for ( i = 0; i < len; i++ 
dp [i] = 0. 0; 

These are the only routines that need be modified, as essentially all other routines 
rely on these routines and on the MEM_COPY () macro, to provide adequate speed. 

Such a re-writing effort may be worthwhile on, say, the i860 processor, where the 
speed of computing inner products in assembly (using special pipeline instructions) 
is an order of magnitude faster than general arithmetic operations. (See "Personal 
supercomputing: with the Intel i860" by Stephen S. Fried, Byte, 16, no. 1, Jan 1991, 
pp. 347-358 for an indication of possible performance;) Better use of the IBM RS/6000 
super-scalar architecture has been obtained by re-writing some of the r.outines in 
machine. c. The speed of the core inner product routine on a 20MHz RS/6000 320 
went from near the LINPACK mting of 7Mflops to about 20Mftops, half the theoretical 
peak speed of 40Mflops for a multiply and add each clock cycle. 
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7.2 Backward compatibility 

As with any piece of software that is being modified, there is the problem of being able 
to use programs written for older versions of the library. This is especially important 
with Meschach 1.2 as the naming scheme has been made much more uniform and 
self-consistent. Names such as get_vec () (allocate vector) and cp_vec () (copy 
vector) have been changed to v _get () and v _copy () to be more consistent with 
v _add ( ) (add vectors) and m_ml t ( ) (multiply matrices). 

The cost of this consistency is inconsistency with programs written for the older 
versions of Meschach. To deal with this, there is included in Meschach 1.2 a "compat
ibility" header file oldnames . h. Add the line 

#include "oldnames.h" 

at the beginning of files using pre-version 1.2 names. This header file consists of a 
collection of #define's such as 

#define get_vec 
#define freevec 
#define cp_vec 

v_get 
V_FREE 
v_copy 

The old iterative routines are still included in release 1.2a of Meschach (pccg (), 
sp_pccg (), cgs (), sp_cgs (), lsqr (), sp_lsqr (), lanczos (), 
sp_lanczos (), lanczos2 (), sp_lanczos2 (), arnoldi () and 
sp_arnoldi ( ) ). However, because of the new data structure for iterative methods, 
these are being phased out and can be replaced by the newer routines iter_cg (), 
iter_spcg () etc. The old iterative routines will not be supported in future. 

7.3 Copyright 

The copyright provisions for Meschach are intended to follow the lead of the Free 
Software Foundation in ensuring that the rights of people using and modifying the 
library cannot take away rights from others, while still enabling commercial use of the 
library. In that sense Meschach is not entirely "in the public domain". Notice that 
there is no intention to restrict the possible uses to which Meschach and parts of it 
are put, or to impede the work of programmers. The intent is only to make sure that 
users of any derivatives or modified versions of Meschach can still obtain access to the 
original code, and also to protect the reputations of ourselves and other programmers 
who modify or use Meschach. 

Copyright subsists on the documentation and on the matrix library and source code 
for same and is held by David Edward Stewart and Zbigniew Leyk. It may be used 
free of charge provided the following rules are followed: 

For legal purposes, in this section "the matrix library" shall refer to the "Meschach 
matrix library" as copyrighted by David Edward Stewart and Zbigniew Leyk. 
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1. Anyone to whom software is sold containing part or all of the matrix library in 
any form, whether modified or not, must have the matrix library source code 
made available to them in machine readable form at nominal cost. 

-2. Anyone distributing the library must ensure that copyright notices "Copyright (C) 
David E. Stewart and Zbigniew Leyk, 1986-1993" are published prominently 
along with the distribution in whatever farm. . 

3. Anyone making changes to the libra.rY must prominently display this fact on any 
documentation relating to any use of the library (whether the use involves source 
or comphed'code ). Also, any such modification must be reflected in the routine 
m_ version (), which prints out the current list of modifications to stdout. 

4. Any code sold in object code form must include m_ version () so that if the 
user so desires, he/she can determine what modifications and/or extensions to 
the original library have been made and who by. 

Item (4) is deemed to be satisfied if there is a "version" command which executes the 
m_ version () routine. 

Finally, there is the usual statement about legal rights if something goes wrong 
in using the software. Trying to frame conditions under which Meschach can be 
guaranteed to work is unlikely to be a rewarding task for anyone to undertake, especially 
with the wide range of software and hardware systems it could work under. This is 
further complicated by the usual problems of numerical analysis where "proof of 
correctness" is not a realistic possibility and round-off errors are always present. 
Finally, due to the non-c9mmercial nature of Meschach, there is unlikely to be any 
value to persons attempting to sue me forfailure of the library in any situation. 

Meschach IS PROVIDED ''AS IS", WITHOUT ANY EXPRESS OR IM
PLIED WARRANTY. IN PARTICULAR, THE AUTHOR DOES NOT MAKE 
ANY REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING. 
THE MERCHANTABILITY OF TillS SOFTWARE OR ITS FITNESS FOR 
ANY PARTICULAR PURPOSE. 
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Designing numerical libraries in C 

The purpose of this chapter is to have a bit of a look "under the hood" to see how 
a library of routines inC can (and we believe, should) be built up. The philosophy 
here is to make use of the features of C to make programs more flexible and easier to 
write (and debug), while not sacrificing too much efficiency. There are other ways of 
designing numerical libraries, but this has been found to be a useful and flexible way 
ofdesigning numerical libraries in C. 

8.1 Numerical programming in C 

Numerical and scientific programming has been traditionally associated with Fortran. 
Indeed, a great deal of software has been written in Fortran, in spite of its well known 
defects (lack of good data structures, lack of strong typing, reliance on "GOTO", poor 
lexical characteristics, clumsy input/output). This has led to the "historical" defense 
of Fortran: "There is so much already written in Fortran that we have to program in 
Fortran." 

However, more sophisticated algorithms need more sophisticated data structures 
and more structured programs. Sparse matrix data structures and operations on them 
are one example of this. C is one of a number of languages that easily support such 
structuring. As well, C is a very flexible language, especially as regards memory 
management. While it is often argued that C is "merely a systems programming 
language", several aspects of C seem to indicate otherwise. For example, C has both 
single and double precision. Sometimes the argument is made that C is not suitable for 
numerical programming because single precision numbers are automatically converted 
to double precision whenever they are passed as arguments or used in expressions. This 
is no longer true in ANSI C. Even with the older C convention, the main drawbacks are 
the time spent converting between double and single precision numbers. Operations 
done entirely in double precision are immune to this inefficiency. It is, in any case, 
a better state of affairs than not having double or extended precision numbers as is 
the case with Pascal or the original version of Modula-2. Also, the standard Unix™ 
mathematics library has not only the standard functions ( exp, log, and the trigonometric 
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functions), but also Bessel functions, the r function and the error function. Admittedly, 
C does not have complex numbers, but this is a standard extension to C++. 

8.1.1 On efficient compilers 

The comment is sometimes made that Fortran must be more efficient than C. This is 
based on the fact that pre-Fortran 90 Fortrans are simpler languages, and that C has a 
rather more permissive structure. ,However, with modern compilers the difference in 
performance is usually fairly small, and is often non-existent. One of the reasons for 
this is that on many new machines compilers for different languages share common 
code-generation and optimisation parts. Indeed, the first NAG Fortran 90 compiler is 
actually a pre-processor that converts Fortran 90 into C- this is a sensible strategy 
because of the high quality and wide availability of many C compilers. The point 
that should be made is that efficiency is often a question of how much effort goes into 
developing the compilers. In the late 1970's the MACLISP compiler developed at MIT 
could produce machine code for compiled Lisp that rivalled Fortran in efficiency for 
numerical operations. 

There are some inefficiencies that can be introduced in writing C code that would 
not appear in writing Fortran. But this is due to using a different style of programming. 
For example, overusing dynamic memory allocation can result in a great deal of 
overhead. (Beginners to programming in C can easily fall into a trap of writing code 
that spends most of its time allocating and deallocating temporary objects.) However, 
with a little care, this overhead can be kept to a negligible level while providing far 
more flexibility than is possible in Fortran 77. 

8.1.2 Strategies for using C 

The aspects of C that numerical programmers should make use of include 

1. the ability to create self-contained data structures representing meaningful math
ematical objects. 

2. dynamic memory allocation and de-allocation of data structures and arrays, 
which often avoids the need for workspace arrays. 

3. error and exception handling using setjmp () and longjmp (). 

4. flexible input and output so that self-contained data structures can be read in and 
printed out. 

5. use of pointers to represent user-defined objects whose characteristics are not 
known at compile time. 

Self-contained data structures not only simplify argument lists, but can also be 
used for internal consistency checks to catch illegal operations. They should also make 
programs easier to understand in that they correspond closer to mathematical objects, 
and avoid the need to a plethora of additional length arguments and variables. By 
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using functions to perform most of the needed operations on these data structures, the 
chances of misusing the data structures can be greatly reduced. 

Dynamic memory allocation and de-allocation not only avoids workspace arrays, 
but also avoids the need for the strategy of declaring the largest conceivable array sizes 
in local arrays. With this, memory can be used far more effectively. 

A common error/exception handling mechanism means that the usual testing of 
"IFLAG" arguments can be avoided as well. A suitably structured mechanism can be 
used to provide a safe way of giving control back to the user if an error occurs. The users 
need to state what error they wish to "catch" and the code in which they wish to "catch" 
it; if an error occurs executing the code, control passes to the "catch" mechanism which 
can pass control back to the user's own code for handling the errors. Done properly, it 
can also provide a partial "backtrace" of the state of the active functions at the time of 
the error. 

Input and output are, of course, very important. After all, a program without output 
is useless. More than this, by structuring input and output, output can be reused as 
input. Consider how often have you had to edit data just so that your program can use 
it as input? 

Another aspect of structuring input is that comments can be incorporated into the 
input. Data, by itself, rarely means much. Including comments makes it much more 
intelligible to mere mortals. The flexibility of C's input and output has been used to 
do this. 

User-defined objects (of any sort) can be handled by a combination of functions 
and pointers. Pointers to functions can be arguments to functions, and components 
of arrays or other data structures. This means that essentially arbitrary user-defined 
data structures can be used by code without knowing any of their characteristics at 
compile time. This style of programming has some of the flavour of object-oriented 
programming. 

Meschach in various places makes use of all these aspects of C. We hope that you 
find this way of programming effective and efficient, not only in terms of CPU time, 
but your own (programming and debugging) time as well. 

8.1.3 NonmC programmers start here! 

Before going past this point, you really should read a book on C and programming in 
C. However, as there are undoubtedly non-C programmers who will want to follow 
the discussion in this chapter, here are some very brief notes which should help you 
understand the examples. 

C programs consist of collections of functions, one of which is the main program 
(called "main () "). Routines consist of a header followed by a sequence of state
ments (the body of the routine) inside braces ( { ••. } ). Statements are either simple 
statements, which must end with a semi-colon(;), or compound statements, which is 
a collection of simple or compound statements bracketed by braces. The braces work 
very much like Algol, Pascal and Ada begin ... end pairs. Comments inC have the 
form/* • • • * /. 
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Before a C program is compiled, it is passed through a pre-processor. Pre-processor 
directives must have a # as the first character on that line. The pre-processor can be 
used to define macros, to include files, and to delete code according to whether macros 
are defined. Standard header files are almost always included in C programs. Here is 
an example: 

#include <stdio.h> /* standard input/output header file */ 
#include "mydefs.h" /* uses file from current directory */ 
/* examples of macro definitions */ 
#define max(a,b) ((a) > (b). ? (a) : (b)) 
#define DEBUG TRUE 

The basic data types in C include int ("integer"), double ("double precision 
floating point") and char ("character"). A declaration has the name of the data type 
before a list of variables, as in 

int 
double 

i, j, idx; 

alpha; 

A pointer to a particular data type is declared by putting a * before the variable which 
is to be a pointer. For example, after the declarations 

double d, *pd, **ppd; 

d is a double, pd is a pointer to double, and ppd is a pointer to a pointer to 
double. 

Consistent with this, accessing the value pointed to by a pointer is simply a matter 
of putting a * before the variable. For example, the value pointed to by pd is -*pd. 

The reverse operation of finding a pointer that points to a variable is done by putting 
& before the variable; e.g. pd.= &d; now makes pd point to the variable d. 

Arrays are declared using square brackets such as 

double x[10]; 

This declares x to be an array with 10 entries. However, the starting index is zero, not 
one. So the valid entries of x are x [ 0] , x [ 1] , ... , x [ 9] . This is called zero-relative 
inde~ing. This may appear unusual at first, but is no barrier in practice. 

Arrays and pointers are very similar; when arrays are passed to subroutines, only 
a pointer is passed, and pointers can be used like arrays. For example, pd [ 0 l is 
equivalent to *pd; pd [ 1] is the double precision number next to *pd. This is called 
pointer arithmetic and can be easily abused. There are two important differences 
between arrays and pointers: (1) pointers are not necessarily associated with any 
usable piece of memory, while arrays are, and (2) array names cannot be assigned, but 
pointers can. So pd = x; is legal, but x = pd; is not. 

Data structures containing (possibly) different kinds of objects are declared using 
struct. For example, complex numbers can be declared as 

typedef struct cmplx { double real, imag; } complex; 
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(Here we have used typedef in order not to use the longer name struct cmplx.) 
Complex numbers can then be declared by 

complex zl, z2; 

Structures can be imbedded in structures, and recursive structures (such as linked lists) 
can be declared using pointers to that structure. For example, here is a linked list 
structure: 

struct list { int contents; struct list *next; }; 

The components of a data structure can be obtained by using " • ". The real part 
of zl is zl. real. If pz is a pointer to a complex number, then the real part of 
the complex _number pointed to is ( *pz) • real, which has the equivalent shorthand 
form: pz->real. 

The control structures inC are familiar to most programmers- if-then-else, while, 
do-while (cf Pascal's repeat-until) and for loops. These have a straightforward syntax 
except for the for loop construct. Before these constructs are described, it should be 
noted that C has no Boolean or logical data type. Instead, zero or NULL is regarded as 
"False", while non-zero and non-NULL values are regarded as "True". The results of 
logical and relational operations are always integers int, with 1 representing "True". 
The comparison operators are equality test ( == ), inequality test (! = ), and the usual 
numerical comparison operators ( <, >, <=, >=). Logical operators include "logical 
and"(&&), "logical or" (I I), and "logical not" (! ). (There are also bitwise and, or, not 
and exclusive or operators.) Expressions involving && and I I are evaluated left-to
right and evaluation is "short-circuited" so that latter expressions are not evaluated if 
not needed. This is very useful to avoid performing invalid operations. For example, 

ok = ( i < array_length ) && item_ok[i]; 

does not evaluate i tem_ok [ i] if i >= array _length. 
If statements have an optional else part and can be strung together. 

if ( conditionl ) 
statementl; 

else if ( condition2 
{ statement2; statement3; } 

While loops have the form "while ( condition ) statement;" or ''while 
( condition ) {... }". Thedo-whilevarianthastheform "do statement; 
while ( condition ) ; "or"do { • • • } while ( condition ) ; ". The 
for loop in C is the most flexible and has the form 

for ( initialisation; test; update 
statement; 

where "statement;" can be replaced by a compound statment. This is equivalent 
to a while loop: 
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initialisation; 
while ( test ) 
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{ statement; update; } 

The for loop is most commonly used in a standard idiom: 

for ( i = 0; i < array_length; i++ ) 
• • • • • • array [ i] ..... . 

The expression i + + returns the value of i and then increments the value of i by one. 
(Here, of course, the value of the expression is ignored.) This is the post-increment 
operation; i-- is the post-decrement operation. Preceding the variable with++ or-
pre-increments and pre-decrements the value of that variable. Other updates commonly 
used include incrementing the index by a different stride: i = i+stride, or with 
the shorthand i += stride. 

Inside all loop constructs in C you can put break and continue statements. 
The break statement causes the loop to exit immediately; the continue statement 
causes control to be passed to just before the end of the loop. 

All routines in C are functions. They might have side--effects and they might return 
void (so that the returned value is unusable), but they are functions. It is not necessary 
to do anything with the returned value, whether or not it has type void. Also, all 
function arguments are passed by value rather than by reference. Thus if you wish a 
function to set the value of a variable, you need to pass a pointer to that variable. For 
example, an integer swap routine would be called like this: 

int i, j; 

swap(&i,&j); 

If the type of the returned value from a function is not int (i.e. the standard integer 
type) then it should be declared before use. For example, a routine to add complex 
numbers together might be declared before use as 

complex cadd(); /* adds two complex numbers */ 

If this is preceded by extern it means that the function is defined in another file. 
In ANSI C argument types can also be checked if you declare your functions using 
function prototypes such as 

complex cadd(complex, complex); /*or*/ 
complex cadd(complex zl, complex z2); 

Ther are two styles for defining a function: the old way, and ANSI C. Here is the 
old way: 

complex cadd(zl, z2) 
complex zl, z2; 
{ complex z; 

z.real = zl.real + z2.real; 
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z.imag = zl.imag + z2.imag; 
return z; /* z is the returned value of cadd() */ 

} 

And here is the ANSI C way: 

complex cadd(complex zl, complex z2) 
{ complex z; 

} 

z.real = zl.real + z2.real; 
z.imag = zl.imag + z2.imag; 
return z; /* z is the returned value of cadd() */ 
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Functions can be passed as parameters, but what is actually passed is a pointer 
to a function. A pointer to a function can be used as other pointers can: arrays of 
pointers to functions are legal, as are structures containing pointers to functions. Here 
is declaration of a pointer to a function returning a double: 

double (*f)(); 

Or using ANSI C, the types of the argument( s) can be included: 

double (*f) (double); 

Then assigning f ·· = exp; is perfectly valid. 

8.2 The data structures 

C allows for extensive use of data structures. The struct and typedef facilities 
provide means whereby heterogeneous structures and primitive types can be combined 
and used together. As such they provide a static way of describing the data structure; 
they define the way things are stored. Equally important to the way things are stored, 
is the question of how such information is used. This is the dynamic part of the data 
structure. While Cis not really set up to deal with complete formal descriptions of both 
the static and dynamic aspects of a data structures in the way object-oriented languages 
(such as SmallTalk and C++) are, we can go part way by providing functions that do 
at least the basic operations on the data structures. 

8.2.1 Pointers to struct's 

One approach that we have taken throughout the library is to pass only pointers to the 
actual struct's. Passing the actual struct's is useful for relatively small objects, 
but we believe it is inappropriate to do this for large objects and for objects which 
contain pointers to allocated memory. For example, complex numbers 

typedef struct { double real, imaginary; } complex; 
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should be passed as single entities, while vectors 

typedef struct { int dim, .•. ; double *ve; } VEC; 

should not. 
Why should this distinction be made? 

1. Passing large structures is less efficient. 

2. Copying the struct itself will only copy the pointers in the struct, not what 
those pointers are pointing to. 

The second item notes that only a shallow copy is made by an assignment of a struct. 
For example, the following code does not do a true copy (at least it is usually not what 
the writer intends). Do not do this! 

VEC x, y; 

y = x; /* this is an error in pre-ANSI C *I 
y. ve [ 1] = 3 • 0 ; 
I* now x.ve[l] is also 3.0 *I 

Pointers can be copied, but here it is clear that its effect is not a deep copy. 

VEC *x, *y; 

y = x; /* y and x now point to the same place *I 
y->ve[l] = 3.0; 

/* now x->ve[l] is 3.0 */ 

It is only with C++ that assignment can be forced to result in a deep, rather than a 
shallow, copy. 

8.2.2 Really basic operations 

Some operations are so basic that it is absolutely vital that they are implemented first. 
They are (in order): 

1. Allocation and initialisation. 

2. Output 

3. De-allocation. 

4. Copying. 

You might find it strange that output routines appear so soon. However, one thing is 
sure about developing data structures: you will want to debug them. 

Writing allocation and initialisation routines is not difficult, but you should use the 
discipline that all returned values from malloc (), calloc () and realloc () are 
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checked. Also, check that the parameters passed make sense. If something goes wrong 
at this level it is unlikely that you can do much sensible. Passing control to an error 
handler, such as the error ( ) macro does, is probably the most sensible thing to do 
here. Here is a hypothetical struct and the code to do (some) of the allocation and 
initialisation: 

In the file foo. h we define the data structure and the new type foo: 

typedef struct { int size; ..• double *array; } foo; 

In the file foo. c the basic operations are defined: 

#include "foo.h" 

foo *get_foo(size) 
int size; 
{ 

} 

foo *my_foo; 

if ( size <= 0 ) 
error(E_BOUNDS,"get_foo"); 

I* get foo struct first */ 
my_foo = (foo *)calloc(l,sizeof(foo)); 
if ( my_foo = (foo *)NULL ) 

error(E_MEM,"get_foo"); 
/* now set up pointers */ 

my_foo->array = (double *)calloc(size,sizeof(double)); 
if { my_foo->array = (double *)NULL ) 

error(E_MEM,"get_foo"); 
my_foo->size = size; /* now it is safe to set the size */ 

return my_foo; 

The function call calloc (num_elts, size_elts) allocates a block of memory 
for num_elts blocks of size size_elts characters. What is returned is a pointer 
to the allocated memory. If calloc () returns a NULL pointer, then this indicates 
that there is insufficient memory. The returned value of calloc (), malloc () 
and realloc () should always be checked before use. If an error occurs, then the 
error ( ) macro is called, which raises an error at this point, and no further code in 
this function is executed. 

TheMeschach macros NEW(type) andNEW_A(num, type) inmatrix.h sim
plify writing this sort of code: 

if ( (my_foo = NEW(foo)) -- (foo *)NULL ) 
error(E_MEM,"get_foo"); 
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if ( (my_foo->array = NEW_A(size,double)) -- (double *)NULL ) 
error(E_MEM,"get_foo"}; 

De-allocation should be done using the function free ()in the reverse order: 

void free_foo(my_foo) 
foo *my_foo; 
{ 

} 

if ( my_foo -- (foo *)NULL ) 
return; 

if ( my_foo->array != (double *)NULL 
free(my_foo->array); 

free (my_foo); 

There is not much more error checking that can be done at this stage. Checking that 
memory heaps are not corrupted can only be part of the design of the memory allocator, 
not the data structure or its routines. 

Notethatonlypointers to memory that has been allocated by calloc (), malloc () 
or realloc () can be de-allocated using free (), and this can only be done once. 
Common errors are to try freeing memory more than once. 

8.2.3 Output 

Output should be structured but human readable. Usually we will want to be able to 
read the output back in later, so we should try to make the output reasonably machine
readable as well. (Writing input routines is usually much harder and more complex.) 
Hence the output should contain fore-warnings about what is coming, and how big it is 
before we get to it. It should also be possible to direct the output to any fileor stream 
that we choose. 

In the foo example, 

void fout_foo(fp,:my_foo) 
FILE *fp; 
foo *my_foo; 
{ 

int i; 

fprintf{fp,"Foo: "); 
if ( my_foo == (foo *)NULL 
{ 

} 

fprintf(fp,"NULL\n"); 
return; 
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} 

fprintf(fp,"size: %d\n",my_foo->size); 

fprintf (fp, "array: "); 
for ( i = 0; i < my_foo->size; i++ 
{ /* no more than 6 items on a line */ 

} 

if ( (i % 6) == 5 I I i == my_foo->size - 1 ) 
fprintf(fp,"%g\n",my_foo->array[i]); 

else 
fprintf (fp, "%g ",my_foo->.array[i]); 
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(Actually, returning my _foo at the end would be useful behaviour, although we haven't 
done this in Meschach.) 

Note that care is taken to treat the NULL case separately so that this will not result 
in failure; instead the message "Foo: NULL" is printed. For a proper allocated and 
initialised the output might look something like this: 

Foo: size: 10 

array: -3.7 2.5 3.141592 2.2 -1 
1.5345 101 25.2321 -3.2 2.5 

Writing an input routine to read this in is simplified because it can see how big 
to make the array before it has to read any of it in. Writing a routine to output 
every bit of the foo structure (even though most users won't want it) is often useful 
for debugging purposes. This can be done by writing an additional foo_dump () 
function. 

8.2.4 Copying 

The purpose of these routines is to provide a deep copy which copies all the component 
parts as well as the struct itself. There are two styles of doing this; one is to return 
a completely new struct, created and initialised, and the other is to copy the data 
structure into an already allocated and initialised one. One way to do both in one 
routine is to check the target structure pointer; if it is NULL then a new target structure 
should be created: 

foo *cp_foo(from,to) 
foo *from, *to; 
{ 

int i; 

if ( from == (foo *)NULL ) 
error(E_NULL,"cp_foo"); 

if ( to == (foo *)NULL ) 
I* can't copy NULLs */ 
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} 

to= get_foo(from->size); /*create a new foo */ 
else if ( to->size < from->size ) 

/* make sure target is big enough */ 
to= foo_resize(to,from->size}; 

I* now do copying */ 

for ( i = 0; i < from->size; i++ 

to->array[i] = from->array[i]; 

The results of using cp_foo () can be used without checking as when a failure occurs, 
there is a call of the error ( ) macro which invokes the error handling code. Once 
the checking is done, the actual copying can proceed as a straightforward loop. The 
efficiency of copying routines can be improved by using specialised copying routines 
such as bcopy () for BSD, or memmove () for ANSI C. 

8.2.5 Input 

Although this is not one of the "really basic" routines, they are useful and even 
important. Also, they are also trickier than output routines to write well. 

It has been observed that in many software systems that the overall complexity of 
the code is usually dominated by the user interface. Writing a numerical library avoids 
a lot of that, and getting other programs/libraries to do your input/output is often a good 
idea. (Writing routines to output matrices in MATLAB save/load format means that 
you can use MATLAB to produce three-dimensional plots of "matrices".) However, 
writing input routines often cannot be avoided, and can also be useful for debugging 
purposes. 

The input and output that is used by Meschach is all character-based. Fancy 
window-based input/output could also be done, but there the problem is more about 
standards and the many different ways of graphically displaying and inputting matrices 
and vectors. 

There are two styles of input in Meschach. Interactive (from a "tty" in Unix jargon), 
or "batch" from a file or other input stream. Interactive input has fewer design rules 
than batch input, but still can be challenging to write well. (A fully featured input 
routine would really be an editor.) The basic design rules for batch input are: 

1. The format produced by the output routine can be input. 

2. Comments which begin with a "#" and continue to the end of the line are ignored. 

Writing interactive input has a number of traps. For example, the following code 
looks fairly respectable: 

int size = -1; 
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do { 
printf ("Input size: ") ; 

} while ( fscanf ( fp, "%d", &size) ! = 1 I I size <= 0 ) 

The idea here is that the loop is with the prompt Input size: is redisplayed until 
size is correctly scanned as input, and is positive. Note that the call to scanf () 
must take place before the test size <= 0 is evaluated. The variable fp is the .file 
pointer which indicates from which file f scanf ( fp, ... ) reads data. The function 
f scanf ( ) ignores leading and trailing blanks, so inserting leading or trailing blanks 
does not affect the code. 

However, what happens if you input the letter "x"? The f scanf ( ) routine would 
read the letter, realise that it cannot be part of a number, and put it back on the input 
stream. The result the loop is an infinite loop giving the user no chance to take control 
as nothing beyond the "x" is read. 

The way to avoid this is to use line-by-line input by means of fgets (). Also 
output to stderr instead of stdout means that output file re-direction does not 
prevent interactive input. Here is a better approach. 

int size; 

do { 
fprintf (stderr, "Input size: "); 
if ( fgets(line,MAXLINE,fp) == (char *)NULL ) 

error(E_INPUT,"in_foo"); 

} while ( sscanf(line, "%d", &size) != 1 II size < 0 ); 

The idea here is to input a line into a character array, and then scan the character array. 
Since every failure results in a new line being read, it cannot get stuck. Failure to read 
a line from the file results in an error being raised so end-of-file situations are caught. 

When interactively inputting arrays, it is a good idea to let the user (at the keyboard) 
know where you are in the array at all times. If the user makes a mistake, then re
display the prompt including the current position. Allowing the user to go back to 
correct mistakes, and then go forward again, helps to prevent the user from becoming 
too frustrated at the system. And what could be more frustrating than having hit the 
return key just after you realise that you made a mistake near the end of a large matrix 
with over a hundred entries? Here is how the code for inputting the entries of a vector 
allows for forward and backward motion, and printing out old values where necessary. 

for ( i = 0; i < dim; i++ ) 
do { 

redo: 
fprintf(stderr,"entry %u: ",i); 
if ( ! dynamic ) 

fprintf(stderr,"old %14.9g new: ",vec->ve[i]); 
if ( fgets(line,MAXLINE,fp) == NULL 
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error(E_INPUT,"ifin_vec"); 
if (*line -- 'b' II *line -- I B I) && i > 0 ) 

{ i--; dynamic = FALSE; go to redo; } 

if (*line -- 'f, II *line -- IF') && i < dim-1 ) 

{ i++; dynamic = FALSE; go to redo; } 

} while ( *line -- '\0' II 
sscanf(line, "%lf", &vec->ve[i]) < 1 ); 

By the way, there is only one other place (outside the input routines) where a goto is 
used. Note also that an end-of-file signal will result in an error being raised. 

The batch input parts of input routines are relatively easy to write. Comments can 
be skipped over by using skipj unk ( fp) ; and if an error in the input occurs, then 
an error should be raised. There is no need to try to re-read the input stream. The 
error handler may try to skip the input until some marker is reached, but this is up to 
the programmer. Apart from that, all that is necessary is to have enough f scanf ( ) 
calls to skip over the markers that are printed by the output routine. For example, 
fscanf(fp, "Foo: "); will skip over the header produced by the fout_foo() 
routine above. Ignoring the return value of f scanf ( ) for this purpose is acceptable 
- the result is a less temperamental input routine. 

8.2.6 Resizing 

Resizing objects is an operation that cannot be done to all data structures, such as those 
involving hairy user-defined objects and functional arguments. However, allocated 
arrays can be resized by means of the standard library function realloc ( ) . There is 
a macro RENEW(var, num, type) in matrix.h which calls realloc (),and 
also handles NULL values of var. For example, resizing a foo data structure could 
be done something like this: 

foo *foo_resize(my_foo, new_size) 
foo *my_foo; 
int new_size; 
{ 

} 

double *temp; 
if ( my_foo == (foo *)NULL ) 

return get_foo(new_size); 
temp = my_foo->array; 
/* actual re-sizing operation: */ 
temp= RENEW(temp, new_size, double); 
if ( temp == (double *)NULL ) /* check for failure */ 

error(E_MEM,"foo_resize"); 
my_foo->array = temp; 
my_foo->size = new_size; 
return my_foo; 
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Note that the result of RENEW () is checked immediately. Also, resetting the size is 
the last thing that is done. 

8.3 How to implement routines 

The basic rule that should be used is that the more operations that a user wants to use that 
are provided by the designer of the library, the less the user has to do and the less likely 
it will be that the user will make mistakes. Finding a good set of kernel operations for 
a particular data structure is a crucial problem in good library design. Sometimes, not 
only the obvious operations should be supplied, but also "support" operations should 
be implemented. (An example of the need for this can be seen with sparse matrices 
where there are support routines for setting up the column access paths.) The more 
complex the data structure, the more support routines you will probably need to write 
to be able to effectively and efficiently use that data structure. Efficiency will often 
lead to additional routines. For example, even though there are routines for adding 
vectors v _add ( ) , and for computing scalar multiples of vectors sv _ml t ( ) , it is 
more efficient to use the "multiply and add" routine v _ml tadd ( ) than to use the add 
and scalar multiply routines separately. 

8.3.1 Design for debugging 

Arguments should be checked for consistency, except possibly at the lowest level(s) 
of the library. At the lowest levels it may not be worth doing the checking and losing 
efficiency. But at almost all other levels which deal with more time-consuming and 
complex operations, it is well worth checking the arguments. You probably should 
check at least that 

1. none of the input arguments are NULL. 

2. the sizes of the arguments are compatible. 

For example, in a function foo_bar (), the following checking should be done: 

foo *foo_bar(my_fool, my_foo2, result_foo) 
foo *my_fool, *my_foo2, *result_foo; 
{ 

} 

/* check that operands are not NULL */ 
if ( my_fool == (foo *)NULL I I my_foo2 == (foo *)NULL ) 

error(E_NULL,"foo_bar"); 
/* check that they have compatible sizes */ 
if ( my_fool->size != my_foo2->size ) 

error(E_SIZES,"foo_bar"); 
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Detailed checking for self-consistency of a data structure is not usually necessary; if 
the programmer using the library is using it properly, then they shouldn't have much 
opportunity to mess up the data structure. Of course, the library_ shouldn't mess up 
the data structure either. If debugging using a good and thorough output routine is not 
sufficient to debug the library, then maybe a function that checks internal consistency 
should be written. However, the checking function would probably be most effective 
when used to help to debug the library than as an automatic argument check. 

An example of detailed argument checking that is not worthwhile is checking that 
a matrix is symmetric before a Cholesky factorisation. If detailed checking of this kind 
is wanted, then a checking routine would be written, such as a currently non-existent 
chk_symm { } function. 

There are a number of macros that have been written for error handling which 
work in conjunction with the function ev _err {} (short for "evaluation error") in the 
file err. c. The first is clearly the error { } macro, which calls ev _err { } with 
the _FILE_ and _LINE_ macros so that the file and line number where the 
error was raised can be printed out. The file err. c and the error-handling macros in 
matrix. h are independent of the rest of the library, and can be used separately. 

A tool that is useful for debugging is to use 

tracecatch{code_to_execute,"function"}; 

The effect of this macro is that if code_ to_ execute raises an error, then once the 
error is processed (which usually means printing out an error message) the error is 
re-raised at the place of the tracecatch {}. If the body of each function (excluding 
the usual initial argument checks) is enclosed in a tracecatch{}, then what is 
effectively a stack backtrace would be printed when an error occurs, indicating what 
functions were active when the error occurred. 

A related macro is catchall {code_to_execute, error_code}. This 
macro executes code_to_execute noonally, but if this raises an error, then 
error_code is executed. This can be used to print out particular infoonation that 
might be the cause (or result) of the error. You can put a line containing 

error{_err_num,"catchall"}; 

at the end of error_ code tore-raise the error, and continue the stack backtrace if 
desired. 

For more infoonation about designing for debugging, see §8.6 on debugging. 

8.3.2 Workspace 

In most Fortran libraries, routines using extra memory require workspac~ arguments 
to be passed to the routine. The programmer using the library l).as to pass a workspace 
array of a particular size (which the user has to work out before-hand). With C's 
memory allocation/de-allocation facilities this is not necessary in C, though sometimes 
it might be useful. 
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Passing workspace arrays adds to the complexity of using a function, aud is usually 
a headache for the user. Getting the workspace size right is also a way in which errors 
can occur. 

To avoid having to pass workspace arrays, there are two main approaches to making 
the necessary workspace available. The first is to allocate the workspace on entry (as 
soon as its size can be worked out) and deallocated on exiting the function. The second 
is to have a static local array which is first allocated and then reallocated. 

The first approach keeps the memory available only for as long as is necessary. 
This is more efficient in memory, but less efficient in time as the workspace has to be 
reallocated every time the routine is called. The second approach keeps the workspace 
memory, and so is less memory efficient, but is more time efficient. In one sense, 
the two methods are two extremes of a range of "compromises" between memory 
efficiency and time efficiency. 

Here's one way of setting up the second sort of internal workspace: 

foo *foo_bar( ••• ) 
{ 

} 

static double *wkspace = NULL; 
static int wksize = 0; 

new_wksize = 

if ( wkspace == (double *)NULL ) 
wkspace = (double *)calloc(new_wksize,sizeof(double)); 

else if ( wksize < new_wksize ) 
wkspace = (double *)realloc(wkspace, 

new_wksize,sizeof(double)); 
/* check results of calloc() or realloc() before use! */ 
if ( wkspace == (double *)NULL ) 

error(E_MEM,"foo_bar"); 
wksize = new_wksize; 

(Note that the initialisation ofwkspace and wksize are unnecessary as un-initialised 
static variables are initialised to zero or NULL.) This sort of approach is even more 
convenient with self-contained data structures which can be resized as needed, such as 
the vectors in the Meschach library: 

foo *foo_bar( ••• ) 
{ 

static VEC *wkspace = VNULL; 

new_wksize = ; 
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wkspace = v_resize(wkspace,new_wksize); 

} 

Both of these approaches for workspace have their limits. 
However, in Meschach, the "compromise" between memory and time efficiency is 

put in the hands of the user. This involves "registering" workspace arrays so that they 
can be freed on request by a call outside of the function where the static workspace 
variable is defined. Registering a static variable is easy: 

foo *foo_bar( .•. ) 
{ 

} 

static VEC *wkspace = VNULL; 

new_wksize = 
wkspace = v_resize(wkspace,new_wksize); 
MEM_STAT_REG(wkspace,TYPE_VEC); 

Note that you can only register static variables. If you try to register an automatic 
variable, the program will most likely crash. There is no way that the variable can be 
checked for whether it is static or not. 

There is a "workspace group number" or "mark" that must be set before (in the 
dynamic sense, not necessarily in the code sequence) a workspace variable is registered. 
When a static workspace variable is registered, it is "marked" as belonging to the current 
workspace group or "mark". This "mark" can be set by, for example, 

mem_stat_mark(l); 

This call is usually made in the main calling routine before any routines usipg static 
workspace variables are called. The "mark" can be changed by calling 
mem_stat_mark () with a new "mark" or "group number". All of the static 
workspace variables registered with a particular "mark" can be deallocated and their 
memory freed with acallmem_stat_free (mark}. Note thatthisunsets the "mark". 

Examples of how the mem_stat_ .. () routines work are in chapter 2. 

8.3.3 Incorporating user~defined types into Meschach 

Meschach 1.2 provides a number of facilities to track memory usage and to control the 
allocation and deaUocation of static workspace arrays. User-defined data structures 
can be incorporated into these mechanisms so that it can track memory usage and free 
up workspace variables for your own data structures. 

Since related data structures are often defined together, the information about the 
data structures is passed to the mem_info_ .•. ()and mem_stat'- .•• () routines 
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by a collection of arrays containing the names of the types, the .• _free () functions 
for these data structures, and an array of long's for storing information about the 
amount of memory used by the various data structures. This collection of arrays 
is called a list, and it describes a family of types. Each family of types known to 
Meschach has its own list number; the family of standard Meschach types has zero as 
its list number. 

Here is an example taken from memtort • c. First there are the definitions: 

/* the number of a new list */ 
#define FOO_LIST 2 

I* type numbers *I 
#define TYPE_FOO_l 1 

#define TYPE_F00_2 2 

I* new types */ 
typedef struct { 

int dim; 
int fix_dim; 
Real (*a) [10]; 

} FOO_l; 

typedef struct { 
int dim; 
int fix_dim; 
Real (*a)[2]; 

} F00_2; 

The arrays which contain the information are: 

char *foo_type_name[] = { 

"nothing", 
"FOO_l", 
"F00_2" }; 

#define FOO_NUM_TYPES \ 
(sizeof(foo_type_name)/sizeof(*foo_type_name)) 

int (*foo_free_func[FOO_NUM_TYPES]) () = { 
NULL, 
foo_l-'-free, 
foo_2_free }; 

static MEM_ARRAY foo_info_sum[FOO_NUM_TYPES]; 
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Note that the type number TYPE_FOO_l and TYPE_F00_2 correspond to the position 
their type names and . . _free () functions have in the arrays. This list of types is 
made known to the Meschach routines by the call 

mem_attach_list(FOO_LIST, FOO_NUM_TYPES, foo_type_name, 
foo_free_func, foo_info_sum); 

if { ! mem_is_list_attached(FOO_LIST) ) 
printf("Error: list FOO_LIST is not attached\n"); 

which should be at the beginning of the main ( ... ) routine. 
Knowing that certain types exists is a start, but to track memory usage, the routines 

that perform memory allocation, deallocation and resizing need to keep the Meschach 
system informed about changing memory usage. For example, in foo_1_get (): 

FOO_l *foo_l_get(dim) 
int dim; 
{ 

} 

FOO_l *f; 

if ((f = (FOO_l *)malloc(sizeof(FOO_l))) --NULL) 
error(E_MEM,"foo_l_get"); 

else if (mem_info_is_on()) 
{ 

} 

mem_bytes_list(TYPE_FOO_l,O,sizeof(FOO_l),FOO_LIST); 
mem_numvar_list(TYPE_FOO_l,l,FOO_LIST); /* 1 more*/ 

f->dim = dim; 
f->fix_dim = 10; 
if ( (f->a = (Real (*) [10]) 

malloc(dim*sizeof(Real [10]))) --NULL) 
error(E_MEM,"foo_l_get"); 

else if (mem_:info_is_on()) 
:mem_bytes_list(TYPE_FOO_l,O, 

dim*sizeof(Real [10]),FOO_LIST); 

return f; 

The routine that actually notifies the Meschach system about the change in the 
amount of memory usage is mem_bytes_list (), and the routine that notifies 
Meschach about the number of allocated structures is mem_numvar_list (). For 
:mem_bytes_list () the first argument is the type number, the second is the old size 
in bytes, the third is the new size in bytes, and the last parameter is the list number of 
the family of types. It is not important that the absolute values of old and new sizes 
are correct, other than being non-negative; rather it is the difference between them 
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that is important. For mem_numvar_list () the change in the number of allocated 
structures is passed. 

The corresponding .. _free () routine also needs to call mem..__,byte_;l.ist (): 

int foo_l_free(f) 
FOO_l *f; 
{ 

} 

if ( f != NULL) { 

} 

if (mem_info_is_on()) 
{ 

mem_bytes_list(TYPE_FOO_l, 
sizeof(FOO_l)+f->dim*sizeof{Real [10]),0L,2); 

mem_numvar_1ist(TYPE_F00,..:1,2); /* 1 less *I 
} 

free{f->a); 
free(f); 

return 0; 

Similarly, •• _resize () routines need to call mem_bytes_list () if there is any 
actual memory allocation, deallocation or resizing. If the argument is NULL, then the 
main •• _get ( ) routine should be called; otherwise there is no change in the number of 
FOO_l structures, and so there is no need to call mem_num.var_list (). Merely re
arranging the internal structure doesn't have to be reported viamem_bytes_list (). 

User-defined data structures can be used as static workspace arrays, just like the 
standard Meschach data structures. They can be registered as workspace variables just 
like the standard Meschach data structures, except that the list number of the family of 
types needs to be given, and is positive. For example, 

hairyl( •.• ) 
{ 

} 

static FOO_l *f; I* initially NULL */ 

if ( ! f } f = foo_l_get(); /* allocate iff NULL*/ 
I* ... or could use a .. _resize{) routine*/ 
mem_stat_reg_list(&f, TYPE_FOO_l, FOO_LIST); 

These static workspace variables will be deallocated using a call to 
mem_stat_free~list (). Note that unlike the MEM_STAT_REG () macro, you 
have to explicitly take the address off; MEM_STAT_REG () is a macro. 

This is an example of how to use this to free f: 

main ( ••• ) 



210 

{ 

} 
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mem_stat_mark(l); 

for ( i = 0; i < 1000; i++ 
hairyl( •• ~); 

I* now free up FOO_l and F00_2 workspace structures *I 
mem_stat_free_list(l,FOO_LIST); 
I* now free up standard Meschach workspace structures *I 
mem~stat_free(l); 

I* which is equivalent to: mem_stat_free_list(l,O); *I 

If you have a family of types, where creating one type involves creating another in 
the same family, care should be taken to avoid double counting. In this case a "main
type" contains a pointer to a "sub-type", say. There are two ways around this: one is 
to call mem_bytes_list () and mem_numvar_list () only for those parts of the 
data structure not in the "sub-type". The other, more complex approach, is to infmm 
the routines that create the "sub-type" that it is created as part of the "main-type", and 
to account for all of the memory and structure allocation as part of the "main-type". 
This second approach is only really of use if the "sub-type" is understand as being only 
of use as part of the larger "main-type". This approach is used in Meschach for sparse 
rows in sparse matrices. Stand alone sparse rows can be created, destroyed, etc., but 
are almost never used in this way. 

8.3.4 Output and object resizing 

While it is quite possible to create a new data structure and allocate new memory for 
every new result, this reduces the efficiency of the algorithms and rapidly loses memory. 
As there is no garbage collection in C, the memory that is "lost" is unrecoverable. Also, 
numerical analysts and applications people are often working with large problems on 
the limits of the machine( s) that they use. So it is rather important that the programmer 
using a library will want control over memory allocation, or at least over the allocation 
of the large objects. 

The standard used in Meschach is that whenever a large or composite object results 
from a computation, there is an extra parameter in which the result is to be put. As 
before, this parameter is a pointer to a data structure. If this pointer is NULL, then the 
output data structure is allocated and initialised. This allows for the creation of the 
output when the user desires, but still gives control over memory allocation. 

If the output object is not NULL, but is not of the correct size, then a resizing 
function should be used. An example of this might be: 

foo *foo_bar(my_fool, my_foo2, out_foo) 
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foo *my_fool, *my_foo2, *out_foo; 
{ 
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if ( out_foo == NULL I I out_foo->size != my_fool->size 
out foo = foo_resize(out_foo, my_fool->size); 

} 

Thecalltoget_foo () is notnecessaryiftheresizingfunction(here foo_resize ()) 
allocates and initialises a new foo data structure if it is passed a NULL. 

If you cannot write a resizing function, then raise an error if the sizes are incom
patible. In such a case, it is better to get the user to create the thing with the right size 
to start with. The alternative approach to that of creating a new object when the output 
data structure has the wrong size will result in "memory leaks" with code such as 

foo *my_fool, *my_foo2, *out_foo; 

out_foo = f,oo_bar(my_fool,my_foo2,out_foo); 

If out_foo is the wrong size, then creating a new data structure will result in the 
original out_foo data structure being lost, and being replaced by a newly created 
data structure. This memory would be lost until the program terminates. 

To repeat: the output parameter should be resized if it is the wrong size, or raise 
an error. 

8.4 User-defined functions 

When data structures of a conventional sort cannot explicitly and easily cope with the 
complexities of a problem, it is usual for programmers to use functional parameters -
especially numerical and scientific programmers. In C these are not difficult to use: 
just remember that you are actually passing pointers to functions, rather than the code 
itself! 

A standard example used is working out the definite integral 

1b f(x)dx 

using a quadrature (integration) rule of some kind. The function that computed the 
integral might look like this: 

double integrate(f, a, b, n) 
double (*f)(); /*function to integrate*/ 
double a, b; /* lower and upper limits */ 
int 
{ 

n; 

int i; 

/* number of sub-intervals to use */ 
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double sum; 

sum+= (*f) (a+i*(b-a)ln); 

return sum/n; 
} 

Then integrate(sin, 0.0, PI, 100) would give an approximation to 
f01r sin( x) dx. If you want to integrate a particular function, then you have to write 
it yourself. So far, so good. However, the function f in integrate () must be a 
function of only one variable- the variable that is integrated. Usually functions have 
parameters, and usually those parameters are changed from run to run, or call to call. 
These parameters are outside this model of how f works as a function. 

The standard way of dealing with this in C is to set up some global variables 
containing the parameters and then modifying them as necessary from run to run, or call 
to call, of integrate (). This is not a very good way of dealing with parameters: as 
a general rule, the more global variables, and "pathological" (i.e. hidden) connections 
between routines, the more unpredictable a piece of code becomes. 

The alternative that we would recommend here is to allow for an extra parameter 
in f of the type void *. This could be a pointer to a struct containing the relevant 
parameters, or even much larger, more complex, data structures. The code for the 
integration function would then look like: 

double integrate2(f, fparams, a, b, n) 
double {*f) 0 i /* function to integrate *I 
void *fparams; I* extra parameters for f *I 
double a, b; I* lower and upper limits *I 
int n; I* number of sub-intervals to use *I 
{ 

sum+= (*f) (fparams,a+i*(b-a)/n); 

} 

Then, for example, for a general quadratic f ( x) = ax2 + bx + c, the following 
code could be used: 

struct PQ { double a, b, c; }; 

double quadratic(params, x) 
struct PQ *params; 
double x; 
{ /* using Horner's nested multiplication scheme */ 

return x*(params->a*x + params->b) + params->c; 
} 
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{ 

This could be used in something like the following: 

struct PQ par_quad; 

par_quad.a = 5.0; 
par_quad.b = -3.7; 
par_quad.c = 101.433445; 
printf ("Integral = %g\n", 
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integrate2(quadratic, (void *)&par_quad,O.O,l.O,lOO)); 

} 

What if you want to integrate a function that really is just of one variable, with no 
additional parameters? At the cost of an extra layer of function calls it can be done 
using 

double apply{f, x) 
double (*f)(), x; 
{ return (*f) (x); } 

so that J011" sin(x) dx can be computed (approximately) by the call 

int_val = integrate2(apply, sin, 0.0, PI, 100); 

Ideally, both styles should probably be implemented, but the additional flexibility 
in having a void * parameter for functional parameters is well worth the effort of 
writing them into a library. 

This approach is an alternative to the "reverse communication" path that is taken in 
most Fortran libraries. The disadvantage of reverse communication is the complexity 
needed to handle a routine that uses reverse communication. There are possibly 
some particularly complex things for which reverse communication is still the best 
technique. However, implementing a number of separate routines which act on the 
same data structure might still be a more convenient way of doing things than reverse 
communication. 

8.5 Building the library 

Building up a library of routines to be generally useful, or even to solve a single 
problem, usually takes a few steps. The best advice here is summed up in the term 
"incremental testing". As routines are added to the collection that forms your library 
or problem solver, they should be tested. There is very little more disheartening than 
to spend a week trying to find an unexpected bug buried somewhere deep in the code. 
Keep the argument checking and debugging tools (e.g. print-out routines) around
they are still useful. 
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Build new data structures as you need them, and test them and their routines before 
going on to the next level. Even if you decide later that you would prefer to use a 
different way of doing the sub-problems, the interface to a modified data structure 
should probably stay pretty much the same as for the original data structure used. Use 
previous (debugged) data structures and their routines. This prevents a lot of errors 
and simplifies programming; they start to work more like building blocks than isolated 
bits of code. For example, if you are a control systems designer, you might want to 
have a "rational function" data structure representing ratios of polynomials: 

P(x) 
R(x) = Q(x). 

Each of the polynomials P( x) and Q( x) can be represented by vectors of coefficients. 
The data structure for R( x) might be 

typdef .struct { int deg_P, deg_Q; VEC *P, *Q; } rational; 

There is some redundancy in this data structure since deg_P should be one more than 
the dimension of the vector P. Whether or not this degree of redundancy is acceptable 
will depend on whether users of the library will want to have direct access to deg_P 

and deg_Q, and whether routines are written to rely on deg_P and deg_Q or P- >dim 
and Q->dim. 

Before defining the operations to be performed on objects of type rational, the 
basic operations on polynomials should be defined: adding, subtracting, multiplying 
and normalising polynomials; synthetic division of polynomials, and evaluating a 
polynomial at a real or complex value of x. Some of these can be defined in terms of 
operations on VEC's. Then the operations on rational functions can be defined in terms 
of the polynomial operations. 

8.5.1 Numerical aspects 

An important issue in numerical computations is that of the accumulation and mag
nification of roundoff error. That is, the computations should be numerically stable, 
and avoid accumulating or magnifying roundoff errors. While it can, in general, be 
very difficult to predict the effects of roundoff error, some situations are more likely 
to lead to bad results than others. For example, polynomials can be rather badly 
behaved in this regard. An example can be found in K. Atkinson's Introduction to 
Numerical Analysis, 1st Edition, pp. 80-84 (1979). The designers of MATLAB's 
polynomial root finding algorithm in fact avoid polynomials altogether in their ap
proach: they find instead the eigenvalues of the companion matrix of the polynomial 
p(x) = x" + a,_lx"-1 + · · · + a1 x + ao, 
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Since rootfinding of polynomials can be badly conditioned, setting up the companion 
matrix· would lead to an equally ill conditioned eigenproblem. However, generally 
eigenproblems are apparently less likely to suffer such ill conditioning as extreme as 
for polynomial rootfinding. A control system designer might take this as a hint and deal 

with control systems in [ ~ ~] matrix form, using companion matrices to represent 

polynomial systems. 
A rule of thumb that seems to work for a great many applications for keeping good 

numerical stability, is to keep intermediate computations in a form close to the form of 
the original data. Elaborate transformations might give exactly equivalent problems, 
but the introduction of noise and rounding errors can make some methods far better or 
far worse than others. 

There are a number of hard-won rules which numerical analysts have discovered 
over the years (and re-discovered far too many times!). In relation to matrix computa
tions the oldest and most important one is: 

Don't compute the inverse of a matrix if all you want 
is to solve some equations. 

Computing the inverse of a matrix does not make any of the subsequent calculations 
for solving a system of equations faster than using its LU factors, the accuracy is slightly 
worse usually, and it takes longer to compute the inverse in the first place. For sparse 
matrices it is even more important. The LU factors of a sparse matrix are usually 
fairly sparse, but the inverse is almost never sparse for practical problems. Forming 
the inverse of alarge sparse matrix may be an impossible undertaking on a machine, 
even though solving the system of equations can be accomplished quite quickly on that 
same machine. 

Another problem that one would do well to avoid is "finding all eigenvectors of a 
large matrix". Finding all the eigenvalues of a large symmetric matrix is not an unrea
sonable task (use the Lanczos routines). Generating the eigenvectors can then often be 
done using inverse iteration (seeK. Atkinson's An Introduction to Numerical Analysis, 
1st Edition, pp. 548-553 (1979)) on demand for large sparse matrices. Remember: 
just storing all the eigenvectors of a 10 000 x 10 000 matrix will take up 800Mbyte -
not a small amount on any current computer! 

8.6 Debugging 

While the error ( ) macro will save many types of errors, it cannot save you from all 
of them. If your program is crashing, then put 

setbuf(stdout, (char *)NULL); 

at the start of your main () program (at least on Unix systems) to ensure that you are 
seeing all your output. Use liberal printf () and •• _output () calls to check the 
values of your data types, and to "checkpoint" your program. This also means you 
should write •• _output () routines for any new data structures that you define. 



216 CHAPTER 8. DESIGNING NUMERICAL LIDRARIES INC 

Potential bugs can sometimes be spotted by automatic tools, such as lint-on 
Unix machines, which can detect things like unreachable code, unportable pointer 
conversions, and function argument incompatibilities for non-ANSI C code. The GNU 
compiler gee can detect potential portability and related problems in a similar wayto 
lint if you use the -Wall option (which reports all warnings). 

Try using open-ended test programs so that you can input any object of a particular 
data structure, and checking the result. Avoid tests which only give you a "yes/no" 
answer. If it got the answer by chance, then it has a 50% chance of fooling you. 
Compute residuals. For systems of equations this means printing out IIAx - bll; 
for eigenvalues/eigenvectors this means IIAx- >.xll/llxll; for solving f(x) = 0 this 
ineans printing II f ( x) II; for least squares problems this means printing II AT (Ax - b) 11. 
Whatever your problem is, try to compute sufficient information that it is easy-to verify 
the complete computed results. For optimisation problems, this would mean checking 
the first order necessary conditions at least. Use the routines that you have available, 
not just for doing the computations, but also for helping you to do the verification as 
well (such as v _norm2 ( ) ). 

If a program has a problem, try to find out where the problem is. If the program 
crashes at an unknown point for some reason, put in checkpoints in you main program. 
Once you've narrowed down the range in which the error occurs there to a single 
statement, the chances are that it will be a function call. "Open up" that function, 
putting in checkpoint statements, and printing any relevant quantities until the problem 
can be located in that function, continuing until the problem is localised. 

8.6.1 Memory allocation bugs 

These bugs occur when the memory allocation heap has been corrupted. This can occur 
when an allocated array is written to at an invalid location, or free () is called with 
an invalid address (that is, an address that wasn't returned by malloc (), calloc () 
or realloc () ). Either way the memory heap's headers are corrupted. The results 
of memory heap corruption can be unpredictable, sometimes resulting in the program 
crashing, sometimes resulting in apparently "intermittent" bugs. The rules given above 
for localising bugs don't work for these sorts of bugs, since the corruption is not evident 
until a call to malloc () or free () etc. Most programmers could use some help 
with these sorts of memory heap corruption bugs. 

As of version 1.2 of Meschach, there are some built-in routines for keeping a 
watch on memory usage which are mem_info_on(), mem_info_file () and 
mem_info_type (). These routines respectively turn the ''mem_info_ ••• "system 
on or off, printout a summary of the memory used in Meschach data structures to a file 
or stream, and return the amount of memory used for a particular Meschach data type. 
They can be used as follows to check for memory leaks, here in a function hairy { } : 

main() 
{ 

mem_info_on(TRUE); 
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} 

hairy ( .... ) ; 
mem_info_f(stdout); /*print out summary*/ 
printf ("Memory used for vectors by hairy(): %d\n", 

(int)mem_info_type(TYPE_VEC)); 
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If you get negative amounts of memory in use then something has gone wrong. If 
static workspace arrays are used you may need to use the MEM_STAT_REG () and 
mem_stat_ ... () routines. The routine mem_stat_dump () can also be useful in 
determining the status of workspace variables. 

If you suspect that there is a subtle memory over-writing error, then you should 
use a package that replaces the standard (fast) memory allocation package malloc () 
and free () etc, with something like the public domain package by Conor P. Cahill 
(uunet address: uunet! virtech! cpcahil). This provides a drop-in replacement 
for the standard library routines: compile your program as in 

cc -o my_prog my_prog.c ...... meschach.a libmalloc.a -lm 

and use his malloc_chain_check ( 0) to check for corruption of the malloc () 
heap. There may be other "debugging" memory allocation/deaHocation packages that 
you have access to. 

There are also tools that come with the GNU C compiler for tracking bugs that 
affect the memory heap. 

These are also useful tools to determine if your program has a "memory leak" 
that results in memory being allocated and then thrown away, although mem_info () 
should be enough to track down memory leaks. 

8.6.2 If an else fails 

Beyond these things, there are two ways of dealing with these problems. 

1. Look at the source code. No-one's code is perfectly readable but we believe that 
it is not too difficult to follow, especially for experienced C programmers. 

2. Contact us. This is best done by e-mail; a current e-mail address is 

david.stewart@anu.edu.au 
zbigniew.leyk@anu.edu.au 

We cannot guarantee to even look at your problem as we are not employed as pro
grammers, but as academic mathematicians. Our e-mail addresses are also subject to 
change without notice. 
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8. 7 Suggestions for enthusiasts 

There are a number of areas which seem to be particularly ripe for additions. Porting 
to C++ and making use of classes and operator overloading in itself would be a useful 
project. 

Sets can be implemented a number of ways using permutations and/or integer 
vectors. 

Some extensions that have been considered (and maybe something will be released 
eventually) include linear programming extensions, ODE solvers, and maybe some 
nonlinear equation solvers. But there is much more that can be done. One item 
conspicuously absent are sparse matrix re-ordering routines. A good minimum degree 
algorithm should be implemented for Meschach. 

8.8 Pride and Prejudice 

This section is about our own personal beliefs and prejudices. These opinions are 
nobody's but our own. If you find them obnoxious or frivolous, remember, you have 
been warned! 

8.8.1 What about Fortran 90? 

We might have started thinking about it if it had been around when we started on this 
project six years ago. As it is, we still haven't seen a Fortran 90 compiler, although we 
have seen a very near miss in the Connection Machine Fortran. 

Learning Fortran 90, especially the parts of interest to us, would involve learning 
a whole new language. When it comes to pointers, dynamic memory allocation and 
de-allocation, structures/records etc, it is a completely new language. We doubt that 
many future users of Fortran 90 will use the full power of the language for a good 
many years yet. And then, the people who do make full use of it will be people who 
have programmed before inC, C++, Ada, Modula-2 (or perhaps Modula-3) and the 
like. They will know the benefit of using these advanced features. 

Porting it to Fortran 90 might be a possibility someday. We don't want to do that 
job. Porting to C++ would be a much more useful task in the near future. (Meschach 
has already been used within a C++ program.) 

8.8.2 Why should people writing numerical code care about good soft
ware? 

Numerical analysts and scientists often write unreadable programs. 
One of us remembers trying to translate Bill Gear's DIFSUB program from Fortran 77 

to C. And failed. He got lost in the spaghetti. So he looked at his description of what 
it was supposed to do, and implemented that. And the result worked. 

Quite a few older programmers find this situation normal or even desirable, almost 
as a sort of job security, or a sense of machismo: "Real programmers don't document 
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their code; if it was hard to write, it should be hard to read." It wasn't academic politics 
that made this attitude unacceptable in any modern computer science department, but 
practical experience combined with the urgency of the "software crisis" of the late 
sixties and seventies. This "software crisis" still hasn't gone away; big, complex 
systems (such as commercial and military aircraft) rely more than ever on good, bug
proof software. 

On a more personal level, not being a masochist, we much prefer being able to 
write programs and modify them without having to remember to juggle a dozen flags, 
set and reset global variables, and so on. Modifying programs is the nature of research. 
You need to be able to modify the code to do things in different, but meaningful, ways. 
Trying to do this without helpful software underneath is painful; usually we find that 
the same underlying operation needs to be re-implemented for the nth time. 

Routines which are general purpose, and are designed with flexibility in mind, make 
an enormous difference when it comes to programming and designing new algorithms. ,, 
This is why people use numerical libraries. And that is why we wrote this library. The ' 
state of the art moves on, and instead of waiting for one's favourite numerical library to 
be updated with,spmething you would like to see, this library enables you to implement 
new algorithms. The code is there for inspection, use and modification. (But, please, 
don't modify old routines unless they have bugs in them- real bugs- but modify 
the code to create new routines.) In doing so, you can provide a platform for further 
development by yourself or others. Thus the computer can be used not just to crunch 
numbers, but also to improve your "personal productivity" as the advertisements say. 
After all, if computers can't make life easier, or more productive, what good are they? 



For Further Reading ... 

A full and detailed discussion of the properties and behaviour of the numerical methods 
in this library and numerical methods in general is beyond the scope of a book such 
as this. Fuller treatments of numerical methods can be found in numerous numerical 
analysis texts, which cover a range of different levels from beginning to advanced, and 
different aspects of numerical analysis. 

The text which has been of greatest use to the authors is 

Matrix Computations, by G.H. Golub and C. van Loan, 1st Edition published 1983 by 
North Oxford Academic Publ., Oxford, 2nd Edition published 1989 by John Hopkins 
University Press, Baltimore and London. 

Other general numerical analysis texts that may be useful are 

An Introduction to Numerical Analysis, by K.E. Atkinson, 1st Edition published 1978, 
2nd Edition published 1989, by John Wiley and Sons, New York, Chichester, Brisbane 
and Toronto. 

Numerical Analysis, by R.L. Burden and J.D. Faires, 4th Edition published 1989 by 
Prindle, Weber & Schmidt, Boston, Massachusetts. (First edition co-authored by A. C. 
Reynolds and published in 1978.) 

Numerical mathematics and computing, by E.W. Cheney, D. Kincaid, 2nd Edition 
published in 1985 by Brooks/Cole, Monterey, California. 

Some other books on the implementation of numerical algorithms that may be useful 
are: 

The Engineering of Numerical Software, by Webb Miller, published 1984 by Prentice
Hall, Englewood Cliffs, New Jersey. 

Numerical Recipes in C: The Art of Scientific Computing, by W.H. Press, B.P. Flannery, 
S.A. Teulkolsky and W.T. Vetterling, published in 1988 by Cambridge University Press, 
Cambridge, England. 
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Function index 

In the descriptions below, matrices are represented by capital letters, vectors by lower 
case letters and scalars by greek lower case letters. 

Function 
band2mat() 
bd_free () 
bd_get () 
bd_transp ( ) 
bd_resize() 

bdLDLfactor () 
bdLDLsolve() 

bdLUfactor () 
bdLUsolve ( ) 
bisvd() 

BKPfactor () 
BKPsolve() 
catch() 
catchall() 
catch_FPE () 

CHfactor() 
CHsolve() 
d_save() 

Dsolve () 
ERRABORT() 

ERREXIT() 

error() 
err_list_attach() 
err_list_free () 
err_is_list_attached() 
ev_err() 
fft () 
finput() 

Description 
Convert band matrix to dense matrix 
Deallocate (destroy) band matrix 
Allocate and initialise band matrix 
Transpose band matrix 
Resize band matrix 
Band LD LT factorisation 
Solve Ax = b using band LDLT 
factors 
Band LU factorisation 
Solve Ax = b using band LU factors 
SVD of bi-diagonal matrix 
Bunch-Kaufman-Parlett factorisation 
Bunch-Kaufman-Parlett solver 
Catch a raised error (macro) 
Catch any raised error (macro) 
Catch floating point error (sets flag) 
Dense Cholesky factorisation 
Cholesky solver 
Save real in MATLAB format 
Solve Dx = y, D diagonal 
Abort on error (sets flag, macro) 
Exit on error (sets flag, macro) 
Raise an error (macro, see ev _err ( ) ) 
Attach new list of errors 
Discard list of errors 
Checks for an error list 
Raise an error (function) 
Computes Fast Fourier Transform 
Input a simple data item from a stream 
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Function 
fprompter() 
get_col () 
get_row() 
givens () 
hhtrcols () 

hhtrrows () 

hhtrvec () 

hhvec () 

ifft () 
in_prod() 
input() 

iter_arnoldi () 
iter _arnoldLiref () 

iter JI..Tx () 

iterJI..x 0 
it.er_Bx() 
iter_cg() 
iter_cgne () 

iter_cgs () 
iter_copy() 
iter _copy2 ( ) 
iter_dump() 
iter_free () 
iter_get () 
iter _gmres () 
iter_lanczos () 
i ter_lanczos2 ( ) 

iter_lsqrO 
iter _mgcr ( ) 
iter_resize () 
iter_sparnoldi() 
iter_sparnoldi_iref() 

iter _spcg () 
iter_spcgne () 

Description 
Print prompt to stderr 
Extract a column from a matrix 
Extract a ro.w. from a matrix 
Compute Givens parameters 
Compute APT where P is a House
holder matrix 
Compute P A where Pis a Householder 
matrix 
Compute Pxwhere Pis a Householder 
matrix 
Compute parameters for a Householder 

·matrix 
Computes inverse FFT 
Inner product of vectors 
Input a simple data item from stdin 
(macro) 
Arnoldi iterative method 
Arnoldi iterative method with 
refinement 
Set AT in ITER structure 
Set A in ITER structure 
Set preconditioner in ITER structure 
Conjugate gradients iterative method 
Conjugate gradients for normal 
equations 
CGS iterative method 
Copy ITER data structures 
Shallow copy of ITER data structures 
Dump ITER data structure to a stream 
Free (deallocate) ITER structure 
Allocate ITER structure 
GMRES iterative method 
Lanczos iterative method 
Lanczos method with Cullum & 
Willoughby extensions 
LSQR iterative method 
MGCR iterative method 
Change sizes in ITER structure 
Sparse matrix Arnoldi method 
Sparse matrix Arnoldi method with 
refinement 
Sparse matrix CG method 
Sparse matrix CG method for normal 
equations 
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Function 
iter _spcgs ( ) 
iter_spgmres () 
iter_splanczos() 
iter_splanczos2() 

iter_splsqr() 
iter_spmgcr() 
iv_add() 
iv_copy() 
iv_dump() 
iv_finput () 
iv_foutput () 
IV_FREE() 

iv_free() 

iv_free_vars () 
iv_get () 
iv_get_vars () 
iv_input () 

iv_output () 

iv_resize () 
iv_resize_vars () 
iv_sub() 
LDLfactor() 
LDLsolve() 
LDLupdate () 
Lsolve () 
LTsolve() 
LUcondest() 

LUfactor() 

LUsolve() 
LUTsolve() 
m_add() 
makeQ() 
makeR() 
mat2band() 

Description 
Sparse matrix CGS method 
Sparse matrix GMRES method 
Sparse matrix basic Lanczos method 
Sparse matrix Cullum & Willoughby 
Lanczos method 
Sparse matrix LSQR method 
Sparse matrix MGCR method 
Add integer vectors 
Copy integer vector 
Dump integer vector to a stream 
Input integer vector from a strean:J. 
Output integer vector to a stream 
Free (deallocate) an integer vector 
(macro) 
Free (deallocate) integer vector 
(function) 
Free a list of integer vectors 
Allocate and initialise an integer vector 
Allocate list of integer vectors 
Input integer vector from stdin 
(macro) 
Output integer vector to stdout 
(macro) 
Resize an integer vector 
Resize a list of integer vectors 
Subtract integer vectors 
LDLT factorisation 
LDLT solver 
Update LDLT factorisation 
Solve Lx = y, L lower triangular 
Solve LT x = y, L lower triangular 
Estimate a condition number using LU 
factors 
Compute LU factors with implicit 
scaled partial pivoting 
Solve Ax = b using LU factors 
Solve AT x = b usng LU factors 
Add matrices 
Form Q matrix for QR factorisation 
Form Rmatrix for QR factorisation 
Extract band matrix from dense matrix 
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Function 
MCHfactor (} 

m_copy(} 
m_dump(} 
mem_attach_list (} 
mem...bytes ( } 

mem...bytes_list (} 
mem_free_list (} 
mem_info_bytes (} 
mem_info_numvar (} 
mem_info_file (} 
mem_info_is_on (} 
mem_info_on (} 
mem_is_list_attached (} 
mem_numvar ( } 

mem_numvar_list(} 

mem_stat_dump (} 

mem_stat_free (} 
mem_stat..mark (} 
MEM_STAT_REG(} 

mem_stat_show..mark (} 
m_exp(} 
m_finput (} 
m_foutput (} 
M_FREE(} 

m_free (} 
m_free_vars (} 
m_get (} 
m_get_vars (} 
m_ident (} 
m_input (} 
m_inverse ( } 
m_load(} 
m..mlt (} 
mmtr..mlt (} 
m...norml (} 
m...norm_frob (} 

Description 
ModifiedCholesky factorisation (actu
ally factors A+ D, D diagonal, instead 
of A) 
Copy dense matrix 
Dump matrix data structure to a stream 
Adds a new family of types 
Notify change in memory usage 
(macro) 
Notify change in memory usage 
Frees a family of types 
Number of bytes used by a type 
Number of structures of a type 
Print memory info to a stream 
Is memory data being accumulated? 
Turns memory info system on/off 
Is list of types attached? 
Notify change in number of structures 
allocated (macro) 
Notify change in number of structures 
allocated 
Prints information on registered 
workspace 
Frees ( deallocates) static workspace 
Sets mark for workspace 
Register static workspace (macro) 
Current workspace group 
Computes matrix exponential 
Input matrix from a stream 
Output matrix to a stream 
Free (deallocate) a matrix (macro) 
Free (deallocate) matrix (function) 
Free a list of matrices 
Allocate and initialise a matrix 
Allocate list of matrices 
Sets matrix to identity matrix 
Input matrix from stdin (macro) 
Invert matrix 
Load matrix in MATLAB format 
Multiplies matrices 
Computes ABT 
Computes IIAII 1 of a matrix 
Computes the Frobenius norm of a 
matrix 
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Function 
m_norm_inf ( ) 
m_ones () 
m_output () 
m_poly() 
m_pow() 
mrand() 
m_rand() 

mrandlist () 

m_resize() 
m_resize_vars () 
m_save() 
m_sub() 
m_transp() 
mtrm__mlt () 
mv_mlt () 
mv __ml tadd ( ) 
m_zero() 
ON_ERROR() 

prompter() 
px_cols () 
px_copy() 
px_dump() 

px_finput () 
px_foutput () 
PX_FREE() 

px_free () 

px_free_vars () 
px_get () 
px_get_vars {) 
px_ident {) 
px_input () 

px_inv() 
pxinv _vee ( ) 

pxinv _zvec ( ) 

px....mlt () 
px_output () 

Description 

Computes IJAJioo of a matrix 
Set matrix to all1 's 
Output matrix to stdout (macro) 
Computes a matrix polynomial 
Computes integer power of a matrix 
Generates pseudo-random real number 
Randomise entries of a matrix 
Generates array of pseudo-random 
numbers 
Resize matrix 
Resize a list of matrices 
Save matrix in MATLAB format 
Subtract matrices 
Transpose matrix 
Computes AT B 
Computes Ax 
Computes y f-- Ax + y 
Zero a matrix 
Error handler (macro) 
Print prompt message to stdout 
Permute the columns of a matrix 
Copy permutation 
Dump permutation data structure. to a 
stream 
Input permutation from a stream 
Output permutation to a stream 
Free (deallocate) a permutation (macro) 
Free (deallocate) permutation 
(function) 
Free a list of permutations 
Allocate and initialise a permutation 
Allocate a list of permutations 
Sets permutation to identity 
Input permutation from stdin 
(macro) 
Invert permutation 
Computes pT x where P is a permuta
tion matrix 
Computes pT x where P is a permuta
tion matrix (complex) 
Multiply permutations 
Output permutation to stdout 
(macro) 
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Function Description Page 
px_resize () Resize a permutation 77 
px_resize_vars () Resize a list of permutations 77 
px_rows () Permute the rows of a matrix 99 
px_sign() Returns the sign of the permutation 98 
px_transp ( ) Transpose a pair of entries 98 
px_vec () Computes Px where Pis a permutation 99 

matrix 
px_zvec () Computes Px where Pis a permutation 99 

matrix (complex) 
QRCPfactor() QR factorisation with column pivoting 126 
QRfactor() Q R factorisation 126 
QRsolve() Solve Ax= busing QR factorisation 126 
QRTsolve() Solve AT x =busing QR factorisation 126 
QRupdate() Update explicit Q R factors 137 
rot_cols () Apply Givens rotation to the columns 130 

of a matrix 
rot_rows () Apply Givens rotation to the rows of a 130 

matrix 
rot_ vee () Apply Givens rotation to a vector 130 
rot_zvec () Apply complex Givens rotation to a 130 

vector 
schur() Compute real Schur form 139 
schur_evals () Compute eigenvalues from the real 142 

Schur form 
schur_vecs () Compute eigenvectors from the real 142 

Schur form 
set_col () Set the column of a matrix to a given 101 

vector 
set_err_flag () Control behaviour of ev _err ( ) 53 
set_row() Set the row of a matrix to a given vector 101 
sm...mlt () Scalar-matrix multiplication 81 
smrand() Set seed for mrand ( ) 73 
spBKPfactor() Sparse symmetric indefinite 169 

factorsiation 
spBKPsolve() Sparse symmetric indefinite solver 169 
spCHfactor() Sparse Cholesky factorisation 165 
spCHsolve() Sparse Cholesky solver 165 
spCHsymb() Symbolic sparseCholesky factorisation 165 

(no floating point operations) 
sp_coLaccess () Sets up column access paths for a sparse 155 

matrix 
sp_compact ( ) Eliminates zero entries in a sparse 149 

matrix 



235 

Function Description Page 
sp_copy() Copies a sparse matrix 149 
sp_copy2 () Copies a sparse matrix into another 149 
sp_diag_access () Sets up diagonal access paths for a 155 

sparse matrix 
sp_dump () Dump sparse matrix data structure to a 158 

stream 
sp_finput () Input sparse matrix from a stream 160 
sp_foutput () Output a sparse matrix to a stream 158 
sp_free () Free (deallocate) a sparse matrix 149 
sp_get () Allocate and initialise a sparse matrix 149 
sp_get_ val ( ) Get the ( i, j) entry of a sparse matrix 153 
spiCHfactor () Sparse incomplete Cholesky 165 

factorisation 
sp_input () Input a sparse matrix form stdin 160 
spLUfactor () Sparse LU factorisation using partial 167 

pivoting 
spLUsolve() Solves Ax = busing sparse LU factors 167 
spLUTsolve() Solves ATx = b using sparse LU 167 

factors 
sp_mv _ml t ( ) Computes Ax for sparse A 154 
sp_output () Outputs a sparse matrix to a stream 158 

(macro) 
sp_resize () Resize a sparse matrix 149 
sprow _add ( ) Adds a pair of sparse rows 162 
sprow_foutput () Output sparse row to a stream 162 
sprow _get ( ) Allocate and initialise a sparse row 162 
sprow_get_idx () Get location of an entry in a sparse row 162 
sprow_merge () Merge two sparse rows 162 
sprow_mltadd() Sparse row vector multiply-and-add 162 
sprow_set_val () Set an entry in a sparse row 162 
sprow_smlt () Multiplies a sparse row by a scalar 162 
sprow_sub () Subtracts a sparse row from another 162 
sprow_xpd () Expand a sparse row 162 
sp_set_ val ( ) Set the ( i, j) entry of a sparse matrix 153 
sp_vm_mlt () Compute xT A for sparse A 154 
sp_zero() Zero (but do not remove) all entries of 157 

a sparse matrix 
svd() Compute the SVD of a matrix 143 
sv_mlt () Scalar-vector multiply 102 
symmeig() Compute eigenvalues/vectors of a sym- 139 

metric matrix 
tracecatch () Catch andre-raise errors (macro) 51 
trieig() Compute eigenvalues/vectors of a sym- 139 

metric tridiagonal matrix 
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Function 
Usolve () 

UTsolve() 

v_add() 
v_conv() 
v_copy() 
v_dump () 
v_finput () 
v_foutput () 
V_FREE() 

v_free() 
v_free_vars () 
v_get () 
v_get_vars () 
v_input () 
v_lincomb() 

v_linlist () 
v_map() 

v_max() 
v_min() 
v_mltadd() 
vm_mlt () 
vnL.mltadd() 
v_norml () 
v_norm2 () 

v _norm_inf ( ) 
v_ones () 
v_output () 
v_pconv() 
v_rand() 
v_resize () 
v_resize_vars () 
v_save () 
v_slash() 

v_sort () 
v_star() 
v_sub() 
v_sum() 

Description 
Solve U x = b where U is upper 
triangular 
Solve uT X = b where u is upper 
triangular 
Add vectors 
Convolution product of vectors 
Copy vector 
Dump vector data structure to a stream 
Input vector from a stream 
Output vector to a stream 
Free (deallocate) a vector (macro) 
Free (deallocate) vector (function) 
Free a list of vectors 
Allocate and initialise a vector 
Allocate list of vectors 
Input vector from stdin (macro) 
Compute Li aixi for an array of 
vectors 
Compute Li aixi for a list of vectors 
Apply function componentwise to a 
vector 
Computes max vector entry & index 
Computes min vector entry & index 
Computes y *""--ax+ y for vectors x, y 
Computes xT A 
Computes yT *""-- yT + xT A 
Computes llxll 1 for a vector 
Computes llxlb (the Euclidean norm) 
of a vector 
Computes llxlloo for a vector 
Set vector to all 1 's 
Output vector to stdout (macro) 
Periodic convolution of two vectors 
Randomise entries of a vector 
Resize a vector 
Resize a list of vectors 
Save a vector in MATLAB format 
Computes componentwise ratio of 
vectors 
Sorts vector components 
Componentwise vector product 
Subtract two vectors 
Sum of components of a vector 
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Function 
v_zero(} 

zabs {) 
zadd() 
zconj() 

zdivO 
zexp () 
z_finput () 

;z_foutput () 

zgivens() 

zhhtrcols() 

zhhtrrows ( ) 

zhhtrvec(} 

zhhvec {) 
zin_prod() 
z_input () 

zinv() 

zLAsolve () 

zlog() 
zLsolve (} 

zLUAsol ve ( ) 

zLUcondest() 
zLUfactor() 
zLUsolve () 

zm_add() 

zm_adjoint () 
zmake () 

zmakeQ() 

zmakeR() 

zmanunl t ( } 

zm_dump() 

zm_f input ( ) 
ZM_FREE() 

j Description 
1 Zero a vector 

I Complex absolute value (modulus) 
Add complex numbers 

i Conjugate complex number 
I Divide complex numbers 
I Complex exponential 
I Read complex number from file or 
1 stream 
I Prints complex number to file or stream 
I C . G. ' . 
1 ompute complex 1vens rotatwn 
I Apply Householder transformation: 

I
I PA (complex) 

Apply Householder transformation: 
. AP (complex) 
I Apply Householder transformation: 
I Px (complex) 

Compute Householder transformation 
Complex inner product 

I Read complex number from stdin 

/ Computes 1/ z (complex) 
Solve L*x = b, L complex lower 
triangular 
Complex logarithm 
Solve Lx = b, L complex lower 
triangular 
Solve A*x = b using complex LU 
factorisation 
Complex LU condition estimate 
Complex LU factorisation 
Solve Ax = b using complex LU 
factorisation 
Add complex matrices 
Computes adjoint of complex matrix 
Construct complex number from real 
and imaginary parts 
Construct Q matrix for complex Q R 

I Construct R matrix for complex Q R 
Computes A* B (complex) 
Dump complex matrix to stream 
Input complex matrix from stream 
Free (deallocate) complex matrix 
(macro) 
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I 

Function 
zm_free () 

zm_free_vars () 
zm_get () 
zm_get_vars () 

ZIYLinpu t ( } 
zm_inverse ( ) 
zm_load() 

zmlt () 
zmma_mlt () 
zm_mlt () 
zm_norml () 
zm_norm_frob () 
zm_norm_inf ( ) 
zm_rand() 
zm_resize () 
zm_resize_vars () 
zm_save() 

zm_sub(} 
zmv_mlt () 
zmv _ml tadd ( ) 

zm_zero() 
zneg() 
z_output () 
zQRCPfactor() 

zQRCPsolve() 

zQRfactor() 
zQRAsolve(} 

zQRsolve() 

zrot_cols () 
zrot_rows () 
:<Lsave (} 

zschur() 
zset_col () 
zset_row() 

Description 
Free (deallocate) complex matrix 
(function) 
Free a list of complex matrices 
Allocate complex matrix 
Allocate a list of complex matrices 
Input complex matrix from stdin 
Compute inverse of complex matrix 
Load complex matrix in MATLAB 
format 
Multiply complex numbers 
Computes AB* (complex) 
Multiply complex matrices 
Complex matrix 1-norm 
Complex matrix Frobenius norm 
Complex matrix oo-norm 
Randomise complex matrix 
Resize complex matrix 
Resize a list of complex matrices 
Save complex matrix in MATLAB 
format 
Subtract complex matrices 
Complex matrix-vector multiply 
Complex matrix-vector multiply and 
add 
Zero complex matrix 
Computes - z (complex) 
Print complex number to stdout 
Complex Q R factorisation with col
umn pivoting 
Solve Ax = b using complex QR 
factorisation 
Complex Q R factorisation 
Solve A*x = b using complex QR 
factorisation 
Solve Ax = b using complex Q R 
factorisation 
Complex Givens' rotation of columns 
Complex Givens' rotation ofrows 
Save complex number in MATLAB 
format 
Complex Schur factorisation 
Set column of complex matrix 
Set row of complex matrix 
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Function 
zsm_mlt () 
zsqrt () 
zsub () 
zUAsolve () 

zusolve() 

zv_add() 
zv_copy() 
zv_dump() 
zv_finput () 
ZV_FREE () 

zv_free () 

zv_free_vars () 
zv_get () 
zv_get_vars () 
zv_input () 
zv_lincomb() 

zv_linlist () 
zv_map() 

zv_mlt () 
zv_mltadd() 

zvm_mlt () 

zvm...ml tadd ( ) 
zv_norml () 
zv_norm2 () 
zv _norm_inf ( ) 

zv_rand() 
zv_resize () 
zv_resize_vars () 
zv_save () 

zv_slash() 

zv_star() 

Description 
Complex scalar-matrix product 
Square root viz (complex) 
Subtract complex numbers 
Solve U*x = b, U complex upper 
triangular 

I Solve U x = b, U complex upper 

1 triangular 
Add complex vectors 
Copy complex vector 
Dump complex vector to a stream 
Input complex vector from a strear.c. 
Free (deallocate) complex vector 
(macro) 
Free (deallocate) complex vector 
(function) 
Free a list of complex vectors 
Allocate complex vector 
Allocate a list of complex vectors 
Input complex vector from a stdin 

Compute Li aixi for an array of 
vectors 
Compute I;i aixi for a list of vectors 
Apply function componentwise to a 
complex vector 
Complex scalar-vector product 
Complex scalar-vector multiply and 
add 
Computes A*x (complex) 
Computes A*x + y (complex) 
Complex vector 1-norm 
Complex vector 2- (or Euclidean) norm 
Complex vector oo- (or supremum) 
norm 
Randomise complex vector 
Resize complex vector 
Resize a list of complex vectors 
Save complex vector in MATLAB 
format 
Componentwise ratio of complex 
vectors 
Componentwise product of complex 
vectors 
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Function Description Page 
zv_sub() Subtract complex vectors 102 
zv_sum() Sum of components of a complex 104 

vector 
zv_zero () Zero complex vector 73 

Low level routines 

Function Description Page 
__ add __ () Add arrays 113 
__ ip __ () Inner product of arrays 113 
MEM_COPY() Copy memory (macro) 113 
MEM_ZERO() Zero memory (macro) 113 
_ _ml tadd __ ( ) Forms x + ay for arrays 113 
__ smlt__() Scalar-vector multiplication for arrays 113 
__ sub __ () Subtract an array from another 113 
__ zadd __ () Add complex arrays 113 
__ zconj __ ( ) Conjugate complex array 113 
__ zero __ () Zero an array 113 
__ zip __ () Complex inner product of arrays 113 
__ zmlt __ () Complex array scalar product 113 
__ zml tadd __ ( ) Complex array saxpy 113 
__ zsub __ () Subtract complex arrays 113 
_..:zzero __ (} Zero a complex array 113 
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