
Proceedings of

THE CENTRE FOR
MATHEMATICS AND ITS

APPLICATIONS

THE AUSTRALIAN NATIONAL UNIVERSITY

Volume 32, 1994

eschach:

Matrix ComputationslnC

Proceedings of

THE CENTRE FOR MATHEMATICS
AND ITS APPLICATIONS

THE AUSTRALIAN NATIONAL UNIVERSITY

Volume 32, 1994

Meschach:

Matrix Computations in C

by
David E. Stewart and Zbigniew Leyk

First published in Australia 1994

@ Centre for Mathematics and its Applications, Australian National University
School of Mathematical Sciences
Canberra, ACT 0200, Australia

This book is copyright. Apart from any fair dealing for the purpose of private study,
research, criticism or review as permitted under the Copyright Act, no part may be
reproduced by any process without written permission. Inquiries should be made to
the publisher.

AMS classification: 65-04, 65F.

National Library of Australia Cataloging-in-Publication.

Stewart, David E. (David Edward), 1961-.
Meschach: matrix computations in C

Includes index.
ISBN 0 7315 1900 0.

1. Meschach (Computer file). 2. Matrices- Data processing. 3. Computer
algorithms. 4. C (Computer program language). I. Leyk, Zbigniew, 1955-.
ll. Australian National University. Centre for Mathematics and its Applica
tions. III. Title. (Series: Proceedings of the Centre for Mathematics and its
Applications, Australian National University; v. 32).

512.94340285

This book was typeset using AMS-Ib.T:EX and the Adobe PostScript fonts.

Meschach:

Matrix Computations in C

Version 1.2

PA=LU
solve Ax= b

LUfactor(A,pivot);
LUsolve(A,pivot,b,x);

David E. Stewart and Zbigniew Leyk

Unix is a trademark of AT&T
MATLAB is a trademark of The Math Works Inc.

MATCALC is a trademark of the University of New South Wales
MS-DOS and Quick Care trademarks of MicroSoft Corp.
SUN and SPARC are trademarks of Sun Microsystems Inc.

Pyramid is a trademark of Pyramid Computers
IDM RT, ffiM RS/6000 and IBM PC are trademarks of IBM

8086 and i860 are trademarks of Intel
68000 is a trademark of Motorola

Weitek is a trademark of Weitek Inc.

Meschach matrix library source code © David E. Stewart and Zbigniew Leyk,
1986-1993

" . . . and they walked in the heart of the flames . . . "
Daniel3

Meschach IS PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
IMPLIED WARRANTY. IN PARTICULAR, THE AUTHOR DOES NOT
MAKE ANY REPRESENTATION OR WARRANTY OF ANY KIND
CONCERNING THE MERCHANTABILITY OF THIS SOFTWARE OR
ITS FITNESS FOR ANY PARTICULAR PURPOSE.

ii

Preface

Most of numerical analysis relies on algorithms for performing calculations on
matrices and vectors. The operations most needed are ones which solve systems
of linear equations, solve least squares problems, and eigenvalue and eigenvector
calculations. These operations form the basis of most algorithms for solving systems
of nonlinear equations, numerically computing the maximum or minimum of a function,
or solving differential equations.

The Meschach library contains routines to address all of the basic operations for
dealing with matrices and vectors, and a number of other issues as well. I do not claim
that it contains every useful algorithm in numerical linear algebra, but it does provide a
basis on which to build more advanced algorithms. The library is intended for people
who know something of the 'C' programming language, something ofhow to solve the
numerical problem they are faced with (which involves matrices :md/or vectors) but
don't want to have the hassle of building all the necessary operations from the ground
up. I hope that researchers, mathematicians, engineers and programmers will find this
library makes the task of developing and producing code for their numerical problems
easier, and easier to maintain than would otherwise be possible.

To this end the source code is available to be perused, used and passed on without
cost, while ensuring that the quality of the software is not compromised. The software
is copyrighted; however, the copyright agreement follows in the footsteps of the Free
Software Foundation in preventing abuse that occurs with totally "public domain"
software.

This is not the first or only library of numerical routines in C. However, there are
still a number of niches which have not been filled. Some of the currently available
libraries are essentially translations of Fortran routines into C. Those that attempt to
make use of C's features usually address a relatively small class of problems. There is a
commercial package of C++ routines (and classes) for performing matrix computations,
and NAG and llviSL are producing C versions of their libraries. None of these is "public
domain".

The Meschach library makes extensive use of C's special features (pointers, mem
ory allocation/deallocation, structures/records, low level operations) to ease use and
ensure good performance. In addition, Meschach addresses the need for both dense
and sparse matrix operations within a single framework.

There is another issue which needs to be addressed by a matrix library like this.
At one end, libraries that are essentially translations from Fortran will make little
use of memory allocation. At the other end, interactive matrix "calculators" such as
MATLAB and MATCALC use memory allocation and garbage collection as a matter
of course and have to interpret your "program". This latter approach is very flexible,
but resource hungry. These matrix calculator programs were not designed to deal with
large problems.

This matrix library is intended to provide a "middle ground" between efficient but
inflexible Fortran-style programs, and flexible but resource hungry calculator/interpreter
programs. When and how memory is allocated in Meschach can be controlled by us-

iii

ing the allocation/deallocation and resizing routines; result matrices and vectors can
be created dynamically when needed, or allocated once, and then used as a static array.
Unnecessary memory allocation is avoided where necessary. This means that proto
typing can often be done on MATLAB or MATCALC, and final code can be written
that is efficient and can be incorporated into other C programs and routines without
having to re~write all the basic routines from scratch.

This documentation describes Meschach 1.2 which has a number of improvements
over previous versions of Meschach. Amongst these improvements are:

• easier installation (at least on Unix machines).

• complex numbers, vectors and matrices, including complex matrix factorisation.

• band matrix structures, and band factorise and solve routines.

• better control of static workspace arrays.

e' more iterative methods for large, sparse or structured matrices, and a compre
hensive "iteration" data structure.

• more consistent naming schemes.

• matrix polynomials and exponentials.

• extensible error handling.

Finally, we would like to thank all those at the University of Queensland Math
ematics Department, at Opcom, and at the Australian National University for their
interest in and comments on this matrix library. In particular, we would like to thank
Martin Sharry, Michael Forbes, Phil Kilby, John Holt, Phil Pollett and Tony Watts
at the University of Queensland, and Mike Osborne, Teresa Leyk at the Australian
National University and Karen George from the University of Canberra. Email has
become significant part of work, and many people have pointed out bugs, inconsis
tencies and improvements to Meschach by email. These people include Ajay Shah of
the University of Southern California, Dov Grobgeld of the Weizmann Institute, John
Edstrom of the University of Calgary, Eric Grosse, one of the netlib organisers, Ole
Saether of somewhere in Norway, Alfred Thiele and Pierre Asselin of Carnegie-Mellon
Univeristy, Daniel Polani of the University of Mainz, Marian Slodicka of Slovakia,
Kaifu Wu of Pomona, Hidetoshi Shimodaira of the University of Tokyo, Eng Siong of
Edinburgh, Hirakawa Rui of the University of Tokyo, Marko Slyz of the University of
Michigan, and Brook Milligan of the University of Texas. This list is only partial, and
there are many others who have corresponded with me on details about Meschach and
the like. Finally my thanks go to all those that have had to struggle with compilers and
other things to get Meschach to work.

David E. Stewart & Zbigniew Leyk, Canberra, Australia, 1993

iv

Meschach
Matrix Computations in C

1 Tutorial
1.1 The data structures and some basic operations
1.2 How to manage memory

1.2.1 No deallocation
1.2.2 Allocate and deallocate
1.2.3 Resize on demand . . .

1
1
5
6
6
6

1.2.4 Registration of workspace 7
1.3 Simple vector operations: An RK4 routine . 8
1.4 Using routines for lists of arguments 14
1.5 A least squares problem 15
1.6 A sparse matrix example 18
1. 7 How do I ? 20

1. 7.1 solve a system of linear equations 20
1.7.2 solve a least-squares problem . . 20
1.7.3 find all the eigenvalues (and eigenvectors) of a general

matrix . 20
1.7.4 solve a large, sparse, positive definite system of equations 21

2 Data structures
2.1 General principles
2.2 Vectors

2.2.1 Integer vectors
2.2.2 Complex vectors

2.3 Matrices
2.3.1 Complex matrices
2.3.2 Band matrices . .

2.4 Permutations
2.5 Basic sparse operations and structures
2.6 The sparse data structures
2. 7 Sparse matrix factorisation
2.8 Iterative techniques .
2.9 Other data structures .

3 Numerical Linear Algebra
3.1 What numerical linear algebra is about .
3.2 Complex conjugates and adjoints
3.3 Vector and matrix norms
3.4 "Ill conditioning" or intrinsically bad problems

v

23
23
24
25
25
26
27
27
28
29
30
33
34
36

37
37
38
38
39

3.5 Least squares and pseudo-inverses ...
3.5.1 Singular Value Decompositions
3.5.2 Pseudo-inverses
3.5.3 QR factorisations and least squares

3.6 Eigenvalues and eigenvectors
3. 7 Sparse matrix operations . .

4 Basic Dense Matrix Operations

5 Dense Matrix Factorisation Operations

6 Sparse Matrix & Iterative Operations

7 Installation and copyright
7.1 Installation

7.1.1 Installation on non-Unix systems
7.1.2 makefile .
7 .1.3 machine.h . . .
7.1.4 machine.c ...

7.2 Backward compatibility
7.3 Copyright

8 Designing numerical libraries in C
8.1 Numerical programming inC

8.1.1 On efficient compilers .
8.1.2 Strategies for using C .
8.1.3 Non-C programmers start here!

8.2 The data structures
8.2.1 Pointers to struct's . . .
8.2.2 Really basic operations .
8.2.3 Output .
8.2.4 Copying
8.2.5 Input . .
8.2.6 Resizing

8.3 How to implement routines .
8.3.1 Design for debugging
8.3.2 Workspace
8.3.3 Incorporating user-defined types into Meschach
8.3.4 Output and object resizing

8.4 User-defined functions . .
8.5 Building the library

8.5.1 Numerical aspects
8.6 Debugging

8.6.1 Memory allocation bugs
8.6.2 If all else fails

vi

41
42
42
43
44
46

49

115

148

181
. 181
. 183

184
184
185
187

. 187

189
. 189
. 190

190
191
195
195
196
198
199

. 200

. 202

. 203

. 203

. 204

. 206

. 210

. 211

. 213

. 214

. 215

. 216

. 217

8.7 Suggestions for enthusiasts ...
8.8 Pride and Prejudice

8.8.1 What about Fortran 90?
8.8.2 Why should people writing numerical code care about good

. 218

. 218

. 218

software? 218

For further reading ... 220

Index 221

Function index 229

vii

Chapter 1

Tutorial

In this chapter, the basic data structures are introduced, and som~ of the more basic
operations are illustrated. Then some examples of how to use the data structures and
procedures to solve some simple problems are given. The first example program is a
simple 4th order Runge-Kutta solver for Ordinary Differential Equations. The second
is a general least squares equation solver for over-determined equations. The third
example illustrates how to solve a problem involving sparse matrices. These exam
ples illustrate the use of matrices, matrix factorisations and solving systems of linear
equations. The examples described in this chapter are implemented in tutorial. c.

While the description of each aspect of the system is brief and far from compre
hensive, the aim is to show the different aspects of how to set up programs and routines
and how these work in practice, which includes I/0 and error-handling issues.

1.1 The data structures and some basic operations

The three main data structures are those describing vectors, matrices and permuta
tions. These have been used to create data structures for simplex tableaus for linear
programming, and used with data structures for sparse matrices etc. To use the system
reliably, you should always use pointers to these data structures and use library routines
to do all the necessary initialisation. In fact, for the operations that involve memory
management (creation, destruction and resizing), it is essential that you use the routines
provided.

For example, to create a matrix A of size 3 x 4, a vector x of dimension 10, and a
permutation p of size 10, use the following code:

#include "matrix.h"

main{)
{

MAT *A;
VEC *x;
PERM *p;

1

2

}

A= m_get(3,4);
x = v_get(10);
p = px_get(lO);

CHAPTER!. TUTORIAL

This initialises these data structures to have the given size. The matrix A and the
vector x are initially all zero, while p is initially the identity permutation. They can
be disposed of by calling M_FREE (A) , v _FREE { x) and PX_FREE (p) respectively
if you need to re-use the memory for something else. The elements of each data
structure can be accessed directly using the members (or fields) of the corresponding
structures. For example the (i,j) component of A is accessed by A->me [i] [j], xi

byx->ve[i] andpibyp-:>pe[i].
Their sizes are also directly accessible: A- >m and A- >n are the number of rows and

columns of A respectively, x->dim is the dimension of x, and size of pis p->size.
Note that the indexes are zero relative just as they are in ordinary C, so that the index
i in x- >ve [i] can range from 0 to x- >dim- 1. Thus the total number of entries of
a vector is exactly x- >dim.

While this alone is sufficient to allow a prograrnmer to do any desired operation
with vectors and matrices it is neither convenient for the programmer, nor efficient
use of the CPU. A whole library has been implemented to reduce the burden on the
programmer in implementing algorithms with vectors and matrices. For instance, to
copy a vector from x toy it is sufficient to write y = v_copy(x, VNULL}. The
VNULL is the NULL vector, and usually tells the routine called to create a vector for
output. Thus, the v _copy function will create a vector which has the same size as x
and all the components are equal to those of x. If y has already been created then you
can write y = v _copy (x, y) ; in general, writing "v _copy (x, y) ; " is not enough!
Ify is NULL, then it is created (to have the correct size, i.e. the same size as x), and if
it is the wrong size, then it is resized to have the correct size (i.e. same size as x). Note
that for all the following functions, the output value is returned, even if you have a
non-NULL value as the output argument. This is the standard across the entire library.

Addition, subtraction and scalar multiples of vectors can be computed by calls
to library routines: v_add (x, y, out), v_sub (x,y, out), sv_mlt (s, x, out}
where x andy are input vectors (with data type VEC *), out is the output vector
(same data type) and sis a double precision number (data type double). There is also
a special combination routine, which computes out = v1 + s v2 in a single routine:
v _ml tadd (vl, v2, s, out) . This is not only extremely useful, it is also more
efficient than using the scalar-vector multiply and vector addition routines separately.

Inner products can be computed directly: in_prod (x, y) returns the inner prod
uct of x andy. Note that extended precision evaluation is not guaranteed. The standard
installation options uses double precision operations throughout the library.

Equivalent operations can be performed on matrices: m_add (A, B, C) which
returns C = A + B, and sm_ml t (s, A, c) which returns C = sA. The data types

1.1. THE DATA STRUCTURES AND SOME BASIC OPERATIONS

of A, B and c are all MAT *, while that of s is type double as before. The matrix
NULL is called MNULL.

Multiplying matrices and vectors can be done by a single function call:
mv_mlt(A,x,out) returns out= Ax while vm_mlt(A,x,out) returns out=
AT x, or equivalently, outT = xT A. Note that there is no distinction between row
and column vectors unlike certain interactive environments such as MATLAB or
MATCALC.

Permutations are also an essential part of the package. Vectors can be permuted
by using px_ vee (p, x, p~x), rows and columns of matrices can be permuted by
using px_rows (p, A, p_A), px_cols (p, A, A_p), and permutations can be mul
tiplied using px_mlt(pl,p2,pl_p2) and inverted using px_inv(p,p_inv).

The NULL permutation is called PXNULL.

There are also utility routines to initialise or re-initialise these data structures:
v _zero (x), m._zero (A), m_ident (A) (which sets A = I of the correct size),
v_rand(x), m_rand(A) which sets the entries of x and A respectively to be ran.~
domly and uniformly selected between zero and one, and px_ident (p) which sets
p to be an identity permutation.

Input and output are accomplished by library routines v·_inpu't (x),

m_input (A}, and px_input (p). If a null object is passed to any of these input
routines, aU data will be obtained from the input file, which is stdin. If input is
taken from a keyboard then the user will be prompted for all the data items needed;
if input is taken from a file, then the input will have to be of the same format as that
produced by the output routines, ·which are: vc_out.put (x}, m_output (A) and
px_output) . This output is both human and machine readable!

If you wish to send the data to a file other than the standard output device stdout,

or receive input from a file or device other than the standard irtput device stdin, take
the appropriate routine above, use the "foutpout" suffix instead of just "output",
and add a file pointer as the first argument. For example, to send a matrix A to a file
called "fred", use the following:

#include "matrix.h"

main()
{

}

FILE *fp;
MAT *A,;

fp = fopen("fred","w");
m_foutput(fp,A);

These input routines allow for the presence ofcomments in the data. A comment in
the input starts with a "hash" character"#", and continues to the end of the line. For
example, the following is valid input for a 3~dimensional vector:

4

The initial vector must not be zero
X =
Vector: dim: 3
-7 0 3

CHAPTER 1. TUTORIAL

For general input/output which conforms to this format, allowing comments in the
input files, use the input () and finput () macros. These are used to print out a
prompt message if stdin is a terminal (or "tty" in Unix jargon), and to skip over any
comments if input is from a non-interactive device. An example of the usage of these
macros is:

input ("Input number of steps: ", "%d", &nsteps) ;
fp = stdin;
finput(fp,"Input number of steps: ","%d",&nsteps);
fp = fopen("fred","r");
finput (fp, "Input number of steps: ", "%d" ,&nsteps);

The "%d" strings are the format strings as used by scanf () and f scanf () ; the
last argument is the pointer to the variable (unless the variable is a string) just as for
scanf () and fscanf (). The first two macro calls read input from stdin, the last
from the file fred. If, in the first two calls, stdin is a keyboard (a "tty" in Unix
jargon) then the prompt string "Input number of steps: " is printed out on
the terminal.

The second part of the library contains routines for various factorisation methods.
To use it put

#include "matrix2.h"

at the beginning of your program. It contains factorisation and solution routines for
LU, Cholesky and QR-factorisation methods, as well as update routines for Cholesky
and QR factorisations. Supporting these are a number of Householder transformation
and Givens' rotation routines. Also there is a routine for generating the Q matrix for
a QR-factorisation, if it is needed explicitly, as it often is. There are routines for band
factorisation and solution for LU and LD LT factorisations.

For using complex numbers, vectors and matrices include

#include "zmatrix.h"

for using the basic routines, and

#include "zmatrix2.h"

for the complex matrix factorisation routines. The zmatrix2. h file includes
:matrix. h and z:matrix. h so you don't need these files included together.

For using the sparse matrix routines in the library you need to put

#include "sparse.h"

1.2. HOW TO MANAGE MEMORY 5

or, if you use any sparse factorisation routines

#include "sparse2.h"

at the beginning of your file. The routines contained in the library include routines
for creating, destroying, initialising and updating sparse matrices, and also routines for
sparse matrix-dense vector multiplication, sparse LU factorisation and sparse Cholesky
factorisation.

For using the iterative routines you need to use

#include "iter.h"

This includes the sparse. h and matrix. h file. There are also routines for apply
ing iterative methods such as pre-conditioned conjugate gradient methods to sparse
matrices.

And if you use the standard maths library (sin(), cosO, tan(), exp{),
log (), sqrt (), acos () etc.) don't forget to include the standard mathematics
header:

#include <math.h>

This file is not automatically included by any of the Meschach header files.

1.2 How to manage memory

Unlike many other numerical libraries, Meschach allows you to allocate, deallocate and
resize the vectors, matrices and permutations that you are using. To gain maximum
benefit from this it is sometimes necessary to think a little about where memory is
allocated and deallocated. There are two reasons for this.

1. Memory allocation, deallocation and resizing takes a significant amount of time
compared with (say) vector operations, so it should not be done too frequently.

2. Allocating memory but not deallocating it means that it can't be used by any other
data structure. Data structures that are no longer needed should be explicitly
deallocated, or kept as static variables for later use. Unlike other interpreted
systems (such as Lisp) there is no implicit "garbage collection" of no-longer
used memory.

There are three main strategies that are recommended for deciding how to allocate,
deallocate and resize objects. These are "no deallocation" which is really only useful
for demonstration programs, "allocate and deallocate" which minimises overall mem~
ory requirements at the expense of speed, and "resize on demand" which is useful for
routines that are called repeatedly. A new technique for static workspace arrays is to
"register workspace variables".

6 CHAPTER 1. ·TUTORIAL

1.2.1 No deallocation

This is the strategy of allocating but never deallocating data structures. This is only
useful for demonstration programs run with small to medium size data structures. For
example, there could be a line

QR = m_copy(A,MNULL); I* allocate memory for QR *I

to allocate the memory, but without the call M_FREE (QR); in it. This can be ac
ceptable if QR = m_ copy (A, MNULL) is only executed once, and so the allocated
memory never needs to be explicitly deallocated.

This would not be acceptable if QR = m_copy(A,MNULL) occurred inside a
for loop. If this were so, then memory would be "lost" as far as the program is
concerned until there was insufficient space for allocating the next matrix for QR. The
next subsection shows how to avoid this.

1.2.2 Allocate and deallocate

This is the most straightforward way of ensuring that memory is not lost. With the
example of allocating QR it would work like this:

for (. . . ; . . . ; . . .)
{

}

QR = m_copy(A,MNULL); I* allocate memory for QR *I
I* could have been allocated by m_get() *I
I* use QR *I

I* deallocate QR so memory can be reused *I
M_FREE (QR) ;

The allocate and deallocate statements could also have come at the beginning and end
of a function or procedure, so that when the function returns, all the memory that the
function has allocated has been deallocated.

This is most suitable for functions or sections of code that are called repeatedly
but involve fairly extensive calculations (at least a matrix-matrix multiply, or solving
a system of equations).

1.2.3 Resize on demand

This technique reduces the time involved in memory allocation for code that is repeat
edly called or used, especially where the same size matrix or vector is needed. For
example, the vectors vl, v2, etc. in the Runge-Kutta routine rk4 () are allocated
according to this strategy:

1.2. HOW TO MANAGE MEMORY

rk4 (.•. , x, ...)
{

}

static VEC *vl=VNULL, *v2=VNULL, *v3=VNULL,
*v4=VNULL, *temp=VNULL;

vl = v_resize(vl,x->dim);
v2 = v_resize(v2,x->dim);
v3 = v_resize(v3,x->dim);
v4 = v_resize(v4,x->dim);
temp = v_resize(temp,x->dim);

7

The intention is that the rk4 () routine is called repeatedly with the same size x vector.
It then doesn't make as much sense to allocate vl, v2 etc. whenever the function is
called. Instead, v _resize () only performs memory allocation if the memory already
allocated to vl, v2 etc. is smaller than x- >dim.

The vectors vl, v2 etc. are declared to be static to ensure that their values are
not lost between function calls. Variables that are declared static are set to NULL
or zero by default So the declaration of vl, v2, etc., could be

static VEC *vl, *v2, *v3, *v4, *temp;

This strategy of resizing static workspace variables is not so useful if the object
being allocated is extremely large. The previous "allocate and deallocate" strategy
is much more efficient for memory in those circumstances. However, the following
section shows how to get the best of both worlds.

1.2.4 Registration of workspace

From version 1.2 onwards, workspace variables can be registered so that the memory
they reference can be freed up on demand. To do this, the function containing the static
workspace variables has to include calls to MEM_STAT_REG (var, type) where var
is a pointer to a Meschach data type (such as VEC or MAT). This call should be placed
after the call to the appropriate resize function. The type parameter should be a
TYPE_. • • macro where the " .•• " is the name of a Meschach type such as VEC or
MAT. For example,

rk4(... ,x, ...)
{

static VEC *vl, *v2, *v3, *v4, *temp;

vl = v_resize(vl,x->dim);
MEM_STAT_REG(vl,TYPE_VEC);
v2 = v_resize(v2,x->dim);
MEM_STAT_REG(v2,TYPE_VEC);

8 CHAPTER 1. TUTORIAL

}

Normally, these registered workspace variables remain allocated. However, to
implement the "deallocate on exit" approach, use the following code:

mem_stat_mark(l);
rk4(••• ,x, ...)
mem_stat_free(l);

To keep the workspace vectors allocated for the duration of a loop, but then deallocated,
use

mem_stat_mark(1);
for (i = 0; i < N; i++

rk4{ ••• ,x, ...);
mem_stat_free(l);

The number used in the mem_stat_mark () and mem_stat_free () calls is the
workspace group number. The callmem_stat_mark (1) ; designates 1 as the current
workspace group number; the call me:m_stat_free (1); deallocates (and sets to
NULL) all static workspace variables registered as belonging to workspace group 1.

1.3 Simple vector operations: An RK4 routine

The main purpose of this example is to show how to deal with vectors and to compute
linear combinations.

The problem here is to implement the standard 4th order Runge-Kutta method for
the ODE

X1 = f(t, X), x(to) = Xo

for x(ti), i = 1, 2, 3, ... where ti = t 0 + i hand his the step size. The formulae for
the 4th order Runge-Kutta method are:

h
xi+l =xi+ 6{v1 + 2vz + 2v3 + v4}

where

Vt = f(ti, xi)
1 1

Vz = f(ti + 2h, xi+ 2hv1)

1 1
v3 = f(ti + 2h, xi+ 2hv2)

V4 = f(ti + h, Xi+ hv3)
(1.1)

1.3. SIMPLE VECTOR OPERATIONS: AN RK4 ROUTINE 9

where the vi are vectors.
The procedure for implementing this method (rk4 ())will be passed (a pointer to)

the function f; the implementation off could, in this system, create a vector to hold the
return value each time it is called. However, such a scheme is memory intensive and
the calls to the memory allocation functions could easily dominate the time performed
doing numerical computations. So, the implementation of f will also be passed an
already allocated vector to be filled in with the appropriate values.

The procedure rk4 () will also be passed the current timet, the step size h, and
the current value for x. The time after the step will be returned by rk4 ().

The code that does this follows.

#include "matrix.h"

I* rk4 -- 4th order Runge--Kutta method *I
double rk4(f,t,x,h)
double t, h;
VEC *(*f)(), *x;
{

static VEC *vl=VNULL, *v2=VNULL, *v3=VNULL, *v4=VNULL;
static VEC *temp=VNULL;

I* do not work with NULL initial vector *I
if (x == VNULL)

error(E_NULL,"rk4");

I* ensure that vl, v2, etc. are of the correct size *I
vl = v_resize(vl,x->dim);
v2 = v_resize(v2,x->dim);
v3 ~ v_resize(v3,x->dim);
v4 = v_resize(v4,x->dim);
temp= v_resize(temp,x->dim);
I* register workspace variables *I
MEM_STAT_REG(vl,TYPE_VEC);
MEM_STAT_REG(v2,TYPE_VEC);
MEM_STAT_REG(v3,TYPE_VEC);
MEM_STAT_REG(v4,TYPE_VEC);
MEM_STAT_REG(temp,TYPE_VEC);
I* end of memory allocation *I
(*f)(t,x,vl); I* most compilers allow: "f(t,x,vl);" *I
v_mltadd(x,vl,O.S*h,temp); /*temp= X+.S*h*Vl */
(*f)(t+0.5*h,temp,v2);
v_mltadd(x,v2,0.5*h,temp); I* temp = X+.5*h*v2 *I
(*f)(t+0.5*h,temp,v3);
v_mltadd(x,v3,h,temp); I* temp = x+h*v3 *I
(*f) (t+h,temp.,v4);

10 CHAPTERl. TUTORIAL

I* now add: v1+2*v2+2*v3+v4 *I
v_copy(vl,temp); I* temp = vl *I
v_mltadd(temp,v2,2.0,temp); I* temp ::::: v1+2*v2 *I
v_mltadd(temp,v3,2.0,temp); I* temp "" v1+2*v2+2*v3 *I
v_add(temp,v4,temp); I* temp = v1+2*v2+2*v3+v4 *I

I* adjust x */
v_mltadd(x,temp,h/6.0,x); I* x = x+(hl6)*temp *I
return t+h; !* return the new time *I

}

Note that the last parameter off () is where the output is placed. Often this can
be NOLL in which case the appropriate data structure is allocated and initialised. Note
also that this routine can be used for problems of arbitrary size, and the dimension
of the problem is determined directly from the data given. The vectors v1 , ... , v4 are
created to have the correct size in the lines

vl = v_resize(vl,x->dim);
v-2 = v_resize(v2,x->dim);

Here v_resize(v,dim) resizes the VEC structure v to hold a vector of length
dim. If v is initially NULL, then this creates a new vector of dimension dim, just as
v _get (dim) would do. For the above piece of code to work correctly, vl, v2 etc.,
must be initialised to be NULL vectors. This is done by the declaration

static VEC *vl=VNULL, *v2=VNULL, *v3=VNULL, *v4=VNULL;

or

static VEC *vl, *v2, *v3, *v4;

The operations of vector addition and scalar addition are really the only vector op
erations that need to be performed in rk4. Vector addition is done by v _add (vl, v2,
out), where out=vl+v2, and scalar multiplication by sv_mlt (scale,v, out),
where out=scale*v.

These can becombinedintoasingleoperationv_mltadd (vl, v2, scale, out),
where out=v1+scale*v2. As many operations in numerical mathematics involve
accumulating scalar multiples, this is an extremely useful operation, as we can see
above. For example:

v_mltadd(x,vl,O.S*h,temp); I* temp = X+.5*h*v1 */

We also need a number of "utility" operations. For example v _copy (in, out)
copies the vector in to out. There is also v _zero {v) to zero a vector v.

1.3. SIMPLE VECTOR OPERATIONS: AN RK4 ROUTINE

Here is an implementation of the function f for simple harrrionic motion:

I* f -- right-hand side of ODE solver */
VEC *f(t,x,out)
VEC *x, *out;
double t;
{

}

if (x == VNULL I I out == VNULL
error(E_NULL,"f");

if (x->dim != 2 I I out->dim != 2
error(E_SIZES,"f");

out->ve[O] = x->ve[l];
out->ve[l] = - x->ve[O];

return out;

11

As can be seen, most of this code is error checking code, which, of course, makes
the routine safer but a little slower. For a procedure like f () it is probably not
necessary, although then the main program would have to perform checking to ensure
that the vectors involved have the correct size etc. The ith component of a vector x
is x- >ve [i 1 , and indexing is zero-relative (i.e., the "first" component is component
0). The ODE described above is for simple harmonic motion: x~ = x1, x~ = -x0 , or
eqqivalently, x~ + x 0 = 0.

Here is the main program:

#include <stdio.h>
#include "matrix.h"

main()
{

VEC
VEC
double
double

*x;
*f ();
h, t, t_fin;
rk4 ();

input ("Input initial time: ", "%lf", &:t) ;
input("Input final time: ", "%lf",&:t_fin);
x = v_get(2); /*this is the size needed by f() *l
prompter("Input initial state:\n"); x = v_input(VNULL);
input ("Input step size: ", "%1£" 1 &:h);

printf("# At time %g, the state is\ni',t);
v_output (x);

12

while
{

CHAPTER!. TUTORIAL

t < t_fin)

t = rk4(f,t,x,min(h,t:_fin-t));/* newt is returned*/
printf("# At time %g, the state is\n",t);
v_output (x);
t += h;

}

}

Here the initial values are entered as a vector by v _input () . If v _input () is
passed a vector, then this vector will be used to store the input, and this vector has the
size that x had on entry to v _input (). The original values of x are also used as a
prompt on input from a tty. If a NOLL is passed to v_input () then v_input ()
will return a vector of whatever size the user inputs. So, to ensure that only a two
dimensional vector is used for the initial conditions (which is what f () is expecting)
we use

x = v_get(2); x = v_input (x);

To compile the program under Unix™, if it is in a file tutorial. c is:

cc -o tutorial tutorial.c meschach.a

or, if you have an ANSI compiler,

cc ~DANSI_C -o tutorial tutorial.c meschach.a

Here is a sample session with the above program:

% tutorial

Input initial time: 0
Input final time: 1
Input initial state:
Vector: dim: 2
entry 0: -1
entry 1: b
entry 0: old -1 new: 1
entry 1: old 0 new: 0
Input step size: 0.1
At time 0, the state is
Vector: dim: 2

1 0
At time 0.1, the state is
Vector: dim: 2

0.995004167 -0.0998333333

1.3. SIMPLE VECTOR OPERATIONS: AN RK4 ROUTINE

At time 1, the state is
Vector: dim: 2

0.540302967 -0.841470478

13

By way of comparison, the state at t = 1 for the true solution is x 0 (1) = 0.5403023058,
x1 (1) = -0.8414 709848, The "b" that is typed in entering the x vector allows the
user to alter previously entered components; in this case once this is done, the user is
prompted with the old values when entering the new values. The user can also type
in "f" for skipping over the vector's components, which are then unchanged. If an
incorrectly sized initial value vector xis given, the error handler comes into action:

% tutorial

Input initial time: 0
Input final time~ 1

Input initial state:
Vector~ dim: 3
entry 0: 3

entry 1: 2

entry 2: -1

Input step size: 0.1
At time 0, the state is
Vector~ dim: 3

3 -1

"tutorial.c", line 79: sizes of objects don't match in
function f (}

Sorry, aborting program
%

The error handler prints out the error message giving the source code file and line
number as well as the function name where the error was raised. The relevant section.
off () in file testl. c is:

if (x->dim != 2 I I out->dim != 2)
error(E_SIZES, "f"); I* line 79 */

The standard routines in this system perform error checking of this type, and also
checking for undefined results such as division by zero in the routines for solving
systems of linear equations. There are also error messages for incorrectly formatted
input and end-of-file conditions.

To round off the discussion of this program, note that we have seen interactive
input of vectors. If the input file or stream is not a tty (e.g., a file, a pipeline or a device)
then it expects the input to have the same form as the output for each of the data
structures. Each of the input routines (v _input (), m_input (), px.....:input ())

14 CHAPTER!. TUTORIAL

skips over "comments" in the input data, as do the macros input () and finput ().
Anything from a '#' to the end of the line (or EOF) is considered to be a comment. For
example, the initial value problem could be set up in a file i vp. da t as:

Initial time
0
Final time
1
#Solution is x(t) = (cos(t),-sin(t))
x(O) =
Vector: dim: 2
1 0
Step size
0.1

The output of the above program with the above input (from a file) gives essentially
the same output as shown above on p. 12, except that no prompts are sent to the screen.

1.4 Using routines for lists of arguments

Some of the most common routines have vaariants that take a variable number of
arguments. These are the routines •• get_vars (), •• _resize_vars () and
•• _free_vars (). These correspond to the the basic routines •• _get (),
•• _resize() and •• _free() respectively. Also there is the
mem_stat_reg_ vars () routine which registers a list of static workspace variables;
this corresponds to mem_stat_reg_list () for a single variable. Here is an exam
ple of how to use these functions. This example, also uses the routine v_linlist {)
to compute a linear combinartion. Note that the code is much more compact, but don't
forget that these " ••• _ vars ()" routines usually need the address-of operator "&:"
and NULL termination of the arguments for these to work correctly.

#include "matrix.h"

I* rk4 -- 4th order Runge--Kutta method */
double
double
VEC

rk4(f,t,x,h)
t, h;
*(*f)(), *x;

{

static VEC *v1, *v2, *v3, *v4, *temp;

/* do not work with NULL initial vector */
if (x == VNULL) error(E_NULL,"rk4");

/* ensure that v1, v2 etc. are of the correct size */
v_resize_vars(x->dim,&:v1,&:v2,&:v3,&:v4,&:temp,NULL);

1.5. A LEAST SQUARES PROBLEM 15

}

I* register workspace variables */
mem_stat_reg_vars(O,TYPE_VEC,&vl,&v2,&v3,&v4,&temp,NULL);
I* end of memory allocation *I
(*f)(t,x,vl); v_mltadd(x,v1,0.5*h,temp);
(*f)(t+0.5*h,temp,v2);
(*f) (t+0.5*h,temp,v3);
(*f) (t+h,temp,v4);

v_mltadd(x,v2,0.5*h,temp);
v_mltadd(x,v3,h,temp);

I* now add: temp = v1+2*v2+2*v3+v4 *I
v_linlist(temp,v1,1.0,v2,2.0,v3,2.0,v4,1.0,VNULL}
I* adjust x *I
v_mltadd(x,temp,h/6.0,x); I* x = X+{hl6)*temp *I

return t+h; I* return the new time *I

1.5 A least squares problem

Here we need to use matrices and matrix factorisations (in particular, a QR factorisation)
in order to find the best linear least squares solution to some data. Thus in order to
solve the (approximate) equations

Ax~ b for x

where A is an m x n matrix (m > n) we really need to solve the optimisation problem

min !lAx- bll~-
"'

If we write A = Q R where Q is an orthogonal m x m matrix and R is an upper
triangular m x n matrix then

(1.2) I lAx - bll2 = IIRx - QTblb = II [~] x - [~f] bll2 .

where R1 is an n x n upper triangular matrix. If A has full rank then R1 will be an
invertible matrix, and the best least squares solution of Ax~ b is x = H11Qfb.

These calculations can be be done quite easily as there is a QRfactor () function
available with the system. QRfactor () is declared to have the prototype

MAT *QRfactor(MAT *A, VEC *diag);

The matrix A is overwritten with the factorisation of A "in compact form"; that is, while
the upper triangular part of A is indeed the R matrix described above, the Q matrix is
stored as a collection of Householder vectors in the strictly lower triangular part of A

and in the diag vector. The QRsol ve () function knows and uses this compact form
and solves QRx ~ b with the call QRsolve (A, diag, b,x), which also returns x.

Here is the code to obtain the matrix A, perform the QR factorisation, obtain the
data vector b, solve for x, and determine what the norm of the errors (!lAx- bll 2) is.

16 CHAPTER 1. TUTORIAL

#include "matrix2.h"

main()
{

}

MAT *A, *QR;
VEC *b, *x, *diag;

/* read in A matrix */
print£ ("Input A matrix: \n·");

A= m_input(MNULL); /*A has whatever size is input */

if (A->m < A->n
{.

printf("Need m >= n to obtain least squares fit\n");
exit(O);

}

print£ ("# A =\n"); m_output (A);
diag = v_get(A->m);
/* QR is to be the QR factorisation of A */
QR = m_copy(A,MNULL);
QRfactor(QR,diag);
/* read in b vector */
print£ ("Input b vector: \n") ;
b = v_get(A->m);
b = v_input (b);
print£("# b =\n"); v_output(b);

I* solve for x */
x = QRsolve(QR,diag,b,VNULL);
print£ ("Vector of best fit parameters is\n");
v_output(x);
/* .•• and work out norm of errors ••• */
printf("IIA*x-bll = %g\n",

v_norm2(v_sub(mv_mlt(A,x,VNULL),b,VNULL)));

Note that as well as the usual memory allocation functions like m_get () , the 1/0
functions like m_input () and m_output (), and the factorise-and-solve functions
QRfactor () and QRsol ve (), there are also functions for matrix-vector multipli
cation: mv..mlt (MAT *A, VEC *x, VEC *out). and also vector-matrix multi
plication (with the vector on the left): vm..mlt (MAT *A, VEC *x, VEC *out),
with out = xT A. There are also functions to perform matrix arithmetic - matrix
addition m_add () , matrix-scalar multiplication sm_ml t () , matrix-matrix multipli
cation m_mlt ().

1.5. A LEAST SQUARES PROBLEM 17

Several different sorts of matrix factorisation are supported: LU factorisation
(also known as Gaussian elimination) with partial pivoting, by LUfactor () and
LUsol ve (). Other factorisation methods include Cholesky factorisation CHfactor ()
and CHsol ve (), and QR factorisation with column pivoting QRCl?factor ().

Pivoting involve permutations which have their own PERM data structure. Per
mutations can be created by px_get (), read and written by px_input () and
px_output (), multiplied by px_mlt (), inverted by px_inv() and applied to
vectors by px_ vee () .

The above program can be put into a file leastsq. c and compiled under Unix™
using

cc -o leastsq leastsq.c meschach.a -lm

A sample session using leastsq follows:

% leastsq
Input A matrix:
Matrix: rows cols:S 3

row 0:

entry (0,0}: 3
entry (0,1}: -1
entry (0,2): 2
Continue:
row 1:

entry (1, 0) : 2

entry (l,l)g -1
entry (1,2): 1
Continue: n
row 1:
entry (1,0): old
entry (1,1): old
entry (1,2): old
Continue:
row 2:
entry (2,0}: old

2 new: 2
-1 new: -1

1 new: 1.2

0 new: 2.5

(Data entry)

A =
Matrix: 5 by 3

row 0: 3 -1

row 1: 2 -1

row 2: 2.5 1

row 3: 3 1

row 4: -1 1

2
1.2

-1.5

1

-2.2

18

Input b vector:
entry 0: old
entry 1: old
entry 2:i old
entry 3: old
entry 4: old
b =
Vector: dim: 5

5

0 new:
0 new:
0 new:
0 new:
0 new~

3
Vector of best fit parameters is
Vector: dim: 3

1.47241555 -0.402817858

IIA*x-b!l = 6.78938

CHAPTER 1. TUTORIAL

5

3

2
4

6

6

-1.14411815

The Q matrix can be obtained explicitly by the routine makeQ () . The Q matrix
can then be used to obtain an orthogonal basis for the range of A. An orthogonal basis
for the null space of A can be obtained by finding the QR-factorisation of AT.

1.6 A sparse matrix example

To illustrate the sparse matrix routines, consider the problem of solving Poisson's
equation on a square using finite differences, and incomplete Cholesky factorisation.
The actual equations to solve are

fori,j = l, ... ,lV

where uo,j = ui,o = uN+l,j = ui,N+l = 0 for i,j = 1, ... , lV and his the common
distance between grid points.

The first task is to set up the matrix describing this system of linear equations. The
next is to set up the right-hand side. The third is to form the incomplete Cholesky
factorisation of this matrix, and finally to use the sparse matrix conjugate gradient
routine with the incomplete Cholesky factorisation as preconditioner.

Setting up the matrix and right-hand side can be done by the following code:

#define N 100
#define index(i,j) (N*((i)-l)+(j)-1}

A= sp_get(N*N,N*N,5);
b = v_get (N*N);
h = 1.0/(N+l); /* for a unit square */

for (i = 1; i <= N; i++)
for j = 1; j <= N; j++
{

1.6. A SPARSE MATRIX EXAMPLE

}

if (i < N)
sp_set_val(A,index(i,j),index(i+l,j),-1.0};

if (i > 1)

sp_set~val (A, index(i, j), index(i-1, j), -1. 0};
if (j < N)

sp_set_val(A,index(i,j),index(i,j+l),-1.0);
if (j > 1)

sp_set;_val (A, index(i, j), index(i, j-1), -1. 0);
sp_set_val(A,index(i,j},index(i,j),4.0);
b->ve [index (i, j)] = -h*h*f (h*i, h*j);

19

Once the matrix and right-hand side are set up, the next task is to compute the sparse
incomplete Cholesky factorisation of A. This must be done in a different matrix, so A

must be copied.

LLT = sp_copy(A);
spiCHfactor(LLT);

Now when that is done, the remainder is easy:

out = v_get(A->m);

iter_spcg(A,LLT,b,le-6,out,1000,&num_steps);
printf("Number of iterations = %d\n",num_steps);

and the output can be used in whatever way desired.
For graphical output of the results, the solution vector can be copied into a square

matrix, which is then saved in MATLAB™ format using m_save (), and graphical
output can be produced by MATLABTM.

20 CHAPTER 1. TUTORIAL

1.7 How do I ?

For the convenience of the user, here a number of common tasks that people need to
perform frequently, and how to perform the computations using Meschach.

1.7.1 •••• solve a system of linear equations

If you wish to solve Ax = b for x given A and b (without 'destroying A), then the
following code will do this:

VEC *x, *b;
MAT *A, *LU;
PERM *pivot;

LU = m_get(A->m,A->n);
LU = m_copy(A,LU);
pivot = px_get(A->m);
LUfactor(LU,pivot);
/* set values of b here */
x = LUsolve(LU,pivot,b,VNULL);

1.7.2 •••• solve a least-squares problem

To minimise IIAx- bll~ = :Ei((Ax)i - bi)2 , the most reliable method is based on
the QR-factorisation. The following code performs this calculation assuming that A is
m x n with m 2:: n:

MAT *A, *QR;
VEC *diag, *b, *x;

QR = m_get(A->m,A->n);
QR = m_copy(A,QR);
diag = v_get(A->n);
QRfactor(QR,diag);
/* set values of b here */
x = QRsolve(QR,diag,b,x);

1.7.3 •••• find all the eigenvalues (and eigenvectors) of a general matrix

The best method is based on the Schur decomposition. For symmetric matrices, the
eigenvalues and eigenvectors can be computed by a single call to symmeig () . For
non-symmetric matrices, the situation is more complex and the problem of finding
eigenvalues and eigenvectors can become quite ill-conditioned. Provided the problem
is not too ill-conditioned, the following code should give accurate results:

1.7. HOW DO I. ... ?

/* A is the matrix whose e-vals and e-vecs are sought */
MAT *A, *T, *Q, *X_re, *X_im;
VEC *evals_re, *evals_im;

Q = m_get(A->m,A->n);
T = m_copy(A,MNULL);
/* compute Schur form: A = Q.T.Q~T */
schur(T,Q);
/* extract eigenvalues */
evals_re = v_get(A->m);
evals_im = v_get(A->m);
schur_evals(T,evals_re,evals_im);
/* Q not needed for eiegenvalues */
X_re = m_get(A->m,A->n);
X_im = m_get(A->m,A->n);
schur_vecs(T,Q,X_re,X_im);
/* k'th eigenvector is k'th column of (X_re + i*X_im) */

1. 7.4 •••• solve a large, sparse, positive definite system of equations

21

An example of a large, sparse, positive definite matrix is the matrix obtained from a
finite-difference approximation of the Laplacian operator. If an explicit representation
of such a matrix is available, then the following code is suggested as a reasonable way
of computing solutions:

/* A.x == b is the system to be solved */
sp_mat *A, *LLT;
VEC *x, *b;
int num_steps;

/* set up A and b */

x = m_get (A->m);
LLT = sp_copy(A);
/* preconditioning using incomplete Cholesky */
spiCHfactor(LLT);
/* now use pre-conditioned conjugate gradients */
x = iter_spcg(A,LLT,b,le-7,x,lOOO,&num_steps);
/* solution computed with relative residual < 10~{-7} */

If explicitly storing such a matrix takes up too much memory, then if you can write
a routine to perform the calculation of Ax for any given x, the following code may be
more suitable (if slower):

VEC *mult_routine(user_def,x,out)

22 CHAPTER 1. TUTORIAL

void *user_def;
VEC *x, *out;
{

/* compute out = A*x */

return out;
}

main()
{

}

ITER *ip;
VEC *x, *b;

b = v_get(BIG_DIM); /* right-hand side*/
x = v_get(BIG_DIM); /* solution*/

I* set up b */

ip = iter_get(b->dim, x->dim);
ip->rhs = v_copy(b,ip->rhs);
ip->info = NULL; /* if you don't want information

about solution process */
v_zero(ip->x); I* initial guess is zero */
iter_Ax(ip,mult_routine,user_def);
iter_cg(ip);
printf("# Solution is:\n"); v_output(ip->x);

ITER_FREE(ip); I* destroy ip */

The user_def argument is for a pointer to a user-defined structure (possibly NULL,
if you don't need this) so that you can write a common function for handling a large
number of different circumstances.

Chapter 2

Data structures

2.1 General principles

In this chapter an overview of the data structures is given, as well as indicating how
memory management is undertaken. For more information about how to use and
develop data structures, you should see chapter 8 on designing data structures.

One of the main thrusts of Meschach is to use C's data structuring ability to
"package" the objects so that they are self-contained and can be dealt with as single
entities. This is combined with C's memory allocation and de-allocation techniques to
make basic mathematical objects (vectors, matrices, permutations etc) work more like
their mathematical counterparts. So, a vector structure contains not only the array of its
components, but also the dimension of the vector, and the amount of allocated memory
(which may be larger than the dimension). This vector can be used for ordinary vector
operations, computing matrix-vector products, solving systems of linear equations, or
just for storing data. If there is a mismatch in, say, the size of the vector and the vectors
or matrices that it operates with, then an error is raised to indicate this. The vector can
also be created when needed, and destroyed when not. It can be re-sized when desired
to be larger or smaller.

The type of floating point number is Real, which is one of the floating point types.
The default floating point type is double.

The integer vector and permutation data structures are very similar to the vector
data structure, and contain not only the array of values, but also the current dimension
or size of the integer vector or permutation and the amount of allocated memory in this
array. Permutations are really restricted integer vectors; they are initialised differently
(to the identity permutation, instead of all zeros) and the permutation routines preserve
the property of being a permutation.

Matrices are represented by a more complex data structures, and are essentially a
two-level data structure. To have variable size 2-dimensional arrays inC, pointer-to
pointer structures are needed, such as

Real **Aentries;

23

24 CHAPTER2. DATASTRUCTURES

Aentries[3] [4] = 2.0;

The matrix data structure therefore has a pointer-to-pointer entry which can be used
just as the Aentries variable can. The data structure also has entries containing the
number of rows and columns of the matrix, and also the allocated number of rows,
columns etc.

Sparse matrices are the most complex data structures and are, in fact, a three
level system of data structures. They are also the most dynamic, as. when operations
are performed on sparse matrices, the number of non-zero entries in a row changes.
There are also a number of additional components of the data structures that are used to
facilitate operations, and are not needed to specify the sparse matrix that is represented.

Iterative routines operate on a data structure that combines a number of items into
a single package. These items include the defining data structures for the system to
be solved, :preconditioners, current (approximate) solution7 desired accuracy, limits
on the number of iterations, and functions implementing the stopping criterion and
for providing information to the user. By packaging the information in this way, and
providing suitable defaults on initialisation, it enables the user to use the iterative
routines in either a simple way (just use the defaults), or in a very sophisticated way
(by specifying limits, preconditioners, stopping criteria etc).

2.2 Vectors

The vector.data structure is the VEC structure:

typedef unsigned int u_int;
/* vector definition */
typedef struct {

u_int dim, max_dim;
Real *ve;
} VEC;

The type u_int is a short-hand for unsigned int. The field dim is the dimension
of the vector, while ve is a pointer to the actual elements of the vector. The field
max_ dim is the actual length of the ve array. Clearly we require dim :s; max_dim.

The normal method of obtaining a vector of a specified length is to call v _get () ,
which returns a pointer to VEC. To illustrate how this scheme operates, the code to
obtain a vector of length n is shown below:

#include "matrix.h"

VEC *x;
int n;

x = v_get (n};

2.2. VECTORS 25

To access the ith element of x we have to go through the ve field:

x_i = x->ve [i];

Note that the array index i is understood to be "zero relative"; that is, the valid values
of i are 0, 1, 2, ... , n- 1.

The call v_resize (x, newdim) "resizes" the vector x to have dimension
newdim. In this call, it is first checked if newdi:m ~ x- >max_dim. If so, then all that
happens is that x->dim is set to newdim. Otherwise, memory is realloc () 'd for
a vector of size newdim. Provided the realloc () is successful, both x->dim and
x- >max_ dim are set to newdim. Note that under this "high-water mark" system, the
physical size of the vector's allocated memory can never decrease. To regain the mem
ory that has been allocated, the vector must be deallocated entirely using v _FREE ()

or v _free (). (The former is a safer macro that uses v _free () .)
Usually, no objects of type VEC are declared within a program, routine or function.

Rather, pointers to VEC structures are declared within a program, routine or function.
Pointers are returned by v _get (), v _copy () and v _input () which also take care
of any initialisation that is needed. Pointers (as returned by these functions) can also
be freed up. You should not declare objects to be of type VEC (as opposed to objects
of type VEC *) unless you know what you are doing. For example,

VEC x;

V_FREE (&x);

will result in a compile-time error. Using v _free (} instead of v _FREE () would
most likely result in a program crash!

2.2.1 Integer vectors

There are also integer vectors which are pointers to type IVEC. These are imple
mented an a way that is essentially equivalent to the VEC data structures. There is the
allocation and initialisation routine i v _get (), resizing routine i v _resize (), and
i v _free () to destroy an integer vector.

The dimension (i.e. number of entries) of an integer vector iv is iv->dim. The
ith entry of an integer vector i v is i v- > i ve [i] , and indexing is zero relative so i
must be in the range 0, 1, ... , iv->dim-1.

These are useful for constructing index lists as well as other, general dat.a structures.

2.2.2 Complex vectors

Complex vectors and matrices have been included in Meschach version 1.2. The basic
complex data type in Meschach is a standard pair of floating point numbers:

typedef struct { Real re, im; } complex;

26 CHAPTER2. DATASTRUCTURES

There are a number of routines for dealing with complex numbers. The most ba
sic is z = zmake (real, imag) ; which returns a complex number with real part
real and imaginary part imag. There are also routines to add complex num
bers zadd(zl,z2), to subtract zsub(zl,z2), multiply zmlt(zl,z2), divide
zdi v (zl, z2), negate zneg (z), conjugate zconj (z), and compute square roots,
exponentials and logarithms zsqrt (z), zexp (z), zlog (z). There is also the
magnitude function which returns a floating point number: zmag = zabs (z) ; .

Complex vectors are vectors of these complex data structures, and have the
type ZVEC. The structure of these vectors is otherwise equivalent to that of ordi
nary floating point vectors. For example, the i 'th entry of a complex vector zv is
zv->ve [i]; to extract its real part use zv->ve [i] .re, and for its imaginary part
use zv->ve [i] • im.

The operations on complex vectors are also very similar to that for ordinary vectors:
zv = zv _get (10) ; to get a complex vector of length 1 0;
zv3=zv_add(zvl, zv2, ZVNULL); to add two complex vectors (z3 = z1 + z2).

2.3 Matrices

Matrices are very important throughout numerical mathematics, so it is natural that we
have a separate data structure for them:

typedef unsigned int
I* matrix definition *I
typedef struct {

u_int

u_int;

m, n;
u_int max_m, max_n, max_size;
Real **me, *base;
I* base is base of alloc'd mem *I
} MAT;

Here m is the number of rows of the matrix, n is the number of columns of the matrix
(i.e. it is m x n). The me field gives the actual means of accessing the elements of the
matrix. For example, to access the (i, j) element of the matrix A we use:

MAT *A;
Real A_ij;

A_ij = A->me[i] [j];

The base field is the pointer to the beginning of the memory allocated for the entries
of the matrix. The max_size field is the size of this area in terms of Real numbers.

It should be noted that me is actually an array with elements of type Real *.
The actual size of this array is given by the field max_m. This is a (usually small)
memory overhead which speeds up the accessing of elements: only two additions are
needed to locate me [i] [j] , while a multiply and an addition are needed to locate

2.3. MATRICES 27

base [m*i+j]. The rows in a matrix are allocated contiguously, as long as this is
reasonable, so that no problems arise from memory overhead or cache misses. Even
if a matrix is resized, the rows are copied ·so that the rows of the resized matrix are
contiguous.

As with vectors, only pointers to matrices are used, and this· allows memory
allocation and deallocation to be done conveniently. Also note that matrices are resized
using a "high-water mark" approach so that the total amount of physical memory for
row pointers and for entries of a matrix does not decrease unless the matrix is completely
deallocated by ll/CFREE () (which is a safe macro) or m_f ree () .

2.3.1 Complex matrices

Complex matrices are also available and have the type ZMAT. These have the same
structure as the ordinary MAT data type except that the entries are not of type Real, but
of type complex. The operations that can be done to complex matrices are similar to
those that· can be performed on ordinary matrices. For example, here is some code to
set an entry and to print out the value:

ZMAT *A;
complex z;

A= zm_get(10,10}; ·
A->me [2] [3] = z;

printf("Real part = %g, imaginary part = %g\n",
A->me[2] [3] .re, A->me[2] [3] .im);

ZM_FREE (A) ;

2.3.2 Band matrices

Band matrices are a special class of sparse matrices where the nonzero entries all lie in
a narrow band around the diagonal. Unlike general sparse matrices, these matrices can
be factorised with well controlled fill-in. They can also be easily represented by listing
the nonzero entries by their distance from the diagonal, and whether they lie above or
below (or on) the diagonal.

There are two factorisation routines for band matrices: an LDLT variant of the
Cholesky factorisation, and an LU factorisation with partial pivoting. Rather than
develop a complete new data structure for these two routines, the BAND data structure
used is actually just a MAT structure together with the lower and upperbandwidths lb
and ub respectively. This is the actual data structure:

I* band matrix definition */
typedef struct {

xaT *mat;
int lb,ub;
} BAND;

I* matrix */
/* lower & upper bandwidth */

28 CHAPTER2. DATASTRUCTURES

The actual entries of A are stored as matrix entries in mat, which has the following
layout. Let A be the n x n band matrix that is represented by this data structure. Then
n is the number of columns of mat. Also, lb is the lower bandwidth of A (this is the
number of sub-diagonals in A), and ub is the upper bandwidth of A (this is the number
of super-diagonals in A). Note that for a general diagonal matrix, lb = ub = 0, while
for a tridigonal matrix, lb = ub = 1. For 0 ~ i < lb, row lb- i of mat is the ith
sub-diagonal of A; row lb of mat is the diagonal of A; and for lb < i ~ lb + ub,
row i of mat is the (i - lb)th super-diagonal of A. The (i,j) entry of A (provided
-lb ~ j- i ~ ub) is the (lb + j- i,j) entry of mat. This means that there are some
wasted entries in mat, as is shown by this layout for lb = 3, ub = 2 and n = 10. A '.'
denotes an unused entry of mat:

0 a3o a41 a 52 a63 a74 ass a96 (lower part)
1 azo a31 a42 a 53 a64 a15 as6 a97

2 alO a21 a32 a43 a 54 a65 a76 as1 ags
row 3

aoo au a22 a33 a44 a 55 a66 a77 ass agg (main diagonal)
4 ao1 a12 a23 a34 a45 a 56 a67 a7s agg

5 ao2 a13 a24 a35 a46 a 57 a6s a79 (upper part)

For creating a band matrix A, use A = bd_get (lb, ub, n) , for resizing use
bd_resize(A,lb,ub,n) (where lb etc. are the new values), for freeing use
bd_free (A), and for transposing use bd_transp (A, B).

2.4 Permutations

Permutations are immensely useful in a number of matrix factorisation techniques, as
well as for the representation of sets and so on. It was therefore decided that, as well as
being important mathematical objects in their own right, they should be implemented
as a concrete data structure in their own right. Here is the definition of the data structure
used:

typedef unsigned int u_int;
I* permutation definition */
typedef struct {

u_int size, max_size, *pe;
} PERM;

The field size is the size of the permutation. The field pe is the means by which the
elements of the permutation are accessed: to access 7r(i) for a permutation 7r use

PERM *pi;

pi_i = pi->pe[i];

The actual size of the pe array is given by the field max_size.

2.5. BASIC SPARSE OPERATIONS AND STRUCTURES 29

As with vectors and matrices, only pointers to permutation data structures are used.
Permutations may be resized and deallocated. A "high-water mark" method is used
when resizing permutations, so that the physical memory used for storing entries does
not decrease in size.

Whether or not the elements of an array of integers forms a permutation clearly
depends on the entries of that array. This, to some extent is up to the programmer. How
ever, there are a number of routines that try to help this aspect: px_get () initialises
the permutation to be the identity permutation; if the argument to px_resize () is
a true permutation, the result will be a true permutation, though if a reduction of size
is requested, all the old data will be overwritten. Also there is px_transp () which
transposes two entries in a permutation; it is expected that this would be the most
common means of modifying a permutation. Finally, the input routines check that
what is input is indeed a permutation.

2.5 Basic sparse operations and structures

Sparse matrix data structures are somewhat more complex than dense matrix data
structures. The form chosen here is a row oriented sparse matrix data structure. The
matrix consists of an array of rows, and each row is an array of row elements. A row
element contains a value, a column number and some other numbers to help access
elements in the same column. (These latter data items are intended to improve· access
speed for column oriented operations.)

To use these sparse matrix data structures you need to have the following at the
beginning of your program:

#include "sparse.h"

Sparse matrices are declared as pointers, as is done with other data structures in the
system:

SPMAT *A;

Initialising a sparse matrix requires calling the sp_get () function:

A= sp_get{m, n, maxlen);

Herem is the number of rows in A, n is the number of columns, and maxlen is the
number of non-zero elements expected in each row. If you add more than maxlen
elements to a row, then more memory has to be allocated to that row, which can be
time consuming if it is done very frequently. Also note that the NULL sparse matrix is
called SMNULL.

Unlike dense matrices, sparse matrices have a structure which can be understood
as the pattern of nonzero entries. More accurately, it is the set of (i, j) where memory
for the aii entry is allocated. All entries outside this set are understood to have the
value zero. The structure can be altered by processes such as fill-in during matrix fac
torisations or updates. However, all such alterations have a cost in terms of additional

30 CHAPTER 2. DATA STRUCTURES

time needed to update the data structures (as well as the values), overheads for memory
reallocation, and in terms of the total amount of memory needed. Fill-in should be
kept to a reasonable minimum. This can be done by using iterative methods, often in
conjunction with incomplete factorisations, as are described later in this chapter.

Setting values of A can be done using the sp_set_ val () function: To set the
value of a;j to v, you should call sp_set_ val (A, i, j, v). The value of a;j is
returned from the function call sp_get_ val (A, i, j) .

Copying sparse matrices can be done easily too: B = sp_copy (A) returns a
copy of the sparse matrix A, while B = sp_copy2 (A, B) stores a copy of A in
B, while preserving the structure of B. Preserving this structure can be extremely
important in keeping the speed of factorisation algorithms high.

Input/output is generally done by two pairs of routines: A = sp_input ()
and sp_output (A) for input and output respectively from stdin and to stdout.
For sending the output to a different file, use sp_foutput (fp, A), and for reading
from a different file use A = sp_finput (fp) where fp is the corresponding file
pointer. As for dense matrices and vectors, the printed output can be read back in from
a file. If you are typing input from a keyboard, you will be prompted for all the relevant
input. However, for both means of input there is a limit of 100 entries for each row.

If worst comes to worst, and pointers are being mangled somewhere in the sparse
matrix data structure, a sparse matrix can always be "dumped" out to a file by calling
sp_dump (fp, A) which will list all the pointer locations and column access numbers
etc. as well as what is usually printed out by sp_foutput () and sp_output ().

There are routines for multiplying sparse matrices by (dense) vectors, both from
the right and from the left: sp_mv _ml t (A, x, out) forms Ax and stores the result
in out, while sp_ v:m._ml t (A, x, out) forms AT x, which is stored in out. Here the
data types for x and out are both VEC *, while A has type SPMAT *. However, there
is currently no routine for multiplying sparse matrices together as there is always the
danger that this will lead to dense matrices. (For example, if a row of A is all ones,
and a column of B is all ones, then, unless cancellation occurs, AB will have every
entry nonzero.)

2.6 The sparse data structures

The data structures used for representing sparse matrices is given below:

typedef struct row_elt {
int
Real

col, nxt_row, nxt_idx;
val;

} row_elt;

typedef struct sp_row {
int len, maxlen, diag;
row_elt *elt; /* elt[maxlen] */

} SPROW;

2.6. THE SPARSE DATA STRUCTURES 31

typedef struct sp~at {
int m, n, max_m, max_n;
char flag_col, flag_diag;
SPROW *row; /* row[max_m] */

int *start_row; /* start_row[max_n] */
int *start_idx; /* start_idx[max_n] */

} SPMAT;

The sparse matrix data structure is the SPMAT data structure; this in tum is built on
the sparse row SPROW data structure, and the row element row_el t data structure.
Thus, the sparse matrix data structure used here is a row oriented data structure. (By
contrast, see George and Liu's book "Computer Solution of Large, Sparse Positive
Definite Systems", Prentice Hall (1981), which uses a column oriented data structure.)

To scan the elements of a particular row a simple loop is all that is required:

int i, j_idx, len;

len= A->row[i].len;
for (j_idx = 0; j_idx < len; j_idx++)

printf("A[%d] [%d] = %g\n", i, A->row[i].elt[j_idx].col,
A->row[i].elt[j_idx].val);

Alternatively, using intermediate variables:

int i, j_idx, len;
SPROW *r;
row_elt *elt;

r = &(A->row[i]);
len = r->len;
elt = r->elt;
for (j_idx = 0; j_idx < len; j_idx++, elt++)

printf ("A[%d] [%d] = %g\n", i, elt->col, elt->val);

To alleviate potential problems due to this row-oriented approach, some additional
access paths were included to ease column-based access. These take the form of the
start_row and start_idx arrays, and the nxt_row and nxt_idx fields of the
row_elt data structure. These work as follows.

Suppose that A is a sparse matrix where this access path has been set up (i.e.
A->flag_col is TRUE). To set the access paths, call sp_col_access (A). The first
row that a non-zero entry appears in columnj is i = A- >start_row [j], and the in
dex intotheA->row [i] • elt arraywhichgives this entry is k=A->start_idx [j]

(i.e., A- >row [i] . el t [k] . col == j).
Each entry (which has type row_elt) has its column number, and the row number

nxt_row and the index number nxt_idx of the next non-zero entry in that column.
If there is no remaining non~zero entry in that column, nxt_row has the value -1.
Listing all the entries of a particular column can then be written as a loop:

32 CHAPTER2. DATASTRUCTURES

int i, i_tmp, j, j_idx;

sp_col_access(A);

/* j is column number */
i = A->start_row[j];
j_idx = A->start_idx[j];
while i >= 0)
{

}

printf("A[%d] [%d] = %g\n", i, A->row[i].elt[j_id.x].col,
A->row[i].elt[j_id.x].val);

i_tmp = A->row[i].elt[j_id.x].nxt_row;
j_idx = A~>row[i].elt[j_id.x].nxt_idx;
i = i_tmp;

Of course, the efficiency of this program fragment could be improved by doing the
A->row[i] .elt [j_idx] calculation only once:

int i, i_tmp, j, j_idx;
row_elt *elt;

/* j is column number */
i
j_idx
while
{

= A->start_row[j];
= A->start_idx[j];

i >= 0)

}

elt = &(A->row[i].elt[j_idx]);
printf ("%g\n", elt->val);
i_tmp = elt->nxt_row;
j_idx = elt->nxt_idx;
i = i_tmp;

What is assumed about this data structure is that the column indices (the col field
of the row_elt data structure) are in order along the rows. This allows the use of
binary searching to locate items; Adding new non-zero entries thus usually results in
copying blocks of memory. The theoretically better techniques, such as B-trees and
2-3 trees, are considered too difficult to implement to be worthwhile in this context.
Rather, we aim to avoid fill-in.

Whenever fill-in takes place, the column access path is rendered incorrect, as is
the diag entry for that row. The column access path for A can be reset by call
ing sp_col_a:ccess (A). Note, however, that calling sp_col_access (A) takes
0(m + N) time where m is the number of rows of A, and N is the number of
non-zero entries in A. The diag entries for the entire matrix can he reset by calling

2.7. SPARSE MATRIX FACTORISATION 33

sp_diag_access (). However, in some matrix factorisations (especially Cholesky
factorisation) it is more efficient to update these extra fields nxt_row and nxt_idx
as fill-in occurs.

2. 7 Sparse matrix factorisation

Two kinds of factorisations has been implemented, which are the sparse Cholesky
and LU factorisations. The main routines are spCHfactor () and spLUfactor ().
Both of these routines perform the full factorisation and create the fill-in as necessary.
Supporting the sparse Cholesky factorisation is spCHsol ve () which solves LLT x =
b for x once the (sparse) Cholesky factorisation A = LLT is found for A. For the
sparse LU factorisation is spLUsol ve (} which solves pT LUx = b where P is the
permutation defining the row pivots. Note that the sparse LU factorisation uses partial
pivoting modified to avoid too much fill-in if this is possible.

Two other variants of the sparse Cholesky factorisation are included. They are
spiCHfactor () which fonns an incomplete factorisation of A - that is, it is
assumed that no fill-in will take place during the Cholesky factorisation of A. There is
also spCHsymb () which does not do any floating point arithmetic, by rather does a
symbolic factorisation of A. The routines spiCHfactor () and spCHsymb () can
work together: If a number of matrices have the same pattern of zeros and non-zeros,
then the pattern of zeros and non-zeros can be worked out using spCHsymb () , and
the matrices can be copied into the resulting matrix before using spiCHfactor ()
applied to the copied matrix. The code for this follows:

SPMAT *pattern, *A;

I* get original A matrix */

pattern= sp_copy(A);
spCHsymb(pattern);

sp_copy2(A,pattern);
spiCHfactor(pattern);

I* get new A matrix */

I* determine fill-in pattern */

/* preserve fill-in */
I* no additional fill-in */

I* assume same pattern of non-zeros in A *I
sp_copy2(A,pattern);
spiCHfactor(pattern);

There is also an incomplete LU factorisation routine spiLUfactor (). This is
actually a modified incomplete factorisation which modifies the diagonal entries to
ensure they do not become less than a certain user-specified amount in magnitude; if
this amount is set to zero then the method is just a standard incomplete factorisation.

34 CHAPTER 2. DATA STRUCTURES

2.8 Iterative techniques

Dealing with large, sparse matrices often requires the use of iterative methods. How
ever, writing iterative routines that only operate on sparse matrices is unlikely to be
very flexible. To this end a general data structure ITER is used for a wide class of
iterative methods, which can be used for a wide class of problems.

One of the basic types used in the ITER data structure is called Fun_Ax: this
implements a "functional representation" of a matrix. An object Afn of type Fun_Ax
is a function pointer where (*Afn) (Aparams, x, y) computes y = Ax given x.
The parameter Aparams is a pointer which can point to any user-defined data structure
(or NULL if the function ignores it). Thus the user is completely freed from the trouble
of having to deal with the built in sparse matrix data structures. If, for example, the
matrix is defined in terms of networks, then the data structure describing the network
can be passed as Aparams, and the matrix-vector multiply routine modified to work
directly with the network data structure. Dealing with different networks doesn't
require writing new functions: only the Aparams parameter needs to be changed.
On the other hand, use of the standard sparse data structures isn't restricted: Afn is
sp_mv_mlt, the sparse matrix-vector product routine, and Aparams is the actual
sparse matrix data structure.

This is the ITER data structure:

typedef struct Iter_data {
int shared_b, shared_x;
/* TRUE if b, x aliased by other pointers *I

unsigned k; I* no. of direction vectors; 0 = none *I
int limit; I* upper bound on the no. of iter.
int steps; I* no. of iter. steps done *I
Real eps; I* accuracy required *I

VEC *x; I* input: initial guess;
output: approx. solution *I

VEC *b; I* right hand side of A*x = b *I

Fun_Ax Ax; I* function computing y = A*x */
void *A_par; I* parameters for Ax */

Fun_Ax ATx; I* function computing y = A~T*x *I
void *AT_par;l* parameters for ATx *I
I* B = preconditioner *I
Fun_Ax Bx; I* function computing y = B*x *I
void *B_par; I* parameters for Bx *I

I* for the following two functions: res = residual;
nres = norm of residual res; peres = B*res; */

steps *I

2.8. ITERATNE TECHNIQUES

Field Value
shared_b FALSE
shared_x FALSE
limit ITER_LIMIT _DEF = 1000
k; steps 0
eps ITER.EPS_DEF = 10-6

x, b allocated
Ax, Ax_ par NULL
ATx, ATx_par NULL
Bx, Bx_par NULL
info iter _std_info ()
stop_crit iter_std_stop_crit ()

Table 2.1: Default values for the ITER structure

/* function giving some information for a user */
void (*info)(struct Iter_data *ip, double nres,

VEC *res, VEC *peres);
/* stopping criterion: stop if TRUE returned; */
int (*stop_crit)(struct Iter_data *ip, double nres,

VEC *res, VEC *peres);

Real init_res; /* the norm of the initial residual */
} ITER;

35

Themainroutineforsettingupan ITER data structure is ip = iter_get (b_dim,
x_dim) which creates an ITER data structure with NULL functions, default val
ues for the other components of the data structure, and with two vectors x and b
created (of lengths x_dim and b_dim respectively). The other memory opera
tions involved are iter_resize (ip, new_b_dim, new_x_dim) to resize ip,
and iter_free(ip) (function) and ITER_FREE(ip) (macro) to free ip. The
default values of the various entries of the ITER structure are given in Table 2.1:

Setting the values in the data structure requires setting the fields of the ITER struc
ture directly. The function iter _dump (fp, ip) prints out information about the
the ITER data structure ip to stream/file fp. The routine iter_copy(ipl, ip2)
copies the ITER structure and the x and b structures. (This is a deep copy.) The rou
tine i ter_copy2 (ipl, ip2) copies all of the ITER structure's values but leaves
ip2->x and ip2->b unchanged.

These ITER data structures are used in the main iterative routines, such as
i ter_cg (ip) which implements (pre-conditioned) conjugate gradients;
iter_lanczos (ip,) which implements the basic Lanczos algorithm;
i ter_cgs (ip, rO) which implements Sonneveld's CGS algorithm;
iter_gmres (ip) which implements Saad and Schultz's GMRES algorithm.

36 CHAPTER 2. DATA STRUCTuRES

There are some additional routines which provide a simplified interface for ap
plying iterative methods to sparse matrix data structures .. These routines are named
iter_sp •.. (.••),such as iter_spcg(A,LLT,b,eps,x,limit,steps)
for (pre-conditioned) conjugate gradients. The i ter_sp •.. (•..) routines work
by setting up an ITER data structure and calling the appropriate main routine.

The use of more than one level of interface means that simplicity is not sacrificed
for the sake of more sophisticated users.

2.9 Other data structures

The above data structures can be used as parts of other data structures. For example,
here is an data structur~for h?lding.simplex tableaus for linear programmes:

typedef struct lp {
MAT . ~tab;
VEC *rhs, *cost;
Real val;
PERM *basis, *invbase, *allow;
int card;

} LP;

Routines for creating and destroying; inputting and outputting, and using this data
structure have been written, based on the corresponding routines for the component
data structures. It may be of interest that basis is a permutation, and that during
operations on the simplex tableau, in_base is maintained as the inverse permutation
to basis. Finally, the permutation allow together with card act as a set which
consists of the elements

{allow->pe [0] ,allow->pe [1], allow->pe [2],
... ,allow->pe [card-1] }.

Meschach 1.2 allows you to incorporate your own data structures into various
aspects of the library, such as tracking memory usage and deallocating static workspace
when desired. For suggestions for implementing your own data structures and using
Meschach routines in your applications, see chapter 8 on designing libraries in C.

Chapter 3

Numerical Linear Algebra

This chapter aims to provide a brief introduction to numerical linear algebra. People
who are unfamiliar with how to go about (say) solving linear equations, or how to
compute eigenvalues and eigenvectors might find this useful for selecting the best
routine(s) to solve their particular problem, and to understand the rationale for the way
the routines are set up in the way they are.

3.1 What numerical linear algebra is about

There are a number of core operations and tasks that make up numerical linear algebra.
At the lowest level these include calculating linear combinations of vectors and inner
products, and at the higher level consists of solving linear equations, solving least
squares problems and finding eigenvalues and eigenvectors.

The lower level operations are usually quite straightforward in terms of what they
do and what the accuracy of the results are. However, with higher level operations
more care must be taken with regard to both efficiency and the accuracy of the answers.
The routines used to perform these higher level operations are more varied and allow a
number of different ways of performing the same computation. The difference between
them lies often in the speed (or lack of it) and the accuracy of the answers obtained.

There are further complications because of some intrinsic limits to the computations
that a computer can do accurately, at least with floating point arithmetic. Floating point
arithmetic cannot store numbers to an accuracy (relative to the number stored) better
than what is called "machine epsilon", or "unit roundoff'. This quantity is usually
denoted by u, but is represented in the library by MACHEPS. It is also referred to
in the ANSI C header file <float .h> as DBL_EPSILON for double precision and
FLT_EPSILON for single precision. For most machines this quantity is about 2 x 10-16

for double precision, and 10-7 for single precision.
Practically all floating point calculations introduce errors of size of machine epsilon

times the size of the quantities involved; for all intents and purposes, these errors are
unavoidable. Perturbations in the data of a problem are essentially unavoidable.
Algorithms that compute answers that would be exact for slightly perturbed data

37

38 CHAPTER 3. NUMERICAL LINEAR ALGEBRA

are called backward stable; algorithms which give answers that are close to the exact
answer are called forward stable. Sometimes the problems that are solved are inherently
unstable, or "ill conditioned" (see below). In these circumstances, no algorithm can
be expected to be forward stable. However, well designed algorithms are at least
backward stable; the answers are exact for slightly perturbed data The algorithms in
Meschach are essentially all backward stable in this sense. Combining these algorithms
in programs can sometimes lead to methods that are not stable in this sense. Careful
analysis of the algorithm may need to be done to check this.

3.2 Complex conjugates and adjoints

Unlike real matrices, inner products of complex vectorS have to involve complex
conjugates:

(x, y) = L XiYi·
i

This cannot be written as xT y, but is often written as a;T y. The vector a;T not only
is a row vector, but has the components replaced by their complex conjugates. (The
complex number z = u + iv has complex conjugate z = u - iv where u and v are real
numbers.)

The vector a;T is cal\ed the adjoif!.t of x and is denoted in this documentation as x*.
Some texts use this convention, others use related conventions.

There are also adjoints of matrices: A* = _AT. Generally, where one would use a
transpose for real matrices, one should use an adjoint for complex matrices. Of course,
if x is a real vector, and A is a real matrix, then x* = xT and A* = AT.

While real orthogonal matrices satisfy QT = Q-1 , their complex cousins, the
unitary matrices, satisfy Q* = Q-1 •

3.3 Vector and matrix norms

While it is quite straightforward to talk about the magnitude of a number, it is less so
with vectors and matrices as there are a number of different ways of defining it. These
"magnitudes" or norms must have a number of basic properties in order to be of some
use. These properties for vector norms are written out below; the norm itself is written
as 1111.

(3.1)

llxll is a non-negative real number

llx + Yll ~ llxll + IIYII
!lax!! = lalllxll where a is a real or complex number.

Matrix norms have not only these properties (with x andy replaced with matrices), but
often have an additional one:

IIXYII ~ IIXIIIIYII·

3.4. "ILL CONDITIONING" OR INTRINSICALLY BAD PROBLEMS 39

This inequality holds for all matrix norms implemented in Meschach.
Some standard vector norms are

(3.2)

The last norm Cllll2) is actually the standard or "Euclidean" norm and is the definition of
"magnitude" used in geometry and mechanics etc. However, different problems often
have natural ways of measuring vectors related to the specific problem. For example,
if e is a vector of errors, then llelloo :::; .01 means that no error is larger than .. 01.

These vector norms can be computed by the routines v ~norml () , v _norm2 ()
and v _norm_inf () , for the II II 1 norm, the II II 2 norm and the II II 00 norm respectively.

Associated with these vector norms are matrix norms that are defined by

IIAII =max IIAxllfllxll.
x~O

The associated matrix norms for the above vector norms are:

IIAII1 = m~ L laijl, IIAIIoo = m~ L ja,jl
J • ' .

' J

IIAJja = (maximum eigenvalue of AT A) 112 •

(3.3)

Some matrix norms are not associated with any particular vector norm, such as the
Frobenius norm:

These matrix norms can be computed by the routines m_norml () for the II II 1
norm, m_norm_inf () for the II lloo norm, and m_norm_frob () for the Frobenius
norm II II F. The matrix 2-norm has not been implemented as it.is a rather expensive
operation. The matrix 2-norm is best computed using the SVD, which is discussed
later.

3.4 : "Ill conditioning" or intrinsically bad problems

Users of numerical routines sometimes . find that the results they get are erratic or
obviously wrong for some reason or other. Barring programming errors, there are
some reasons why this can happen. Often it comes under the heading ill conditioning,
which means that the problem is inherently difficult..,

40 CHAPTER 3. NUMERICAL LINEAR ALGEBRA

Whenever the computer does some calculation with real numbers (like 3.1415926
. . .) it almost always adds some error to the result whose magnitude is about "machine
epsilon" times the magnitude of the result. If such a change in the data can radically
change the answer, then the problem or task is called "ill conditioned". This is a
property of the problem, not of any algorithm to solve it.

As with most things in numerical analysis, it is a good idea to quantify "how badly
conditioned". For the problem of solving linear systems of equations, the measure of
conditioning for a particular norm 1111 is

K(A) = II All IIA -1 11

which is called the condition number of A. The condition numbers for the 1111 1, llll2
or lllloo norms are usually denoted K1(A), K2(A) or K00 (A) respectively.

A justification of why this is used as a measure of the conditiomng of a system of
linear equations, is given in the following theorem: ·

Theorem 3.4.1 If A is nonsingular and IIA-1 IIIIEII < 1 and

Ax= b, and (A+ E)(x +e)= b + j,

then
II ell K(A) [liE II 11!11 J w ~ 1- K(A)(IIEII/IIAII) .IIAII + lfbiT .

A proof of this may be found in a number of numerical analysis textbooks such as
Matrix Computations, by Golub and van Loan, §2.7, pp. 79-80, 2nd Edition, (1989),
or in An Introduction to Numerical Analysis, by K. Atkinson, Ch. 8, pp. 462-463, 1st
Edition, (1979).

Do ill conditioned problems or tasks occur in practice? The answer is "All too
often." One family of matrices that are notoriously ill-conditioned are the Hilbert
matrices:

1
1/2

Hn = 1/3

1/2
1/3
1/4

1/3
1(4
1/5

1/n 1/(n + 1) 1/(n + 2)

1/n
1/(n + 1)
1/(n + 2)

1/(2n -1)

These. matrices arise quite naturally in finding best integral-least square error fits for
functions in terms of 1, x, x2 , ••• , xn-1 • The condition number of Hn for n = 5 is
already ~ 4.8 x 105 and for n = 10 is ~ 1.6 x 1013 • In fact the condition number of
Hn for large n increases super-exponentially inn. Because they are so ill-conditioned,
they are a favourite family of matrices to test linear equation solvers.

This condition number can be computed in O(n3) floating point operations essen
tially by calculating the inverse of the original matrix. Alternatively, it can be estimated
relatively cheaply (in O(n2) operations) once the LU factors of the matrix are known.
This can be done using the routine LUcondest () .

3.5: LEAST SQUARES AND PSEUDO-INVERSES 41

3.5 Least squares and pseudo-inverses

It is quite common, when analysing data, to perform a "least squares fit". For example,
if there are three controlled quantities and one measured quantity in an experiment, it
is common to fit a linear model:

where each a1 is a parameter to be fitted, and Yi is the ith measured value, and xi,j is
the ith value of the jth controlled quantity.

The "least squares fit" is the a vector that minimises

m

L (Yi- (alxi,l + a2xi,2 + a3xi,3))2 .
i=l

This can be cast in terms of matrices and vectors by setting X to be the matrix of the
xi,i• andy to be the vector [y1 , y2 , ••• , Ym]T. Then the approximation is y ~ X a,

and more specifically, the least squares fit is obtained by minimising IIY - X all~ =
(y- Xa)T(y- X a). By taking partial derivatives with respect to the a;'s gives the
system of linear equations known as the normal equations:

If the columns of X are linearly independent, then the matrix XT X is positive definite
and the Cholesky factorisation can be used to solve this system of equation once XT X
is formed. The following piece of code does this:

MAT *X, *XTX;
VEC *y, *XTy, *alpha;

/* set up X and y */

XTX = mtr.m_mlt(X,X,MNULL);
XTy = vm_mlt(X,y,VNULL);
CHfactor(XTX);
alpha= CHsolve(XTX,XTy,VNULL);

If the columns of X are not linearly independent, then there are redundant variables
being set in the experiment: at least one of the variables being set is just a linear
combination of the others. In the above piece of code, this may result in an error being
raised to the effect that the matrix XTX is not positive definite. Whether this happens
or not depends on the way that the rounding errors go.

In practice it may well be that some of the set quantities are nearly, but not exactly,
redundant. The Cholesky factorisation may not be able to pick this up. However,
there are other "factorisations" that can. These are the QR factorisation (with column
pivoting) and the SVD. Later, we will return to the QR factorisation as another means
of solving least squares problems.

42 CHAPTER 3. NUMERICAL LINEAR ALGEBRA

3.5.1 Singular Value Decompositions

The SVD or Singular Value Decomposition is analogous in some ways to finding
eigenvalues and eigenvectors. The SVD of a matrix X is a decomposition X = UT~V
where U and V are orthogonal matrices, and ~ is a diagonal matrix. The values on the
diagonal of ~ are unique, except for their sign. If the entries of ~ are all nonnegative
and ordered so that they are nonincreasing going down the diagonal, then the diagonal
entries are called singular values, and are denoted by ui. The columns of U and V are
called singular vectors.

How well or ill conditioned a least squares problem is can be determined directly
from the singular values. The usual condition number for least square problems is
K-Ls(X) = udun where X ism x nand m ~ n. If Un = 0 then X has linearly
dependent columns, and the problem cannot be solved to any degree of accuracy. Such
a matrix is also referred to as being rank deficient.

3.5.2. Pseudo;.inverses

Whether a matrix is square or rectangular, rank deficient or has full rank, it always has
a pseudo-inverse. This is the matrix x+ = VT~+u where the ith diagonal of~+ is
1/ ui is ui =f. 0 and zero otherwise. This has a number of useful properties such as the
Moore-Penrose properties:

xx+x =X, · (xx+l =xx+
x+xx+ =x+, .(x+x)T =x+x.

(3.4)

This means that xx+ is an orthogonal projection onto range(X) and x+ X is an
orthogonal projection onto range(XT).

The least squares problem can, in general, be solved by setting a = x+y. This
solution is, in fact, the smallest a that minimises the sum of errors squared. This
approach appears quite simple for providing a way of solving least squares problems
(and others) involving rank deficient matrices. However, there are a number of practi
cal difficulties. The first of these is that small perturbations to rank deficient matrices
usually result in full rank matrices; the ui's that were formerly zero before the pertur
bation, become nonzero, but small after the perturbation. This means that where ~+
had a zero on the diagonal before the perturbation, after the perturbation it has 1/ ui
which is quite large. In short, the pseudo-inverse is not a continuous function of the
matrix entries; small perturbations can give very large changes in the results.

While the SVD can be computed numerically, roundoff error will ensure that almost
always the computed ui's are all nonzero. In these cases it is important to estimate the
rank by considering the size of the ui 's. For such problems an error tolerance is needed
to decide how small the u/s need to be before they are considered "too small". The
choice of such an error tolerance should be based on the size of the errors in the matrix,
and their source. If, for example, the values in the X matrix have a measurement error

3.5. LEAST SQUARES AND PSEUDO-INVERSES 43

of about 10-3 , then a tolerance of about 10 times this should detect near rank deficient
matrices. If, on the other hand, the only errors are those from roundoff error, then a
value of 100 times unit roundoff (MACHEPS in the library) should be adequate.

3.5.3 QR factorisations and least squares

An alternative approach to solving least squares problems for full rank matrices (i.e.
those that are not rank deficient) is to use the QR factorisation. This method is also
described in section 3 of the tutorial chapter. The QR factorisation of a matrix A is a
factorisation A = Q R where Q is orthogonal and R is upper triangular.

This QR factorisation is computed by means of Householder matrices. These are
discussed in more detail in the manual entry for the routines that implements these
operations, hhvec (), hhtrvec (), hhtrcols () and hhtrrows (). The QR
factorisation can also be computed by using Givens' rotations which are discussed in
the manual entries for givens (),rot_ vee (), rot_cols () and rot_rows ().

To use this factorisation to solve a linear least squares problem X o: ;=::j y we
compute, first, the QR factorisation of X= QR. For X m x nand m > n, as the R
matrix is upper triangular,

If X has full rank, then R1 is a nonsingular n x n matrix. The matrix Q should be split
in a consistent way: Q = [Q1, Q2]·

The residual vector's norm is then

[Rll [Qfl 0 0:- Qf y 2.

This means that

IIX 0: - Yll~ = IIRl 0: - Qf Yll~ + II Qf Yll~.
The minimum 2-norm of X o: - y (with respect to o:)is obtained by solving

R1o: = Qfy

and has the value IIQf Yll2· The code in section 3 of the chapter 1 provides a complete
program for solving least squares problems of this sort.

There are some advantages of this method over the "normal equations" approach,
of which the main one is accuracy. In the normal equations approach, the system
xr X o: = xr y is solved for o:. The error in the computed o: in the 2-norm is of
the order of ux:2 (XT X). On the other hand, the error in the computed o: for the QR
factorisation method is of the order of U11:Ls(X). Now if X = ur~v is the SVD of
X, then

xrx = VTETEV = vr diag(ai, ... , cr~)V

and the eigenvalues of xr X are the squares of the singular values of X. So

44 CHAPTER 3. NUMERICAL LINEAR ALGEBRA

and forming xr X effectively squares the condition number of the problem. This is
particularly important for badly conditioned problems with "'Ls(X) ~ 1/ y'U; for such
problems the QR factorisation method would work, but the normal equations approach
would faiL

3.6 Eigenvalues and eigenvectors

There are two main classes of problems and algorithms for computing eigenvalues
and eigenvectors. They are problems involving symmetric matrices, and problems
involving nonsymmetric matrices. The case of symmetric matrices is easier both in
theory and practice. It is also less vulnerable to the effects of roundoff errors.

Symmetric matrices all have real eigenvalues, and the corresponding eigenvectors
are both real and orthogonal. Thus for any symmetric matrix A there is an orthogonal
matrix Q such that QT AQ = A where A is the diagonal matrix of eigenvalues. If the ith
diagonal element of A is.\, and qi is the ith column of Q, then Aqi = >.iqi. Regarding
stability of the eigenvalues to perturbations of the matrix A, the ith eigenvalue of
A+ E, denoted .Xi, satisfies Ai - IIEII2 ::; xi ::; >.i + IIEIIz.

The eigenvectors are not so stable with respect to perturbations of A, especially if
eigenvalues are close together. The extreme case is where there is a repeated eigenvalue,
in which case the eigenvalues are not essentially unique (up to a scale factor). Instead,
there is a two or three or higher dimensional subspace of eigenvectors. If all the
eigenvalues are distinct, then for a matrix A+ E, IIEII2 "small", the perturbation in
the eigenvector qi is of size roughly bounded by

As for previous problems, the perturbations in A due to roundoff error is roughly
I!EIIz ~ ui!AII 2 • This means that the eigenvectors would not usually be reliably
computed if its eigenvalue is no more than about u!IAI!z from other eigenvalues.

The eigenvalues for a symmetric matrix can be computed using the symmeig ()
library routine, which will compute the Q matrix of eigenvectors as well as a vector
containing the eigenvalues if desired.

For the nonsymmetric case, a rather different strategy has to be adopted for several
reasons:

1. The matrix A may not be diagonalisable; the Jordan canonical form is not
numerically stable.

2. The matrix of eigenvectors may not be well conditioned.

3. The eigenvalues may not be real.

The standard strategy used is to compute the real Schur decomposition. This is a
variant of the complex Schur decomposition. The complex Schur decomposition is a

3.6. EIGENVALUES AND EIGENVECTORS 45

factorisation

Q*AQ = T

where T is upper triangular, and Q is unitary; that is, Q*Q = I where Q* is the
adjoint of Q. The diagonal entries ofT are the eigenvalues of A. The complex Schur
decomposition can be computed for complex matrices by the routine zschur ().

For the real case,

where T is block upper triangular with 1 x 1 and 2 x 2 blocks on the diagonal and
Q is orthogonal. The eigenvalues of the 1 x 1 and 2 x 2 diagonal blocks of T are
the eigenvalues of A. This real Schur decomposition is computed by the schur ()
routine. If you wish to obtain the actual eigenvalues and eigenvectors, there are
the auxiliary routines schur_vals () and schur_vecs (). The schur_vals ()
routine computes the (complex) eigenvalues and returns the real and imaginary parts of
the eigenvalues. The schur_vecs () routine computes the eigenvectors of a matrix
by means of its real Schur decomposition, by using one cycle of inverse iteration for
each eigenvector. That is, the system

(T- >.I)x = r

is solved for x where 1' is a random real vector.
Unfortunately, if there are repeated eigenvalues, this method cannot be expected

to give good results: the matrix of eigenvectors would be ill-conditioned. Indeed, it is
usually not possible to get a nonsingular matrix of eigenvectors if there are repeated
eigenvalues. Consider the general 2 x 2 matrix

[~ ~]·
This matrix has repeated eigenvalues if and only if (a - d) 2 = -4bc. The repeated
eigenvalue is (a + d)/ 2. If X is the matrix of eigenvectors, and is nonsingular,then

x-1 [~ ~]X= (a+ d)/21

which implies that

[~ ~]=(a+d)/21
and a = d and b = c = 0. Clearly, small perturbations of matrices with repeated
eigenvalues usually result in matrices which do not have a nonsingular matrix of
eigenvectors.

The proper way to handle the situation of repeated eigenvalues is either to use the
Schur decomposition (real or complex), or to use the Jordan Normal form. The Jordan

46 CHAPTER 3. NUMERICAL LINEAR ALGEBRA

Normal form of the matrix A has the form

[J, 0 0

~.1 x-'AX = ~ J2 0
0 J3
0 0

where each Ji (called a Jordan block) has the form

.>..i 1 0 0
0 .>..i 1 0

Ji = 0 0 .>..i 0

0 0 0).i

Note that Ji may be as small as 1 x 1 or 2 x 2.
This form is not favoured by numerical analysts as it is difficult to compute when

roundoff errors are present, and the criterion for deciding how big a Jordan block
should be is a difficult task as it requires numerically estimating the rank of a number
of matrices. Golub and van Loan's Matrix Computations discusses the difficulties of
computing the Jordan Normal form pp. 390-392 (2nd Edition, 1989). Also, the Schur
form can be used for almost all the same purposes as the Jordan Normal form, such as
computing matrix exponentials.

3. 7 Sparse matrix operations

Sparse matrices are simply matrices where most of the entries are zero. These are
important as they can be stored in a more compact way by storing only the nonzero
entries and their position in the matrix. The zero entries can usually be ignored for
most computations. Thus far larger problems can be dealt with, and more quickly, than
if array storage is used.

While the previous discussion holds for all matrices whether sparse or not, if
sparse matrices are to be used effectively then their sparsity needs to be preserved.
This quickly rules out a lot of algorithms which work well for matrices that are not
sparse (i.e. dense). For example, the Schur decomposition and explicit matrix inverses
usually result in intermediate and result matrices where most of the entries are nonzero.

Sparse matrices have a structure that dense·matrices don't. This is essentially the
set of (i, j) entries of a matrix that are nonzero, or at least that have memory allocated
for a value. And it is often important to keep this structure and to prevent the number
of nonzeros in intermediate matrices from increasing too quickly. The introduction of
nonzero entries into sparse matrices is called fill-in. Not only does fill-in result in more
space required to store the intermediate matrices and result indirectly in more floating
point computations, but it also requires some sort of dynamic memory management.
(This is easier in 'C' than in Fortran, but still has a cost in both time and memory

3.7. SPARSEMATRIXOPERATIONS 47

space.) The routines provided for manipulating sparse matrix data structures hides
much of the complexity of the data structures and operations that needto be performed
when there is fill-in.

Sparse matrices are also important as they are often more suitable for iterative
rather than the direct methods that have been discussed so far. Often some mix of
iterative and direct methods will provide the best performance for solving some large
problems.

The direct routines implemented for sparse matrices include sparse Cholesky and
sparse LU factorisation, with a number of variants which are provided for control the
"structure" of the sparse factorisations. The iterative methods for solving systems of
linear equations include pre-conditioned conjugate gradients for solving symmetric,
positive definite systems, the CGS method of Sonneveld, the GMRES method of
Saad and Schultz, the MGCR method of Leyk for solving systems of non-symmetric
matrices, and the LSQR method of Paige and Saunders for non-square least squares
problems. For eigenvalues, the Lanczos method is provided for symmetric matrices,
and the Arnoldi method for nonsymmetric matrices.

Those who are familiar with the standard "classical" iterative methods (Gauss
Jacobi, Gauss-Seidel and Successive Over-Relaxation etc.) may be disappointed that
they are not implemented. There are three reasons for this. The first is that the iterative
routines that have been implemented do not require an explicit representation c;f the
matrix; aU that is needed is a way of fanning Ax for any vector x. That is, only a
functional representation of the matrix (A) is needed. The second is the difficulty
in obtaining good convergence with the classical methods. These classical methods
require good estimates of convergence rates and the like, and are difficult to turn into
general purpose routines when the "rate estimation code" is included. The third is that,
for instance, conjugate gradients (without pre-conditioning) give the same order of
convergence as that for SOR with the optimum over-relaxation parameter for standard
test problems. It therefore appears that there is not a great deal of reason to implement
SOR over conjugate gradient methods, although conjugate gradient methods can be
modified to use an SSOR-based pre-conditioner M:

M = (D + wL)D-1(D + wLf

where D is the diagonal part of A, and L is the strictly lower triangular part of A and
w is the (over)relaxation parameter. Solving M z = w for z can be done essentially by
backward and forward substitution and can be easily programmed without explicitly
forming M. The Gauss-Seidel pre-conditioner is obtained by setting w = 1.

The crucial point about iterative methods is that there is usually no natural limit to
the number of iterations. A relative precision for the residual must usually be specified,
and it needs to be significantly larger than u (or, as it is represented in the library
MACHEP S). The number of iterations is also important for the speed with which a system
of linear equations is solved. If the relative error tolerance is set toE, then the number of
iterations is roughly proportional to J x:2 (A) ln(l/ E) for conjugate gradient methods.
For LSQR, it is roughly proportional to x:Ls(A) ln(l/E). For finding eigenvalues of
symmetric matrices, the Lanczos routine finds the bottom eigenvalue to an accuracy

48 CHAPTER 30 NUMERICAL LINEAR ALGEBRA

of E in time roughly proportional to J(>.k- >.2)j(>.2- >.1) ln(n(>.k- >..1)/E) where
>.1 < >.2 < 0 0

• < >.k are the distinct eigenvalues of A. (i.e. >.k is the largest eigenvalue
of A.)

The use of functional representation also opens up the possibility of pre-conditioning
for the CGS and LSQR, and even the Lanczos methods. Here incomplete factorisations
may be able to improve performance, such as the incomplete Cholesky factorisation or
the incomplete/modified LU factorisation.

Chapter4

Basic Dense Matrix Operations

The following routines are described in the following pages:

Catch errors
Error handlers and extensions
Error handling style
Copy objects
Input object from file
Output to file
General input/output
Deallocate (destroy) objects
Create and initialise objects
Extract column/row from matrix
Initialisation routines
Input object from stdin
Inner product
Operations on integer vectors
Resize data structures
Machine epsilon
Matrix addition and multiplication
Memory allocation information
Static workspace control functions
Matrix transposes, adjoints and multiplication
Matrix norms
Matrix-vector multiplication

Continued ...

49

51
53
57
59
62
65
67
68
70
72
73
62
75
76
77
80
81
83
88
93
94
96

50 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

Output object to stdout
Permutation identity, multiplication and inverse
Permute columns/rows & permute vectors
Set column/row of matrix
Scalar-vector multiplication/addition
Componentwise operations
Linear combinations of arrays and lists
VectQJ:-~'norffis ~ ,~

Operations on complex numbers
Core low level routines

To use these routines use the include statement
.

#include "matrix.h"

To use the complex variants use the include statement

#include "zmatrix.h"

65
98
99

101'
102
104
107

'109.•
111
113

NAME

catch, catchall, catch_FPE, tracecatch-catcherrors

SYNOPSIS

#include "matrix.h"
catch(int err_num, normal_code_to_execute,

code_to_execute_if_error)
catchall(normal_code_to_execute,

code_to_exectue_if_error)
tracecatch(normal_code_to_execute, char *fn_name)
catch_FPE()

DESCRIPTION

51

The catch () macro provides a way of interposing your own error-handling
routines and code in the usual error-handling procedures. The catch () macro works
like this: The global variable restart (of type jmp_buf) is saved. Then the code
normal_code_to_execute is executed. If an error with error number err_num
is raised, then code_to_execute_if_error is executed. If an error with another
error number is raised, an error will be raised with the same error number as the original
error, but win appear to have come from the catch () macro. If no error is raised
then the macro will exit and restart is reset to its old values.

The catchall () macro works just like the catch () macro except that
code_to_execute_if_error is executed if any error is raised.

The tracecatch () macro is really a specialised version of the catchall ()
macro that sets the error-handling flag to print out the underlying error when it is raised.

In every case the old error handling status will be restored on exiting the macro.

The routine catch_FPE () sets up a signal handler so that if a SIGFPE signal
is raised, it is caught and error (} is called as appropriate. The error raised by
error () is an E_SIGNAL en-or.

EXAMPLE

main()
{

MAT *A;
PERM *pivot;
VEC *x, *b;

tracecatch(
LUfactor(A,pivot);
LUsolve(A,pivot,b,x);
, "main");

52 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

would result in the error messages

"lufactor.c", line 28: NULL objects passed in function
LUfactor()

"junk.c", line 20: NULL objects passed in function main()
Sorry, exiting program

being printed to stdout if one ofAorpivot orb were NULL. These messages would
also be printed out to stderr if stdout is not a terminal.

On the other hand,

catch(E_NULL,
LUfactor(A,pi);
LUsolve(A,pi,b,x);

, printf("Ooops, found a NULL object\n"));

simply produces the message Ooops, found a NULL object in this case.

However, if another error occurs (say, b is the wrong size) then LUsol ve () raises
an e_SIZES error, and

"junk.c", line 22: sizes of objects don't match in
function catch ()

Sorry, exiting program

is printed out.

SEE ALSO

signal (), error (), set_err_flag (), ERREXIT () etc.

BUGS

If a different error to the one caught in catch () is raised, then the file and line
numbers of the original error are lost.

In an if-then-else statement, tracecatch () needs to be enclosed by braces
({ ... }).

SOURCE FILE: matrix.h

53

NAME
error, set_err_flag, ev_err, err_list_attach,
err_is_list_attached, err_list_free, warning- raise errors and
warnings

SYNOPSIS

#include "matrix.h"
int error(int err_num, char *func_name)
int ev_err(char *file, int err_num, int line_num,

char *fn_name, int list_num)
int set_err_flag(int new_flag)
int err_list_attach(int list_num, int list_len,

char **err_ptr, int warn)
int err_list_free(int list_num)
int err_is_list_attached(int list_num)
int warning(int warn_num, char *func_name)

DESCRIPTION

This is where errors are flagged in the system. The call
error (err_num, func_name) is in fact a macro which expands to

ev_err(__ FILE __ ,err_num, __ LINE __ ,func_name,O)

This call does not return.

Warnings are raised by warning (warn_num, func_name) which are expands
to

ev_err(__ FILE __ ,warn_num, __ LINE __ ,func_name,l)

This call returns zero.

The call to ev _err () prints out a message to stderr indicating that an error
has occurred, and where in which function it occurred, and the list of error messages
to use (0 is the default). For example, it could look like:

"testl.c", line 79: sizes of objects donut match in
function f ()

which indicates that an error was flagged in file "testl. c" at line 79, function "f"

where the sizes of two objects (vectors in this case) were incompatible.

Once this information is printed out, control is passed to the the address saved in the
buffer called restart by the last associated call to setjmp. The most convenient
way of setting up restart is to use a ••• catch .•. () macro or by an ERREXIT ()
or ERRABORT () macro. If restart has not been set then the program exits.

54 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

If you wish to do something particular if a certain error occurs, then you could
include a code fragment into main () such as the following:

if ((code=setjmp(restart)) != 0)
{

if (code = E_MEM } /* memory error, say */
/* something particular */
{ }

else
exit(O);

}

else
/* make sure that error handler does jump */
set_err_flag(EF_JUMP);

The list of standard error numbers is given below:

E_UNKNOWN
E_SIZES
E_BOUNDS
E_MEM
E_SING
E_POSDEF
E_FORMAT
E_INPUT
E_NULL
E_SQUARE
E_RANGE
E_INSITU2
E_INSITU
E_ITER
E_CONV
E_START
E_SIGNAL
E_INTERN
E_EOF
E_SHARED_VECS
E_NEG
E_OVERWRITE

0 /* unknown error (unused) */
1 /* incompatible sizes */
2 /* index out of bounds */
3 /* memory (de)allocation error */
4 /* singular matrix */
5 /* matrix not positive definite */
6 /* incorrect format input */
7 /* bad input file/device */
8 /* NULL object passed */
9 /* matrix not square */

10 /* object out of range */
11 /* only in-situ for square matrices */
12 /* can't do operation in-situ */
13 /* too many iterations */
14 /* convergence criterion failed */
15 /* bad starting value */
16 /* floating exception */
17 /* some internal error */
18 /* unexpected end~of-file */
19 /* cannot release shared vectors */
20 /* negative argument */
21 /* cannot overwrite object */

The set_err_flag () routine sets a flag which controls the behaviour of the
error handling routine. The old value of this flag is returned, so that it can be restored
if necessary.

The list of values of this flag are given below:

55

EF_EXIT 0 I* exit on error default *I
EF_ABORT 1 I* abort on error dump core *I
EF_JUMP 2 I* do longjmp () see above code *I
EF_SILENT 3 I* do not report error, but do longjmp() *I

If there is a just a warning, then the default behaviour is to print out a message to
stdout, and possibly stderr; the only value of the flag which has any effect is
EF _SILENT. This suppresses the printing.

The set of error messages, and the set of errors, can be expanded on demand
by the user by means of err_list_attach(list_num, list_len, err_ptr,
warn). The list number list_num should be greater than one (as numbers zero and
one are taken by the standard system). The parameter list_len is the number of
errors and error messages. The parameter err__ptr is an array of list_len strings.
The parameter warn is TRUE or FALSE depending on whether this class of "errors"
should be regarded as being just warnings, or whether they are (potentially) fatal. Then
when an "error" should be raised, call

ev_err(__ FILE __ ,err_num, __ LINE __ ,func_name,list_num);

It may well be worthwhile to write a macro such as:

#define my_error(my_err_num,func_name) \
ev_err(__ FILE __ ,err_num, __ LINE __ ,func_name,list_num)

If when originally set, the warn parameter was TRUE, then these calls behave sim
ilarly to warning (), and if it was FALSE, then these calls behave similarly to
error () . These errors and exceptions are controlled using catch () , catchall ()
and tracecatch () (if warn was FALSE), just as for error () calls.

The call err _list_free (list_num) unattaches the error list numbered
list_num, and allows it to be re-used.

The call err_is_list_attached (list_num) returns TRUE if error list
list_num is attached, and FALSE otherwise. This can be used to find the next
available free list

EXAMPLE

Use of error () and warning () :

if
if

! A)

A->m ! = A->n)
error(E_NULL, "my_function");
error(E_SQUARE,"my_function");

if i < 0 I I i >= A->m error (E_BOUNDS, "my_function");
I* this should never happen *I
if (panic && something_really_bad)

error (E_INTERN, "my _function") ;
/* issue a warning -- can still continue */
warning(WARN_UNKNOWN,"my_function"};

56 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

Use of err_list_attach():

char *my_list[] = { "short circuit", "open circuit" };
int my_list_num = 0;

main()
{

}

for (my_list_num = 0; ; my_list_num++)
if (! err_is_list_attached(my_list_num)

break;
err_list_attach(my_list_num,2,my_list,FALSE);

tracecatch(circuit_simulator(...•),"main");

err_list_free(my_list_num);

void circuit_simulator(....)
{

}

/* open circuit error */
ev_err(__ FILE __ ,l, __ LINE __ ,

"circuit_simulator",my_list_num);

SEE ALSO

ERREXIT (), ERRABORT (), setjmp () and longjmp ().

BUGS

Not many routines use tracecatch (), so that the trace is far from complete.
Debuggers are needed in this case, if only to obtain a backtrace.

SOURCE FILE: err.c

NAME

ERREXIT, ERRABORT, ON_ERROR - what to do on error

SYNOPSIS

#include "matrix.h"
ERREXIT();

ERRABORT{);

ON_ERROR();

DESCRIPTION

57

If ERREXIT (} is called, then the program exits once the error occurs, and the
error message is printed. This is the default.

If ERRABORT () is called, then the program aborts once the error occurs, and the
error message is printed. Aborting in Unix systems means that a core file is dumped
and can be analysed, for example, by (symbolic) debuggers. Behaviour on non-Unix
systems is undefined.

If ON_ ERROR () is called, the current place is set as the default return point if an
error is raised, though this can be modified by the catch () macro. The ON_ ERROR ()

call can be put at the beginning of a main program so that control always returns to the
start. One way of using it is as follows:

main()
{

}

ON_ERROR();

printf("At start of program; restarts on error\n");
/* initialisation stuff here */

I* real work here */

This is a slightly dangerous way of doing things, but may be useful for implementing
matrix calculator type programs.

Other, more sophisticated, things can be done with error handlers and error han
dling, though the topic is too advanced to be treated in detail here.

SEE ALSO

error () and ev _err ().

BUGS

With all of these routines, care must be taken not to use them inside called functions,
unless the calling function immediately re-sets the restart buffer after the called

58 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

function returns. Otherwise the restart buffer will reference a point on the stack
which will be overwritten by subsequent calculations and function calls. This is a
problem inherent in the use of setjmp {) and longjmp {). The only way around
this problem is through the implementation of co-routines.

With ON_ERROR {) , infinite loops can occur very easily.

SOURCE FILE: matrix.h

NAME
bd_copy, i v _copy, px_copy, m_copy, v _copy, zm_copy,
zv _copy, m_move, v ..move, zm_move, zv _move - copy objects

SYNOPSIS

#include "matrix.h"
BAND *bd_copy(BAND *in, BAND *out)
IVEC * i v _copy (IVEC *in, IVEC *out)
MAT *m_copy (MAT *in, MAT *out)
MAT *_m_copy(MAT *in, YJAT *out, int iO, int jO)
PERM *px_copy(PERM *' l.ll,
VEC *v_copy (VEC *in,
VEC *_v_copy(VEC *in,
MAT *m_move (MAT *in,

MAT *out,
VEC *v_move (VEC *in,

VEC *out,
VEC *mv_move(MAT *in,

VEC *out,
M.l\'I' *vm_move(VEC *in,

MAT ~'out,

#include "zmatrix.h"
ZMAT *zm_copy{ZJliiAT *

PERM *out)
VEC *out)
VEC *out, int iO)
int iO, int j 0' int mO, int
int il, int j 1)

int iO, int dimO,
int i1)
int iO, int j 0' int mO, int
int il)
int iO,
int il, int j 1, int ml, int

ZMA.T *out)
ZMJ!~T *_zm_copy(ZY.IAT *in, ZMAT *out, int iO, int jO)

ZVEC '~<zv_copy(ZVEC * ZVEC *out)
ZVEC * _zv _copy (ZVEC '~in, ZVEC '~out)

59

nO,

nO,

nl)

ZMAT *zm_move (Zl!..l.\.T
ZifJll.T

ZVEC *zv_move (ZVEC
ZVEC

ZVEC *zmv_move{Z~1AT

ZVEC
ZMAT *zvm_move(ZVEC

ZMAT

*in, ~ ' ~ l.nc.. iO int j 0' int mO, int nO,
*out, int il, int j 1)

*in, int iO, int dimO,
*out, int il)

*in, int iO, int j 0 f int mO, int nO,
*ou·t, int il)
*in, int iO,
*out, int il, int jl, int ml, int nl)

DESCRIPTION

All theroutinesbd_copy(), iv_copy(), m_copy(}, px_copy(), v_copy(),
zm_copy {) and zv _copy () copy all of the data from one data structure to another,
creating a new object if necessary (i.e. a NULL object is passed or out is not suffi
ciently big), by means of a call to bd_get () , i v _get () , m_get () , px_get (} or
v _get () etc. as appropriate.

60 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

Form_ copy(), v_copy(), bd_copy(), iv_copy(), zm_copy(), and
zv _copy () if in is smaller than the object ou·t, then it is copied into a region in
out of the same size. If the sizes of the permutations differ in px_copy() then a
new permutation is created and returned.

The "raw" copy routines are _m_copy (in, out, iO, j 0) and
_ v _copy (in, out , i 0 } . Here (i 0 , j 0) is the position where the (0, 0) element
of the in matrix is copied to; in is copied into a block of out. Similarly, for
_ v __ copy () , i 0 is the position of out where the zero element of in is copied to; in
is copied to a block of components of out.

The •• _copy() routines all work in situ with in == out, however, the
_ •• _copy () routines will only work in situ if i 0 (and also j 0 if this is also passed)
is (are) zero.

The complex routines zm_copy(out), zv_copy(in,out), and their
"raw" versions _zm_copy(in, out, iO, j 0) and _zv_copy(int, out, iO) op
erate entirely analogously to their real counterparts.

The routines •. _move () move blocks between matrices and vectors. A source
block in a matrix is identified by the matrix structure (in), the co-ordinates ((iO, j 0))
of the top left comer of the block and the number of rows (mO) and columns (nO) of
the block. The target block of a matrix is identified by out and the co-ordinates of the
top left comer of the block ((i 1, j 1)), except in the case of moving a block from a
vector to a matrix (vm_move ()). In that case the number of rows and columns of the
target need to be specified.

The source block of a vector is identified by the source vector (in), the starting
index of the block (iO) and the dimension of the block (dimO). The target block of a
vector is identified by the target vector out and the starting index (il).

The routine m_move (} moves blocks between matrices, v _move () moves blocks
between vectors, mv_m.ove () moves blocks from matrices to vectors (copying by
rows), and vm_move () moves blocks from vectors to matrices (again copying by
rows). The routine zm_move () moves blocks between complex matrices, zv _move ()
moves blocks between complex vectors, zmv _move () moves blocks from complex
matrices to complex vectors (copying by rows), and zvm_move () moves blocks from
complex vectors to complex matrices (again copying by rows).

EXAMPLE

I* copy x to y */
v_copy(x,y);
I* create a new vector z = x */
z = v_copy(x,VNULL);
I* copy A to the block in B with top-left corner (3,5) */
_m_copy(A,B,3,5);
I* an equivalent operation with m_move() */
m_move(A,O,O,A->m,A->n, B,3,5);

I* copy a matrix into a block in a vector ... *I
mv_move(A,O,O,A->m,A->n, y,3);
I* ... and restore the matrix*/
vm_move(y,3,A->m*A->n, A,O,O,A->m,A->n);
I* construct a block diagonal matrix C = diag(A,B) *!
C = m_get(A->m+B->m,A->n+B->n);
m_move(A,O,O,A->m,A->n, C,O, 0);
m_move(B,O,O,B->m,B->n, C,A->m,A->n);

SEE ALSO

.. _get () routines

SOURCE FILE: copy.h, ivecop.c, zcopy.c, bdfactor.c

61

62 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

NAME
iv_finput, m_finput, px_finput, v_finput, z_finput,
zm_f input, zv _f input -input object from a file

SYNOPSIS

#include <stdio.h>
#include "matrix.h"
IVEC *iv_finput(FILE *fp, IVEC *iv)
iv = iv_finput(fp,VNULL);

MAT *m_finput(FILE *fp, MAT *A)
A= m_finput(fp,MNULL);

PERM *px_finput(FILE *fp, PERM *pi}
pi = px_finput(fp,PXNULL);

VEC *v_finput(FILE *fp, VEC *v)
v = v_finput(fp,VNULL);

complex z_finput(FILE *)

z = z_finput(fp);

ZMAT *zm_finput(FILE *fp, ZMAT *A)
A= zm_finput(fp,ZMNULL);

ZVEC *zv_finput(FILE *fp, ZVEC *v)
v = zv_finput(fp,ZVNULL);

DESCRIPTION

These functions read in objects from the specified file. These functions first deter
mine if fp is a file pointer for a "tty" (i.e. keyboard/terminal). There are also the macros
m_input(A),px_input(pi), v_input(x), zm_input(A), zv_input(x),
and which are equivalent to m_finput (stdin,A), px __ finput (stdin,pi),
v_finput (stdin,x), zm_finput (stdin,A), and zv_finput (stdin,x)
respectively. If so, then an interactive version of the input functions is called; if
not, then a "file" version of the input functions is called.

The interactive input prompts the user for input for the various entries of an object;
the file input simply reads input from the file (or pipe, or device etc.) and parses it as
necessary. For complex numbers, the format is different between interactive and file
input: interactive input has the format "x y" or just "x" for zero real part. File input of
complex numbers uses (x, y). For example, -3.2 + 5.1i is entered as -3.2 +5 .1

in interactive mode, and as (- 3 • 2, 5 • 1) in file mode.

63

Note that the format for file input is essentially the same as the output produced by
the •• _foutput () and •• _output () functions. This means that if the output is
sent to a file or to a pipe, then it can be read in again without modification. Note also
that for file input, that lines before the start of the data that begin with a "#" are treated
as comments and ignored. For example, this might be the contents of a file my. dat:

this is an example
of a matrix input
Matrix: 3 by 4
row 0: 0 1 -2
row 1:-2 0 1.5
row 2: 5 -4 0.5

this is an example
a vector input
Vector: dim: 4

-1

2
0

7 -1.372 3.4

this is an example
of a permutation input
Permutation: size: 4

0->1 1->3 2->0 3->2

this is a complex number
(3.765, -1.465324)
this is a complex matrix
ComplexMatrix: 3 by 4
row 0 : (1 , 0) (- 2 , 0) (3 , 0) (-1 , 0)
row 1 : (5 , 3) (- 2 , - 3) (1 , - 4) (2 , 1)
row 2 : (1 , 0) (2 • 5 , 0) (2 • 5 , - 3 • 5 6) (2 . 5 , 0)
#and this is a complex vector •..
ComplexVector: dim: 3

(-1.342235, -1.342) (2.3,-5}
1, 1)

Interactive input is read line by line. This means that only one data item can be
entered at a time. A user can also go backwards and forwards through a matrix or
vector by entering "b" or "f" instead of entering data. Entering invalid data (such as
hitting the return key) is not accepted; you must enter valid data before going on to the
next entry. When permutations are entered, the value given is checked to see if lies
within the acceptable range, and if that value had been given previously.

If the input routines are passed a NULL object, they create a new object of the size
determined by the input. Otherwise, for interactive input, the size of the object passed
must have the same size as the object being read, and the data is entered into the object

64 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

passed to the input routine. For file input, if the object passed to the input routine has
a different size to that read in, a new object is created and data entered in it, which is
then returned.

EXAMPLE

The above input file can be read in from stdin using:

complex z;
MAT *A;
VEC *b;
PERM *pi;
ZMAT *zA;
ZVEC *zv;

esueoo

A "" m_input(MNULL);
b = v_input(VNULL);
pi = px_input(PXNULL);
z = z_input();
zA = zm_input(ZMNULL);
zv -~ zv_input(ZVNULL);

If you know that a vector must have dimension m for interactive input, use: .

b = v_get (m);
v_input(b); /*use b's allocated memory*/

SEE ALSO

.. _output () entries, •• _input () entries

BUGS

Memory can be lost forever; objects should be resize'd.

On end-of-file, an "unexpected end-of-file" error (E_EOF) is raised.

Note that the test for whether the input is an interactive device is made by
i sat ty (f i leno (fp)) . This may not be portable to some systems.

Interactive complex input does not allow (x, y) format; nor does it allow entry of
the imaginary part without the real part.

SOURCE FILE: matrixio.c, zmatio.c

65

NAME
iv_foutput, m_foutput, px_foutput, v_foutput, z_foutput,
zm_foutput, zv_foutput, iv_dump, m_dump, px_dump, v_dump,
zm_dump, zv _dump - output to a file or stream

SYNOPSIS

#include "matrix.h"
void iv_foutput(FILE
void m_foutput(FILE
void px_foutput(FILE
void v_foutput(FILE

#include "zmatrix.h"
void :z_foutput(FILE
void zm_foutput(FILE
void zv_foutput(FILE

DESCRIPTION

*fp,
*fp,
*fp,
*fp,

*fp,
*fp,
*fp,

IVEC *v)
MAT *A)
PERM *pi)
VEC *v)

complex z)
ZMAT *A)
ZVEC *v)

These output is a representation of the respective objects to the file (or device, or
pipe etc.) designated by the file pointer fp. The format in which data is printed out is
meant to be both human and machine readable; that is, there is sufficient information
for people to understand what is printed out, and furthermore, the format can be read
in by the •• _finput () and •• _input () routines.

An example of the format for matrices is given in the entry for the •• _f input ()
routines.

Therearealsotheroutinesm_output (A) ,px_output (pi) andv_output (x)
which are equivalent to m_foutput (stdout,A), px_foutput (stdout,pi)
and v_foutput (stdout,x) respectively.

Note that the •• _output () routines are in fact just macros which translate into
calls of these •• _foutput () routines with "fp = stdin".

In addition there are a number of routines for dumping the data structures in their en
tiretyfordebuggingpurposes. These routines arem_dump (fp, A) ,px_dump (fp, px),
v_dump (fp, x), zm_dump (fp, zA) and zv_dump (fp, zv) where fpisaFILE *,

AisaMAT *,pxisaPERM *andxisaVEC *,zAisaZMAT *,andzvisaZVEC *.
These print out pointers (as hex numbers), the maximum values of various quantities
(such as max_ dim for a vector), as well as all the quantities normally printed out. The
output from these routines is not machine readable, and can be quite verbose.

EXAMPLE

/* output A to stdout */

66 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

m_output (A) ;
I* ••• or to file junk.out */

if t (fp = fopen("junk.out","w")) --NULL)
error(E_EOF,"my_function");

m_foutput(fp,A);
I* ••• but for debugging, you may need ••• */
m_dump(stdout,A);

SEE ALSO

•. _finput (), .• _input 0

SOURCE FILE: matrixio.c, zmatio.c

67

NAME

f input, input, £prompter, prompter -general input/output routines

SYNOPSIS

#include <stdio.h>
#include "matrix.h"
int finput(FILE *fp, char *prompt, char *fmt, void *var)
int input(char *prompt, char *fmt, void *var)
int fprompter(FILE *fp, char *prompt}
int prompter(char *prompt)

DESCRIPTION

The macros finput () and input () are for general input, allowing for com
ments as accepted by the •• _f input () routines. That is, if input is from a file, then
comments (text following a '#' until the end of the line) are skipped, and if input is
from a terminal, then the string prompt is printed to stderr. The input is read for
the file/stream fp by finput () and by stdin by input (). The fmt argument
is a string containing the scanf () format, and var is the argument expected by
scanf (} according to the format string fmt.

For example, to read in a file name of no more than 30 characters from stdin, use

char fname[31];

input("Input file name: ","%30s",fname);

The macros fprompter () and prompter () send the prompt string to stderr
if the input file/stream (fp in the case of fprompter (), stdin for prompter ())
is a terminal; otherwise any comments are skipped over.

SEE ALSO

scanf (), •• _finput ()

SOURCE FILE: matrix.h

68 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

NAME
IV _FREE, M_FREE, PX_FREE, V _FREE, ZM_FREE, ZV _FREE,
i v _free_ vars, m_f ree_ vars, px_f ree_ vars, v _free_ vars,
zm_f ree_ vars, zv _free_ vars - destroy objects and free up memory

SYNOPSIS

#include "matrix.h"
void IV_FREE(IVEC *iv)
void M_FREE (MAT *A)
void PX_FREE(PERM *pi)
void V_FREE (VEC *v)
int iv_free_vars(IVEC
int m_free_vars(MAT
int px_free_vars(PERM
int v_free_vars(VEC

#include "zmatrix.h"
void ZM_FREE(ZMAT *A)
void ZV_FREE(ZVEC *v)
int
int

zm_free_vars(ZMAT
zv_free_vars(ZVEC

DESCRIPTION

**ivl, IVEC **iv2,
**Al, MAT **A2,
**pil, PERM **pi2,
**vl, VEC **v2,

**Al, ZMAT **A2,
**vl, ZVEC **v2,

• • • I

• • • I

• • • I

• • • I

• • • I

• • • I

NULL)
NULL)
NULL)
NULL)

NULL)
NULL)

The •• _FREE () routines are in fact all macros which result in calls to thje
corresponding •• _free () function, so that IV _FREE (i v) calls i v _free (i v) .
The effect of calling •• _free () is to release all the memory associated with the
object passed. The effect of the macros •• _FREE (object) is to firstly release all
the memory associated with the object passed, and to then set object to have the
value NULL. The reason for using macros is to avoid the "dangling pointer" problem.

The problems of dangling pointers cannot be entirely overcome within a conven
tional language, such as 'C', as the following code illustra~s;

VEC *x, *y;

x = v_get(lO);
Y = x;
V_FREE(x);

/* y and x now point to the same place */
/* x is now VNULL */

/* y now "dangles" -- using y can be dangerous */
y->ve[9] = l.O; /* overwriting malloc area! */
V_FREE(y); /*program will probably crash here! */

The •• _free_ vars () functions free a NULL-terminated list of pointers to
variables all of the same type. Calling

69

•• _free_vars(&xl,&x2, ••• ,&xN,NULL)

is equivalent to

•• _free (xl); xl = NULL;

•• _free (x2); x2 :::: NULL;

c • o a e •

•• _free (xN); xN ::: NULL;

The returned value of the •• _free_ vars () routines is the number of objects freed.

SEE ALSO

.. _get () routines

BUGS

Dangling pointer problem is neither entirely fixed, nor is it fixable.

SOURCE FILE: memory.c, zmemory.c

70 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

NAME
bd_get, i v _get, :m__get, px_get, v _get, zm_get, zv _get,
i v _get_ vars, m_get_ vars, px_get_ vars, v _get_ vars,
zm_get.:.vars, zv_get_vars- create and initialise objects

SYNOPSIS

#include "matrix.h"
BAND *bd_get(int lb, int ub, int n)
IVEC *iv_get(unsigned dim)
MAT
PERM
VEC
int

* m_get(unsigned m, unsigned n)
*px_get(unsigned size)
* v_get(unsigned dim)
*iv_get_vars(unsigned dim,

IVEC **xl, IVEC **x2, ••• , NULL)
int * m_get_vars(unsigned m, unsigned n,

MAT **Al, MAT **A2, ••• , NULL)
int *px_get_vars(unsigned size,

PERM **pxl, PERM **px2, ••• , NULL)
int * v_get_vars(unsigned dim,

VEC **xl, VEC **x2, ••• , NULL)

#include "zmatrix.h"
ZMAT *zm_get(unsigned m, unsigned n)
ZVEC *zv_get(unsigned dim)
int *zm_get_vars(unsigned m, unsigned n,

ZMAT **Al, ZMAT **A2, ••• , NULL)
int *zv_get_vars(unsigned dim,

ZVEC **xl, ZVEC **x2, • • • I NULL)

DESCRIPTION

All these routines create and initialise data structures for the associated type of
objects. Any extra memory needed is obtained from malloc () and its related routines.

Also note that zero relative indexing ·is used; that is, the vector x returned by
x = v_get (10) can have indexes x->ve [i] fori equal to 0, 1, 2, ... , 9, not 1,
2, ... , 9, 10. This also applies for both the rows and columns of a matrix.

The bd_get (lb, ub, n) routine creates a band matrix of size n x n with a
lower bandwidth of lb and an upper banwidth of ub. The i v _get (dim) routine
creates an integer vector of dimension dim. Its entries are initialised to be zero. The
m_get (m, n) routine creates a matrix of size m x n. That is, it has m rows and n
columns. The matrix elements are all initialised to being zero. The px_get (size)
routine creates and returns a permutation of size size. Its entries are initialised to
being those of an identity permutation. Consistent with C's array index conventions,
a permutation of the given size is a permutation on the set {0,1, ... ,size-1}. The

71

v _get (dim) routine creates and returns a vector of dimension dim. Its entries are
all initialised to zero.

The •• _get_ vars (} routines allocate and initialise a NULL-terminated list of
pointers to variables, all of the same type. All of the variables are initialised to objects
of the same size. Calling

•• _get_vars([m,]n,&xl,&x2, ••• ,&xN,NULL)

is equivalent to

xl = •• _get([m,]n);
x2 = •• _get { [m,] n);

xN = •• _get([m,]n);

(Note that "[m,]" indicates that ''m," might or might not be present, depending on
whether the data structure involved is a matrix or not.) The returned value of the
•• _get_ vars () routines is the number of objects created.

EXAMPLE

MAT *A;

I* allocate 10 x 15 matrix */

A= m_get(10,15);

SEE ALSO

.. _free(), .. _FREE(), and •• _resize 0.

BUGS

As dynamic memory allocation is used, and it is not possible to build garbage
collection into C, memory can be lost. It is the programmer's responsibility to free
allocated memory when it is no longer needed.

SOURCE FILE: memory.c, zmemory.c, bdfactor.c

72 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

NAME
get_col, get_row, zget_col, zget_row- extract columns or rows
from matrices

SYNOPSIS

#include "matrix.h"
VEC *get_col(MAT *A, int col_num, VEe *v)
VEC *get_row(MAT *A, int row_num, VEC *v)

#include "zmatrix.h"
ZVEC *zget_col(ZMAT *A, int col_num, ZVEC *v)
ZVEC *zget_row(ZMAT *A, int row_num, ZVEC *v)

DESCRIPTION

These put the designated column or row of the matrix A and puts it into the vector
v. If v is NULL or too small,· then a new vector object is created and returned by
get_col () and get_row () . Otherwise, v is filled with. th~ necessary data and
is then returned. If v is larger than necessary, then the additional entries of v are
unchanged.

The complex routines operate exactly analogously to the real routines.

EXAMPLE

MAT *A;
VEC *row, *col;
int row_num, col_num;

row= v_get(A->n);
col = v_get(A->m);
get_row(A, row_num, row);
get_col(A, col_num, col);

SEE ALSO

set_col (), set_row(), and zset_col (), zset_row().

SOURCE FILE: matop.c, zmatop.c

NAME
m..ident, m..ones, v_ones, m..rand, v_rand, m..zero, v_zero,
zm..rand, zv_rand, zm_zero, zv_zero, mrand, smrand,
mrandlist- initialisation routines

SYNOPSIS

#include "matrix.h"
MAT *m_ident(MAT *A)
MAT *m_ones(MAT *A)
VEC *v_ones(VEC *x)
MAT *m_rand(MAT *A)
VEC *v_rand(VEC *x)
MAT *m_zero(MAT *A)
VEC *v_zero(VEC *x)
Real mrand()
void smrand(int seed)
void mrandlist(Real a[],

#include "zmatrix.h"
ZMAT *zm_rand(ZMAT *A)
ZVEC
ZMAT
ZVEC

*zv_rand(ZVEC *x)
*zm_zero(ZMAT *A)
*zv_zero(ZVEC *x)

DESCRIPTION

int len)

The routine m_ident () sets the matrix A to be the identity matrix. That is, the
diagonal entries are set to 1, and the off-diagonal entries to 0.

The routines m_ones () , v _ones () fill A and x with ones.

The routines v _rand () , m_rand () and zv _rand () , zm_rand () fill A and
x with random entries. For real vectors or matrices the entries are between zero and
one as determined by the mrand () function. For complex vectors or matrices, the
entries have both real and imaginary parts between zero and one as determined by the
mrand () function.

The routines m_zero () , v _zero () and zin_zero () , zv _zero () fill A and x
with zeros.

These routines will raise an E_NULL error if A is NULL.

The routine mrand () returns a pseudo-random number in the range [0, 1) using an
algorithm based on Knuth's lagged Fibonacci method in Seminumerical Algorithms:
The Art of Computer Programming, vol. 2 §§3.2-3.3. The implementation is based on
that in Numerical Recipes inC, pp. 212-213, §7.1. Note that the seeds for mrand ()
are initialised using smrand () with a fixed seed. Thus mrand () will produce the

74 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

same pseudo-random sequence (unless smrand () is called) in different runs, different
programs, and but for differences in floating point systems, on different machines.

The routine smrand () allows the user to re-set the seed values based on a user
specified seed. Thus mrand () can produce a wide variety of reproducible pseudo
random numbers.

The routine mrandlist () fills an array with pseudo-random numbers using the
same algorithm as mrand () , but is somewhat faster for reasonably long vectors.

EXAMPLE

Let e = [1, 1, ... , lf.

MAT *A;
ZMAT *zA;
VEC *x;
ZVEC *zx;
PERM *pi;

.. • e e • •

m_zero(A);
m_ident (A) ;
m_ones (A);

I*

I*

A == zero matrix */
I* A == identity matrix */
A == e.eAT */

m_rand(A); I* A[i] [j] is random in interval [0,1) */
zm_rand(zA);/* zA[i] [j] is random in [0,1) x [0,1) */
v_zero(x); /* x ==zero vector*/
v_ones(x); /* x == e */
v_rand(x); /* x[i] is random in interval [0,1) */
zv_rand(zx);/* zx[i] is random in [0,1) x [0,1) */

BUGS

The routine m_ident () "works" even if A is not square.

There is also the observation of von Neumann, Various techniques used in connec
tion with random digits, National Bureau of Standards (1951), p. 36:

"Any one who considers arithmetical methods of producing random digits is, of
course, in a state of sin."

SOURCE FILE: init.c, matop.c, zmatop.c, zmemory.c,zvecop.c

NAME

in_prod, zin_prod- inner product

SYNOPSIS

#include "matrix.h"
double in_prod(VEC *x, VEC *y)

#include "zmatrix.h"
complex zin_prod(ZVEC *x, ZVEC *y)

DESCRIPTION

The inner product xT y = :Ei XiYi of x and y is returned by in _prod () . The
complex inner product xT y = :Ei XiYi of x andy is returned by zin_prod (). This
will fail if x or y is NULL. .

These are built on the "raw" inner product routines:

double _in_prod (VEC *x, VEC *y, int iO)
complex _zin_prod(ZVEC *x, ZVEC *y, int iO, int conj)

which compute the inner products ignoring the first i 0 entries. For the routine
_zin_prod() if the flag conj is Z_CONJ (or TRUE) then the entries in the x
vector are conjugated and :Ei~io XiYi is returned; otherwise if conj is Z_NOCONJ (or
FALSE) then :Ei~io XiYi is returned.

EXAMPLE

VEC *x, *y;
ZVEC *zx, *zy;
Real x_dot_y;
complex zx_do_zy;

x_dot_y = in_prod(x,y);
zx_dot_zy = zin_prod(zx,zy);

SEE ALSO

ip () , _zip_ () and the core routines.

BUGS

The accumulation is not guaranteed to be done in a higher precision than Real,
although the return type is double. To guarantee more than this, we would either
need an explicit extended precision long double type or force the accumulation
to be done in a single register. While this is in principle possible on IEEE standard
hardware, the routines to ensure this are not standard, even for IEEE arithmetic.

SOURCE FILE: vecop.c, zvecop.c

76 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

NAME

iv_add, iv_sub- Integer vector operations

SYNOPSIS

#include
IVEC
IVEC

"matrix.h"
*iv_add(IVEC *ivl,IVEC *iv2, IVEC *out)
*iv_sub(IVEC *ivl, IVEC *iv2, IVEC *out)

DESCRIPTION

The two arithmetic operations implemented for integer vectors are addition
(i v _add ()) and subtraction (i v _sub ()). In each of these routines, out is resized
to be of the correct size if it does not have the same dimension as i vl and i v2.

This dearth of operations is because it is envisaged that the main purpose for using
integer vectors is to hold indexes or to represent combinatorial objects.

EXAMPLE

IVEC *x, *y, *z;

X= co,..;

y ::: •.. ;

I* z = x+y, allocate z */
z = iv_add(x,y,IVNULL);
I* z = x-y, z already allocated */
iv_sub(x,y,z);

SEE ALSO

Vector operations v_ •.. () and iv_resize ().

SOURCE FILE: ivecop.c

NAME
bd_resize, iv_resize, m_resize, px_resize, v_resize,
zm_resize, zv_resize, iv_resize_vars, m_resize_vars,
px_resize_vars, v_resize_vars, zm_resize_vars,
zv_resize_vars- Resizing data structures

SYNOPSIS

#include "mat.ri:x:.h"
BAND *bd_resize(BAND *A,

int. new_lb, int new_ub, int new_n}
IVEC *iv_resize(IVEC *iv, int new_dim)
MAT *m_resize (MAT *A, int new_m, int new_n)
PERM *px_resize(PERM *p:x:, int new_size)
VEC *v_resize (VEC *:x:, int new_dim)
int *iv_resize_vars(unsigned new_dim,

IVEC **xl, IVEC **x2, ••• , NULL)
int *m_resize __ vars (unsigned new_m, unsigned new_n,

MAT **Al, MAT **A2, ••• , NULL)
int *px_resize_vars(unsigned new_size,

PERM **pxl, PERM **px2, ••• , NULL)
int *v_resize_vars (unsigned new_dim,

VEC **:x:l, VEC **:x:2, ••• , NULL)

#include "zmatrix.h"
ZMAT *zm_resize(ZMAT *A, int new_m, int new_n)
ZVEC *zv_resize(ZVEC *x, int new_dim)
int *zm_resize_vars(unsigned new_m, unsigned new_n,

ZMAT **Al, ZMAT **A2, ••• , NULL)
int *zv_resize_vars(unsigned new_dim,

ZVEC **xl, ZVEC **x2, NULL)

DESCRIPTION

77

Each of these routines sets the (apparent) size of data structure to be identical to
that obtained by using •. _get (new_ •.•). Thus the VEC *returned by
v_resize (x, new_dim) has x~>dimequal tonew_dim. The MAT *returned by
m_resize (A, new_m, new_n) is a new_m x new_n matrix.

The following rules hold for all of the above functions except forpx_resize ().
Whenever there is overlap between the object passed and the re-sized data structure, the
entries of the new data structure are identical, and elsewhere the entries are zero. So if
Aisa5 x 2matrixandnew_A = m_resize(A,2,5), thennew_A->me[l] [0]
is identical to the old A->me [1] [0]. However, new_A->me [1] [3] is zero.

For px_resize () the rules are somewhat different because permutations do not
remain permutations under such arbitrary operations. Instead, if the size is reduced,

18 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

then the returned permutation is an identity permutation. If size is increased, then
new_px->pe [i'l , == · i for i greater than or equal to the old· size.

Allocation or reallocation and copying of data structure entries is avoided if possible
(except, to some extent, in m_r~size ()). Thefe.ls a "high-water mark" field con
tained within each data structure; for the VEC and IVEC data structures it is max_dim,
which contains the actual amount of memory that has been allocated (at some tim:e)
for this data structure. Thus resizing does not deallocate memory! To actually free
up memory, use one of the •• _free () routines or the •• _FREE () macros.

You should not rely on the values of entries 'outside the apparent size of the data
structures but inside the maximum allocated area. These areas may be zeroed or
overwritten, especially by the m_resize () routine. ,

The •• _resize_ vars () routines resize a NULL-terminated list of pointers to
variables, all of the same type. The new sizes of the a)l variables in the list are the
same. Calling

•• _resize_vars ([m,] n, &xl, &x2, .:- •• , &xN, NULL)

is equivalent to

xl = •• _resize(xl, [m,]n);
x2 = •• _resize(x2, [m,]n);

xN = •• _resize(xN, [m,]n);

(Note that" [m, l" indicates that "m," might or might not be present, depending on
whether the data· structure involved is a matrix or not.) The .returned value of the
•• _resize_ vars () mutines is the number of objects resized.

EXAMPLE

I* an alternative to workspace arrays */
my_function(•••)

{

}

static VEC *x = VNOLL;

x = v_resize(x,new::_size)';
MEM~STAT::_REG(x,TYP~_VEC);

......
v_copy(• .;·., x);

BUGS

79

Note the above comment: resizing does not deallocate memory! To frt<e up
the actual memory allocated you will need to use the •• _FREE () macros or the
.. _free () function calls.

SEE ALSO

•• _get () routines; MEM_STAT_REG () .

SOURCE FILE: memory. c, zmemory. c, bdfactor. c and i vecop. c

80 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

NAME

· MACHEPS -machine epsilon

SYNOPSIS

#include "matrix.h"
Real macheps = MACHEPS;

DESCRIPTION

The quantity MACHEPS is a #define'd quantity which is the "machine epsilon"
or "unit roundoff" for a given machine. For more information on this concept, see, e.g.,
Introduction to Numerical Analysis by K. Atkinson, or Matrix Computations by G.
Golub and C. Van Loan. The value given is for the standard floating point type Real
only. Normally the standard floating point type is double, but in the installation this
can be changed to be float or long double. (See the chapter on installation.)

For ANSI C implementations, this is set to the value of the DBL_EPSILON or
FLT_EPSILON macro defined in <float. h>.

EXAMPLE

while (residual > lOO*MACHEPS

{ /* iterate */ }

BUGS

The value of MACHEPS has to be modified in the source whenever moving to
another machine if the floating point processing is different.

SOURCE FILE: machine.h

81

NAME
m_add, m...mlt, m_sub, sm...mlt, zm_add, zm._mlt, zm_sub,
zsm...ml t- matrix addition and multiplication

SYNOPSIS

#include "matrix.h"
MAT *m_add{MAT *A, MAT *B, MAT *C)
MAT *m_mlt(MAT *A, MAT *B, MAT *C)
MAT *m_sub(MAT *A, MAT *B, MAT *C)
MAT *sm_mlt(double s, MAT *A, MAT *OUT)

#include "zmatrix.h"
ZMAT *zm_add(ZMAT *A, ZMAT *B, ZMAT *C)
ZMAT *zm_mlt(ZMAT *A, ZMAT *B, ZMAT *C)
ZMAT *zm_sub(ZMAT *A, ZMAT *B, ZMAT *C)
ZMAT *zsm_mlt(complex s, ZMAT *A, ZMAT *OUT)

DESCRIPTION

The functions m_add () , zm_add () adds the matrices A and Band puts the result
in c. If c is NULL, or is too small to contain the sum of A and B, then the matrix is
resized to the correct size, which is then returned. Otherwise the matrix c is returned.

The functions, m_sub () , zm_sub () subtracts the matrix B from A and puts the
result in c. If c is NULL, or is too small to contain the sum of A and B, then the matrix
is resized to the correct size, which is then returned. Otherwise the matrix c is returned.
Similarly, m_ml t () multiplies the matrices A and B and puts the result in c. Again, if
c is NULL or too small, then a matrix of the correct size is created which is returned.

The routines sm_mlt (), zsm_mlt () above puts the results of multiplying the
matrix A by the scalar s in the matrix OUT. If, on entry, OUT is NULL, or is too small
to contain the results of this operation, then OUT is resized to have the correct size.
The result of the operation is returned. This operation may be performed in situ. That
is, you may use A == OUT.

The routines m_add () , m_sub () and sm_ml t () routines and their complex
counterparts can work in situ; that is, c need not be different to either A or B. However,
m_mlt () and zm_mlt () will raise an E_INSITU error if A == cor B == c.

These routines avoid thrashing on virtual memory machines.

EXAMPLE

MAT *A, *B, *C;
Real alpha;

C = m_add(AsB,MNULL); /* C = A+B */

82

m_sub(A,B,C);
sm_mlt(alpha,A,C);
m_mlt(A,B,C);

CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

I* c ::: A-B */
l* c = alpha.A */
I* c "' A.B */

SEE ALSO

v_add(},mv_mlt(),sv_mlt(),zv_add(),zmv_mlt(),zv_mlt{).

SOURCE FILE: matop.c, zmatop.c

NAME
mem_info, mem_info_on, mem_info_is_on, mem_info_bytes,
mem_info_numvar, mem_info_file, mem_attach_list,
mem_free_list, mem_bytes_list, mem_numvar_list,
mem_dump_list, mem_is_list_attached -Meschach dynamic memory
information

SYNOPSIS

#include "matrix.h"
void mem_info()
int mem_info_on(int true_or __ false)
int mem_info_is_on(void)
void mem_info_file(FILE *fp, int list_num)
void mem_dump_list(FILE *fp, int list_num)
long mem_info_bytes (int type_num, int list_num)
int mem_info_numvar(int type_num, int list_num)

83

int mem_attach_list(int list_num, int ntypes, char *names[],
int (*frees[])(), MEM_ARRAY info_sum[])

int mem_free_list(int list_num)
int mem_is_list_attached(int list_num)
void mem_bytes(int type_num, int old_size, int new_size)
void mem_bytes_list(int type_num, int old_size, int new_size,

int list_num)
void mem_numvar(int type_num, int diff_numvar)
void mem_numvar_list(int type_num, int diff_numvar,

int list_num)

DESCRIPTION

These routines allow the user to obtain information about the amount of memory
allocated for the Meschach data structures (VEC, BAND, MAT, PERM, IVEC, ITER,
SPMAT, SPROW, ZVECandZMAT). Thecallmem_info_on(TRUE); setsaftagwhich
directs the allocation and deallocation and resizing routines to store information about
the memory that is (de)allocated and resized. The call mem_info_on(FALSE);
turns the flag off.

The routine mem_info_is_on () returns the status of the memory information
flag.

To get a general picture of the state of the memory allocated by Meschach data
structures call mem_info_file (fp,list_num) which prints a summary of the
amount of memory used for the different types of data structures to the file or stream
fp. The 1 is t _num parameter indicates which list of types to use; use zero for the list
of standard Meschach data types. The printout for mem_info_file (stdout, 0),
or the equivalent macro mem_info () looks like this for one real and one complex
vector of dimension 10 allocated (with the full system installed on an RS/6000):

84 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

MEMORY INFORMATION (standard types):
type MAT 0 alloc. bytes 0 alloc. variables
type BAND ·0 alloc. bytes ·o alloc. variables
type PERM 0 alloc. bytes 0 alloc. variables
type VEC 92 alloc. bytes 1 alloc. variable
type IVEC 0 alloc. bytes 0 alloc. variables
type ITER 0 alloc. bytes 0 alloc. variables
type SPROW 0 alloc. bytes 0 alloc. variables
type SPMAT 0 alloc. bytes 0 alloc. variables
type ZVEC 204 alloc. bytes 1 alloc. variable
type ZMAT 0 alloc. bytes 0 alloc. variables
total: 296 alloc. bytes· 2 alloc. variables

(Note that this is for the system built with all of Meschach, including the sparse
part: ITER, SPMAT; and the complex part: ZVEC, ZMAT. The mem_info_ ••• ()
routines also work for partial installations of Meschach.) There is also the routine
.mem:....:dump_list () which provides a more complete printout, which is suitable for
debugging purposes.

To obtain information about the amount of memory allocated for objects of a par
ticular type, use mem_info_bytes () (with list_num equal to zero for a standard
Meschach structures). To find out the amount of memory allocated for ordinary vectors,
use

printf("Bytes iii VEC'S = %ld = %ld\n",
mem_info_bytes(TYPE_VEC,O));

The routine mem_info_numvar () returns the number of data structures that are
allocated for each type. Use 1 is t_num equal to zero for standard Meschach structures.

Each Meschach type. has an associated type macro TYPE_. • • which is a small
integer. The " ••• " is the ordinary name of the type, such as VEC, MAT etc. This is the
complete list of TYPE_. • • macros:

TYPE_MAT 0 I* real dense matrix *I
TYPE_BAND 1 I* real band matrix *I
TYPE_PERM 2 I* permutation *I
TYPE_VEC 3 I* real vector *I
TYPE_IVEC 4 I* integer vector *I
TYPE_ ITER 5 I* iteration structure *I
TYPE_SPROW 6 I* real sparse matrix row *I
TYPE_SPMAT 7 I* real sparse matrix *I
TYPE~ZVEC 8 I* complex vector *I
TYPE_ZMAT 9 I* complex dense matrix *I

This is how different types are distinguished within the mem_info_ ••• system.

85

Note that SPROW is an auxiliary type; when an SPROW (sparse row) is allocated as
part of a SPMAT (sparse matrix), then the memory allocation is entered under SPMAT;
only "stand-alone" SPROW's have their memory allocation entered under the typer
SPROW.

The routine mem_attach_list (} can be used to add new lists of types to
the Meschach system for both tracking memory usage, and also for registering static
workspace arrays with MEM_STAT_REG (} . The routine is passed a collection of
arrays: names is an array of strings being the names of the different types, frees is
an array of the •• _free (} routines which deallocate and destroy objects of the cor
responding types, info_sum is an array in which the memory allocation information
is stored. This array has the component type MEM_ARRAY which is defined as

typedef struct {
long bytes; /* # allocated bytes for each type */
int numvar; /* # allocated variables for each type */

} MEM_ARRAY;

This is defined in matrix. h.

The parameter ntypes is the number of types, which should also be the common
length of the arrays. The parameter 1 i st_num is the list number used to identify which
list of types should be used. The routine mem_attach_list (} returns the zero on
successful completion, and (-1) if there is an invalid parameter. An E_OVERWRITE
error will be raised if the specified list_num has already been used.

To track memory usage for any new types, the allocation, deallocation and resizing
routines for these types you should use mem_bytes_list (} and
mem_numvar _1 i st (} to inform the mem_inf o_ ••• (} system of the change in the
number of bytes allocated, and number of structures allocated, respectively, of an object
of a particular type (as specified by the type_num and list_num parameters). In
mem_bytes_list (}, the parameter old_size should contain the old size in bytes,
and new_size should contain the new size in bytes. Inmem_numvar_list (},the
parameter diff_numvar is the change in the number of allocated structures: + 1 for
allocating a new structure, and -1 for destroying a structure.

The routines mem_bytes (} and mem_numvar (} are just macros that call
mem_bytes_list (} and mem_numvar(} respectively, with list_num zero for
the standard Meschach structures.

The routine mem_attach_list (} should be used once at the beginning of a
program using these additional types.

Here is an example of how this might be used to extend Meschach with three types
for nodes, edges and graphs:

/* Example with three new types: NODE, EDGE and GRAPH */
#define MY_LIST 1
#define TYPE_NODE 0

86 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

#define TYPE_EDGE 1
#define TYPE_GRAPH 2
static char *my_names[] = { "NODE", "EDGE", "GRAPH" };
static int (*my_frees[]) = { n_free, e_free, gr_free };
static MEM_ARRAY my_tnums[3]; I* initialised to zeros */

main(.•.)
{

}

I* declarations */
mem_attach_list(MY_LIST,3,my_names,my_frees,my_tnums);

...... I* actual work */
mem_info_file(stdout,MY_LIST); /* list memory used*/

/* n_get -- get a node data structure;
NODE has type number 0 */

NODE *n_get(•.•)
{

}

NODE *n;

n = NEW(NODE);
if (n == NULL

error(E_MEM,"n_get"); /*can't allocate memory*/
mem_bytes_list(TYPE_NODE,O,sizeof(NODE),MY_LIST);
mem_numvar_list(TYPE_NODE,l,MY_LIST);

I* n_free -- deallocate node data structure */
int n_free(NODE *n)
{

}

if (n != NULL
{

}

free(n);
mem_res_elem_list(TYPE_NODE,sizeof(NODE),O,MY_LIST);
mem_numvar_list(TYPE_NODE,-l,MY_LIST);

return 0;

For more information see chapter 8.

BUGS

Memory used by the underlying memory (de)allocation system (malloc (),

87

calloc (), realloc (), sbrk () etc.) for headers are not included in the amounts
of allocated memory.

The numbers of vectors, matrices etc. currently allocated cannot be found by this
system.

SEE ALSO

.. _get (), •. _free (), •. _resize () routines; MEM_STAT_REG () and the
mem_stat_ ... () routines.

SOURCE FILE: meminfo.c, meminfo.h

88 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

NAME
MEM_STAT-REG, mem_stat_reg_list, menLstat_reg_vars,
mem...stat_mark,. menLstat_free, mem...stat_dump,
mem...stat_show_mark- Static workspace control routines

SYNOPSIS

·#include ."matrix.h"
int MEM_STAT_REG(void *var, int type) .
int mem_stat_reg_list(void **var, int type, int list_num)
int mem_stat_reg_vars(int list_num, int type,

void **var1, void **var2, ••• , NULL)
int mem_stat_mark(int mark)
int mem_stat_free(int mark)
void mem_stat_dump(FILE *fp)
int mem_stat_show_mark()

DESCRIPTION

Older versions ofMeschach (v.l.lb and previous) had a limitation in that it was es
sentially impossible to control the use of static workspace arrays used within Meschach
functions. This can lead to problems where too much memory is taken up by these
workspace arrays for memory intensive problems. The obvious alternative approach
is to deallocate workspace at the end of every function, which can be quite expensive
because of the time taken to deallocate and the reallocate the memory on every usage.

These functions provide a way of avoiding these problems, by giving users control
over the (selective) destruction of workspace vectors, matrices, etc.

The simplest way to use this to deallocate workspace arrays in a routine hairy1 (•••)
is as follows:

mem_stat_mark(1); /* ''group 1'' of workspace arrays */
for (i = 0; i < n; i++)

hairy1(.••); /*workspace registered as ''group 1'' */
mem_stat_free(1); /* deallocate ''group 1'' workspace */

The call mem_stat_mark (num) sets the current workspace group number. This
number must be a positive integer. Provided the appropriate workspace registration
routines are used in hairy1 (•••) (seelater), then the workspace arrays are registered
as being in the current workspace group as determined by mem_stat_mark () . If
mem_stat_mark () has not been called, then there is no current group number
and the variables are not registered. The call mem_stat_free (num) deallocates
all static workspace arrays allocated in workspace group num, and also onsets the
current workspace group. So, to continue registering static workspace variables,
mem_stat_mark(num),or
mem_stat_mark (new_num) should follow.

89

Keeping two groups of registered static workspace variables (one for hairyl ()
and another for hairy2 ()) can be done as follows:

for (i = 0; i < n; i++
{

mem_stat_mark(l);
hairyl(•••);
mem_stat_mark(2);
hairy2(•••);

}

mem_stat_free(2);
hairyl(•••);

I* don't want hairy2()'s workspace *I
I* keep hairyl()'s workspace *I

For the person writing routines to use workspace arrays, there are a number of rules
that must be followed if these routines are to be used.

e the workspace vari~bles must be static pointers to Meschach data structures.

• they must be initialised to be NULL vectors in the type declaration.

• they are allocated using a •• _resize() routine.

• they are allocated before registering.

• the pointer variable is passed to MEM_STAT_REG (), but
mem_stat_reg_vars () andmem_stat_reg_vars (} require the address
of the pointer to be passed.

The type parameter ofMEM_STAT_REG () should be a macro of the form TYPE_ •••
where the " ••• " is the name of the type used. An example of its use follows:

VEC *hairyl(x, y, out)
VEC *x, *y, *out;
{

}

static VEC *wkspace = VNULL;
int new_dim;

wkspace = v_resize{wkspace,new_dim);
MEM_STAT_REG(wkspace,TYPE_VEC);

mv_mlt(•••• ,wkspace); I* use of wkspace */

I* no need to deallocate wkspace */
return out;

90 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

MEM_STAT_REG() is a·macro which calls mem:.::_stat_reg_list () with
list_num set to zero.

The call mem_stat_dump (fp) prints out a representation of the registered
workspace variables onto the file or stream fp suitable for debugging purposes. It
is not expected that this would be needed by most users of Meschach.

The routine mem_stat_show_mark () returns the current workspace group, and
zero if no group is active.

A NULL terminated list of variables can be registered at once using ·
mem_stat_reg_vars(). Thecall

mem_stat_reg_vars(list_num,type_num,&xl,&x2, ••• ,&xN,NULL);

is equivalent to

mem_stat_reg_list(&xl,type_num,list_num);
mem_stat_reg_list(&x2,type_num,list_num);

mem_stat_reg_list(&xN,type_num,list_num);
' . . .

Note that xl, x2, ... , xN must be of the same type.

For non-Meschach data structures, you can use mem_stat_reg_list 0 in
conjunction with mem_attach_list (). For more information on the use of this
function see chapter 8.

SEE ALSO

mem_info_ ••• () routines.

BUGS

There is a static registration area for workspace variables, so there is a limit on the
number of variables that can be registered. The default limit is 509. If it is. too small,
an appropriate message will appear and information on how to change the limit will
follow.

Attempts to register a workspace array that is neither static or global will most
likely result in a crash when mem_stat_free () is called for the workspace group
containing that variable.

SOURCE FILE: memstat.c

NAME
m_load, m_save, v_save, d_save, zm_load, :Lsave, zm_save,
zv_save- MATLAB save/load to file

SYNOPSIS

#include "matlab.h"
MAT *m_load(FILE
MAT *in_save(FILE
VEC *v_save(FILE
double d_save(FILE

#include "matlab.h"
ZMAT *zm_load(FILE
ZMAT *zm_save(FILE
ZVEC *zv_save(FILE
complex z - save (FILE

DESCRIPTION

*fp,
*fp,
*fp,
*fp,

*fp,
*fp,
*fp,
*.fp,

char **name)
MAT *A, char **name)
VEC *x, char **name)
double d, char **name)

char **name)
ZMAT *A, char **name)
ZVEC *x, char **name)
complex z, char **name)

91

These routines read and write MATLAB™ load/save files. This enables results to
be transported between MATLAB and Meschach. The routine m_load () loads in a
matrix from file fp in MATLAB save format. The matrix read from the file is returned,
and name is set to point to the saved MATLAB variable name of the matrix. Both the
matrix returned and name have allocated memory as needed. An example of the use
of the routine to load a matrix A and a vector x is

MAT *A, *Xmat;
VEC *x;
FILE *fp;
char *namel, *name2;

if ({fp=fopen("fred.mat","r")) !=NULL)
{

}

A = m_load(fp,&namel);
Xmat = m_load(fp,&name2);
if Xmat->n != 1)
{ printf("Incorrect size matrix read in\n");

exit (0); }
x = v_get(Xmat->m);
x = mv_move(Xmat,O,O,Xmat->m,l,x,O};

The m_save () routine saves the matrix A to the file/stream fp in MATLAB save
format. The MATLAB variable name is name.

92 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

The v _save () routine saves the vector x to the file/stream fp as an x- >dim x 1
matrix (i.e. as a column vector) in MATLAB save format. The MATLAB variable
name is name.

The d_save () routine saves the double precision number d to the file/stream fp
in MATLAB save format The MATLAB variable name is name.

The MATLAB save format can depend in subtle ways on the type of machine used,
so you may need to set the machine type in machine . h. This should usually just
mean adding a line to machine . h to be one of

#define MACH_ID INTEL
#define MACH_ID MOTOROLA
#define MACH_ID VAX_D
#define MACH_ID VAX_G

I* 80x87 format */
I* 6888x format *I
I* VAX D format */
I* VAX G format */

to be the appropriate machine. The machine· dependence involves both whether IEEE
or non IEEE format floating point numbers are used, but also whether or not the
machine is a "little-endian" or a "big-endian" machine.

BUGS

The m_load () routine will only read in the real part of a complex matrix.

The routines are machine-dependent as described above.

SOURCE FILE: matlab.c, zmatlab.c

NAME
bd_transp, m_transp, mmtr..mlt, mtrm..mlt, zm...adjoint,
zmma..ml t, zmam..ml t - matrix transposes, ad joints and multiplication

SYNOPSIS

#include "matrix.h"
BAND *bd_transp(BAND *A, BAND *OUT}
MAT *m_transp(MAT *A, MAT *OUT)
MAT *mmtr_mlt(MAT *A, MAT *B, MAT *OUT)
MAT *mtrm_mlt (MAT *A, MAT *B, MAT *OUT)

#include "zmatrix.h"
ZMAT *zm_adjoint(ZMAT *A, ZMAT *OUT)
ZMAT *zmma_mlt(ZMAT *A, ZMAT *B, ZMAT *OUT)
ZMAT *zmam_mlt(ZMAT *A, ZMAT *B, ZMAT *OUT)

DESCRIPTION

93

The routine bd_transp () computes the transpose of the banded matrix A and
puts the result in OUT. Both are BAND structures.

The routine m_transp () transposes the matrix A and stores the result in OUT. The
routine m_adjoint (} takes the complex conjugate transpose (or complex adjoint)
of A and stores the result in OUT. These routines may be in situ (i.e. A == OUT) only
if A is square. (Note that BAND matrices are always square.) The complex adjoint of
A is denoted A*.

The routine mmtr_mlt () forms the product ABT, which is stored in OUT. The
routine mma_mlt () forms the product AB*, which is stored in OUT. The rou
tine mtrm_mlt () forms the product AT B, which is stored in OUT. The routine
mam_mlt () forms the product A* B, which is stored in OUT. Neither of these routines
can form the product in situ. This means that they must be used with A ! = OUT and
B ! = OUT. However, you can still use A == B.

For all the above routines, if OUT is NULL or too small to contain the result, then
it is resized to the correct size, and is then returned.

EXAMPLE

MAT *A, *B, *C;

• e e • • •

c = m_transp(A,MNULL); I* c .. A~T *I
:mmtr_mlt(A,B,C); I* c = A.BAT *I
mtrm_mlt (A, B, C); I* c = A~T.B *I

SOURCE FILE: matop.c, zmatop.c

94 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

NAME
m_norml, nLnorm_inf, m...nornLfrob '· zm_norml, zm...norm_inf,
zm_norm_frob...,. matrix norms

SYNOPSIS

#include "matrix.h"
Real m_norml(MAT *A)
Real m_norm_inf(MAT *A)
Real m_norm_frob(MAT *A)

#include "zmatrix.h"
Real zm_norml{ZMAT *A)
Real
Real

zm_norm_inf(ZMAT *A)
zm_norm_frob(ZMAT *A)

DESCRIPTION

These routines compute matrix norms. The routines m_norml () and zm_norml {)
compute the matrix norm of A in the matrix. 1-norm; m-'norm_inf () and
zm_norm_inf () compute the matrix norm of A in the matrix oo-norm;
m_norm_frob () and z:m_norm_frob {) compute the Frobenius norm of A. All of
these routines are unsealed; that is, there is no scaling vector for weighting the elements
of A.

These norms are defined through the following formulae:

(4.1)

(4.2) IIAIIF =

The matrix 2-norm is not included as it requires the calculation of eigenvalues or
singular values.

EXAMPLE

MAT *A;

printf ("I IAI 1_1 = %g\n", m_norml (A));
printf (" IIAII_inf = %g\n", m_norm_inf {A));
printf (" IIAII_F = %g\n", m_norm_frob(A));

SEE ALSO

v _norml () , v _norm_inf () , zv _norml (l, zy:_norm_inf () .

95

BUGS

The Frobenius nonn calculations may overflow if the elements of A are of order
JHUGE.

SOURCE FILE: norm.c, z:norm.c

96 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

NAME
mv..mlt, .. vnunlt, mv..mltadd, VIlLlll.ltadd, zmv..mlt, ZVIlLlll.lt,

. z~~ ~i t~dd,. , ·2!~:inlt~dd _:_ 1Ilatrix-~ector mrllrlplication ~ •.

SYNOPSIS

#include "matrix.h"
VEC *mv_mlt(MAT *A, VEC *x, VEC *out)
VEC *vm_mlt (MAT *A, VEC *x, VEC *out)
VEC *mv_mltadd(VEC *vl, VEC *v2, MAT *A,

double s, VEC *out)
VEC *vm_mltadd(VEC *vl, VEC *v2, MAT *A,

double s, VEC *out)

#include "zmatrix.h"
ZVEC *zmv_mlt(ZMAT *A, ZVEC *x, ZVEC *out)
ZVEC *zvm_mlt (ZMAT *A, ZVEC *x, ZVEC *out)
ZVEC *zmv_mltadd(ZVEC *vl, ZVEC *v2, ZMAT *A,

complex s, ZVEC *out)
ZVEC *zvm_mltadd(ZVEC *vl, ZVEC *v2, ZMAT *A,

complex s, ZVEC *out)

DESCRIPTION

The routines mv _ml t {) and vm_ml t () form Ax and AT x = (xT A) T respec
tively and store the result in out. The routines zmv_mlt () and zvm_mlt ()
form Ax and A*x = (x* A)* respectively and store the result in out. The routines
mv_mltadd() and vm_mltadd() form v1 + sAv2 and v1 + sATv2 respectively,
and stores the result in out. The routines zmv_mltadd() and zvm_mltadd()
form v1 + sAv2 and v1 + sA*v2 respectively, and stores the result in out. If out is
NULL or too small to contain the product, then it is resized to the correct size.

These routines do not work in situ; that is, out must be different to x formv _ml t ()
and vm_ml t () , and in the case of mv _ml tadd () and vm_ml tadd () , out must be
different to v2.

These routines avoid thrashing virtual memory machines.

EXAMPLE

MAT
VEC
Real

*A;
*x, *y, *out;
alpha;

out = mv_mlt(A,x,VNULL);
vm_mlt(A,x,out);
mv_mltadd(x,y,A,out);
vm_mltadd (x, y ,.A, out).;

I* out
I* out
I* out
I* out

= A.x *I
= A~T.x *I
= X + A.y *I
= X + A~T.y *I

SOURCE FILE: matop.c, zmatop.c

98 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

NAME
px_ident, px_inv, px...ml t, px_transp, px_sign- permutation
identity, inverse and multiplication

SYNOPSIS

#include "matrix.h"
PERM *px_ident(PERM *pi)
PERM
PERM
PERM
int

*px_mlt(PERM *pil, PERM *pi2, PERM *out)
*px_inv(PERM *pi, PERM *out)
*px_transp(PERM *pi, int i, int j)

px_sign(PERM *pi)

DESCRIPTION

The routine px_ident () initialises pi to be the identity permutation of the size
ofpi->size on entry. The permutation pi is returned. If pi is NULL then an error
is generated.

The routine px_mlt () multiplies pil by pi2 to give out. If out is NULL or
too small, then out is resized to be a permutation of the correct size. This cannot be
done in situ.

The routine px_inv () computes the inverse of the permutation pi. The result
is stored in out. If out is NULL or is too small, a permutation of the correct size is
created, which is returned. This can be done in situ if pi == out.

The routine px_transp () swaps pi->pe [i] and pi->pe [j]; it is a multi
plication by the transposition i +-+ j.

The routine px_sign (pi) computes the sign of the permutation pi. This sign
is (-1)P where pi can be written as the product of p permutations. This is done by
sorting the entries of pi using quicksort, and counting the number of transpositions
used. This is also the determinant of the permutation matrix represented by pi.

EXAMPLE

PERM *pil, pi2, pi3;

pil = px_get(lO);
px_ident(pil);
px_transp{pi1,3,5);
px_inv(pil,pil);
px_mlt(pil,pi2,pi3);

I* sets pil to identity *I
I* pil is now a transposition *I

I* invert pil -- in situ *I
I* pi3 = pil.pi2 *I

printf("sign(pi3) =%d.= %d\n",
px_sign(pil)*px_sign{pi2), px_sign(pi3));

SOURCE FILE: pxop.c

99

NAME
px_cols, px_rows, px_vec, pxinv_vec, px_zvec, pxinv_zvec-
permute rows or columns of a matrix, or permute a vector

SYNOPSIS

#include "matrix.h"
MAT *px_rows(PERM *pi, MAT *A, MAT *OUT)
MAT *px_cols(PERM *pi, MAT *A, MAT *OUT)
VEC *px_vec (PERM *pi, VEC *x, VEC *out)
VEC *pxinv_vec(PERM *pi, VEC *x, VEC *out)

#include "zmatrix.h"
ZVEC
ZVEC

*px_zvec (PERM *pi, ZVEC *x, ZVEC *out)
*pxinv_zvec(PERM *pi, ZVEC *x, ZVEC *out)

DESCRIPTION

The routines px_rows () and px_cols {} are for permuting matrices, permuting
respectively the rows and columns of the matrix A. In particular, for px_rows () the
i-th row of OUT is the pi- >pe [i] -th row of A. Thus OUT = P A where P is the
permutation matrix described by pi. The routine px_cols () computes OUT= AP.

The result is stored in OUT provide it has sufficient space for the result. If OUT is
NULL or too small to contain the result then it is replaced by a matrix of the appropriate
size. In either case the result is returned.

Similarly, px_ vee () and px_zvec () permute the entries of the vector x into
the vector out by the rule that the i-th entry of out is the pi->pe [i] -th entry ofx.
Conversely, pxinv _vee () and pxinv _zvec () permute x into out by the rule that
the pi->pe [i] -th entry of out is the i-th entry ofx. This is equivalent to inverting
the permutation pi and then applying px_ vee () , respectively, px_zvec () for real,
resp., complex vectors.

If out is NULL or too small to contain the result, then a new vector is created and
the result stored in it In either case the result is returned.

EXAMPLE

PERM *pi;
VEC *x, *tmp;
ZVEC *z, *ztmp;
MAT *A, *B;

/* permute x to give tmp */
tmp = px_vec(pi,x,tmp);
ztmp = px_zvec{pi,z,ZVNULL);
I* restore x & z */

100 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

x = pxinv_vec(pi,tmp,x);
pxinv._zvec(pi,ztmp,z);
I* symmetric permutation */

B = px_rows(pi,A,MNULL);
A= px_cols(pi,B,A);

SEE ALSO

The px_ .•• () operations; in particular px_inv {)

SOURCE FILE: pxop.c, zvecop.c

·101

NAME
set_col, set_row, zset_col, zset_row- set rows and columns of
matrices

SYNOPSIS

#include "matrix.h"
MAT *set_col(MAT *A, int k, VEC *out)
MAT *set_row(MAT *A, int k, VEC *out)

#include "zmatrix.h"
ZMAT *zset_col(ZMAT *A, int k, ZVEC *out)
ZMAT *zset_row(ZMAT *A, int k, ZVEC *out)

DESCRIPTION

The routines set_ col () and zset_col () above sets the value of the kth
column of A to be the values of out. The A matrix so modified is returned.

The routine set_row () above sets the value of the kth row of A to be the values
of out. The A matrix so modified is returned.

If out is NULL, then an E_NULL error is raised. If k is negative or greater than
or equal to the number of columns or rows respectively, an E_BOUNDS error is raised.

As the MAT and ZMAT data structures are row-oriented data structures, the set_row ()
routine is faster than the set_ col () routine.

EXAMPLE

MAT *A;
VEC *tmp;

I* scale row 3 df A by 2.0 *I
tmp = get_row(A,3,VNULL);
sv_mlt(2.0,tmp,tmp);
set_row(A,3,tmp);

SEE ALSO

get_col () and get_row ()

SOURCE FILE: matop.c, zmatop.c

102 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

NAME
sv..mlt, v_add, v..mltadd, v_sub, zv..mlt, zv_add, zv..mltadd,
zv _sub - scalar-vector multiplication and addition

SYNOPSIS

#include ":matrix.h"
VEC *sv_:mlt{double s, VEC *x, VEC *out)
VEC *v_add(VEC *vl,VEC *v2, VEC *out)
VEC *v_:mltadd(VEC *vl, VEC *v2, double s, VEC *out)
VEC *v_sub(VEC *vl, VEC *v2, VEC *out)

#include "z:matrix.h"
ZVEC *zv_:mlt(co:mplex s, ZVEC *x, ZVEC *out)
ZVEC *zv_add(ZVEC *vl, ZVEC *v2, ZVEC *out)
ZVEC
ZVEC

*zv_:mltadd(ZVEC *v1, ZVEC *v2, complex s, ZVEC *out)
*zv_sub(ZVEC *vl, ZVEC *v2, ZVEC *out)

DESCRIPTION

The routines sv_ml t () and zv _ml t () perform the scalar multiplication of the
scalars and the vector x and the results are placed in out.

The routines v _add () and zv _add () adds the vectors vl and v2, and the result
is returned in out.

The routines v_mltadd() and zv_:mltaddO set out to be the linear combi
nation vl+s. v2.

The routines v _sub () and zv _sub () subtract v2 from vl, and the result is
returned in out.

For all of the above routines, if out is NULL, then a new vector of the appropriate
size is created. For all routines the result (whether newly allocated or not) is returned.
All these operations may be performed in situ. Errors are raised if vl or v2 are NULL,
or if vl and v2 have different dimensions.

EXAMPLE

VEC *x, *y, *z, *tmp;
ZVEC
Real

*v, *w;
alpha;

complex beta;

t:mp = v_get(x->dim);
z = v_get(x->dim);
printf ("# 2-Norm of x - y = %g\n",

v_norm2(v_sub(x,y,tmp)));

/* z = x + alpha.y */
v_mltadd(x,y,alpha,z);
/* ••• or equivalently*/
sv_mlt(alpha,y,z);
v_add(x,z,z);
zv_mltadd(v,w,beta,v);

SOURCE FILE: vecop.c, zvecop.c

104 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

NAME
v_conv, v..map, v..max, v..min, v_pconv, v_star, v_slash,
v_sort, v_swn, zv..map, zv_star, zv_slash, zv_swn
Componentwise operations

SYNOPSIS

#include "matrix.h"
VEC *v_conv (VEC *x, VEC *y, VEC *out)
VEC *v_pconv(VEC *x, VEC *y, VEC *out}
VEC *v_map (double (*fn) (double), VEC *x, VEC
double v_max (VEC *x, int *index)
double v_min {VEC *x, int *index)
VEC *v_star (VEC *x, VEC *y, VEC *out)
VEC *v_slash(VEC *x, VEC *y, VEC *out)
VEC *v_sort (VEC *x, PERM *order)
double v_swn (VEC *x)

#include "mzatrix.h"

*out)

ZVEC *zv_map(complex {*fn)(complex), ZVEC *x, ZVEC *out)
ZVEC *zv_star(ZVEC *x, ZVEC *y, ZVEC *out)
ZVEC *zv_slash(ZVEC *x, ZVEC *y, ZVEC *out)
complex zv_sum(ZVEC *x)

DESCRIPTION

The routines v_conv(} and v_pconv{) compute convolution-type products of
vectors. The routine v_conv() computes the vector z where zi = :Eo::;j::=;i XiYi-i·

The routine v _pconv () computes a periodic convolution with period y- >dim. The
routine v _conv () can be used to compute the product of two polynomials, with the
polynomial x(t) = 2::1~~"' xiti and y(t) = :E1~~Y Yiti.

The routines v _map () and zv _map () apply the function (* fn) () to the com
ponents ofx to give the vector out. That is, out->ve [i] = (*fn) (x->ve [i]).

There are also versions

VEC

ZVEC

*_v_map(double (*fn)(void *,double),
void *fn_params, VEC *x, VEC *out)

*_zv_map(complex (*fn) (void *,complex),
void *fn_params, ZVEC *x, ZVEC *out)

where out->ve[i] = (*fn) (fn_params,x->ve[i]). This enables more
flexible use of this function. Both of these functions may be used in situ with
x == out.

The routine v _max () returns the maximum entry of the vector x, and sets
index to be the index of this maximum value in x. Note that index is the in-

105

dex for the .first entry with this value. Thus max_x = v_max(x, &i) means that
x->ve[i] == max_x.

The routine v _min () returns the minimum entry of the vector x, and sets index
to be the index of this minimum value similarly to v _max () . Both v _min () and
v _max {) raise an E_SIZES error if they are passed zero dimensional vectors.

The routines v _star () and zv _star () compute the componentwise, or Hadamard,
product of x andy. That is, out·· >ve [i] = x- >ve [i] *y- >ve [i] for all i. Note
that v _star () is equivalent to multiplying y by a diagonal matrix whose diagonal
entries are given by the entries of x. This routine may be used in situ with x == out.

The routines v _slash () and zv _slash () compute the componentwise ratio of
entriesofyandx. (Note the order!) Thatis, out->ve [i] = y->ve [i] /x->ve [i]

for all i. Note that this is equivalent to multiplying y by the inverse of the diagonal
matrix described in the previous paragraph. This could be useful for preconditioning,
for example. This routine rnay be used in situ with x """' out and/or y == out.
The routine v _slash () raises an E_SING error if :x has a zero entry (the rationale
bei.ng that it is really solving the system of equations Xz = y where z is out).

The routine v _sort () sorts the entries of the vector x in situ, and sets order to
be the permutation that achieves this. Note that the old ordering of x can be obtained
by using pxinv _vee () as illustrated in the example below. The algorithm used
is a version of quicksort based on that given in Algorithms in C, by R. Sedgewick,
pp. 116-124 (1990).

The routines v _sum () and zv _sum {) return the sum of the entries of x.

Note that there are no complex "min", "max" or "sorting" routines, as there is no
suitable ordering on the complex numbers.

EXAMPLE

An alternative way of computing llxlloo (but slower):

VEC *x, *y, *z;
PERM *order;
Real norm;
int i;

y = v_map(fabs,x,VNULL);
norm= v_max(y,&i);

Sorting a vector:

v_sort(x,order);
I* x now sorted *I
y = pxinv_vec(order,x,VNULL);
I* y is now the original x */

106 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

Using the Hadamard product for setting Yi = wixi:

VEC *weights;

for (i = 0; i < weights->dim; i++)
weights->ve[i] = ... ;

v_star(weights,x,y);

SEE ALSO

Other componentwise operations: v _add () , v _sub () , sv _ml t () .

Iterative routines benefiting from diagonal preconditioning: i ter_cg () ,
iter_cgs (), and iter_lsqr ().

SOURCE FILE: vecop.c, zvecop.c

NAME
v_lincomb, v_linlist, zv_lincomb, zv_linlist -linear
combinations

SYNOPSIS

#include "matrix.h"
VEC *v_lincomb(int n, VEC *v_list[], double a_list[],

VEC *out)
VEC *v_linlist(VEC *out, VEC *vl, double al,

1'07

VEC *v2, double a2, ••• , VNULL)

#include "zmatrix.h"
ZVEC *zv_lincomb(int n, ZVEC *v_list[], complex a_list[],

ZVEC *out)
ZVEC *zv_linlist(ZVEC *out, ZVEC *vl, complex al,

ZVEC *v2, complex a2, • • • I ZVNULL)

DESCRIPTION

The routines v_lincomb() and zv_lincomb() compute the linear combi
nation 2:~,:-01 aivi where vi is identified with v_list [i] and ai is identified with
a_list [i]. The result is stored in out, which is created or resized as necessary.
Note that n is the length of the lists.

An E_INSITU error will be raised if out == v_list [i] for any i other than
i == 0.

The routines v_linlist () and zv_linlist () are variants oftheabove which
do not require setting up an array before hand. This returns :Ei aivi where the sum is
over i = 1, 2, ... until a VNULL is reached, which should take the place of one of the
vk's.

An E_INSITU error will be raised if out == v2, v3, v4, •••.

EXAMPLE

VEC
Real

*x[lO], *vl, *v2, *v3, *v4, *out;
a[lO], h;

for (i = 0; i < 10; i++
{ x[i] = ••• ; a[i] = ••• ; }
out = v_lincomb(lO,x,a,VNULL)
/* for Runge--Kutta code:

out = h/6*(v1+2*v2+2*v3+v4) */
v_zero(out);
out = v_linlist(out, vl, h/6.0, v2, h/3.0,

v3, h/3.0, v4, h/6.0,
VNULL);

108 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

SEE ALSO

sv_mlt(),v_mltadd(),zv_mlt(),zv_mltadd()

BUGS

SOURCE FILE: vecop.c, zvecop.c

NAME
v _norml 1 v ..norm2 1 v ..noriiLinf 1 zv _norml 1 zv ..norm2 1

zv _norm_inf - vector norms

SYNOPSIS

#include "matrix.h"
double v _norml (VEC *x)
double v_norm2(VEC *x)
double v_norm_inf(VEC *x)
double _v_norml(VEC *x1 VEC *scale).
double _v_norm2(VEC *x1 VEC *scale)
double _v_norm_inf(VEC *x1 VEC *scale)

#include "zmatrix.h"
double zv_norml(ZVEC *x)
double zv_norm2(ZVEC *x)
double zv_norm_inf(ZVEC *x)
double _zv_norml(ZVEC *x1 VEC *scale)
double _zv_norm2(ZVEC *x1 VEC *scale)
double _zv_norm_inf(ZVEC *x1 VEC *scale)

DESCRIPTION

lgp

These functions compute vector norms. In particular, v _norml () and zv _norml ()
give the 1-norm, v _norm2 () and zv _norm2 () give the 2-norm or Euclidean norm,
and v _norm_inf () and zv _norm_inf () compute the oo-norm. These are defined
by the following formulae:

(4.3)

(4.4)

(4.5)

1lxll1 = L:lxil

llxlloo = m;:tx lxil
t

llxll2 = v~ lxil2·

There are also scaled versions of these vector norms: _ v _norml () , _ v _norm2 ()
and_ v _norm_inf () , and_zv _norml () , _zv _norm2 () and_zv _norm_inf ().
These take a vector x whose norm is to be computed, and a scaling vector. Each com
ponent of the x vector is divided by the corresponding component of the scale vector,
and the norm is computed for the "scaled" version of x. Note that the scale vector is
a (real) VEC since only the magnitudes are important. If the corresponding component
of scale is zero for that component of x, or if scale is NULL, then no scaling is
done. (In fact, v_norml (x) is a macro that expands to _v_norml (x~ VNULL) .)

For example,_ v _norml (x~ scale) returns

L lxijscaleil
i

110 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

provided scale is not NULL, and no element of scale is zero. The behaviour of
_ v _norm2 () and _ v _norm_inf () is similar.

EXAMPLE

VEC *x, *scale;

printf("# 2-Norm of x = %g\n", v_norm2(x));
printf("# Scaled 2-norm of x = %g\n",

_v_norm2(x,scale});

SEE ALSO

m_norml(),m_nor.m_inf(), zm_norml(),zm_norm_inf().

BUGS

There is the possibility that v _norm2 () may overflow if x has components with
size of order y'HUGE.

SOURCE FILE: nor.m.c

NAME
zmake, zconj, zneg, zabs, zadd, zsub, zmlt, zinv, zdiv,
zsqrt,
zexp, zlog- Operations on complex numbers

SYNOPSIS

#include "zmatrix.h"
complex zmake(double real, double im.ag)
complex zconj(com.plex z)
complex zneg{complex z)
double zabs(complex z)
complex zadd{complex zl, complex z2)
complex zsub(com.plex zl, combl.lex z2)
complex zmlt(complex zl, complex z2)
complex zinv(complex z)
complex zdiv(complex zl, complex z2)
complex zsqrt(complex z)
complex zexp(complex z)
complex zlog(complex z)

DESCRIPTION

These routines provide the basic operations on complex numbers.

Complex numbers are represented by the complex data structure which is defined
as

typedef struct { Real re, im; } complex;

and the real part of complex z; is z. re and its imaginary part is z. im. Let
Z =X+ iy.

The routine zmake (real, imag) returns the complex number with real part
real and imaginary part imag.

The routine zconj (z) returns z = x - iy

The routine zneg(z) returns -z.

The routine zabs (z) returns lzl = .jx2 + y2 • Note that it is done safely to avoid
overflow if lxl or IYI is close to floating point limits.

The routine zadd(zl, z2) returns z1 + z2 •

The routine zsub(zl, z2) returns z1 - z2 •

The routine zmlt (zl, z2) returns z1 z2 •

The routine zinv (z) returns 1/ z. An E_SING erroris raised if z = 0.

The routine zdiv(zl, z2) returns zdz2 • An E_SING error is raised if z2 = 0.

112 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

The routine zsqrt (z) returns .Ji. The principle branch is used for a branch cut
along the negative real axis, so the real part of .Ji as computed is not negative.

The routine zexp(z) returns exp(z) = ez =ex(cosy+ isiny).

The routine z log (z) returns log(z). The principle branch is used for a branch
cut along the negative real axis, so the imaginary part of log(z) lies between or on ±1r.

EXAMPLE

To compute log(z + ew)/Jl + z2 :

complex w, z, result;

result = zdiv(zlog(zadd(z,zexp(w))},
zsqrt(zadd(ONE,zmlt(z,z))));

where ONE is 1 + Oi; ONE = zmake (1. 0, 0. 0) ; .

SOURCE FILE: zfunc.c

NAME
__ add __ , __ ip __ , _ _.mlt:add __ , __ smlt __ , __ sub __ , __ zero __ ,
__ zadd __ , __ zconj __ , __ zip __ , __ zmltadd __ , __ zmlt __ , __ zeub __ ,

__ zzero __ - core routines

SYNOPSIS

#include "machine.h"
/* or #include "matrix.h" */

113

void __ add __ (Real dpl[], Real dp2[], Real out[], int len)
double __ ip __ (Real dpl[], Real dp2[], int len)
void __ mltadd __ (Real dpl[], Real dp2[], doubles, int len)
void __ smlt __ (Real dp[], doubles, Real out[], int len)
void __ sub_._ (Real dpl[], Real dp2[], Real out[], int len)
void __ zero __ (Real dp[], int len)

#include "zmatrix.h"
void __ zadd __ (complex zl[], complex z2[],

•complex out[], int len);
void __ zconj __ (complex z[], int len);
complex __ zip __ (complex zl[], complex z2[],

void

void

void

void

int len, int conj);
zmlt (complex zl [], complex s, complex z.2 [],

int len);
__ zml tadd __ (complex z 1 [] , complex z2 [] , . complex s,

int len, int conj);
__ zsub__ (complex zl [], compleJ~; z2.[] , complex out [] ,

int len);
__ zzero __ (complex z[], int len);

DESCRIPTION

These routines are the underlying routines for almost all dense matrix routines.
Unlike the other routines in this library they do not take pointers to structures as
arguments. Instead they work directly with arrays of Real's. It is intended that
these routines should be fast. If you wish to take full advantage of a particular
architecture, it is suggested that you modify these routines.

The current implementation does not use any special techniques for boosting speed,
such as loop unrolling or assembly code, in the interests of simplicity and portability.

Note that zconj (z), referred to below, returns the complex conjugate of z.

The routine __ add_() sets out [i] = dpl [i] +dp2 [i] fori ranging from
zero to len-1. The routine _zadd_() sets out [i] = zl [i] +z2 [i] fori
ranging from zero to len-1.

The routine __ ip_() returns the sum of dpl [i] *dp2 [i] fori ranging from
zero to len-1. The routine _zip __ () returns the sum of zl [i] *z2 [i] for

114 CHAPTER 4. BASIC DENSE MATRIX OPERATIONS

i ranging from zero to len-1 if conj is Z_NOCONJ, and returns the sum of
zconj (z1 [i]) *z2 [i] fori ranging from zero to len-1 if conj is Z_CONJ.

The routine _mltadd_() sets dp1 [i] = dp1 [i] +s*dp2 [i] fori rang
ing from zero to len-1. The routine _zmltadd_() sets
z1 [i] = z1 [i] +s*z2 [i] fori rangingfromzeroto len-1if conj is Z_NOCONJ,
and sets dp1 [i] = z1 [i] +s*zconj (z2 [i]) fori ranging from zero to len-1
if conj is Z_CONJ.

The routine _sml t_ () sets out [i l = s *dp [i l for i ranging from zero
to len-1. The routine _zmlt_() sets out [i] = s*z [i] fori ranging from
zero to len-1.

The routine _sub_ () sets out [i] = dp1 [i] -dp2 [i] for i ranging from
zero to len-1. The routine _zsub_() sets out [i] = z1 [i] -z2 [i] fori
ranging from zero to len-1.

The routines _zero_() and _zzero_() set out [i] = 0. 0 fori rang
ing from zero to len-1. These routines should be used instead of the macro
MEM_ZERO () or the ANSI C routine memset () for portability, in case the float
ing point zero is not represented by a bit string of zeros.

EXAMPLE

MAT
ZVEC
Real

*A, *B;
*x, *y;
alpha;

I* set A= A+ alpha.B.*I
for (i = 0; i < m; i++)

mltadd(A->me[i],B->me[i],alpha,A->n);
I* zero row 3 of A *I
zero(A->me[3],A->n);
I* quick complex inner product *I
z_output(_zip_(x->ve,y->ve,x->dim,Z_CONJ));

SOURCE FILE: machine.c, zmachine.c

Chapter 5

Dense Matrix Factorisation
Operations

The following routines are described in the following pages:

Bunch-Kaufman-ParleU factor and solve
Cholesky, LD Lr factor and solve
Band LDLT factor and solve
LU factor (Gaussian elimination) and solve
Band LU factor and solve
QR factor and solve with/out column pivoting
Extract matrices from compact form (QR only)
Compute and apply Givens' rotations
Householder transformations
Solve for diagonal and triangular matrices
Update routines for LDLT and QR factorisations
Eigenvalue routines
Eigenvalue/vector extraction routines
Singular value decomposition
Matrix polynomials and exponentials
Fast Fourier Transform

To use these routines use the include statement

#include "matrix2.h"

and for the complex routines

#include "zmatrix2.h"

115

116
118
121
122
124
126
129
130
133
135
137
139
142
143
145
147

116 CHAPTER 5. DENSE MATRIX FACTORISATION OPERATIONS

NAME
BKPfactor, BKPsol ve- Bunch-Kaufman-Parlett symmetric indefinite
factorise and solve

SYNOPSIS

#include "matrix2.h"
MAT *BKPfactor(MAT *A, PERM *pivot, PERM *blocks)
VEC *BKPsolve(MAT *A, PERM *pivot, PERM *blocks,

VEC *b, VEC *x)

DESCRIPTION

The routine BKPfactor () forms in situ a symmetric indefinite factorisation of
the matrix A of the form

pTAP=MDMT

where P is a permutation matrix, M is lower triangular, and D is block diagonal, with
1 x 1 or 2 x 2 blocks. The matrix Pis represented by the permutation pivot and Dii
is a 1 x 1 block if and only if blocks- >pe [i] == i; otherwise blocks- :>pe [i]
is the index of the other row/column in the 2 x 2 block. After the routine the D and
M factors are stored in A in compact form. This avoids the requirement for additional
vectors or matrices for storage.

Note that pivot and blocks must both benon-NULLandpivot ! = blocks
for both BKPfactor {) and BKPsol ve (}.

The routine BKPsol ve () solves the equation Ax = b for x. The solve routine
BKPsol ve () is designed specifically to work with BKPfactor () as they operate
on the same compact storage scheme. Note that the factorisation may succeed when
the matrix A passed is singular, and that the solve routine may then fail, raising an
E_SING error. The solve routine may be used in situ with b == x. If xis NULL
or too small to hold the result, then a new vector is created of the appropriate size for
storing the result. In either case the resulting solution vector is returned.

This factorisation routine, and the accompanying solve routine are derived from
"Decomposition of a Symmetric Matrix" by J. Bunch, L. Kaufman and B. Parlett,
Numerische Mathematik 27, 95-109 (1976).

Errors will be raised if A or pivot or blocks are NULL, or if A is not square, or
if the sizes of A, pivot or blocks are not compatible.

EXAMPLE

MAT
PERM

*A;
*pivot, *blocks;

VEC *x, *b;

A= m_input(MNULL);

b = v_input(VNULL);
pivot = px_get(A->m);
blocks = px_get(A->m);
/* assuming A symmetric */
BKPfactor(A,pivot,blocks};
x = BKPsolve(A,pivot,blocks,b,VNULL);

SEE ALSO

CHfactor() and CHsolve ()

SOURCE FILE: BKPfactor.c

117

118 CHAPTER 5. DENSE MATRIX FACTORISATION OPERATIONS

NAME
CHfactor, MCHfactor, CHsolve, LDLfactor, LDLsolve
Cholesky factor and solve

SYNOPSIS

#include "matrix2.h"
MAT *CHfactor(MAT *A)
MAT
VEC
MAT
VEC

*MCHfactor(MAT *A, double tol)
*CHsolve(MAT *A, VEC *b, VEC *x).
*LDLfactor(MAT *A)
*LDLsolve(MAT *A, VEC *b, VEC *x)

DESCRIPTION

Both CHfactor () and LDLfactor () factor the matrix A in situ and returns the
factored matrix (in compact form). The Cholesky factorisation routine and the LDLT
routines both use only the lower triangular part of A, but the Cholesky factorisation
routine fills the upper triangular part of A also.

These routines require that A is square. The Cholesky factorisation, in particular,
requires that A be sufficiently positive definite (e.g. lowest eigenvalue of A is at least
machine epsilon away from zero). If non-positive definiteness is detected during
factorisation, then an E_POSDEF error will be raised. If you wish to catch such an
error, see information on the catch () macro. If your matrix is indefinite, then it
would be best to use the BKPfactor () and BKPsol ve () routines.

The routine MCHfactor () computes a modified Cholesky factorisation. This is
not a true Cholesky factorisation, but rather the Cholesky factorisation of A+ D where
D is a diagonal matrix with non-negative entries. Whether the A matrix is modified
in this way is determined by the tol parameter; the diagonal entry of the Cholesky
factorisation is ensured to be ~ y'tOi. The D matrix is guaranteed to be zero in exact
arithmetic if uT Au ~ toluT u for all u.

EXAMPLE

MAT *A, *LLT, *LDL;
VEC *b, *x;
double tol;

A= m_input(MNULL);
b = v_input(VNULL);
input("Input tol for modified Cholesky: ", "%lf", &:tol);
LLT = m_copy{A,MNULL);
I* If A positive definite ••• */
CHfactor(LLT);
X= CHsolve{LLT,b,VNULL);

I* ••• otherwise, get approximate solution •.• *I
LLT = m_copy(A,MNULL);

119

MCHfactor(LLT,tol);
MCHsolve(LLT,b,x);

I* LLT now has factors of A + D *I

I* ... or use LDL factorisation *I
LDL = m_copy(A,MNULL);
LDLfactor(LDL);
LDLsolve(LDL,b,x);

SEE ALSO

catch () and BKPfactor ()

SOURCE FILE: CHfactor.c

120 CHAPTER 5. DENSE MATRIX FACTORISATION OPERATIONS

NAME

band2mat, :m.at2band- Band matrix utility routines

SYNOPSIS

#include "matrix.h"
MAT *band2mat(BAND *bdA, MAT *out)
BAND *mat2band(MAT *A, int lb, int ub, BAND *out}

DESCRIPTION

The routine band2mat () creates an ordinary dense matrix out (aMeschach MAT
structure) that is represented by the band matrix structure bdA represents. The returned
matrix is square.

The routine mat2band () extracts the banded part of A with lower bandwidth lb
and upper bandwidth ub and stores the result in the BAND structure out. The input
matrix A must be square; if not an E_SQUARE error is raised.

For more infonnation about band matrix data structures and storage patterns see
the chapter on data structures.

Note that the conversion routines do not directly copy the mat field of the band
structure. If you need efficient storage of band matrices, the routines band2mat (}
and mat2band () should probably be avoided.

SEE ALSO

bdLDLfactor () and bdLUfactor ().

SOURCE FILE: bdfactor.c

121

NAME

bdLDLfactor, bdLDLsol ve -Band Cholesky factorise and solve

SYNOPSIS

#include "matrix2.h"
BAND *bdLDLfactor(BAND *bdA)
VEC *bdLDLsolve (BAND *bdA, VEC *b, VEC *x)

DESCRIPTION

These routines compute the LD LT factorisation, and solve, a symmetric system
of banded equations. These routines only use the lower band and tne main diagonal of
A.

After the call bdLDLfactor (A), A is in factored form which compactly repre
sents both the diagonal matrix D, but also the unit lower triangular matrix L.

If the matrix is exactly singular on factorisation, then an E_SING error is raised.

EXAMPLE

To extract a tridiagonal matrix from a dense matrix A, and to factorise and solve a
system Ax = b:

MAT *A;
VEC *b, *x;
BAND *bdA;

I* Note: only need lower triangular part */
bdA = mat2band(A,l,O,(BAND *)NULL);
bdLDLfactor(bdA);
x = bdLDLsolve(bdA,b,VNULL);

BUGS

This method can be numerically unstable for matrices that are not positive definite.

The routine bdLDLfa.ctor (} does not test for symmetry.

SEE ALSO

bdLUfactor(),LDLfactor()

SOURCE FILE: bdfactor.c

122 CHAPTER 5. DENSE MATRIX FACTORISATION OPERATIONS

NAME
LUfactor, LU~olve, LUTsolve, LUcondest, m_inverse,
zLUfactor, zLUsolve, zLUAsolve, zLUcondest, zm_inverse
LU factorisation (Gaussian elimination) and solve

SYNOPSIS

#include "matrix2.h"
MAT *LUfactor(MAT *A, PERM *pivot)
VEC
VEC
double
MAT

*LUsolve (MAT *A, PERM *pivot, VEC *b, VEC *x)
*LUTsolve(MAT *A, PERM *pivot, VEC *b, VEC *x}

LUcondest(MAT *LU, PERM *pivot)
*m_inverse(MAT *A, MAT *out)

#include "zmatrix2.h"
ZMAT *zLUfactor(ZMAT *A, PERM *pivot)
ZVEC *zLUsolve (ZMAT *A, PERM *pivot, ZVEC *b, ZVEC
ZVEC *zLUAsolve(ZMAT *A, PERM *pivot, ZVEC *b, ZVEC
double zLUcondest(ZMAT *LU, PERM *pivot)
ZMAT *zm_inverse(ZMAT *A, ZMAT *out)

DESCRIPTION

*x)
*x)

The routines LUfactor () and zLUfactor () perform LU factorisation, which
is otherwise known as Gaussian elimination with implicit scaled partial pivoting. The
zLUfactor () performs the complex LU factorisation. The LU factors of A are
stored in A in compact form. Once this is done, the routine LUsol ve () can be used
to solve equations of the fonn Ax = b for x by forward and back substitution. For
real matrices, the system AT x = b can be solved by using LUTsol ve () , while for
complex matrices A*x = b can be solved using zLUAsolve 0. The code for a full
factorisation and solving Ax = b and AT y = b is:

I* set up A and b */

pivot = px_get(A->m);
x = v_get(A->n);
y = v_get(A->m);
LU = m_copy(A,MNULL);
LUfactor(LU,pivot};
x = LUsolve(LU,pivot,b,x);
y = LUTsolve(LU,pivot,b,y};
condition = LUcondest{LU,pivot);

A full description of Gaussian elimination with partial pivoting and its numerical
behaviour can be found in a number of books, though we refer the reader specifically

123

to Matrix Computations by G.H. Golub and C. van Loan, North Oxford Academic,
§§3.2-3.4, pp. 92-122, 2nd Edition (1989). The variant here is that scaling is used
implicitly. That is, scaling is only used to decide which rows to swap during the partial
pivoting process.

Note that the factorisation routine LUfactor () may succeed where the solve
routine LUsol ve () fails if, for example, A is singular. Also note that LU factorisation
also succeeds when A is not even square, though this is a requirement for the success of
LUsol ve () or zLUsol ve (). Errors are raised by LUfactor () or zLUfactor ()
if A or pivot is NULL, or if the size of pivot is less than the number of rows of
A. Errors are raised by LUsol ve, LUTsol ve () , zLUsol ve () or zLUAsol ve ()
if these conditions occur, if b is NULL, or if A is not square. Then if x is NULL or
too small to contain the result a new vector of the appropriate size is created. In either
case the solution of Ax = b, x, is returned. The routines LUsol ve () , LUTsol ve () ,
zLUsol ve () or zLUAsol ve () may be used in situ (that is, with b == x) with
version 1.2 or later.

The condition number (relative to the infinity norm) can be estimated using the
routine LUcondest () or the routine zLUcondest (). This estimate is not guaran
teed to under- or over-estimate the true condition number; however, it can usually be
relied on to give an estimate correct to within an order of magnitude, which is usually
all that is required.

The routines m_inverse () and zm_inverse () compute the inverse of A and
returns the result in out. This is carried out using the LU factorisation routines. As is
usually noted in numerical analysis texts, inverse matrices should rarely be computed.
If a system of equations need to be solved, use the above code calling LUfactor ()
and LUsol ve (), or zLUfactor () and zLUsol ve () directly.

SOURCE FILE: lufactor.c, zlufctr.c

124 CHAPTER 5. DENSE MATRIX FACTORISATION OPERATIONS

NAME

bdLUf actor, bdLUsol ve -Band LU factorise and solve

SYNOPSIS

#include "matrix2.h"
BAND *bdLUfactor(BAND *bdA, PERM *pivot)
VEC *bdLUsolve (BAND *bdA, PERM *pivot, VEC *b, VEC *x)

DESCRIPTION

The routine bdLUfactor () computes the LU factorisation of a band matrix
A with partial pivoting. This routine performs essentially the same calculations as
LUf actor () . This operation is done in situ in bdA. Because partial pivoting is used,
the (upper) bandwidth of the matrix being factorised increases. Specifically, the final
upper bandwidth is lb + ub where lb is the original lower bandwidth and ub is the
original upper bandwidth.

The routine bdLUsol ve 0 computes the solution to the banded system Ax = b
using the band matrix bdA in factored form. Note that only square matrices can be
represented as banded matrices. This can be done in situ (x "'"" b).

These routines raise an E_NULL error if either bdA or pivot is NULL.

EXAMPLE

To factor and solve Ax = b:

BAND *bdA;
PERM *pivot;
VEC *x, *b;

I* set up bdA */

I* get a random right-hand side */
b = v_rand(v_get(A->mat->n});
I* factor bdA ••. *I
pivot = px_get(A->mat->n);
bdLUfactor(bdA,pivot);
I* ••• and solve system*/
x = v_get(b->dim);
bdLUsolve(bdA,pivot,b,x);

BUGS

Unless bdA is resized to its original size (which can be done very efficiently by
bd_resize ()) repeated calls to bdLUfactor (bdA, .•.) will result in the upper
bandwidth increasing until it is n - 1 where bdA represents an n x n matrix.

SEE ALSO

LUfactor()

SOURCE FILE:

125

bdfactor.c

126 CHAPTER 5. DENSE MATRIX FACTORISATION OPERATIONS

NAME
QRfactor, QRCPfactor, QRsolve, QRCPsolve, QRTsolve,
QRcondest, zQRfactor, zQRCPfactor, zQRsolve,
zQRCPsolve, zQRAsolve, zQRcondest -QR factorisation and solve

SYNOPSIS

#include "matrix2.h"
ldAT *QRfactor(MAT *A, VEC *diag)
l~T *QRCPfactor(MAT VEC *diag, PERM *pivot)
'1\I'EC

1/'EC

VEC

double

*QRsolve(MAT V"EC '"diag, VEC *b, VEC *x)
*QRTsolve(MAT *A, VEC *diag, VEC *b, VEC *x}
*QRCPsolve(MAT *A, VEC *diag, PERM *pivot,

VEC *b, VEC *x)
QRcondest(MAT *QR)

#include "zmatrix2.h"
ZMAT *zQRfactor(ZMAT *A, ZVEC *diag)
ZMAT *zQRCPfactor(ZMAT *A, ZVEC *diag, PERM *pivot)
ZVEC
ZVEC
ZVEC

double

*zQRsolve {ZMAT *A, ZVEC *diag, ZVEC *b, ZVEC
*zQRAsolve(ZMAT *A, ZVEC *diag, ZVEC *b, ZVEC
*zQRCPsolve(ZMAT *A, ZVEC *diag, PERM *pivot,

ZVEC *b, ZVEC *x)
zQRcondest(ZMAT *QR)

DESCRIPTION

The routines QRfactor () and zQRfactor () perform straightforward QR fac
torisations of A. The routine zQRfactor {) computes the complex QR factorisation.
For those unfamiliar with the terminology, the Q R factorisation of A is a factorisation
of the form

A=QR

where R is upper triangular, and Q is orthogonal in the real case and unitary in the
complex case. That is Q-1 = QT and QT Q = I in the real case, and Q-1 = Q*
and Q* Q = I in the complex case. This factorisation exists whether or not A
is singular or even square. The Q R factorisation is performed using Householder
transformations. (These are orthogonal matrices of the form Pi = I- aiviv[(real
case) or Pi = I- aiviv; (complex case) where ai = 2/vf vi (real case) or ai = 2/v;vi
(complex case).)

The routines QRCPfactor () and zQRCPfactor () perform a QR factorisation
with column pivoting, which is a factorisation of the form

ATIT = QR

where additionally, TI is a permutation matrix. The TI matrix is represented by pivot.
This is done exactly as for QRfactor () and zQRfactor () except for the pivoting.

127

Both of these factorisations are performed in situ, and store the Q and R factors
compactly in A and diag. This compact form is used consistently within this package,
and is essentially that of Golub and van Loan's Matrix Computations, §5.2, p. 212, 2nd
edition, (1989), except that the v's are not normalised in this package. The dimensions
of both diag must be at least as large as the minimum of the number of rows and
columns of A.

Once A and diag contain this compact representation of the Q R factors of A, we
can use QRsol ve () to solve systems of linear equations, and indeed, find least square
error solutions to overdetermined systems of equations. See Matrix Computations,
§ 1.4, p. 11 for an example. Indeed, the code

MAT *QR;

QR = m_copy(A,MNULL);
QRfactor(QR,diag};
QRsolve(QR,diag,b,x);

finds the least squares solution x to

Ax~b.

Similarly, if QRCPfactor () is to be used to factor A, then QRCPsol ve () can be
used to solve the least squares problem Ax~ b. The code to do this is:

QR = m_copy(A,MNULL);
QRCPfactor(QR,diag,pivot);
QRCPsolve(QR,diag,pivot,b,x);

The corresponding operations for complex matrices simply requires prefixing the func
tions by a "z" and replacing MAT by ZMAT.

Note that in the real case, QRTsol ve (QR, diag, b, x) solves the underdeter
mined problem Ax = b; that is, it computes the minimum 2-norm x that satisfies Ax =

b form :S n. The corresponding complex routine is zQRAsolve (QR, diag, b, x).

The condition number of a matrix factored using either QRfactor {) or
QRCPfactor () can be estimated using QRcondest ():

printf("2-norm condition no. approx. = %g\n", QRcondest(QR));

Thecorrespondingcomplexfunctionis zQRcondest (). ThefunctionQRcondest ()
returns a lower bound for the least squares condition number of the factored matrix A

provided A has full rank. If A is square, then this is exactly equal to the 2-norm
condition number

128 CHAPTER 5. DENSE MATRIX FACTORISATION OPERATIONS

If the Q R factors are exactly singular, then QRcondest () will return HUGE (HUGE_ VAL
for ANSI C).

The estimate is obtained by obtaining estimates for II Rib and 11 R-lu2. Note that
Q and IT do not affect the 2-horm or least squares condition numbers. The estimate of
IIR-1 11 2 is found using the techniques of LUcondest () to obtain a vector y with unit
oo-norm such that IIR-1ylloo is quite small. This is described in Golub and van Loan,
2nd Edition pp. 128-130, (1989). Then the power method is applied to the matrix
(RT R)-1 (real case) or (R* R)-1 (complex case) a total of three times with initial
vector y. The corresponding e_stimate of IIRib is obtained by a related method of
finding a vector y with unit oo-norm and.IIRYIIoo quite large. The power method is
applied to the matrix RT R (real case) orR* R (complex case). Taking square root of
the estimated eigenvalues gives a lower bound to the 2-norm condition number of R.

A simple, and usually reliable, estimate of the rank of a matrix is to factor the
matrix A using QRCPfactor () (real case) or zQRCPfactor () (complex case),
and then to count the number of diagonal entries of A greater than a certain tolerance
in magnitude. A more reliable approach is to use the Singular Value Decomposition.
See svd().

SEE ALSO

Householder routines hhvec () , hhtrvec () , hhtrrows () and hhtrcols () ,
zhhvec ()' zhhtrvec ()' zhhtrrows () and zhhtrcols (); sva ().

SOURCE FILE: qrfactor.c, zqrfctr.c

129

NAME

makeQ, makeR, zmakeQ, zmakeR- explicitly form Q and R factors

SYNOPSIS

#include "matrix2.h"
MAT *makeQ(MAT *QR, VEC *diag, MAT *Qout)
MAT *makeR(MAT *QR, MAT *Rout)

#include "zmatrix2.h"
ZMAT *zmakeQ(ZMAT *QR, ZVRC *diag, ZMAT *Qout)
ZMAT *zmakeR(ZMAT *QR, ZMAT *Rout)

DESCRIPTION

The routines makeQ () and zmakeQ () explicitly forms the real orthogonal Q or
complex unitary Q of the Q R factorisation from the compact representation in QR and
diag. The result is stored in Qout. This routine may not be used to form Qout in
situ.

The routines makeR () and makeR () explicitly forms the upper triangular R
matrix of the QR factorisation. The result is stored in Rout. These two routines may
be used in situ; that is, with QR == Rout. (Actually the routine just zeros the strictly
lower triangular half of QR.)

If Qou t or Rout is NULL or too small to contain the result then a new matrix is
created and returned.

EXAMPLE

MAT *A, *QR, *Q, *R;
VEC *diag;

diag = v_get(A->m);
QR = m_copy(A,MNULL);
QRfactor(QR,diag);
Q = makeQ(QR,diag,MNULL);
R = makeR(QR,MNULL);
/* makeR(QR,QR); replaces QR with the R matrix*/

SOURCE FILE: qrfactor.c, zqrfctr.c

130 CHAPTER 5. DENSE MATRIX FACTORISATION OPERATIONS

NAME
givens, rot_cols, rot_rows, .. rot_vec, zgivens, zrot_cols,
zrot_rows, rot_zvec -Givens' rotations routines

SYNOPSIS

#include "matrix2.h"
void givens(double x, double y, Real &c, Real &s)
MAT *rot_cols(MAT *A, int i, int k,

double c, double s, MAT *out)
MAT *rot_rows(MAT *A, int i, int k,

Real c, Real s, MAT *out)
VEC *rot_vec (VEC *x, int i, int k,

double c, double s, VEC *out)

#include "zmatrix2.h"
void zgivens(complex x, complex y, Real &c, complex &s)
ZMAT

ZMAT

ZVEC

*zrot_cols(ZMAT *A, int i, int k,
double c, complex s, ZMAT *out)

*zrot_rows(ZMAT *A, int i, int k,
double c, complex s, ZMAT *out)

*rot_zvec (ZVEC *x, int i, int k,
double c, complex s, ZVEC *out)

DESCRIPTION

The routine gi vena () computes a pair (c, s) such that

(5.1)

where c2 + s2 = 1. The routine zgi vens () computes a pair (c, s), c real and s
complex where

(5.2)

The matrix formed from the (c, s) pair is a real orthogonal or a complex unitary
matrix, and is often referred to as a Givens' rotation. The other routines apply such
an orthogonal matrix to vectors and matrices. The actual orthogonal matrix (from

131

givens ())that is applied to vectors and matrices is the matrix

The routine rot_eols () forms AJik(c, s)T and stores the result in out. The
routine zrot_eols () forms AJik(c, s)* and stores the result in out.

The routines rot_rows () and zrot_rows () form Jik (c, s)A and stores the
result in out.

The routines rot_ vee () and rot_ vee () form Jik (c, s)x and stores the result
in out.

All of the •• rot_ ••• () routines may be used in situ and create a new vector or
matrix if the out parameter is NULL or is too small to contain the result. The result
of the application of the Givens' rotation is returned by each of the •• rot_ ••• ()
routines.

Note that Jik(c, s)T = Jik(c, -s) in the real case, and Jik(c, s)* = J;,k(c, -s) in
the complex case. This makes pre- and post-multiplying by transposes of J;.k (c, s)
easy.

EXAMPLE

int i, k;
VEC *x;
MAT *A;
Real e, s;

......

132 CHAPTER 5. DENSE MATRIX FACTORISATION OPERATIONS

I* get Givens transformation *I
givens(x->ve[i],x->ve[k],&c,&s);
I* apply to x *I
rot_vec(x,i,k,c,s);
I* apply symmetrically to A *I
rot_cols(A,i,k,c,s);
rot_rows(A,i,k,c,s);

BUGS

The givens () routine may result in overflow if the x and/or y parameters are of
size greater than VHUGE.

SOURCE FiLE: givens.c, zgivens.c

133

NAME
hhvec, hhtrcols, hhtrrows, hhtrvec, zhhvec, zhhtrcols,
zhhtrrows, zhhtrvec - Householder transformation operations

SYNOPSIS

#include "matrix2.h"
VEC *hhvec(VEC *x, unsigned iO, Real *beta,

VEC *out, Real *newval)
MAT *hhtrcols(MAT *A, int iO, int jO, VEC *hh, double beta}
MAT *hhtrrows(MAT *A, int iO, int jO, VEC *hh, double beta)
VEC *hhtrvec(VEC *hh, double beta, int iO, VEC *x, VEC *out)

#include "zmatrix2.h"
ZVEC *zhhvec(ZVEC *x, unsigned iO, Real *beta,

ZVEC *out, complex *newval)
ZMAT *zhhtrcols(ZMAT *A, int iO, int jO, ZVEC *hh,

double beta)
ZMAT *zhhtrrows(ZMAT *A, int iO, int jO, ZVEC *hh,

double beta)
ZVEC *zhhtrvec(ZVEC *hh, double beta, int iO, ZVEC *x,

ZVEC *out)

DESCRIPTION

The routines hhvec () and zhhvec () compute the parameters for a Householder
transformation. In particular, given a vector x, a vector v (== out) and a real
numbers f3 (== beta) and a (possibly complex) number newval are computed where
the Householder transformation P = I - f3vv* satisfies

(5.5)

Note that in the case of x a real vector, newval is real. Note also that zhhvec ()
computes the parameters for a complex vector.

The x parameter is not modified. The formulae used are taken from Matrix
Computations by G. Golub and C. van Loan, p. 40, 1st Edition, (1983), §5.1, pp. 196-
196, 2nd Edition, (1989).

If out is NULL or too small to hold the v vector, then a new vector is created to
store the result. In either case, the result is returned. An error is raised if the x vector
is NULL.

The routine hhtrcols () forms the product APT where Pis the Householder
transformation defined by hh and f3 (== beta). (That is, P =I- (3hhhhT.) The
routine zhhtrcols () forms the product AP* where Pis the Householder transfor
mation defined by hh and f3 (== beta). (That is, P = I - f3hh hh* .) All rows i with

134 CHAPTER 5. DENSE MATRIX FACTORISATION OPERATIONS

i < i 0 and columns j with j < j 0 are ignored. The operations are performed in situ
inA.

The routines hhtrrows () and zhhtrrows () form the product P A where Pis
the Householder transformation defined by hh and {3. Again, all rows i with i < iO
and columns j with j < j 0 are ignored. The operations is performed in situ in A.

Finally, the routines hhtrvec 0 and zhhtrvec () forms the vector Px where
Pis the Householder transformation defined by hh and {3. The result is stored in out.
If out is NULL or too small to hold the results of the operation, then a new vector is
created of the appropriate. size. In either case the result is returned.

SOURCE FILE: hsehldr.c

135

NAME
Dsolve, Lsolve, LTsolve, Usolve, UTsolve, zDsolve,
zLsolve, zLAsolve, zUsolve, zUAsol ve -Basic solve routines

SYNOPSIS

#include "matrix2.h"
VEC *Dsolve (MAT *A, VEC *b, VEC *x)
VEC *Lsolve (MAT *A, VEC *b, VEC *x, double diag)
VEC *LTsolve(MAT *A, VEC *b, VEC *x, double diag)
VEC *Usolve {MAT *A, VEC *b, VEC *x, double diag)
VEC *UTsolve(MAT *A, VEC *b, VEC *x, double diag)

#include "zmatrix2.h"
ZVEC *zDsolve (ZMAT *A, ZVEC *b, ZVEC *x)
ZVEC *zLsolve {ZMAT *A, ZVEC *b, ZVEC *x, double diag)
ZVEC *zLAsolve(ZMAT *A, ZVEC *b, ZVEC *x, double diag)
ZVEC *zUsolve {ZMAT *A, ZVEC *b, ZVEC *x, double diag)
ZVEC *zUAsolve(ZMAT *A, ZVEC *b, ZVEC *x, double diag)

DESCRIPTION

The routines Dsol ve () and zDsol ve () find and return the solution x of Dx = b
where D is the diagonal part of the matrix A (== A).

The routines Lsol ve () and zLsol ve () find and return the solution x of Lx = b
where L is the lower triangular part of A if diag is zero; Lis the strictly lower triangular
part of A with diag on the diagonal if diag is not zero. These routines use forward
substitution.

The routines LTsol ve () and zLAsol ve () find and return the solutions x of
LT x = b and L * x = b respectively where L is the lower triangular part of A if diag
is zero; L is the strictly upper triangular part of A with diag on the diagonal if diag
is not zero.

The routines Usol ve () and zUsol ve () find and return the solution x of U x = b
where U is the upper triangular part of A if diag is zero; U is the strictly upper
triangular part of A with diag on the diagonal if diag is not zero. These routines use
back substitution.

The routines UTsol ve () and zUAsol ve () find and return the solution x of
ur x = band U*x = b respectively where U is the upper triangular part of A if diag
is zero; U is the strictly upper triangular part of A with diag on the diagonal if diag
is not zero. These routines use back substitution.

All of these routines may be used in situ; that is, they can be used with b == x.

If x is too small to contain the result then a new vector is created of the appropriate
dimension. In either case the solution of the equations is returned.

136 CHAPTER 5. DENSE MATRIX FACTORISATION OPERATIONS

The rationale behind the use of the diag parameter is that often, as in LU factori
sation or LDLT factorisation, the diagonal entry for Lis implicit (usually one). The
diag parameter enables these routines to be used generally, including for the results
of Q R factorisation, for example.

EXAMPLE

For solving Ax = b using Cholesky factorisation, with only L:

MAT *L;
VEC *b, *;x;

Lsolve(L,b,x,O.O);
LTsolve(L,x,x,O.O);

I* use L's diagonal entries */

For solving Ax = b using LU factorisation with L unit lower triangular and no
pivoting:

MAT *L, *U;
VEC *b, *x;

Lsolve(L,b,x,l.O);
Usolve(U,b,x,O.O);

SEE ALSO

I* L unit lower triangular */

LUsolve(),zLUsolve(),CHsolve(),LDLsolve(),QRsolve(),
zQRsolve()

SOURCE FILE: solve.c, zsolve.c

137

NAME

LDLupdate, QRupdate- factorisation update routiaes

SYNOPSIS

#include "matrix2.h"
MAT *LDLupdate(MAT *LDL, VEC *w, double alpha)
MAT *QRupdate (MAT *Q, MAT *R, VEC *u, VEC *v)

DESCRIPTION

The routine LDLupdate () modifies the matrix LDL which is assumed to cont~n
(in compact form) the LD LT factorisation of a matrix A. The L matrix is the strictly
lower triangular part of LDL, except with ones on the diagonal; while Dis the diagonal
of LDL, so that A = LD LT. The matrix r.JDL is modified in situ so that if L+ and D +
denote the factors described by LDL after the routine; then

where a is the value of alpha and w is w. The modified LDL matrix is returned.

The method used for updating the factorisation is given in "Methods for modifying
matrix factorisations" by P. Gill, G. Golub, W. Murray and M. Saunders, Mathemat~
ics of Computations, 28, pp. 505-535 (1974). The particular algorithm used is the
algorithm Cl of their paper.

This routine may fail if A+ awwr is not sufficiently positive definite; if this failure
occurs, then an E_POSDEF error is raised.

The routine QRupdate () updates the QR factorisation of a matrix A = QR.
Unlike the previous routine, this routine requires the explicit factors Q and R of A.
These can be obtained from the compact form by means of the routines makeQ ()
and makeR () . If the matrices Q and R after the routine are denoted Q + and R+
respectively, then

Q+R+ = Q(R + uvT) =A+ (Qu)vr.

Setting u = QT w gives Q +R+ = A + wvT.

If Q is NULL, then only the R matrix is modified. The R matrix is returned.

The routine is based on one given in Matrix Computations by G. Golub and C.
van Loan, pp. 437-443, 1st Edition (1983), pp. 593-594, 2nd Edition (1989).

EXAMPLE

Updating LD LT factorisation:

MAT *A, *LDL;
VEC *u;
double alpha;

138 CHAPTER 5. DENSE MATRIX FACTORISATION OPERATIONS

LDL = m_copy{A,MNULL);
LDLfactor(LDL);

I* A <- A + alpha.u.uAT */
LDLupdate(LDL,u,alpha);

Updating Q R fact.orisation:

MAT *A, *QR, *Q, *R;
VEC *diag, *beta, *u, *v, *w;

QR ""m_copy(A,MNULL);
QRfactor(QR,diag,beta);
Q = makeQ(QR,diag,beta,MNULL);
R = makeR(QR,MNULL);

I* A <- A + w.vAT */
u = v_get(Q->m);
u = v.m_mlt(Q,w,u);
QRupdate(Q,R,u,v};

SOURCE FILE: update.c

139

NAME

schur, symmeig, trieig, zschur- Eigenvalue routines

SYNOPSIS

#include "matrix2.h"
MAT *schur(MAT *A, MAT *Q)
VEC *symmeig(MAT *A,-MAT *Q, VEC *out)
VEC *trieig(VEC *a, VEC *b, MAT *Q)

#include "zma1;:rix2.h"
ZMAT _ *zschur(MAT *A, MAT *Q)

DESCRIPTJON

The routine schur () computes the Real Schur decomposition of the matrix A.
That is, it computes a block upper triangular matrix T and an orthogonal matrix Q such
that

The matrix T has diagonal blocks of sizes 1 x 1 and 2 x 2. The eigenvalues of these
diagonal blocks are the eigenvalues of the original A matrix. The algorithm used to
find the eigenvalues of A is the Francis QR algorithm. This algorithm is described in
Matrix Computations by G. Golub and C. van Loan, pp. 231-236, 1st Edition (1983),
pp. 377-381, 2nd Edition (1989).

The matrix A is overwritten with T, and if Q is not NULL and the correct size, then
the Q matrix is stored in it.

The routine zschur () computes the complex Schur factorisation of A. That is, it
computes an upper triangular matrix T and a unitary matrix Q such that

Q*AQ=T.

The eigenvalues of A are the diagonal entries ofT. The algorithm is a complex version
of the Francis Q R algorithm, and is, in fact, somewhat simplified in the complex case.

The routine symmeig () computes the eigenvalues of a symmetric matrix. It also
computes an orthogonal matrix Q such that

where A is the diagmiai matrix of eigenvalues;·. The algorithm used to find the eigen
values of A consists of conversion to symmetric Hessenberg (symmetric tridiagonal)
form, and then applying trieig () to obtain the eigenvalues of the tridiagonal matrix.

The eigenvalues are stored in out provided it is not NULL and is sufficiently large
to contain all the eigenvalues. The vector containing the eigenvalues is_ returned. The
matrix A is not overwritten.

140 CHAPTER 5. DENSE MATRIX FACTORISATION OPERATIONS

The routine trieig () computes the eigenvalues of the symmetric tridiagonal
matrix

ao bo
bo a1 bl

(5.6) T= bl a2

bn-2

bn-2 an-1

The algorithm used is a "chasing" technique described in Matrix Computations,
pp. 278-281, 1st Edition, pp. 421-424, 2nd Edition. It also-accumulates the ma
trix Q such that QTTQ is diagonal. To compute the correct Q matrix, Q should be
initialised to the identity matrix on entry to trieig (). (See m_ident () .)

The values in the a and b vectors are overwritten. At the end of the routine, a
contains the eigenvalues, and the b vector is zero.

In· all of the above routines, if the matrix Q is NULL on entry, then no calculation
of the Q matrices is performed. This should speed up the routines somewhat if only
the eigenvalues are needed.

EXAMPLE

_.Computing real Schur decomposition of (pos~ibly) nonsymmetric A:

MAT *A, *S, *Q, *X_re, *X_im;
VEC *evals_re, *evals_im;

S = m_copy(A,MNULL);
Q = m_get(A->m,A->m);
schur(S,Q);
I* get eigenvalues (real, imaginary parts) *I
evals_re = v_get(A->m);
evals_im = v~get (A-,>m);
schur_evais (s ,-~vals_re; evals_im) ;

- .

I* get eigenvectors (real, imaginary parts) *I
X_re = m__:_get (A->m,A->m);
X_im = m_get(A->m,A->m);
schur_evecs(S,Q,X_re,X_im);

, . Computing eigenvalues and eigenvectors of a real symmetric matrix:

MAT *A, *Q;
VEC *evals;

evals = v_get(A->m);
evals = symmeig(A,Q,evals);

141

The Q matrix contains the eigenvectors.

Computing the eigenvalues and eigenvectors of a symmetric tridiagonal matrix
defined by the vectors a (the diagonal entries) and b (the off-diagonal entries):

MAT *Q;
VEC *a, *b;

Q = m_get(a->dim,a->dim);
m_ident(Q); /*must initialise Q */
trieig(a,b,Q);
I* a is now the vector of eigenvalues */

SEE ALSO

The Hessenberg routines in hess en. c and zhessen. c .

.BUGS

It is up to the caller 0f s:ymmeig () to ensure that the A matrix is symmetric.
Symmetry of A is neither checked nor enforced in symmeig () .

SOURCE FILE: symmeig.c, schur.c, zschur.c

142 CHAPTER 5. DENSE MATRIX FACTORISATION OPERATIONS

NAME
schur_evals, schur_vecs- Extracting eigenvalues and eigenvectors from
the Schur form

SYNOPSIS

#include "matrix2.h"
void schur_evals(MAT *T, VEC *re_evals, VEC *im_evals)
MAT *schur_vecs(MAT *T, MAT *Q, MAT *X_re, MAT *X_im)

DESCRIPTION

Both of these routines assume that T is the matrix computed by the schur ()
routine; Q is the orthogonal matrix computed by schur () . ,

The routine schur_evals () compute the eigenvalues of a matrix Tin Schur
form (block diagonal with 1 x 1 or 2 x 2 blocks). The kth eigenvalue of A = QTQT is
re_evals->ve [k] +iim_evals->ve [k]. At worst this requires solving a series
of quadratics; however, it does simplify the task of computing eigenvalues. Complex
eigenvalues come in complex conjugate pairs.

The routine schur_ vecs () computes the matrix X = x_re + i X_im such that
x-1 AX is the diagonal matrix of eigenvalues where T = QT AQ as computed by the
schur () routine. The columns of X are computed by means of one step of inverse
iteration using the eigenvalues as computed from the Schur form. This method is
usually accurate provided the eigenvalues are not too close together. The computed kth
column of X is real if the computed kth eigenvalue is real. The ordering of the columns
is consistent with the ordering of the eigenvalues generated by schur_evals ().

EXAMPLE

See example for schur () above.

BUGS

It is a bit difficult to check that the computed X is correct if it is complex.

SEE ALSO

schur()

SOURCE FILE: schur.c

143

NAME

svd., bisvd- Singular Value Decomposition routines

SYNOPSIS

#include "matrix2.h"
VEC *svd(MAT *A, MAT *U, MAT *V, VEC *out)
VEC *bisvd(VEC *d, VEC *f, MAT *U, MAT *V)

DESCRIPTION

The routine svd () performs a complete Singular Value Decomposition (SVD) on
the matrix A. That is, it computes orthogonal matrices U and V such that U AVT is
diagonal and the diagonal entries are called the singular values of the matrix A. The
first min(m, n) singular values are stored in the out vector which is also returned.
Note that the SVD is defined for nonsquare as well as square matrices.

If NULLs are passed for either or both u and v, then that orthogonal matrix will not
be accumulated. This saves both time and space, if just the singular values are desired
and not the U or V matrices. If out is NULL on entry to svd () , then a vector of the
appropriate size is created to store the singular values, which is returned. ,

The SVD is computed by first transforming the matrix into a bidiagonal matrix
(c.f. schur () where a matrix is transformed into Hessenberg form for eigenvalue
calculations) and then applying bisvd () . If a matrix is already in bidiagonal form,
then bi svd () can be called directly. The vector d contains· the diagonal entries and
f contains the super-diagonal entries. As for svd () , if NULLs are passed for either
or both u and v, then that (or both) orthogonal matrix will not be accumulated. For
correct results using bisvd () , you should initialise u and v to be identity matrices
using m_idc;mt () before calling bisvd ().

The rank of a matrix can be estimated by counting the number of singular values
whose magnitude exceeds a specified tolerance. This tolerance for accurately computed
matrices should probably be about 100 times MACHEPS; otherwise it should about an
order of magnitude larger than the errors in the matrix.

The algorithm used follows Matrix Computations by Golub and van Loan, pp. 430-
435, 2nd Edition (1989).

EXAMPLE

For computing the SVD of A:

MAT *A, *U, *V;
VEC *svdvals;

U = m_get(A->m,A->m);
v = m_get(A->n,A->n);
svdvals = svd(A,U,V,VNULL);

144 CHAPTER 5. DENSE MATRIX FACTORISATION OPERATIONS

For computing the SVD of the bidiagonal matrix defined by d (the diagonal entries)
and f (the super-diagonal entries):

MAT *U, *V;

VEC *d, *f;

U = m_get (d- >dim, d- >dim) ;
V = m_get(d->dim,d->dim);
m_ident (U) ;
m_ident (V) ;
bisvd(d,f,U,V)

/* must initialise U and V */

/* d now contains the singular values */

SOURCE FILE: svd.c

NAME

m_exp, m_poly, m_pow- Matrix exponentials, polynomials and powers

SYNOPSIS

#include "matrix2.h"
MAT * m_pow(MAT *A, int p, MAT *out)
MAT *_m_pow(MAT
MAT * m_exp(MAT
MAT *_m_exp(MAT

int
MAT *m__poly(MAT

DESCRIPTION

*A, int p, MAT *tmp, MAT *out)
*A, double eps, MAT *out)
*A, double eps, MAT *out,
*qout, int *jout)
*A, VEC *a, MAT *out)

145

The routine m_pow sets a matrix A E Rnxn to the power p, where p can be
any non-negative integer. (Use m_inverse () for negative p.) The result is placed
in the matrix out = AP. The routine is based on the binary powering algorithm (see
Golub and Van Loan, Matrix computations, John Hopkins University Press, Baltimore,
2nd edition,l989). The algorithm requires at most 2Llog2(p)Jn3 flops where n is the
dimension of the matrix.
_m_pow it is a variant of the routine m_pow which uses tmp as a workspace matrix.

The routine m_exp computes an approximation of

using the Pade approximation

where

q q

Nq(A) = I:CkAk' Dq(A) = I>k(-A)k,
k=O k=O

and
(2q- k)!q!

Ck = (2q)!k!(q- k)!"

The computed exponential is placed in out. The degree q is determined from an error
tolerance eps given by the user. Pade approximation is good for A with a small nonn,
therefore this condition can be ensured by applying repeated squaring (Rqq (Aj2i))2;,

where j is chosen so that I!Af2i II ~ 1/2. The Pade approximate can be more efficient
by using special Horner regrouping techniques to evaluate matrix polynomial. The
relative error of Pade approximate for a matrix with II All ~ 0.5 can be estimated by

ileA- (Rqq(Aj2i))2; lloo < E(q q)IIAII e'(q,q)IIA!Ioo
lleAIIoo - ' co '

146 CHAPTER 5. DENSE MATRIX FACTORISATION OPERATIONS

and t:(q, q) = 23-(2ql(q!) 2 /((2q)!(2q + 1)!).
In _m_expthe degree q is returned in qout, and j is returned in jout. The routines
m_exp and _m_exp are based on the paper: "Nineteen Dubious Ways to Compute
The Exponential of the Matrix", SIAM Rev. 20(4), p.801-836, 1987 by C. Moler and
C. Van Loan and the book G.H. Golub, C. Van Loan "Matrix Computations", Johns
Hopkins University Press, Baltimore, 2nd edition, 1989.

m_poly evaluates the polynomial of a matrix A

where a0 , ab a2, ... , aq are given by the vector a with q = a->dim-1. The result
is placed in out. The algorithm used to compute the matrix polynomials in the Pade
approximation and in m_poly is based on the paper "A note on the Evaluation of
Matrix Polynomials", IEEE Transactions on Automatic Control24 (1979), p. 209-228
by C. Van Loan. The paper describes a method that is faster and more memory efficient
than the standard Horner's method.

SOURCE FILE: mfunc.c

NAME

fft, ifft -Fast Fourier Transform and inverse

SYNOPSIS

#include "matrix2.h"
void
void

fft(VEC *x_re, VEC *x_im)
ifft(VEC *x_re, VEC *x_im)

DESCRIPTION

147

The routine fft () performs a fast Fourier transform on the vector x = x_re +
ix_im. The transform is computed in situ. It does require that the dimension of x is a
power of two.

The routine ifft () performs the inverse fast Fourier transform of x = x_re +
ix_im. As with fft () it is computed in situ, and the dimension of x must be a power
of two.

SOURCE FILE: fft.c

Chapter 6

Sparse Matrix
Operations

Iterative

The following routines are described in the following pages:

Allocate, free, resize and compactify sparse matrix
Copy sparse matrix
Accessing sparse matrix entries
Sparse matrix-vector multiplication
Set up some access paths
General sparse matrix operations
Sparse matrix output
Sparse matrix input
Sparse row support routines
Sparse Cholesky factorise and solve
Sparse LU factorise and solve
Sparse BKP factorise and solve
Iteration structure initialisation
Iterative methods
Krylov subspace methods

To use these routines use the include statement

#include ~sparse.hw

for the basic sparse routines (nnote that this includes matrix. h); use

#include "sparse2.h"

for the sparse factorisation routines (this includes sparse. h); use

#include "iter.h"

149
151
153
154
155
157
158
160
162
165
167
169
171
173
177

for using the iterative routines (this includes sparse. h). Note that including
sparse. h means that matrix. his automatically included.

148

NAME
sp_get, sp_free, SP_FREE, sp_resize, sp_compact,
sp_get_list, sp_free_list, sp_resize_list- allocate, free and
resize sparse matrices

SYNOPSIS

#include "sparse.h"
SPMAT *sp_get(int m, int n, int maxlen}
void sp_free(SPMAT *A)
void SP_FREE(SPMAT *A)
SPMAT *sp_resize(SPMAT *A, int m, int n)
SPMAT *sp_compact(SPMAT *A, double tol)
int sp_get_vars(int m, int n, int maxlen,

SPMAT **Al, SPMAT **A2, .•. , NULL)
int sp_free_vars(SPMAT **Al, SPMAT **A2, ••• , NULL)
int sp_resize_vars(int m, int n,

SPMAT **Al, SPMAT **A2, ... , NULL)

DESCRIPTION

149

The routine sp_get () allocates and initialises a SPMAT data structure. It is
initialised so that the SPMAT returned is m x n, and that there are already maxlen
elements allocated for each row. This is to avoid excessive memory allocation/de
allocation later on. Initially there are no elements in the matrix and so the len entry
of every row will be zero just after calling this routine.

The routine sp_free () deallocates all memory associated with the sparse matrix
structure A. The macro SP _FREE () calls sp_free () to deallocate A, but also sets
A to NULL, which makes this a safer way of freeing a sparse matrix.

The routine sp_resize () re-sizes the matrix A to be size m x n. Rows are
expanded as necessary, and information is not lost unless the matrix is reduced in size.

It should be noted that the sparse matrix data structure requires a separate memory
allocation for each row, unlike the dense matrix data structure. Thus more care must
be taken with sparse matrix data structures to avoid excessive time spent in memory
allocation and de-allocation.

An E_MEM error will be raised if the memory cannot be allocated.

Finally, the routine sp_compact () removes zero elements and elements with
magnitude no more than tol from the sparse matrix A. It does this in situ and requires
no additional storage. It may, however, raise an E_RANGE error if tol is negative.

The routines sp_get_vars (), sp_free_vars () and sp_resize_vars ()
respectively allocate, free and resize NULL-terminated lists of sparse matrices. These
operate in the same way as do the other •• _get_list (), •• _free_list () and
•• _resize_list () routines; note that sp_free_vars () sets Al, A2, etc. to
NULL pointers.

150 CHAPTER 6. SPARSE MATRIX & ITERATIVE OPERATIONS

EXAMPLE

SPMAT *A;
int i, j, m, n;

I* get sparse matrix, with room for 5 entires per row *I
A= sp_get{m,n,S);

sp_set_val{A,i,j,3.1415926);

I* double size of A matrix *I
sp_resize{A,2*m,2*n);

I* remove entries of size <= lOA{-7} *I
sp_compact{A,le-7);

I* destroy A matrix *I
sp_free{A)

SOURCE FILE: sparse.c

151

NAME

sp_copy, sp_copy2 - Spare matrix copy routines

SYNOPSIS

#include "sparse.h"
SPMAT *sp_copy (SPMAT *A)
SPMAT *sp_copy2(SPMAT *A, SPMAT *OUT)

DESCRIPTION

The routine sp_copy {) returns a copy of A so that the object returned can be
freely modified without affecting A. (That is, it is a "deep" copy.) A new data structure
is allocated and initialised in the process.

The routine sp_copy2 () copies A into OUT, using all allocated entries in OUT in
doing so. In this way it avoids memory allocation and preserves the structure of the
nonzeros of OUT as much as possible.

The routine sp_copy2 () is especially useful in conjunction with the symbolic
and incomplete Cholesky factorisation routines. The idea is that the symbolic Cholesky
factorisation allocates aU the necessary nonzero entries; if a matrix with the original
nonzero pattern is to be factored, it can be copied using sp_copy2 () into the symbol
ically factored matrix, and the incomplete Cholesky factorisation routine can then be
used to factor the copied matrix without fill-in or memory allocation. See the manual
entries on spiCHfactor () and spCHsymb () for more details.

EXAMPLE

SPMAT *A, *B;

A= sp_get(l00,100,4);
for (i = 0; i < A->m; i++

sp_set_val(A,i,i+l, .•.);

I* copy A matrix */
B = sp_copy(A);

for (i = 0; i < B->m; i++)
sp_set_val(B,i,i+2, •••);

sp_copy2(A,B);
/* now B and A represent same matrix,

but B has allocated (i,i+2) entries */

SEE ALSO

sp_get () and sp_resize {)

152 CHAPTER 6. SPARSE MATRIX & ITERATIVE OPERATIONS

SOURCE FILE: sparse. c

153

NAME

sp_get_val, sp_set_val- Access to entries of a sparse matrix

SYNOPSIS

#include "sparse.h"
double sp_get_val(SPMAT *A, int i, int j)
double sp_set_val(SPMAT *A, int i, int j, double val)

DESCRIPTION

The routine sp_get_'Val() return!) the value in the (i,j)'th entry of A. If the
(i,j)'thentryhas not been allocated, then zero is returned. The routine sp_set_val ()
sets the value of the (i,j)'th entry of A to vai. If the (i,j)'th entry is not already
allocated, then if there is sufficient allocated space for the new entry, other entries will
be shifted as needed; if there is not sufficient space, then the row will be expanded by
sprow_xpd () .. Setting the value of an entry to zero does not "de-allocate" the entry.

If i or j are negative or larger than or equal to A->m or A->n respectively, then
an E_BOUNDS error will be raised.

EXAMPLE

SPMAT *A;
int i, j;
double val;

A= sp_get(100,100,4);

sp_set_val(A,i,j, (double)(i+j));

val = sp_get_val(A,i,j);

SEE ALSO

row_set_val()

BUGS

A more efficient approach would be to use a balanced tree structure.

SOURCE FILE: sparse.c

154 CHAPTER 6. SPARSE MATRIX & ITERATNE OPERATIONS

NAME

sp_mv _ml t, sp_ vm_ml t - sparse matrix-vector multiplication routines

SYNOPSIS

#include "sparse.h"
VEC *sp_mv_mlt{SPMAT *A, VEC *x, VEC *out)
VEC *sp_vm_mlt(SPMAT *A, VEC *x, VEC *out)

DESCRIPTION

The routine sp_mv_mlt () sets out to be the matrix-vector product Ax, and
sp_ vm_ml t () sets out to be the vector-matrix product xT A (or equivalently, AT x).
The vector out is created or resized if necessary, in particular, if out """' VNULL.

Both avoid thrashing on virtual memory machines. Unlike the dense matrix rou
tines, there is no set of "core" routines for performing the underlying inner products
and "saxpy" operations efficiently.

EXAMPLE

SPMAT *A;
VEC *x, *y;

A= sp_get(100,100,4);
x = v_get(A->m};

I* compute y <- A.x */
y = sp_mv_mlt(A,x,VNULL);
I* compute y~T <- x~T.A */
sp_vm_mlt(A,x,y);

SOURCE FILE: sparse.c

NAME

sp_coLaccess, sp_diag_access- set up access paths

SYNOPSIS

#include "sparse.h"
SPMAT *sp_col_access (SPMAT *A)
SPMAT *sp_diag_access(SPMAT *A)

DESCRIPTION

155

In order to achieve fast access down columns, extra access paths were added.
However, operations such as setting values of (unallocated) entries upset these access
paths. Rather than keep them up-to-date continuously, which is rather expensive in
computational time, these access paths are only updated when requested.

There are flags in the sparse matrix data structure which indicate if these access
paths are still valid: they are A->flag_col and A->flag_:_diag respectively.
(Nonzero indicates they are valid.)

The fields of A that are set up by sp_col_access () are the A- >start_row []
and A->start_idx [] fields. The values A->start_row[col] and
A->start_idx[col] give the first row, and index into that row where the first
allocated entry of column col. The other fields set up by sp_col_access () are
the nxt_row and nxt_idx fields of each row_elt data structure in the sparse
matrix A. For a more thorough description of how these may be used, see §2.6.

The sp_diag_access () function only sets the diag field of the SPROW data
structure for each row in the sparse matrix A.

EXAMPLE

Using the column access fields to chase the entries in

SPMAT *A;
int i, j, idx;
SPROW *r;
row_elt *e;

I* set up A matrix *I
sp_set_val(A,i,j,3.1415926);

sp_col_access(A);
I* chase column j of A *I
i = A->start_row[j];
idx = A->start_idx[j];
while (i >= 0)
{

156

}

CHAPTER 6. SPARSE MATRIX & ITERATIVE OPERATIONS

r = &(A->row[i]);
e = &(r->elt[idx]);
printf("Value A[%d] [%d] = %g\n", i, j, e->val);
i = e->nxt_row;
idx = e->nxt_idx;

Getting diagonal values:

SPMAT *A;
int i, idx;
double val;

sp_diag_access(A);

I* to get A[i] [i] */
idx = A->row[i] .diag;
if (idx < 0.0)

val = 0.0;
else

val = A->row[i] .elt [idx] .val;

BUGS

The flags are not guaranteed to remain correct if you modify the sparse matrix data
structures directly, only if you use sp_set_ val () etc. is it guaranteed.

SOURCE FILE: sparse.c

NAME
sp_zero, sp_add, sp_sub, sp_smlt, sp..mltadd- General sparse
matrix operations

SYNOPSIS

#include "sparse.h"
SPMAT *sp_zero(SPMAT *A)
SPMAT *sp_add (SPMAT *A, SPMAT *B, SPMAT *out)
SPMAT *sp_sub (SPMAT *A, SPMAT *B, SPMAT *out)
SPMAT *sp_smlt(SPMAT *A, double alpha, SPMAT *out)
SPMAT *sp_rnltadd(SPMAT *A, SPMAT *B, double alpha,

SPMAT *.out)

DESCRIPTION

157

The routine sp_zero () zeros the allocated entries of A. Does not change the
"allocation" status of entries of A.

The routine sp_add () adds the sparse matrices A and B, and puts the result in
out. This routine may not be used in situ with either A == out orB == out.

The routine sp_sub () subtracts B from A and puts the result in out. This routine
may not be used in situ with either A == out orB == out.

The routine sp_smlt () computes the scalar product of alpha and A and puts
the result in out.

The routine sp_mltadd() computes A+ aB and puts the result in out. This
routine may not be used in situ with either A == out orB == out.

EXAMPLE

One way to clear the sparsity structure of a matrix follows:

SPMAT *A;

sp_zero (A) ; I* zeros entries */
sp_compact(A,O.O); /*removes zero entries */

SOURCE FILE: sparse.c

158 CHAPTER 6. SPARSE MATRIX & ITERATIVE OPERATIONS

NAME

sp_foutput, sp_output- Sparse matrix output

SYNOPSIS

#include <stdio.h>
#include "sparse.h"
void sp_foutput(FILE *fp, SPMAT *A)
void sp_output(SPMAT *A)

DESCRIPTION

The routine sp _f output () produces a printed representation of the sparse matrix
A on the file or stream fp. This representation can also be read in by sp_finput ().

The routine sp_output () is just a macro

#define sp_output(A) sp_foutput(stdout,(A))

which sends the output to stdout.

The form of the output consists of a header, a list of rows, each of which contains
a sequence of entries. Each entry is made up of a column number, a colon, and the
value for that entry. For example, the dense matrix

Matrix: 3 by 4
row 0: 0 1 0

row 1: 1 2 0

row 2: 0 0 1

can be represented as the sparse matrix with printed representation

SparseMatrix: 3 by 4

row 0: 1:1
row 1: 0:1
row 2: 2:1

EXAMPLE

SPMAT *A;
int i, j;

FILE *fp;

sp_set_val(A,i,j,3.1415926);

3:-1

1:2
3:1

sp_output (A) ; /* prints to stdout */

-1

.0

1

if ((fp=fopen("output.dat", "w")) == NULL
error(E_EOF,"func_name");

sp_foutput(fp,A); /*prints to output.dat */

SEE ALSO

sp_finput(),sp_input()

SOURCE FILE: sparseio.c

159

160 CHAPTER 6. SPARSE MATRIX & ITERATIVE OPERATIONS

NAME

sp_finput, sp_input- Input sparse matrix

SYNOPSIS

#include <stdio.h>
#include "sparse.h"
SPMAT *sp_finput(FILE *fp)
SPMAT *sp_input()

DESCRIPTION

The routine sp_finput {) allocates, initialises and inputs a sparse matrix of the
size input from file/stream fp. The routine sp_input () is just a macro

#define sp_input(} sp_finput(stdin)

If the input is not from a terminal, then the format must be the same as that produced
by sp_foutput () or sp_output (). If the input is from a terminal
(isatty (fileno (fp)) ! = 0) then the user is prompted for the necessary values
and information.

EXAMPLE

SPMAT *A;
FILE *fp;

A= sp_input(); I* read matrix from stdin */
if ((fp=fopen("input.dat","r")) ==NULL)

error(E_INPUT,"func_name")i
A= sp_finput(fp); /*read matrix from input.dat */

Example of interactive input session:

SparseMatrix~ input rows cols: 10 15
Row 0:

Enter <COl> <Val>
Entry 0: 2

Entry 1: 3
Entry 2: 0

Entry 2: 4

Entry 3: e
Row 1:

-7.32
1.5
2.75
1.3

or 'e' to end row

Note: entry ignored

Enter <col> <val> or 'e' to end row
Entry 0: e # Note: empty row

Row 2:
Enter <col> <val> or 'e' to end row
Entry 0:

BUGS

Does not allow more than a hundred entries per row.

The simple "editing" facilities ofm_finput () are not provided.

SOURCE FILE: sparseio.c

161

162 CHAPTER 6. SPARSE MATRIX & ITERATIVE OPERATIONS

NAME
sprow_add, sprow_sub, sprow_smlt, sprow_foutput,

sprow_get_idx, sprow_get, sprow~d, sprow~erge,
sprow~ltadd, sprow_set_val- Sparse row support routines

SYNOPSIS

#include "sparse.h"
int sprow_get_idx{SPROW *r, int col)

SPROW *sprow_get(int maxlen)
SPROW *sprow_xpd(SPROW *r, int newlen, int type)
SPROW *sprow_resize(SPROW *r, int newlen, int type)
SPROW *sprow_merge(SPROW *rl, SPROW *r2,

SPROW *r_out, int type)
SPROW *sprow_add(SPROW *rl, SPROW *r2, int jO,

SPROW *r_out, int type)
SPROW *sprow_sub(SPROW *rl, SPROW *r2, int jO,

SPROW *r_out, int type)
SPROW *sprow_smlt(SPROW *r, double alpha, int jO,

SPROW *r_out, int type)
SPROW *sprow_mltadd(SPROW *rl, SPROW *r2, double alpha,

int jO, SPROW *r_out, int type)
double sprow_set_val(SPROW *r, int j, double val)
void sprow_foutput(FILE *fp, SPROW *r)
void sprow_dump(FILE *fp, SPROW *r)

DESCRIPTION

The routine sprow_get_idx () uses binary search to find the location. of the
element in row r whose column number is col, which is returned. If the row r contains
an entry with column number col, then the index idx into r->elt [idx] (being
the entry in that row) is given by idx = sprow_get_idx (r, col). If there is no
element in row r whose column is col, then idx = sprow_get_idx (r, col) is
negative, but - (idx+2) is the index where an entry with column number col would
be inserted. An internal error is flagged by returning -1.

The routine sprow_get () allocates and initialises a sparse row data structure
(type SPROW) with memory for maxlen entries.

The routine sprow_xpd () reallocates the row r to allocate room for at least
newlen entries. If the current length (r->len) is already at least size newlen, then
the row's allocated memory is approximately double in size. For this routine and the
some of the following sprow_ •• () routines the type parameter is TYPE_SPROW
for a stand-alone sparse row, and TYPE_SPMAT for a sparse row in a sparse matrix
(SPMAT) data structure.

The routine sprow_resize () resizes the sparse row r to have length newlen;
if r is NULL, then a sparse row is created and returned.

163

The routine sprow_merge () merges two sparse rows, with values in rl taking
precedence over values in r2 if they have the same column number.

The routine sprow_add () adds rl to r2 to compute r_out by a "merging"
process. The applies only to columns with column numbers greater than or equal to
jO.

Theroutinesprow_sub() subtractsr2fromrltocomputer_out = rl - r2
by a "merging" process. The applies only to columns with column numbers greater
than or equal to j 0.

The routine sprow_smlt () computes the scalar product r_out = alpha*r.

The routine sprow_mltadd() setsr_out toberl+alpha.r2, bya"merging"
process. The applies only to columns with column numbers greater than or equal to
jO.

The routine sprow_set_ val () sets the j 'th element of row r to be val.
Memory allocation and shifting of entries is done as needed.

The routine sprow_foutput () prints a representation of the sparse row r onto
file/stream fp. This representation is not intended to be read back in.

EXAMPLE

Extracting a sparse matrix entry:

SPMAT *A;
SPROW *r, rl, r2;
row_elt *e;
int i, j, idx, idxl;

/* compute A[i] [j] */
r = &(A->row[i]);
idx = sprow_get_idx(r,j);
if (idx < 0)

else

/* -(idx+2) is where an entry in
column j would go if there were one */

val = 0.0;

val= r->elt[idx].val;

Shuffling a row:

/* build temporary sparse row rl
containing shuffled entries of r */

rl = sprow_get(lO);
for (idx = 0; idx < r->len; idx++)
{

e = &(r->elt[idx]);

164 CHAPTER 6. SPARSE MATRIX & ITERATIVE OPERATIONS

old_col = e->col;

sprow_set_val(rl,new_col,e->val);
/* rl will be expanded if necessary */

}

Expanding a temporary row:

rl = sprow_xpd(rl,2*rl->len + 1);

Printing out a row as a separate structure for debugging:

print f ("Temporary row rl: \n") ;
sprow_foutput(stdout,rl);

SOURCE FILE: sparse.c

NAME
spCHfactor, spCHsolve, spiCHfactor, spCHsymb- Sparse
Cholesky factorisation and solve

SYNOPSIS

#include "sparse2.h"
SPMAT *spCHfactor(SPMAT *A)

VEC *spCHsolve(SPMAT *LLT, VEC *b, VEC *out)

SPMAT *spiCHfactor(SPMAT *A)
SPMAT *spCHsymb(SPMAT *A)

DESCRIPTION

165

The main routine of these is spCHfactor () which performs a sparse Cholesky
factorisation of the matrix A, which is performed in situ. The resulting system can
be solved by spCHsol ve () which returns out which is set to be the solution of
A. out = b where LLT is the result of applying spCHfactor () to A. To illustrate,
the following code solves the system A. x = b for x:

I* Initialise A and b */

spCHfactor (A) ;

/* A is now the Cholesky factorisation of original A,
stored in compact form */

spCHsolve(A,b,x);

The other routines provide alternatives to spCHfactor (). The routine
spCHfactor () allocates memory for fill-in as needed. As noted above regarding
sp_col_access () etc, this destroys the column access data stmcture's validity, and
so results in more time spent searching for elements within rows. This can be avoided
if there is no fill-in.

The routine spiCHfactor () performs Cholesky factorisation assuming no fill
in. It does not even check that fill-in would occur in a correct Cholesky factorisation.
This routine is considerably faster than using spCHfactor (), but if the actual
factorisation results in fill-in, the computed "Cholesky" factor used in spCHsol ve (}
will not give correct solutions.

The routine spCHs:ymb () performs a "symbolic" factorisation of A. That is, no
numerical calculations are performed. Instead, the A matrix after spCHsymb () has
executed, contains allocated all entries where fill-in would occur. This means that
spCHfactor () is effectively equivalent to spCHsymb () followed by
spiCHfactor (). The advantage with having two separate routines is that the fill-in
can be computed once for a given pattern of nonzeros, and used for a number of sparse
matrices with just that pattem of nonzeros with spiCHfactor (). The code to do
this would look something like this:

166 CHAPTER 6. SPARSE MATRIX & ITERATNE OPERATIONS

I* Initialise pattern matrix *I

spCHsymb(pattern);
for (i = 0; i < num_matrices; i++
{ I* set up A matrix -- same nonzero pattern *I

}

sp_zero(pattern);
sp_copy2(A,pattern);
spiCHfactor(pqttern);
I* set up b vector *I

spCHsolve(pattern,b,x);

The spiCHfactor () routine can also be used to provide a good pre-conditioner
for the pre-conditioned conjugate gradient routines i ter_cg () and i ter_spcg () .

BUGS

An E_POSDEF error may be raised by spiCHfactor () even if the A matrix is
positive definite.

An E_POSDEF error will be raised by spCHsymb () if a diagonal entry is missing.

SEE ALSO

sp_copy2(),sp_zero(),iter_cg(),iter_spcg()

SOURCE FILE: spCHfactor.c

167

NAME
spLUfactor, spiLUfactor, spLUsolve, spLUTsolve- sparse LU
factorisation (Gaussian elimination)

SYNOPSIS

#include "sparse2.h"
SPMAT *spLUfactor (SPMAT *A, PERM *pivot, double alpha)
SPMAT *spiLUfactor(SPMAT *A, double alpha)
VEC *spLUsolve (SPMAT *LU, PERM *pivot, VEC *b, VEC *x)
VEC *spLUTsolve(SPMAT *LU, PERM *pivot, VEC *b, VEC *x)

DESCRIPTION

The routine spLUfactor () performs Gaussian elimination with partial pivoting
on A with a Markowitz type modification to avoid excessive fill-in. The alpha
parameter determines the trade-off between fill-in and numerical stability; the row
that is swapped with the pivot row is the one with the smallest number of nonzero
entries after the pivot column which has magnitude at least alpha times the largest
magnitude entry in the pivot column. This parameter must therefore be between zero
and one inclusive. If it is set to zero then alpha is effectively set to machine epsilon,
MACHEPS.

Note that A is over-written during the factorisation, and that pivot must be set
before being passed to spLUfactor ().

The routine spiLUfactor () computes a modified incomplete LU factorisation
without pivoting. Thus no fill-in is generated and all pivot (i.e. diagonal entries) are
guaranteed to have magnitude ~ a by adding to the diagonal entries. Thus in exact
arithmetic it computes LU = A+ D for some diagonal matrix D. Since it is not a
factorisation of A, it cannot be used directly to solve systems of equations.

The routine LUsol ve () solves the system Ax = b. The routine LUTsol ve {)
solves the system AT x = b. Both of these use the the matrix as factored by
spLUfactor (). They can also be used in situ with x == b.

EXAMPLE

Code for solving the sparse systems of equations Ax = band AT y = b is given
below:

I* Set up A and b */

pivot = px_get(A->m);
x = v_get(A->n);
y = v_get(A->m);
spLUfactor(A,pivot,O.l);
x = spLUsolve(A,pivot,b,x);
y = spLUTsolve(A,pivot,b,y);

168 CHAPTER 6. SPARSE MATRIX & ITERATNE OPERATIONS

An example of the use of spiLUfactor () will be given under the entry for
i ter_cg () , i ter_cgs {) and i ter_lsqr ().

BUGS

There may be problems with spLUsol ve () and spLUTsol ve () if A is not
square.

The routine spLUfactor () does not implement a full Markowitz strategy.

SEE ALSO

spCHfactor (), MACHEPS, LUfactor ()

SOURCE FILE: spLUfctr.c

NAME
spBKPfactor, spBKPsol ve -sparse Burich-Kaufmann-Parlett
factorisation

SYNOPSIS

#include "sparse2.h"
SPMAT *spBKPfactor(SPMAT *A, PERM *pivot, PERM *blocks,

double alpha)
VEC *spBKPsolve (SPMAT *A, PERM *pivot, PERM *blocks,

VEC *b, VEC *x)

DESCRIPTION

169

The routine spBKPfactor () performs the symmetric indefinite factorisation
methods of Bunch, Kaufmann and Parlett as described for BKPfactor () . However,
this routine uses a Markowitz type strategy to determine what pivoting to do; the
alpha argument is a lower limit on the relative size of the pivot block. The pivot
which satisfies this lower limit and which has the smallest number of entires in the
pivot row(s) is used. The value of alpha must be greater than zero but less or equal
to one. The value of one gives essentially the pivoting as occurs in BKPfactor ()
for the same matrix.

The actual factored matrix is stored in the upper triangular part of A; the strictly
lower triangular part of A is left unchanged.

The routine spBKPsol ve () is really just a translation of BKPsol ve () to the
sparse case, using just the upper triangular part of A.

EXAMPLE

A simple example of the use of these routines is

SPMAT
PERM
VEC

*A, *BKP;
*pvt, *blks;
*b, *x;

/* set up A matrix */

pvt = px_get(A->m);
blks = px_get(A->m);
BKP = sp_copy(A);
spBKPfactor(BKP,pvt,blks,O.l);
/* set up b vector */

x = spBKPsolve(BKP,pvt,blks,b,VNULL);

SEE ALSO

170 CHAPTER 6. SPARSE MATRIX & ITERATIVE OPERATIONS

BKPfactor(),BKPsolve(),spLUfactor(),spLUsolve{).

SOURCE FILE: spbkp.c

171

NAME
iter_get, iter_free, iter_resize, iter_copy, iter_copy2,
iter ...Ax, iter-ATx, iter_Bx, iter_dump -Iteration data structure
initialisation

SYNOPSIS

#include "iter.h"
ITER *iter_get(int m, int n)
int iter_free(ITER *ip)
ITER *iter_resize(ITER *ip, int
ITER *iter_copy (ITER *in, ITER
ITER *iter_copy2(ITER *in, ITER
int iter_Ax (ITER *ip, Fun_Ax
int iter_ATx(ITER *ip, Fun_Ax
int iter_Bx (ITER *ip, Fun _Ax

new_m, int new_n)
*out)
*out)
Ax, void *Ax_par)
ATx, void *ATx_par)
Bx, void *Bx_par)

void iter_dump(FILE *fp, ITER *ip)

DESCRIPTION

These routines initialise the ITER data structure for use in applying iterative meth
ods for large sparse or structured matrices. The routine iter_get {in, n) allocates
and initialises an ITER data structure for an m x n linear system Ax = b. The
ITER data structure can be deallocated by calling iter_free(ip). The routine
iter_resize () resizes the vectors in the ITER data structure appropriately for a
new_m x new_n matrix.

The routine iter_copy{) copies all of the values stored in in to out, and also
copies the vectors in->x and in->b to out->x and out->b respectively. The
routine iter_copy2 () also copies all of the values stored in in to out, but the
vectors out->x and out->b are unchanged.

For the iterative routines matrices are represented by functions. In particular, the
matrix A is represented by a function Ax which computes y = Ax given x by means
of

VEC *x, *y;
void *Ax _par;

y = (*Ax)(Ax_par, x, y);

Indeed the type Fun_Ax is defined by

typedef VEC *(*Fun_Ax)(void *Ax_par, VEC *x, VEC *out);

That is, an object of type Fun_Ax is a function (or equivalently a pointer to a function)
which takes a (user-definable) parameter Ax_par, the vector x and the destination

172 CHAPTER 6. SPARSE MATRIX & ITERATNE OPERATIONS

vector, and returns a vector. Strictly speaking the Ax_par parameter is not necessary
as one can set a global variable with Ax...:,Par and use it directly in the function
Ax. However, this requires communication through global variables (which is not a
good software engineering practice), and also requires the user to set and unset global
variables whenever the matrix changes. By using an extra (user-definable) parameter,
general routines can be written which can deal with a general class of problems.

While most of the values in the ITER structure must be set directly if you wish to
override the default values, the i ter_Ax () , i ter_ATx () ·and i ter_Bx () macros
are provided to simplify setting the fields which define the matrix-A, its transpose AT,
and the preconditioner B. For a list of the values stored in the ITER structure, and
their default values, see §2.8.

The contents of an. ITER dati ,struc~re cati. b~ durnped to a file or stream fp
using iter_dump.(fp, ip). This representation is just for debugging purposes and
cannot be rea,d back in.

As an example, here is how sparse matrix data structures can be represented in an
ITER data structure:

SPMAT *A;
ITER *ip;

ip = iter_get(A->m,A->n);
iter_Ax (ip, sp_mv_mlt, A);
iter_ATx(ip, sp_vm_mlt, A);
I* some extra parameters *I
ip->limit = 10000; I* limit to max number of steps *I
ip- >e'ps 1 ;:: le-9; I* error tolerance *I

The routine is sp_mv_mlt(A,x,out), which is the sparse matrix-vector,product
routine;. the sparse matrix data structure A is the first parameter, and is the ''user
definable'' pointer. If the matrix AT is to be usedin an iterative routine, then the sparse
matrix data structure does not have to be touched; instead the sp_mv _ml t () routine
just needs to be replaced by sp_vm_mlt (),which computes y =AT x.

SEE ALSO

iter _cg, iter _cgs and the other iterative methods

SOURCE FILE: iterO.c

NAME
iter_cg, iter_cgne, it:er_cgs, iter....mgcr, iter_lsqr,

iter _gmres, iter _spcg, iter _spcgne, iter _spcgs,

iter _spmgcr, iter_spl:sqr- Iterative methods for linear equations

SYNOPSIS

#include "iter.h"

VEC

VEC

VEC

VEC

VEC

VEC

*iter_cg (ITER

*iter _cgne (ITER

*iter _cgs (ITER

*iter _lsqr {ITER

*iter _gmres{ITER

*iter_mgcr (ITER

*ip)

*ip)

*ip, VEC *rO)

*ip)

*ip)

*ip)

VEC *iter_spcg (SPMA'J£' *A, SPl.'iAT *LLT, VEC *b, Real tol,

\~C *x, int limit, int *steps}

VEC *iter_spcgne(SPMAT *A, SPMAT *B, VEC *b, Real tol,

VEC *x, int limit, int: *steps)

VEC *iter_spcgs(SPMAT *A, SPMAT *B, VEC *b, VEC *rO,

Real ·tol, VEC *x, int limit, int: *steps)

VEC *iter_splsqr(SPMAT *A, VEC *b, Real tol, VEC *x,
int limit, int *steps}

VEC *iter __ spgmres (SPMA.T *A, Sl?MAT *B, VEC *b, Real tol,

VEC *x, int k, int limit, int *steps)

VEC '*iter __ spmgcr(SPMAT *A, SPMAT *B, VEC *b, Real tol,

VEC *x, int k, int limit, int *steps)

DESCRIPTION

173

These routines provide iterative methods for solving systems of linear equations,
both symmetric and non-symmetric. The ITER data structure ip contains the informa
tion about the matrix along with preconditioners, error tolerances, limits on numbers
of steps etc. The routines set some values in the ip data structure such as the solution
and the number of steps of the iterative method actually taken. The solution vector
ip- >X is returned.

Of these routines, i ter_cg () is the method of choice for positive definite
symmetric matrices; i ter_lsqr () is probably the most reliable; i ter_cgs (}

probably the least stable, but relatively fast when it works; iter_mgcr() and
iter_gmres ()I probably provides the best compromises between speed and relia
bility for most nonsymmetric systems. The routine iter_cg () and iter_lsqr ()

require the least amount of memory.

The routine i ter_cg () implements the conjugate gradient method. This is for
symmetric positive definite matrices only, with symmetric positive definite precon
ditioners. This is a well-known method for solving such systems since the 1970's.
The routine i ter_cg () implements the standard (pre-conditioned) conjugate gradi-

174 CHAPTER 6. SPARSE MATRIX & ITERATIVE OPERATIONS

ent method as presented in Golub and Van Loan's Matrix Computations, § 10.3, 2nd
Edition (1989).

The routine i ter_cgne () implements the conjugate gradient method for the
normal equations AT Ax = ATb. This requires the ATx and ATx_par fields of ip
to be set. The preconditioner B (represented by Bx and Bx_par) must be symmetric
and positive definite, and is interpreted as the preconditioner for (A+ AT) /2. In fact,
this routine applies the conjugate gradient algorithm to AT BA using a modified inner
product. One way to obtain a suitable preconditioner is to use imcplete Cholesky
factorisation to get approximate factors of (A+ AT)/2. Note that an alternative to this
routine for least squares and related problems is iter_lsqr ().

The routine i ter_cgs () implements Sonneveld's CGS (Conjugate Gradients
Squared) method as described in CGS: A fast Lanczos-type solver for nonsymmetric
lilnear systems, SIAM l Scientific and Statistical Comp., lQ, pp. 36-52 (1989). This
is a somewhat unstable but fast algorithm for non-symmetric systems. The vector rO
passed to iter_cgs () is an auxiliary vector. A simple strategy is to set rO to be
a random vector on entry. It does not contain any useful information on exit. The
solution vector is returned.

The routines i ter_lsqr () implements the LSQR method of Paige and Saunders
as described in LSQR: an algorithm for sparse linear equations and sparse least
squares, ACM Transactions on Mathematical Software, 8, pp. 43-71 (1982). This
computes solutions to the least squares problem: achieving minx jjAx- bib. For this
routine, the functional parameter ATx for computing y = AT x must also be set in
the ip data structure as weU as the Ax parameter. The matrix A represented may be
non-square.

The routine i ter_gm.res () implements the Generalised Minimal RESidual
method (GMRES) of Saad and Schultz as presented in GMRES: a generalized minimal
residual algorithm for solving nonsymmetric linear systems, SIAM J. Scientific and
Statistical Comp., 7, pp. 856-869 (1986). A single step of GMRES involves building
up an approximation to A on a Krylov subspace span{r, Ar, A2r, ... , Ak-lr} where
k is the dimension of the Krylov subspace and r is the current residual. The entry
ip->k of ip contains the value of k used by iter_gmres ().

The routine i ter_mgcr 0 implements a fast Modified Generalized Conjugate
Residual algorithm of Leyk as presented in Modified generalized conjugate residuals
method for nonsymmetric systems of linear equations, Technical Report CMA-MR33-
93 of the School of Mathematical Sciences, Australian National University (1993).

There are also versions iter_sp .•. () which work with the sparse matrix data
structures. Here A is the sparse matrix and b is the right-hand side vector for the linear
system Ax = b; tol is the residual tolerance; limit is the maximum number of
steps of the iterative method; steps is set to the actual number of steps of the iterative
method actually used. If the last argument (for steps) is NULL, then it is not used.

In i ter_spcg (), LLT is the sparse matrix structure containing an approxi
mate Cholesky factorisation of A; If LLT is NULL then no preconditioning is used. In

175

iter_spcgs (), rO is the auxiliary vector. In iter_spcgne (), iter_spcgs (),
iter_spgmres () and iter_spmgcr (), B is the (explicit) preconditioner. If B
is NULL then no preconditioning is used. In i ter_splsqr () there is no precon
ditioning. In i ter_spgmres () and i ter_spmgcr (), k is the dimension of the
Krylov subspace used.

EXAMPLE

To implement Incomplete Cholesky/Conjugate Gradients (ICCG) for a sparse sym
metric positive definite matrix A:

LLT = sp_copy(A);
spiCHfactor(LLT);
x = iter_spcg(A,LLT,b,le-6,VNULL,1000,&steps)

An example of using incomplete LU preconditioners for a nonsymmetric system
is:

VEC *myiLUsolve(SPMAT *LU, VEC *x, VEC *y)
{

return spLUsolve(LU,PXNULL,x,y);
}

main()
{

ITER *ip;

LU = sp_copy (A) ;
spiLUfactor(LU,alpha);
ip = iter_get(A->m,A->n);
iter_Ax(ip,sp_mv_mlt, A);
iter_Bx(ip,myiLUsolve,LU);
rO = v_rand(v_get(A->m});
iter_cgs(ip,rO); I* using CGS •••
ip->k = 20; I* for GMRES *I

*I

iter_gmres (ip); I* using GMRES ••• *I
iter_mgcr(ip); I* using MGCR ••• *I
iter_ATx(ip, sp_vm_mlt, A);
iter_lsqr(ip); /*using LSQR ••. */
/* extract solution *I
printf("Solution is:\n"); v_output(ip->x);
printf ("Used %d steps\n", ip->steps);
}

SEE ALSO

176 CHAPTER 6. SPARSE MATRIX & ITERATIVE OPERATIONS

iter _get () and related routines; spiCHfactor () , spiLUfactor ()

SOURCE FILE: itersym.c, iternsym.c

177

NAME
iter_lanczos, iter_lanczos2, iter_arnoldi,
iter_arnoldi_iref, iter_splanczos, iter_splanczos2,
iter_sparnoldi, iter_sparnoldLiref- Krylov subspace algorithms

SYNOPSIS

#include "iter.h"
void iter_lanczos (ITER *ip, VEC *a, VEC *b, Real *beta2,

MAT *Q)
VEC
MAT
MAT

void

*iter_lanczos2(ITER *ip, VEC *evals, VEC *err_est)
*iter_arnoldi (ITER *ip, Real *h_rem, MAT *Q, MAT *H)
*iter_arnoldi_iref(ITER *ip, Real *h_rem,

MAT *Q, MAT *H)
iter_splanczos(SPMAT *A, int k, VEC *xO,

VEC *a, VEC *b, Real *beta2, MAT *Q)
VEC *iter_splanczos2{SPMAT *A, int k, VEC *xO,

VEC *evals, VEC *err_est)
MAT *iter_sparnoldi(SPMAT *A, VEC *xO, int k,

Real *h_rem, MAT *Q, MAT *H)
MAT *iter_sparnoldi_iref{SPMAT *A, VEC *xO, int k,

Real *h_rem, MAT *Q, MAT *H)

DESCRIPTION

These routines implement the Lanczos and Arnoldi methods of extracting infor
mation about large matrices by computing Krylov subspaces, and the effect of the
matrices on these subspaces. One of the main uses for these algorithms is to compute
approximate eigenvalues. Of these, the Lanczos method is for symmetric matrices,
and the Arnoldi method is for general matrices. For a matrix A and a start vector r,
the Krylov subspace of dimension k generated is

K(A, r, k) =span{ r Ar, ... , Ak-lr }.

Both the Lanczos and Arnoldi methods construct orthonormal bases (at least in exact
arithmetic) of the Krylov subspace K(A, r, k). The orthonormal bases form the rows
of Q. The approximation to A on the Krylov subspace generated is taken to be QAQT.
Note that the results of the Lanczos and Arnoldi methods are the same (in exact
arithmetic) for symmetric matrices.

If A is symmetric thenT = QAQT is tridiagonal and is represented by the vectors
a and b computed by the Lanczos algorithm:

ao bo
bo a1 bl

T = bl a2

178 CHAPTER 6. SPARSE MATRIX & ITERATIVE OPERATIONS

If the purpose is to compute approximate eigenvalues, but not eigenvectors, then Q can
be NULL on entry to iter_lanczos (). Then Q is not accumulated and only a and
bare computed. The eigenvalues of A can be approximated by.eigenvalues ofT.

For general matrices H = QAQT is upper Hessenberg is computed by the Arnoldi
algorithm. The matrix H is returned by i ter_arnoldi () . That is, hij = 0
whenever i > j + 1; or alternatively, all entries below the first sub-diagonal of Hare
zero. The eigenvalues of A can be approximated by the eigenvalues of H. Unlike
iter_lanczos (),the routine iter_arnoldi () requires Q to be non-NULL and
of the correct size: k x n where A is n x n.

In iter_lanczos (), beta2 is set to the valuebk-l which is thevalueofthenext
off-diagonal entry should the process go one step further. If QT = [q0 , q11 ••• , qk-d
and qk would be the next basis vector computed, then

Thus, bk-l can be used to estimate errors in the eigenvalues and eigenvectors estimated
by the Lanczos method.

Similarly, in i ter_arnoldi (), h_rem is the value of the next sub-diagonal
entry that would occur if k was increased by one. Again, the formula

can be used to estimate errors in the eigenvalues and eigenvectors estimated by the
Lanczos method.

Note that for both the Lanczos and Arnoldi methods, the eigenvalues (and eigen
vectors) that are first estimated with greatest accuracy are the most extreme one. For the
symmetric case, since the eigenvalues are real, the most positive and the most negative
eigenvalues can be quickly computed to reasonable accuracy. Interior eigenvalues take
considerably longer to obtain reasonable accuracy if at all. To compute approximate
eigenvectors: Let v be an eigenvector forT (in the Lanczos case) or H (in the Arnoldi
case). Then an approximate eigenvector for A is given by QT v. Note, however, then
eigenvalues converge faster than eigenvectors.

The Lanczos method is more efficient than the Arnoldi method. However, because
of this it suffers from some numerical instabilities. The reason for both comes down
to the fact that the Q matrix does not need to be stored for the Lanczos method. As a
result, the computed Q need not contain even nearly orthonormal rows; nearby rows
are nearly orthonormal, but widely separated rows of Q are not necessarily nearly
orthonormal. For the Arnoldi method, however, since Q is stored in its entirety,
orthogonality of each can be (and is) enforced against all other rows. In the context of
the Lanczos algorithm, this would be called complete reorthogonalisation, but is not
usually done because of its expense. The lack of orthonormality of Q's rows results in
some surprising behaviour: occasional spurious eigenvalues, and repeated eigenvalues
with multiplicities higher than in A.

179

Spurious eigenvalues can be detected by the Cullum and Willoughby algorithm
implemented by i ter_lanczos2 (). This routine is based on the algorithm in
Lanczos and the computation in specified intervals of the spectrum of large, sparse
real symmetric matrices, in "Sparse Matrix Proceedings 1978" pp. 220-255 (1979).
This routine produces error estimates for the eigenvalues based on the a, b and beta.2
values prod~ced from iter_lanczos (). The error estimate of the approximate
eigenvalue ,\i = eval-:>ve [i] is given by 'Tfi = err_est->ve [i]. If the error
interval [>,i- 'Tfi, ,\i +rti] contains another interval [:\j -rti,);i +rti], then the eigenvalue
is spurious.

Complete reorthogonalisation avoids both spurious eigenvalues and repeated eigen
values. This can be achieved by using i ter_arnoldi () and then extracting just
the tridiagonal part of H.

The basic Arnoldi routine i ter_arnoldi () has a slight numerical instability in
that it uses unmodified Gram-Schmidt orthogonalisation.

The routine i ter_arnoldi_iref () uses a relatively cheap iterative refinement
extension which prevents problems with the Gram-Schmidt orthogonalisation.

For more information about the Lanczos and Arnoldi methods see Golub and Van
Loan's Matrix Computations, chapter 9, 2nd edition (1989).

There are versions i ter_sp ••• () which work with matrix data structures.

EXAMPLE

To get a good approximation to the smallest eigenvalue of a positive definite
symmetric matrix A:

SPMAT *A;
ITER *ip;
VEC *a, *b;
Real dummy;

ip = iter_get(A->m,A->n);
iter_Ax(ip,sp_mv_mlt,A);
ip->k = krylov_dim;
v_rand(ip->x);
iter_lanczos(ip,a,b,&dummy,MNULL);
trieig(a,b,MNULL); /* eigenvalues left in a */
printf ("Min. e-val = %g\n", v_min{a));

The eigenvalues of A (A represented by a SPMAT data structure) can be approxi
mately computed by

H = m_get (k, k);
S = m_get(k,k);
Q = m_get(A->m,k);

180 CHAPTER 6. SPARSE MATRIX & ITERATIVE OPERATIONS

Q2 = m_get(k,k);
evals_re = v_get(k);
evals_im = v_get(k);

ip = iter_get(A->m,A->n);
iter_Ax(ip,sp_mv_mlt,A);
ip->k = krylov_dim;
v _rand (ip- >X) ;

iter_arnoldi_iref(ip,&dummy,Q,H);
S = m_copy(H,S);
schur{S,Q2);
schur_evals(S,evals_re,evals_im);

To go on to compute approximate eigenvectors:

X2_re = m_get(k,k)
X2_im = m_get(k,k);
schur_vecs(S,Q2,X2_re,X2_im);
X_re ~ mv_mlt(Q,X2_re,MNULL);
X_im = mv_mlt(Q,X2_im,MNULL);

SEE ALSO

i ter_get, ... , iter _gmres

SOURCE FILE: itersym.c iternsym.c

Chapter 7

Installation and copyright

7.1 Installation

There are several different forms in which you might receive Meschach. To provide
a shorthand for describing collections of files, the Unix convention of putting alterna
tive letters in [•••] will be used. (So, fred[123] means the collection fred1,
fred2 and fred3.) Meschach is available over Internet/AARnet via netlib, or at
the anonymous ftp site thrain. anu. edu. au in the directory publmeschach.
There are five .shar files: meschach[01234] .shar (which contain the library
itself), of which meschachO . shar contains basic documentation and machine de
pendent files for a number of machines. Of the meschach [1234]. shar files, only
meschach [12] • shar are needed for the basic Meschach library; the third • shar
file contains the sparse matrix routines, and the the fourth contains the routines for
complex numbers, vectors and matrices. There is also this README file that you
should get directly, or extract it from meschachO. shar.

If you need the old iterative routines, the file oldmeschach. shar contains the
files conj grad. c, arnoldi. c and lanczos. c.

To get the library from netlib,

mail netlib@research.att.com
send all from clmeschach

There are a number of othernetlib sites which mirror the main netlib sites. These include
netlib@ornl.gov (Oak Ridge, TN, USA), netlib@nac.no (Oslo, Norway),
ftp. cs. uow. edu. au (Wollongong, Australia; ftp only), netlib@nchc. edu. tw
(Taiwan), elib. zib-berlin.de (Berlin, Germany; ftp only). (For anonymous ftp
sites the directory containing the Meschach • shar files is pub I net 1 ib I c lmeschach
or similar, possibly depending on the site~)

Meschach is available in other forms on thrain. anu. edu. au by ftp in the
directory publmeschach. It is available as a. tar file (mesch12a. tar for version
1.2a), or as a collection of • shar files, or as a • zip file. The • tar and • zip versions
each contain the entire contents of the Meschach library.

181

182 CHAPTER 7. INSTALLATION AND COPYRIGHT

To extract the files from the • shar files, put them all into a suitable directory and
use

sh meschachO.shar
sh meschach1.shar
sh meschach2.shar
sh meschach3.shar
sh meschach4.shar
sh meschachS.shar

to expand the files. (Use one sh command per file; sh *. shar will not work in
general.)

For the • tar file, use

tar xvf mesch12a.tar

and for the • zip file use

unzip mesch12a.zip

(Or use pkunzip mesch12a. zip if you have pkunzip.)
On a Unix system you can use the configure script to set up the machine

dependent files. The script takes a number of options which are used for installing
different subsets of the full Meschach. For the basic system, which requires only
meschach[012] .shar, use

configure
make basic
make clean

For including sparse operations, which requires meschach [0123]. shar, use

configure --with-sparse
make sparse
make clean

For including complex operations, which requires meschach [0124] . shar, use

configure --with-complex
make complex
make clean

For including everything, which requires meschach [012 3 4] • shar, use

configure --with-all
make all
make clean

To compile the library in single precision, add the --with-float option to configure
(with Real equivalent to float); e.g. use

7.1. INSTALLATION

eonfigure· --with-all --with~float
make all·
make clean

183

Some Unix-like systems may have some problems with this due to bugs or incom
patibilities in,various parts of the system. To check this use make torture and run
torture. In this case use the machine-dependent files from the ina chines directory.
(This is the case for RS/6000 machines, the -o switch r.esults in failure of a routine in
schur ~c. Compiling without the -0 switch results in correct results.)

If you want to use the GNU gee compiler, use the configgnu configuration
script. This works just like the configure script, except that it will use gee in
preference to other compilers. ··

If you have problems using configure, or you use a non:-Unix system, check the.
MACHINES directory (gener~ted by meschachO . shar) for your machine~ operating
system and/or compiler. Save the machine dependent files makefile, mac:;hine. c
and machine • h. Copy those files from the directory for your machine to the directory
where the source code is.

To link into a program prog. c, compile it using

cc -o prog_name prog.c ••• (source files) ••. meschach.a -lm

This code has been mostly developed on the University of Queensla..'ld, Australia's
Pyramid 9810 running BSD4.3. Initial development was on a Zilog Zeus Z8000
machine running Zeus, a Unix workalike operating system. Versions have also been
successfully used on various Unix machines including Sun 3's, mM RT's, SPARe's
and an ffiM RS/6000 running AIX. It has also been compiled.on an ffiM AT clone
using Quick C. It has been designed to compile under either Kernighan and Richie,
(Edition 1) C and under ANSI C. (And, indeed, it has been compiled in both ANSI C
and non-ANSI C environments.)

7.1.1 Installation on non-Unix systems

First look in the machines directory for your system type. If it is there, then copy
the machine dependent files machine. h, makef i 1 e (and possibly machine . c) to·
the Meschach direc~ory ..

If your machine type is not there, then you will need to either compile "by hand",
or construct your own .makefile and possibly ;machine. h as well. The machine
dependent files for various systems should be used as a starting point, and the "vanilla"
version of machine • h should be used. Information on the machine-dependent files
follows in the next three subsections.

On an ffiM PC clone, the source code would be on a floppy disk. Use

xcopy a:* meschach

to copy it to the meschach directory. Then cd meschach, and then compile the ·
source code. Different ·compilers on MSDOS machines will require different· instal
lation procedures. Check the directory meschach \machines for the appropriate ·

184 CHAPTER 7. INSTALLATION AND COPYRIGHT

"makefile" for your compiler. If your compiler is not listed, then you should try
compiling it "by hand", modifying the machine-dependent files as necessary.

7.1.2 makefile

This is setup by using the configure script on a Unix system, based on the
makef i le. in file. However, if you want to modify how the library is compiled, you
are free to change the makefile.

The most likely change that you would want to make to this file is to change the
line

CFLAGS = -0

to suit your particular compiler.
The code is intended to be compilable by both ANSI and.non-ANSI compilers. To

achieve this portability without sacrificing the ANSI function prototypes (which are
very useful for avoiding problems with passing parameters) there is a token ANSI_C
which must be #define'd in order to take full advantage of ANSI C. To do this you
should do all compilations with

#define ANSI_C 1

This can also be doneat the compilation stage with a -DANSI_C flag. Again, you will
have to use the -DANSI_C flag or its equivalent whenever you compile, or insert the
line

#define ANSI_C 1

in machine • h, to make full use of ANSI C with this matrix library.

7.1.3 machine.h

Like makefile this is normally set up by the configure script on Unix machines.
However, for non-Unix systems, or if you need to set some things "by hand", change
machine.h.

There are a few quantities in here that should be modified to suit your particular
compiler. Firstly, the macros MEM_:COPY () and MEM_ZERO () need to be correctly
defined here. The original library was compiled on BSD systems, and so it originally
relied on bcopy () and bzero () .

In machine. h you will find the definitions for using the standard ANSI C library
routines:

1*--------------------ANSI C--------------------*1
#include
#include

<stddef.h>
<stri:ng.h>

#define MEM_COPY(from,to,size) memmove((to), (from), (size))
#define MEM_ZB,:RO (where, size) memset ((where},' \0', (size).)

7.1. INSTALLATION 185

Delete or comment out the alternative definitions and it should compile correctly.
The source files containing :m.e:mmove () and/or memset () are available by anony
mous ftp from some ftp sites (try archie to discover them). The files are usu
ally called me:rmnove. c or memset. c. Some ftp sites which currently (Jan '94)
have a version of these files are munnari. oz. au (in Australia), ftp. uu. net,
gatekeeper. dec. com (USA), and unix. hens a. ac. uk (in the UK). The di
rectory in which you will find memmove. c and memset . c typically looks like
•.. /bsd-sources/lib/libc/ ...

There are two further machine-dependent quantities that should be set. These
are machine epsilon or the unit roundoff for double precision arithmetic, and the
maximum value produced by the rand () routine, which is used in rand_ vee () and
rand_mat (). The current definitions of these are

#define MACHEPS 2.2e-16
#define MAX_RAND 2.147483648e9

The value of MACHEPS should be correct for all IEEE standard double precision
arithmetic.

However, ANSIC's <float .h> contains #define'd quantities DBL_EPSILON

and RAND_MAX, so if you have an ANSI C compiler and headers, replace the above
two lines of machine • h with

#include <float.h>
I* for Real == float */
#define MACHEPS DBL_EPSILON

#define MAX_RAND RAND_MAX

The default value given for MAX_RAND is 231 , as the Pyramid 9810 and the SPARC 2's
both have 32 bit words. There is a program macheps. c which is included in your
source files which computes and prints out the value of MACHEPS for your machine.

Some other macros control some aspects ofMeschach. One of these is SEGMENTED

which should be #define'd if you are working with a machine or compiler that
does not allow large arrays to be allocated. For example, the most common mem
ory models for MS-DOS compilers do not allow more than 64Kbyte to be allocated
in one block. This limits square matrices to be no more than 90 x 90. Inserting
#define SEGMENTED 1 into machine. h will mean that matrices are allocated a
row at a time.

7 .1.4 machine.c

The core routines in machine • c as they presently are, are adequate on scalar pro
cessors. However, they are not designed to make best use of the recent super-scalar
processors, or of vector processors. If you wish to make best use of these features of
your machine in using the matrix library, then you should re-write these appropriately,
possibly in assembly language. This has already been done to some extent, using
"loop-unrolling":

186 CHAPTER 7. INSTALLATION AND COPYRIGHT

sumO = suml = sum2 = sum3 = 0 • 0;

len4 = len I 4;
len = len % 4;

for (i = 0; i
{

sumO +=
sum.l +=
sum2 +=
sum3 +=

}

< len4; i++)

dp1[4*i]*dp2[4*i];
dp1[4*i+l]*dp2[4*i+l];
dp1[4*i+2]*dp2[4*i+2];
dp1[4*i+3]*dp2[4*i+3];

sum = sumO + suml + sum2 + sum3;
dpl += 4*len4; dp2 += 4*len4;

for (i :b· .••. 0; i < len; i++
sum+= dpl[i]*dp2[i];

Itmayseemoddtousedpl [i] *dp2 [i] instead'(*dpl++) * (*dp2++) inthequest
for speed, but optimising compilers cannot be trusted to do what you intend. The ex
pression dpl [i] *dp2 [i] was recognised for what it is, but (*dpl++) * (*dp2++)
was not, by the RS/6000 optimising compiler. This may be a matter of taste by the
compiler writers, so check it out on your own system before making any terminal
decisions about what is fastest on your machine.

Also note that the _zero_ () routine is defined from machine. c. This uses
the MEM_ZERO () macro in ma.chine. h in the standard release. However, if the
double precision zero is not represented by a bitstring of zeros, the body of this routine
would need to be replaced by

for (i = 0; i < len; i++
dp [i] = 0. 0;

These are the only routines that need be modified, as essentially all other routines
rely on these routines and on the MEM_COPY () macro, to provide adequate speed.

Such a re-writing effort may be worthwhile on, say, the i860 processor, where the
speed of computing inner products in assembly (using special pipeline instructions)
is an order of magnitude faster than general arithmetic operations. (See "Personal
supercomputing: with the Intel i860" by Stephen S. Fried, Byte, 16, no. 1, Jan 1991,
pp. 347-358 for an indication of possible performance;) Better use of the IBM RS/6000
super-scalar architecture has been obtained by re-writing some of the r.outines in
machine. c. The speed of the core inner product routine on a 20MHz RS/6000 320
went from near the LINPACK mting of 7Mflops to about 20Mftops, half the theoretical
peak speed of 40Mflops for a multiply and add each clock cycle.

7.2. BACKWARD COMPATIBILITY 187

7.2 Backward compatibility

As with any piece of software that is being modified, there is the problem of being able
to use programs written for older versions of the library. This is especially important
with Meschach 1.2 as the naming scheme has been made much more uniform and
self-consistent. Names such as get_vec () (allocate vector) and cp_vec () (copy
vector) have been changed to v _get () and v _copy () to be more consistent with
v _add () (add vectors) and m_ml t () (multiply matrices).

The cost of this consistency is inconsistency with programs written for the older
versions of Meschach. To deal with this, there is included in Meschach 1.2 a "compat
ibility" header file oldnames . h. Add the line

#include "oldnames.h"

at the beginning of files using pre-version 1.2 names. This header file consists of a
collection of #define's such as

#define get_vec
#define freevec
#define cp_vec

v_get
V_FREE
v_copy

The old iterative routines are still included in release 1.2a of Meschach (pccg (),
sp_pccg (), cgs (), sp_cgs (), lsqr (), sp_lsqr (), lanczos (),
sp_lanczos (), lanczos2 (), sp_lanczos2 (), arnoldi () and
sp_arnoldi ()). However, because of the new data structure for iterative methods,
these are being phased out and can be replaced by the newer routines iter_cg (),
iter_spcg () etc. The old iterative routines will not be supported in future.

7.3 Copyright

The copyright provisions for Meschach are intended to follow the lead of the Free
Software Foundation in ensuring that the rights of people using and modifying the
library cannot take away rights from others, while still enabling commercial use of the
library. In that sense Meschach is not entirely "in the public domain". Notice that
there is no intention to restrict the possible uses to which Meschach and parts of it
are put, or to impede the work of programmers. The intent is only to make sure that
users of any derivatives or modified versions of Meschach can still obtain access to the
original code, and also to protect the reputations of ourselves and other programmers
who modify or use Meschach.

Copyright subsists on the documentation and on the matrix library and source code
for same and is held by David Edward Stewart and Zbigniew Leyk. It may be used
free of charge provided the following rules are followed:

For legal purposes, in this section "the matrix library" shall refer to the "Meschach
matrix library" as copyrighted by David Edward Stewart and Zbigniew Leyk.

188 CHAPTER 7. INSTALLATION AND COPYRIGHT

1. Anyone to whom software is sold containing part or all of the matrix library in
any form, whether modified or not, must have the matrix library source code
made available to them in machine readable form at nominal cost.

-2. Anyone distributing the library must ensure that copyright notices "Copyright (C)
David E. Stewart and Zbigniew Leyk, 1986-1993" are published prominently
along with the distribution in whatever farm. .

3. Anyone making changes to the libra.rY must prominently display this fact on any
documentation relating to any use of the library (whether the use involves source
or comphed'code). Also, any such modification must be reflected in the routine
m_ version (), which prints out the current list of modifications to stdout.

4. Any code sold in object code form must include m_ version () so that if the
user so desires, he/she can determine what modifications and/or extensions to
the original library have been made and who by.

Item (4) is deemed to be satisfied if there is a "version" command which executes the
m_ version () routine.

Finally, there is the usual statement about legal rights if something goes wrong
in using the software. Trying to frame conditions under which Meschach can be
guaranteed to work is unlikely to be a rewarding task for anyone to undertake, especially
with the wide range of software and hardware systems it could work under. This is
further complicated by the usual problems of numerical analysis where "proof of
correctness" is not a realistic possibility and round-off errors are always present.
Finally, due to the non-c9mmercial nature of Meschach, there is unlikely to be any
value to persons attempting to sue me forfailure of the library in any situation.

Meschach IS PROVIDED ''AS IS", WITHOUT ANY EXPRESS OR IM
PLIED WARRANTY. IN PARTICULAR, THE AUTHOR DOES NOT MAKE
ANY REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING.
THE MERCHANTABILITY OF TillS SOFTWARE OR ITS FITNESS FOR
ANY PARTICULAR PURPOSE.

Chapter 8

Designing numerical libraries in C

The purpose of this chapter is to have a bit of a look "under the hood" to see how
a library of routines inC can (and we believe, should) be built up. The philosophy
here is to make use of the features of C to make programs more flexible and easier to
write (and debug), while not sacrificing too much efficiency. There are other ways of
designing numerical libraries, but this has been found to be a useful and flexible way
ofdesigning numerical libraries in C.

8.1 Numerical programming in C

Numerical and scientific programming has been traditionally associated with Fortran.
Indeed, a great deal of software has been written in Fortran, in spite of its well known
defects (lack of good data structures, lack of strong typing, reliance on "GOTO", poor
lexical characteristics, clumsy input/output). This has led to the "historical" defense
of Fortran: "There is so much already written in Fortran that we have to program in
Fortran."

However, more sophisticated algorithms need more sophisticated data structures
and more structured programs. Sparse matrix data structures and operations on them
are one example of this. C is one of a number of languages that easily support such
structuring. As well, C is a very flexible language, especially as regards memory
management. While it is often argued that C is "merely a systems programming
language", several aspects of C seem to indicate otherwise. For example, C has both
single and double precision. Sometimes the argument is made that C is not suitable for
numerical programming because single precision numbers are automatically converted
to double precision whenever they are passed as arguments or used in expressions. This
is no longer true in ANSI C. Even with the older C convention, the main drawbacks are
the time spent converting between double and single precision numbers. Operations
done entirely in double precision are immune to this inefficiency. It is, in any case,
a better state of affairs than not having double or extended precision numbers as is
the case with Pascal or the original version of Modula-2. Also, the standard Unix™
mathematics library has not only the standard functions (exp, log, and the trigonometric

189

190 CHAPTER 8. DESIGNING NUMERICAL LIBRARIES INC

functions), but also Bessel functions, the r function and the error function. Admittedly,
C does not have complex numbers, but this is a standard extension to C++.

8.1.1 On efficient compilers

The comment is sometimes made that Fortran must be more efficient than C. This is
based on the fact that pre-Fortran 90 Fortrans are simpler languages, and that C has a
rather more permissive structure. ,However, with modern compilers the difference in
performance is usually fairly small, and is often non-existent. One of the reasons for
this is that on many new machines compilers for different languages share common
code-generation and optimisation parts. Indeed, the first NAG Fortran 90 compiler is
actually a pre-processor that converts Fortran 90 into C- this is a sensible strategy
because of the high quality and wide availability of many C compilers. The point
that should be made is that efficiency is often a question of how much effort goes into
developing the compilers. In the late 1970's the MACLISP compiler developed at MIT
could produce machine code for compiled Lisp that rivalled Fortran in efficiency for
numerical operations.

There are some inefficiencies that can be introduced in writing C code that would
not appear in writing Fortran. But this is due to using a different style of programming.
For example, overusing dynamic memory allocation can result in a great deal of
overhead. (Beginners to programming in C can easily fall into a trap of writing code
that spends most of its time allocating and deallocating temporary objects.) However,
with a little care, this overhead can be kept to a negligible level while providing far
more flexibility than is possible in Fortran 77.

8.1.2 Strategies for using C

The aspects of C that numerical programmers should make use of include

1. the ability to create self-contained data structures representing meaningful math
ematical objects.

2. dynamic memory allocation and de-allocation of data structures and arrays,
which often avoids the need for workspace arrays.

3. error and exception handling using setjmp () and longjmp ().

4. flexible input and output so that self-contained data structures can be read in and
printed out.

5. use of pointers to represent user-defined objects whose characteristics are not
known at compile time.

Self-contained data structures not only simplify argument lists, but can also be
used for internal consistency checks to catch illegal operations. They should also make
programs easier to understand in that they correspond closer to mathematical objects,
and avoid the need to a plethora of additional length arguments and variables. By

8. L NUMERICAL PROGRAMMING INC 191

using functions to perform most of the needed operations on these data structures, the
chances of misusing the data structures can be greatly reduced.

Dynamic memory allocation and de-allocation not only avoids workspace arrays,
but also avoids the need for the strategy of declaring the largest conceivable array sizes
in local arrays. With this, memory can be used far more effectively.

A common error/exception handling mechanism means that the usual testing of
"IFLAG" arguments can be avoided as well. A suitably structured mechanism can be
used to provide a safe way of giving control back to the user if an error occurs. The users
need to state what error they wish to "catch" and the code in which they wish to "catch"
it; if an error occurs executing the code, control passes to the "catch" mechanism which
can pass control back to the user's own code for handling the errors. Done properly, it
can also provide a partial "backtrace" of the state of the active functions at the time of
the error.

Input and output are, of course, very important. After all, a program without output
is useless. More than this, by structuring input and output, output can be reused as
input. Consider how often have you had to edit data just so that your program can use
it as input?

Another aspect of structuring input is that comments can be incorporated into the
input. Data, by itself, rarely means much. Including comments makes it much more
intelligible to mere mortals. The flexibility of C's input and output has been used to
do this.

User-defined objects (of any sort) can be handled by a combination of functions
and pointers. Pointers to functions can be arguments to functions, and components
of arrays or other data structures. This means that essentially arbitrary user-defined
data structures can be used by code without knowing any of their characteristics at
compile time. This style of programming has some of the flavour of object-oriented
programming.

Meschach in various places makes use of all these aspects of C. We hope that you
find this way of programming effective and efficient, not only in terms of CPU time,
but your own (programming and debugging) time as well.

8.1.3 NonmC programmers start here!

Before going past this point, you really should read a book on C and programming in
C. However, as there are undoubtedly non-C programmers who will want to follow
the discussion in this chapter, here are some very brief notes which should help you
understand the examples.

C programs consist of collections of functions, one of which is the main program
(called "main () "). Routines consist of a header followed by a sequence of state
ments (the body of the routine) inside braces ({ ••. }). Statements are either simple
statements, which must end with a semi-colon(;), or compound statements, which is
a collection of simple or compound statements bracketed by braces. The braces work
very much like Algol, Pascal and Ada begin ... end pairs. Comments inC have the
form/* • • • * /.

192 CHAPTER 8. DESIGNING NUMERICAL LffiRARIES INC

Before a C program is compiled, it is passed through a pre-processor. Pre-processor
directives must have a # as the first character on that line. The pre-processor can be
used to define macros, to include files, and to delete code according to whether macros
are defined. Standard header files are almost always included in C programs. Here is
an example:

#include <stdio.h> /* standard input/output header file */
#include "mydefs.h" /* uses file from current directory */
/* examples of macro definitions */
#define max(a,b) ((a) > (b). ? (a) : (b))
#define DEBUG TRUE

The basic data types in C include int ("integer"), double ("double precision
floating point") and char ("character"). A declaration has the name of the data type
before a list of variables, as in

int
double

i, j, idx;

alpha;

A pointer to a particular data type is declared by putting a * before the variable which
is to be a pointer. For example, after the declarations

double d, *pd, **ppd;

d is a double, pd is a pointer to double, and ppd is a pointer to a pointer to
double.

Consistent with this, accessing the value pointed to by a pointer is simply a matter
of putting a * before the variable. For example, the value pointed to by pd is -*pd.

The reverse operation of finding a pointer that points to a variable is done by putting
& before the variable; e.g. pd.= &d; now makes pd point to the variable d.

Arrays are declared using square brackets such as

double x[10];

This declares x to be an array with 10 entries. However, the starting index is zero, not
one. So the valid entries of x are x [0] , x [1] , ... , x [9] . This is called zero-relative
inde~ing. This may appear unusual at first, but is no barrier in practice.

Arrays and pointers are very similar; when arrays are passed to subroutines, only
a pointer is passed, and pointers can be used like arrays. For example, pd [0 l is
equivalent to *pd; pd [1] is the double precision number next to *pd. This is called
pointer arithmetic and can be easily abused. There are two important differences
between arrays and pointers: (1) pointers are not necessarily associated with any
usable piece of memory, while arrays are, and (2) array names cannot be assigned, but
pointers can. So pd = x; is legal, but x = pd; is not.

Data structures containing (possibly) different kinds of objects are declared using
struct. For example, complex numbers can be declared as

typedef struct cmplx { double real, imag; } complex;

8.1. NUMERICAL PROGRAMMING INC 193

(Here we have used typedef in order not to use the longer name struct cmplx.)
Complex numbers can then be declared by

complex zl, z2;

Structures can be imbedded in structures, and recursive structures (such as linked lists)
can be declared using pointers to that structure. For example, here is a linked list
structure:

struct list { int contents; struct list *next; };

The components of a data structure can be obtained by using " • ". The real part
of zl is zl. real. If pz is a pointer to a complex number, then the real part of
the complex _number pointed to is (*pz) • real, which has the equivalent shorthand
form: pz->real.

The control structures inC are familiar to most programmers- if-then-else, while,
do-while (cf Pascal's repeat-until) and for loops. These have a straightforward syntax
except for the for loop construct. Before these constructs are described, it should be
noted that C has no Boolean or logical data type. Instead, zero or NULL is regarded as
"False", while non-zero and non-NULL values are regarded as "True". The results of
logical and relational operations are always integers int, with 1 representing "True".
The comparison operators are equality test (==), inequality test (! =), and the usual
numerical comparison operators (<, >, <=, >=). Logical operators include "logical
and"(&&), "logical or" (I I), and "logical not" (!). (There are also bitwise and, or, not
and exclusive or operators.) Expressions involving && and I I are evaluated left-to
right and evaluation is "short-circuited" so that latter expressions are not evaluated if
not needed. This is very useful to avoid performing invalid operations. For example,

ok = (i < array_length) && item_ok[i];

does not evaluate i tem_ok [i] if i >= array _length.
If statements have an optional else part and can be strung together.

if (conditionl)
statementl;

else if (condition2
{ statement2; statement3; }

While loops have the form "while (condition) statement;" or ''while
(condition) {... }". Thedo-whilevarianthastheform "do statement;
while (condition) ; "or"do { • • • } while (condition) ; ". The
for loop in C is the most flexible and has the form

for (initialisation; test; update
statement;

where "statement;" can be replaced by a compound statment. This is equivalent
to a while loop:

194

initialisation;
while (test)

CHAPTER 8. DESIGNING NUMERICAL LIBRARIES INC

{ statement; update; }

The for loop is most commonly used in a standard idiom:

for (i = 0; i < array_length; i++)
• • • • • • array [i]

The expression i + + returns the value of i and then increments the value of i by one.
(Here, of course, the value of the expression is ignored.) This is the post-increment
operation; i-- is the post-decrement operation. Preceding the variable with++ or-
pre-increments and pre-decrements the value of that variable. Other updates commonly
used include incrementing the index by a different stride: i = i+stride, or with
the shorthand i += stride.

Inside all loop constructs in C you can put break and continue statements.
The break statement causes the loop to exit immediately; the continue statement
causes control to be passed to just before the end of the loop.

All routines in C are functions. They might have side--effects and they might return
void (so that the returned value is unusable), but they are functions. It is not necessary
to do anything with the returned value, whether or not it has type void. Also, all
function arguments are passed by value rather than by reference. Thus if you wish a
function to set the value of a variable, you need to pass a pointer to that variable. For
example, an integer swap routine would be called like this:

int i, j;

swap(&i,&j);

If the type of the returned value from a function is not int (i.e. the standard integer
type) then it should be declared before use. For example, a routine to add complex
numbers together might be declared before use as

complex cadd(); /* adds two complex numbers */

If this is preceded by extern it means that the function is defined in another file.
In ANSI C argument types can also be checked if you declare your functions using
function prototypes such as

complex cadd(complex, complex); /*or*/
complex cadd(complex zl, complex z2);

Ther are two styles for defining a function: the old way, and ANSI C. Here is the
old way:

complex cadd(zl, z2)
complex zl, z2;
{ complex z;

z.real = zl.real + z2.real;

8.2. THEDATA STRUCTURES

z.imag = zl.imag + z2.imag;
return z; /* z is the returned value of cadd() */

}

And here is the ANSI C way:

complex cadd(complex zl, complex z2)
{ complex z;

}

z.real = zl.real + z2.real;
z.imag = zl.imag + z2.imag;
return z; /* z is the returned value of cadd() */

195

Functions can be passed as parameters, but what is actually passed is a pointer
to a function. A pointer to a function can be used as other pointers can: arrays of
pointers to functions are legal, as are structures containing pointers to functions. Here
is declaration of a pointer to a function returning a double:

double (*f)();

Or using ANSI C, the types of the argument(s) can be included:

double (*f) (double);

Then assigning f ·· = exp; is perfectly valid.

8.2 The data structures

C allows for extensive use of data structures. The struct and typedef facilities
provide means whereby heterogeneous structures and primitive types can be combined
and used together. As such they provide a static way of describing the data structure;
they define the way things are stored. Equally important to the way things are stored,
is the question of how such information is used. This is the dynamic part of the data
structure. While Cis not really set up to deal with complete formal descriptions of both
the static and dynamic aspects of a data structures in the way object-oriented languages
(such as SmallTalk and C++) are, we can go part way by providing functions that do
at least the basic operations on the data structures.

8.2.1 Pointers to struct's

One approach that we have taken throughout the library is to pass only pointers to the
actual struct's. Passing the actual struct's is useful for relatively small objects,
but we believe it is inappropriate to do this for large objects and for objects which
contain pointers to allocated memory. For example, complex numbers

typedef struct { double real, imaginary; } complex;

196 CHAPTER 8. DESIGNING NUMERICAL LIBRARIES INC

should be passed as single entities, while vectors

typedef struct { int dim, .•. ; double *ve; } VEC;

should not.
Why should this distinction be made?

1. Passing large structures is less efficient.

2. Copying the struct itself will only copy the pointers in the struct, not what
those pointers are pointing to.

The second item notes that only a shallow copy is made by an assignment of a struct.
For example, the following code does not do a true copy (at least it is usually not what
the writer intends). Do not do this!

VEC x, y;

y = x; /* this is an error in pre-ANSI C *I
y. ve [1] = 3 • 0 ;
I* now x.ve[l] is also 3.0 *I

Pointers can be copied, but here it is clear that its effect is not a deep copy.

VEC *x, *y;

y = x; /* y and x now point to the same place *I
y->ve[l] = 3.0;

/* now x->ve[l] is 3.0 */

It is only with C++ that assignment can be forced to result in a deep, rather than a
shallow, copy.

8.2.2 Really basic operations

Some operations are so basic that it is absolutely vital that they are implemented first.
They are (in order):

1. Allocation and initialisation.

2. Output

3. De-allocation.

4. Copying.

You might find it strange that output routines appear so soon. However, one thing is
sure about developing data structures: you will want to debug them.

Writing allocation and initialisation routines is not difficult, but you should use the
discipline that all returned values from malloc (), calloc () and realloc () are

8.2. THE DATA STRUCTURES 197

checked. Also, check that the parameters passed make sense. If something goes wrong
at this level it is unlikely that you can do much sensible. Passing control to an error
handler, such as the error () macro does, is probably the most sensible thing to do
here. Here is a hypothetical struct and the code to do (some) of the allocation and
initialisation:

In the file foo. h we define the data structure and the new type foo:

typedef struct { int size; ..• double *array; } foo;

In the file foo. c the basic operations are defined:

#include "foo.h"

foo *get_foo(size)
int size;
{

}

foo *my_foo;

if (size <= 0)
error(E_BOUNDS,"get_foo");

I* get foo struct first */
my_foo = (foo *)calloc(l,sizeof(foo));
if (my_foo = (foo *)NULL)

error(E_MEM,"get_foo");
/* now set up pointers */

my_foo->array = (double *)calloc(size,sizeof(double));
if { my_foo->array = (double *)NULL)

error(E_MEM,"get_foo");
my_foo->size = size; /* now it is safe to set the size */

return my_foo;

The function call calloc (num_elts, size_elts) allocates a block of memory
for num_elts blocks of size size_elts characters. What is returned is a pointer
to the allocated memory. If calloc () returns a NULL pointer, then this indicates
that there is insufficient memory. The returned value of calloc (), malloc ()
and realloc () should always be checked before use. If an error occurs, then the
error () macro is called, which raises an error at this point, and no further code in
this function is executed.

TheMeschach macros NEW(type) andNEW_A(num, type) inmatrix.h sim
plify writing this sort of code:

if ((my_foo = NEW(foo)) -- (foo *)NULL)
error(E_MEM,"get_foo");

198 CHAPTER 8. DESIGNING NUMERICAL LIBRARIES INC

if ((my_foo->array = NEW_A(size,double)) -- (double *)NULL)
error(E_MEM,"get_foo"};

De-allocation should be done using the function free ()in the reverse order:

void free_foo(my_foo)
foo *my_foo;
{

}

if (my_foo -- (foo *)NULL)
return;

if (my_foo->array != (double *)NULL
free(my_foo->array);

free (my_foo);

There is not much more error checking that can be done at this stage. Checking that
memory heaps are not corrupted can only be part of the design of the memory allocator,
not the data structure or its routines.

Notethatonlypointers to memory that has been allocated by calloc (), malloc ()
or realloc () can be de-allocated using free (), and this can only be done once.
Common errors are to try freeing memory more than once.

8.2.3 Output

Output should be structured but human readable. Usually we will want to be able to
read the output back in later, so we should try to make the output reasonably machine
readable as well. (Writing input routines is usually much harder and more complex.)
Hence the output should contain fore-warnings about what is coming, and how big it is
before we get to it. It should also be possible to direct the output to any fileor stream
that we choose.

In the foo example,

void fout_foo(fp,:my_foo)
FILE *fp;
foo *my_foo;
{

int i;

fprintf{fp,"Foo: ");
if (my_foo == (foo *)NULL
{

}

fprintf(fp,"NULL\n");
return;

8.2. THE DATA STRUCTURES

}

fprintf(fp,"size: %d\n",my_foo->size);

fprintf (fp, "array: ");
for (i = 0; i < my_foo->size; i++
{ /* no more than 6 items on a line */

}

if ((i % 6) == 5 I I i == my_foo->size - 1)
fprintf(fp,"%g\n",my_foo->array[i]);

else
fprintf (fp, "%g ",my_foo->.array[i]);

199

(Actually, returning my _foo at the end would be useful behaviour, although we haven't
done this in Meschach.)

Note that care is taken to treat the NULL case separately so that this will not result
in failure; instead the message "Foo: NULL" is printed. For a proper allocated and
initialised the output might look something like this:

Foo: size: 10

array: -3.7 2.5 3.141592 2.2 -1
1.5345 101 25.2321 -3.2 2.5

Writing an input routine to read this in is simplified because it can see how big
to make the array before it has to read any of it in. Writing a routine to output
every bit of the foo structure (even though most users won't want it) is often useful
for debugging purposes. This can be done by writing an additional foo_dump ()
function.

8.2.4 Copying

The purpose of these routines is to provide a deep copy which copies all the component
parts as well as the struct itself. There are two styles of doing this; one is to return
a completely new struct, created and initialised, and the other is to copy the data
structure into an already allocated and initialised one. One way to do both in one
routine is to check the target structure pointer; if it is NULL then a new target structure
should be created:

foo *cp_foo(from,to)
foo *from, *to;
{

int i;

if (from == (foo *)NULL)
error(E_NULL,"cp_foo");

if (to == (foo *)NULL)
I* can't copy NULLs */

200 CHAPTER 8. DESIGNING NUMERICAL LIDRARIES INC

}

to= get_foo(from->size); /*create a new foo */
else if (to->size < from->size)

/* make sure target is big enough */
to= foo_resize(to,from->size};

I* now do copying */

for (i = 0; i < from->size; i++

to->array[i] = from->array[i];

The results of using cp_foo () can be used without checking as when a failure occurs,
there is a call of the error () macro which invokes the error handling code. Once
the checking is done, the actual copying can proceed as a straightforward loop. The
efficiency of copying routines can be improved by using specialised copying routines
such as bcopy () for BSD, or memmove () for ANSI C.

8.2.5 Input

Although this is not one of the "really basic" routines, they are useful and even
important. Also, they are also trickier than output routines to write well.

It has been observed that in many software systems that the overall complexity of
the code is usually dominated by the user interface. Writing a numerical library avoids
a lot of that, and getting other programs/libraries to do your input/output is often a good
idea. (Writing routines to output matrices in MATLAB save/load format means that
you can use MATLAB to produce three-dimensional plots of "matrices".) However,
writing input routines often cannot be avoided, and can also be useful for debugging
purposes.

The input and output that is used by Meschach is all character-based. Fancy
window-based input/output could also be done, but there the problem is more about
standards and the many different ways of graphically displaying and inputting matrices
and vectors.

There are two styles of input in Meschach. Interactive (from a "tty" in Unix jargon),
or "batch" from a file or other input stream. Interactive input has fewer design rules
than batch input, but still can be challenging to write well. (A fully featured input
routine would really be an editor.) The basic design rules for batch input are:

1. The format produced by the output routine can be input.

2. Comments which begin with a "#" and continue to the end of the line are ignored.

Writing interactive input has a number of traps. For example, the following code
looks fairly respectable:

int size = -1;

8.2. THE DATA STRUCTURES 201

do {
printf ("Input size: ") ;

} while (fscanf (fp, "%d", &size) ! = 1 I I size <= 0)

The idea here is that the loop is with the prompt Input size: is redisplayed until
size is correctly scanned as input, and is positive. Note that the call to scanf ()
must take place before the test size <= 0 is evaluated. The variable fp is the .file
pointer which indicates from which file f scanf (fp, ...) reads data. The function
f scanf () ignores leading and trailing blanks, so inserting leading or trailing blanks
does not affect the code.

However, what happens if you input the letter "x"? The f scanf () routine would
read the letter, realise that it cannot be part of a number, and put it back on the input
stream. The result the loop is an infinite loop giving the user no chance to take control
as nothing beyond the "x" is read.

The way to avoid this is to use line-by-line input by means of fgets (). Also
output to stderr instead of stdout means that output file re-direction does not
prevent interactive input. Here is a better approach.

int size;

do {
fprintf (stderr, "Input size: ");
if (fgets(line,MAXLINE,fp) == (char *)NULL)

error(E_INPUT,"in_foo");

} while (sscanf(line, "%d", &size) != 1 II size < 0);

The idea here is to input a line into a character array, and then scan the character array.
Since every failure results in a new line being read, it cannot get stuck. Failure to read
a line from the file results in an error being raised so end-of-file situations are caught.

When interactively inputting arrays, it is a good idea to let the user (at the keyboard)
know where you are in the array at all times. If the user makes a mistake, then re
display the prompt including the current position. Allowing the user to go back to
correct mistakes, and then go forward again, helps to prevent the user from becoming
too frustrated at the system. And what could be more frustrating than having hit the
return key just after you realise that you made a mistake near the end of a large matrix
with over a hundred entries? Here is how the code for inputting the entries of a vector
allows for forward and backward motion, and printing out old values where necessary.

for (i = 0; i < dim; i++)
do {

redo:
fprintf(stderr,"entry %u: ",i);
if (! dynamic)

fprintf(stderr,"old %14.9g new: ",vec->ve[i]);
if (fgets(line,MAXLINE,fp) == NULL

202 CHAPTER 8. DESIGNING NUMERICAL LIBRARIES INC

error(E_INPUT,"ifin_vec");
if (*line -- 'b' II *line -- I B I) && i > 0)

{ i--; dynamic = FALSE; go to redo; }

if (*line -- 'f, II *line -- IF') && i < dim-1)

{ i++; dynamic = FALSE; go to redo; }

} while (*line -- '\0' II
sscanf(line, "%lf", &vec->ve[i]) < 1);

By the way, there is only one other place (outside the input routines) where a goto is
used. Note also that an end-of-file signal will result in an error being raised.

The batch input parts of input routines are relatively easy to write. Comments can
be skipped over by using skipj unk (fp) ; and if an error in the input occurs, then
an error should be raised. There is no need to try to re-read the input stream. The
error handler may try to skip the input until some marker is reached, but this is up to
the programmer. Apart from that, all that is necessary is to have enough f scanf ()
calls to skip over the markers that are printed by the output routine. For example,
fscanf(fp, "Foo: "); will skip over the header produced by the fout_foo()
routine above. Ignoring the return value of f scanf () for this purpose is acceptable
- the result is a less temperamental input routine.

8.2.6 Resizing

Resizing objects is an operation that cannot be done to all data structures, such as those
involving hairy user-defined objects and functional arguments. However, allocated
arrays can be resized by means of the standard library function realloc () . There is
a macro RENEW(var, num, type) in matrix.h which calls realloc (),and
also handles NULL values of var. For example, resizing a foo data structure could
be done something like this:

foo *foo_resize(my_foo, new_size)
foo *my_foo;
int new_size;
{

}

double *temp;
if (my_foo == (foo *)NULL)

return get_foo(new_size);
temp = my_foo->array;
/* actual re-sizing operation: */
temp= RENEW(temp, new_size, double);
if (temp == (double *)NULL) /* check for failure */

error(E_MEM,"foo_resize");
my_foo->array = temp;
my_foo->size = new_size;
return my_foo;

8.3. HOW TO IMPLEMENT ROUTINES 203

Note that the result of RENEW () is checked immediately. Also, resetting the size is
the last thing that is done.

8.3 How to implement routines

The basic rule that should be used is that the more operations that a user wants to use that
are provided by the designer of the library, the less the user has to do and the less likely
it will be that the user will make mistakes. Finding a good set of kernel operations for
a particular data structure is a crucial problem in good library design. Sometimes, not
only the obvious operations should be supplied, but also "support" operations should
be implemented. (An example of the need for this can be seen with sparse matrices
where there are support routines for setting up the column access paths.) The more
complex the data structure, the more support routines you will probably need to write
to be able to effectively and efficiently use that data structure. Efficiency will often
lead to additional routines. For example, even though there are routines for adding
vectors v _add () , and for computing scalar multiples of vectors sv _ml t () , it is
more efficient to use the "multiply and add" routine v _ml tadd () than to use the add
and scalar multiply routines separately.

8.3.1 Design for debugging

Arguments should be checked for consistency, except possibly at the lowest level(s)
of the library. At the lowest levels it may not be worth doing the checking and losing
efficiency. But at almost all other levels which deal with more time-consuming and
complex operations, it is well worth checking the arguments. You probably should
check at least that

1. none of the input arguments are NULL.

2. the sizes of the arguments are compatible.

For example, in a function foo_bar (), the following checking should be done:

foo *foo_bar(my_fool, my_foo2, result_foo)
foo *my_fool, *my_foo2, *result_foo;
{

}

/* check that operands are not NULL */
if (my_fool == (foo *)NULL I I my_foo2 == (foo *)NULL)

error(E_NULL,"foo_bar");
/* check that they have compatible sizes */
if (my_fool->size != my_foo2->size)

error(E_SIZES,"foo_bar");

204 CHAPTER 8. DESIGNING NUMERICAL LIDRARIES INC

Detailed checking for self-consistency of a data structure is not usually necessary; if
the programmer using the library is using it properly, then they shouldn't have much
opportunity to mess up the data structure. Of course, the library_ shouldn't mess up
the data structure either. If debugging using a good and thorough output routine is not
sufficient to debug the library, then maybe a function that checks internal consistency
should be written. However, the checking function would probably be most effective
when used to help to debug the library than as an automatic argument check.

An example of detailed argument checking that is not worthwhile is checking that
a matrix is symmetric before a Cholesky factorisation. If detailed checking of this kind
is wanted, then a checking routine would be written, such as a currently non-existent
chk_symm { } function.

There are a number of macros that have been written for error handling which
work in conjunction with the function ev _err {} (short for "evaluation error") in the
file err. c. The first is clearly the error { } macro, which calls ev _err { } with
the _FILE_ and _LINE_ macros so that the file and line number where the
error was raised can be printed out. The file err. c and the error-handling macros in
matrix. h are independent of the rest of the library, and can be used separately.

A tool that is useful for debugging is to use

tracecatch{code_to_execute,"function"};

The effect of this macro is that if code_ to_ execute raises an error, then once the
error is processed (which usually means printing out an error message) the error is
re-raised at the place of the tracecatch {}. If the body of each function (excluding
the usual initial argument checks) is enclosed in a tracecatch{}, then what is
effectively a stack backtrace would be printed when an error occurs, indicating what
functions were active when the error occurred.

A related macro is catchall {code_to_execute, error_code}. This
macro executes code_to_execute noonally, but if this raises an error, then
error_code is executed. This can be used to print out particular infoonation that
might be the cause (or result) of the error. You can put a line containing

error{_err_num,"catchall"};

at the end of error_ code tore-raise the error, and continue the stack backtrace if
desired.

For more infoonation about designing for debugging, see §8.6 on debugging.

8.3.2 Workspace

In most Fortran libraries, routines using extra memory require workspac~ arguments
to be passed to the routine. The programmer using the library l).as to pass a workspace
array of a particular size (which the user has to work out before-hand). With C's
memory allocation/de-allocation facilities this is not necessary in C, though sometimes
it might be useful.

8.3. HOW TO IMPLEMENT ROUTINES 205

Passing workspace arrays adds to the complexity of using a function, aud is usually
a headache for the user. Getting the workspace size right is also a way in which errors
can occur.

To avoid having to pass workspace arrays, there are two main approaches to making
the necessary workspace available. The first is to allocate the workspace on entry (as
soon as its size can be worked out) and deallocated on exiting the function. The second
is to have a static local array which is first allocated and then reallocated.

The first approach keeps the memory available only for as long as is necessary.
This is more efficient in memory, but less efficient in time as the workspace has to be
reallocated every time the routine is called. The second approach keeps the workspace
memory, and so is less memory efficient, but is more time efficient. In one sense,
the two methods are two extremes of a range of "compromises" between memory
efficiency and time efficiency.

Here's one way of setting up the second sort of internal workspace:

foo *foo_bar(•••)
{

}

static double *wkspace = NULL;
static int wksize = 0;

new_wksize =

if (wkspace == (double *)NULL)
wkspace = (double *)calloc(new_wksize,sizeof(double));

else if (wksize < new_wksize)
wkspace = (double *)realloc(wkspace,

new_wksize,sizeof(double));
/* check results of calloc() or realloc() before use! */
if (wkspace == (double *)NULL)

error(E_MEM,"foo_bar");
wksize = new_wksize;

(Note that the initialisation ofwkspace and wksize are unnecessary as un-initialised
static variables are initialised to zero or NULL.) This sort of approach is even more
convenient with self-contained data structures which can be resized as needed, such as
the vectors in the Meschach library:

foo *foo_bar(•••)
{

static VEC *wkspace = VNULL;

new_wksize = ;

206 CHAPTER 8. DESIGNING NUMERICAL LIBRARIES INC

wkspace = v_resize(wkspace,new_wksize);

}

Both of these approaches for workspace have their limits.
However, in Meschach, the "compromise" between memory and time efficiency is

put in the hands of the user. This involves "registering" workspace arrays so that they
can be freed on request by a call outside of the function where the static workspace
variable is defined. Registering a static variable is easy:

foo *foo_bar(.•.)
{

}

static VEC *wkspace = VNULL;

new_wksize =
wkspace = v_resize(wkspace,new_wksize);
MEM_STAT_REG(wkspace,TYPE_VEC);

Note that you can only register static variables. If you try to register an automatic
variable, the program will most likely crash. There is no way that the variable can be
checked for whether it is static or not.

There is a "workspace group number" or "mark" that must be set before (in the
dynamic sense, not necessarily in the code sequence) a workspace variable is registered.
When a static workspace variable is registered, it is "marked" as belonging to the current
workspace group or "mark". This "mark" can be set by, for example,

mem_stat_mark(l);

This call is usually made in the main calling routine before any routines usipg static
workspace variables are called. The "mark" can be changed by calling
mem_stat_mark () with a new "mark" or "group number". All of the static
workspace variables registered with a particular "mark" can be deallocated and their
memory freed with acallmem_stat_free (mark}. Note thatthisunsets the "mark".

Examples of how the mem_stat_ .. () routines work are in chapter 2.

8.3.3 Incorporating user~defined types into Meschach

Meschach 1.2 provides a number of facilities to track memory usage and to control the
allocation and deaUocation of static workspace arrays. User-defined data structures
can be incorporated into these mechanisms so that it can track memory usage and free
up workspace variables for your own data structures.

Since related data structures are often defined together, the information about the
data structures is passed to the mem_info_ .•. ()and mem_stat'- .•• () routines

8.3. HOW TO IMPLEMENT ROUTINES 207

by a collection of arrays containing the names of the types, the .• _free () functions
for these data structures, and an array of long's for storing information about the
amount of memory used by the various data structures. This collection of arrays
is called a list, and it describes a family of types. Each family of types known to
Meschach has its own list number; the family of standard Meschach types has zero as
its list number.

Here is an example taken from memtort • c. First there are the definitions:

/* the number of a new list */
#define FOO_LIST 2

I* type numbers *I
#define TYPE_FOO_l 1

#define TYPE_F00_2 2

I* new types */
typedef struct {

int dim;
int fix_dim;
Real (*a) [10];

} FOO_l;

typedef struct {
int dim;
int fix_dim;
Real (*a)[2];

} F00_2;

The arrays which contain the information are:

char *foo_type_name[] = {

"nothing",
"FOO_l",
"F00_2" };

#define FOO_NUM_TYPES \
(sizeof(foo_type_name)/sizeof(*foo_type_name))

int (*foo_free_func[FOO_NUM_TYPES]) () = {
NULL,
foo_l-'-free,
foo_2_free };

static MEM_ARRAY foo_info_sum[FOO_NUM_TYPES];

208 CHAPTER 8. DESIGNING NUMERICAL LIBRARIES INC

Note that the type number TYPE_FOO_l and TYPE_F00_2 correspond to the position
their type names and . . _free () functions have in the arrays. This list of types is
made known to the Meschach routines by the call

mem_attach_list(FOO_LIST, FOO_NUM_TYPES, foo_type_name,
foo_free_func, foo_info_sum);

if { ! mem_is_list_attached(FOO_LIST))
printf("Error: list FOO_LIST is not attached\n");

which should be at the beginning of the main (...) routine.
Knowing that certain types exists is a start, but to track memory usage, the routines

that perform memory allocation, deallocation and resizing need to keep the Meschach
system informed about changing memory usage. For example, in foo_1_get ():

FOO_l *foo_l_get(dim)
int dim;
{

}

FOO_l *f;

if ((f = (FOO_l *)malloc(sizeof(FOO_l))) --NULL)
error(E_MEM,"foo_l_get");

else if (mem_info_is_on())
{

}

mem_bytes_list(TYPE_FOO_l,O,sizeof(FOO_l),FOO_LIST);
mem_numvar_list(TYPE_FOO_l,l,FOO_LIST); /* 1 more*/

f->dim = dim;
f->fix_dim = 10;
if ((f->a = (Real (*) [10])

malloc(dim*sizeof(Real [10]))) --NULL)
error(E_MEM,"foo_l_get");

else if (mem_:info_is_on())
:mem_bytes_list(TYPE_FOO_l,O,

dim*sizeof(Real [10]),FOO_LIST);

return f;

The routine that actually notifies the Meschach system about the change in the
amount of memory usage is mem_bytes_list (), and the routine that notifies
Meschach about the number of allocated structures is mem_numvar_list (). For
:mem_bytes_list () the first argument is the type number, the second is the old size
in bytes, the third is the new size in bytes, and the last parameter is the list number of
the family of types. It is not important that the absolute values of old and new sizes
are correct, other than being non-negative; rather it is the difference between them

8.3. HOW TO IMPLEMENT ROUTINES 209

that is important. For mem_numvar_list () the change in the number of allocated
structures is passed.

The corresponding .. _free () routine also needs to call mem..__,byte_;l.ist ():

int foo_l_free(f)
FOO_l *f;
{

}

if (f != NULL) {

}

if (mem_info_is_on())
{

mem_bytes_list(TYPE_FOO_l,
sizeof(FOO_l)+f->dim*sizeof{Real [10]),0L,2);

mem_numvar_1ist(TYPE_F00,..:1,2); /* 1 less *I
}

free{f->a);
free(f);

return 0;

Similarly, •• _resize () routines need to call mem_bytes_list () if there is any
actual memory allocation, deallocation or resizing. If the argument is NULL, then the
main •• _get () routine should be called; otherwise there is no change in the number of
FOO_l structures, and so there is no need to call mem_num.var_list (). Merely re
arranging the internal structure doesn't have to be reported viamem_bytes_list ().

User-defined data structures can be used as static workspace arrays, just like the
standard Meschach data structures. They can be registered as workspace variables just
like the standard Meschach data structures, except that the list number of the family of
types needs to be given, and is positive. For example,

hairyl(•.•)
{

}

static FOO_l *f; I* initially NULL */

if (! f } f = foo_l_get(); /* allocate iff NULL*/
I* ... or could use a .. _resize{) routine*/
mem_stat_reg_list(&f, TYPE_FOO_l, FOO_LIST);

These static workspace variables will be deallocated using a call to
mem_stat_free~list (). Note that unlike the MEM_STAT_REG () macro, you
have to explicitly take the address off; MEM_STAT_REG () is a macro.

This is an example of how to use this to free f:

main (•••)

210

{

}

CHAPTER 8. DESIGNING NUMERICAL LIBRARIES INC

mem_stat_mark(l);

for (i = 0; i < 1000; i++
hairyl(•• ~);

I* now free up FOO_l and F00_2 workspace structures *I
mem_stat_free_list(l,FOO_LIST);
I* now free up standard Meschach workspace structures *I
mem~stat_free(l);

I* which is equivalent to: mem_stat_free_list(l,O); *I

If you have a family of types, where creating one type involves creating another in
the same family, care should be taken to avoid double counting. In this case a "main
type" contains a pointer to a "sub-type", say. There are two ways around this: one is
to call mem_bytes_list () and mem_numvar_list () only for those parts of the
data structure not in the "sub-type". The other, more complex approach, is to infmm
the routines that create the "sub-type" that it is created as part of the "main-type", and
to account for all of the memory and structure allocation as part of the "main-type".
This second approach is only really of use if the "sub-type" is understand as being only
of use as part of the larger "main-type". This approach is used in Meschach for sparse
rows in sparse matrices. Stand alone sparse rows can be created, destroyed, etc., but
are almost never used in this way.

8.3.4 Output and object resizing

While it is quite possible to create a new data structure and allocate new memory for
every new result, this reduces the efficiency of the algorithms and rapidly loses memory.
As there is no garbage collection in C, the memory that is "lost" is unrecoverable. Also,
numerical analysts and applications people are often working with large problems on
the limits of the machine(s) that they use. So it is rather important that the programmer
using a library will want control over memory allocation, or at least over the allocation
of the large objects.

The standard used in Meschach is that whenever a large or composite object results
from a computation, there is an extra parameter in which the result is to be put. As
before, this parameter is a pointer to a data structure. If this pointer is NULL, then the
output data structure is allocated and initialised. This allows for the creation of the
output when the user desires, but still gives control over memory allocation.

If the output object is not NULL, but is not of the correct size, then a resizing
function should be used. An example of this might be:

foo *foo_bar(my_fool, my_foo2, out_foo)

SA. USER-DEFINED FUNCTIONS

foo *my_fool, *my_foo2, *out_foo;
{

211

if (out_foo == NULL I I out_foo->size != my_fool->size
out foo = foo_resize(out_foo, my_fool->size);

}

Thecalltoget_foo () is notnecessaryiftheresizingfunction(here foo_resize ())
allocates and initialises a new foo data structure if it is passed a NULL.

If you cannot write a resizing function, then raise an error if the sizes are incom
patible. In such a case, it is better to get the user to create the thing with the right size
to start with. The alternative approach to that of creating a new object when the output
data structure has the wrong size will result in "memory leaks" with code such as

foo *my_fool, *my_foo2, *out_foo;

out_foo = f,oo_bar(my_fool,my_foo2,out_foo);

If out_foo is the wrong size, then creating a new data structure will result in the
original out_foo data structure being lost, and being replaced by a newly created
data structure. This memory would be lost until the program terminates.

To repeat: the output parameter should be resized if it is the wrong size, or raise
an error.

8.4 User-defined functions

When data structures of a conventional sort cannot explicitly and easily cope with the
complexities of a problem, it is usual for programmers to use functional parameters -
especially numerical and scientific programmers. In C these are not difficult to use:
just remember that you are actually passing pointers to functions, rather than the code
itself!

A standard example used is working out the definite integral

1b f(x)dx

using a quadrature (integration) rule of some kind. The function that computed the
integral might look like this:

double integrate(f, a, b, n)
double (*f)(); /*function to integrate*/
double a, b; /* lower and upper limits */
int
{

n;

int i;

/* number of sub-intervals to use */

212 CHAPTER 8. DESIGNING NUMERICAL LIBRARIES INC

double sum;

sum+= (*f) (a+i*(b-a)ln);

return sum/n;
}

Then integrate(sin, 0.0, PI, 100) would give an approximation to
f01r sin(x) dx. If you want to integrate a particular function, then you have to write
it yourself. So far, so good. However, the function f in integrate () must be a
function of only one variable- the variable that is integrated. Usually functions have
parameters, and usually those parameters are changed from run to run, or call to call.
These parameters are outside this model of how f works as a function.

The standard way of dealing with this in C is to set up some global variables
containing the parameters and then modifying them as necessary from run to run, or call
to call, of integrate (). This is not a very good way of dealing with parameters: as
a general rule, the more global variables, and "pathological" (i.e. hidden) connections
between routines, the more unpredictable a piece of code becomes.

The alternative that we would recommend here is to allow for an extra parameter
in f of the type void *. This could be a pointer to a struct containing the relevant
parameters, or even much larger, more complex, data structures. The code for the
integration function would then look like:

double integrate2(f, fparams, a, b, n)
double {*f) 0 i /* function to integrate *I
void *fparams; I* extra parameters for f *I
double a, b; I* lower and upper limits *I
int n; I* number of sub-intervals to use *I
{

sum+= (*f) (fparams,a+i*(b-a)/n);

}

Then, for example, for a general quadratic f (x) = ax2 + bx + c, the following
code could be used:

struct PQ { double a, b, c; };

double quadratic(params, x)
struct PQ *params;
double x;
{ /* using Horner's nested multiplication scheme */

return x*(params->a*x + params->b) + params->c;
}

8.5. BUILDING THE LIBRARY

{

This could be used in something like the following:

struct PQ par_quad;

par_quad.a = 5.0;
par_quad.b = -3.7;
par_quad.c = 101.433445;
printf ("Integral = %g\n",

213

integrate2(quadratic, (void *)&par_quad,O.O,l.O,lOO));

}

What if you want to integrate a function that really is just of one variable, with no
additional parameters? At the cost of an extra layer of function calls it can be done
using

double apply{f, x)
double (*f)(), x;
{ return (*f) (x); }

so that J011" sin(x) dx can be computed (approximately) by the call

int_val = integrate2(apply, sin, 0.0, PI, 100);

Ideally, both styles should probably be implemented, but the additional flexibility
in having a void * parameter for functional parameters is well worth the effort of
writing them into a library.

This approach is an alternative to the "reverse communication" path that is taken in
most Fortran libraries. The disadvantage of reverse communication is the complexity
needed to handle a routine that uses reverse communication. There are possibly
some particularly complex things for which reverse communication is still the best
technique. However, implementing a number of separate routines which act on the
same data structure might still be a more convenient way of doing things than reverse
communication.

8.5 Building the library

Building up a library of routines to be generally useful, or even to solve a single
problem, usually takes a few steps. The best advice here is summed up in the term
"incremental testing". As routines are added to the collection that forms your library
or problem solver, they should be tested. There is very little more disheartening than
to spend a week trying to find an unexpected bug buried somewhere deep in the code.
Keep the argument checking and debugging tools (e.g. print-out routines) around
they are still useful.

214 CHAPTER 8. DESIGNING NUMERICAL,LIBRARIES INC

Build new data structures as you need them, and test them and their routines before
going on to the next level. Even if you decide later that you would prefer to use a
different way of doing the sub-problems, the interface to a modified data structure
should probably stay pretty much the same as for the original data structure used. Use
previous (debugged) data structures and their routines. This prevents a lot of errors
and simplifies programming; they start to work more like building blocks than isolated
bits of code. For example, if you are a control systems designer, you might want to
have a "rational function" data structure representing ratios of polynomials:

P(x)
R(x) = Q(x).

Each of the polynomials P(x) and Q(x) can be represented by vectors of coefficients.
The data structure for R(x) might be

typdef .struct { int deg_P, deg_Q; VEC *P, *Q; } rational;

There is some redundancy in this data structure since deg_P should be one more than
the dimension of the vector P. Whether or not this degree of redundancy is acceptable
will depend on whether users of the library will want to have direct access to deg_P

and deg_Q, and whether routines are written to rely on deg_P and deg_Q or P- >dim
and Q->dim.

Before defining the operations to be performed on objects of type rational, the
basic operations on polynomials should be defined: adding, subtracting, multiplying
and normalising polynomials; synthetic division of polynomials, and evaluating a
polynomial at a real or complex value of x. Some of these can be defined in terms of
operations on VEC's. Then the operations on rational functions can be defined in terms
of the polynomial operations.

8.5.1 Numerical aspects

An important issue in numerical computations is that of the accumulation and mag
nification of roundoff error. That is, the computations should be numerically stable,
and avoid accumulating or magnifying roundoff errors. While it can, in general, be
very difficult to predict the effects of roundoff error, some situations are more likely
to lead to bad results than others. For example, polynomials can be rather badly
behaved in this regard. An example can be found in K. Atkinson's Introduction to
Numerical Analysis, 1st Edition, pp. 80-84 (1979). The designers of MATLAB's
polynomial root finding algorithm in fact avoid polynomials altogether in their ap
proach: they find instead the eigenvalues of the companion matrix of the polynomial
p(x) = x" + a,_lx"-1 + · · · + a1 x + ao,

0
0

C= 0

1
0

0

0
1

0

0
0

0

8.6. DEBUGGING 215

Since rootfinding of polynomials can be badly conditioned, setting up the companion
matrix· would lead to an equally ill conditioned eigenproblem. However, generally
eigenproblems are apparently less likely to suffer such ill conditioning as extreme as
for polynomial rootfinding. A control system designer might take this as a hint and deal

with control systems in [~ ~] matrix form, using companion matrices to represent

polynomial systems.
A rule of thumb that seems to work for a great many applications for keeping good

numerical stability, is to keep intermediate computations in a form close to the form of
the original data. Elaborate transformations might give exactly equivalent problems,
but the introduction of noise and rounding errors can make some methods far better or
far worse than others.

There are a number of hard-won rules which numerical analysts have discovered
over the years (and re-discovered far too many times!). In relation to matrix computa
tions the oldest and most important one is:

Don't compute the inverse of a matrix if all you want
is to solve some equations.

Computing the inverse of a matrix does not make any of the subsequent calculations
for solving a system of equations faster than using its LU factors, the accuracy is slightly
worse usually, and it takes longer to compute the inverse in the first place. For sparse
matrices it is even more important. The LU factors of a sparse matrix are usually
fairly sparse, but the inverse is almost never sparse for practical problems. Forming
the inverse of alarge sparse matrix may be an impossible undertaking on a machine,
even though solving the system of equations can be accomplished quite quickly on that
same machine.

Another problem that one would do well to avoid is "finding all eigenvectors of a
large matrix". Finding all the eigenvalues of a large symmetric matrix is not an unrea
sonable task (use the Lanczos routines). Generating the eigenvectors can then often be
done using inverse iteration (seeK. Atkinson's An Introduction to Numerical Analysis,
1st Edition, pp. 548-553 (1979)) on demand for large sparse matrices. Remember:
just storing all the eigenvectors of a 10 000 x 10 000 matrix will take up 800Mbyte -
not a small amount on any current computer!

8.6 Debugging

While the error () macro will save many types of errors, it cannot save you from all
of them. If your program is crashing, then put

setbuf(stdout, (char *)NULL);

at the start of your main () program (at least on Unix systems) to ensure that you are
seeing all your output. Use liberal printf () and •• _output () calls to check the
values of your data types, and to "checkpoint" your program. This also means you
should write •• _output () routines for any new data structures that you define.

216 CHAPTER 8. DESIGNING NUMERICAL LIDRARIES INC

Potential bugs can sometimes be spotted by automatic tools, such as lint-on
Unix machines, which can detect things like unreachable code, unportable pointer
conversions, and function argument incompatibilities for non-ANSI C code. The GNU
compiler gee can detect potential portability and related problems in a similar wayto
lint if you use the -Wall option (which reports all warnings).

Try using open-ended test programs so that you can input any object of a particular
data structure, and checking the result. Avoid tests which only give you a "yes/no"
answer. If it got the answer by chance, then it has a 50% chance of fooling you.
Compute residuals. For systems of equations this means printing out IIAx - bll;
for eigenvalues/eigenvectors this means IIAx- >.xll/llxll; for solving f(x) = 0 this
ineans printing II f (x) II; for least squares problems this means printing II AT (Ax - b) 11.
Whatever your problem is, try to compute sufficient information that it is easy-to verify
the complete computed results. For optimisation problems, this would mean checking
the first order necessary conditions at least. Use the routines that you have available,
not just for doing the computations, but also for helping you to do the verification as
well (such as v _norm2 ()).

If a program has a problem, try to find out where the problem is. If the program
crashes at an unknown point for some reason, put in checkpoints in you main program.
Once you've narrowed down the range in which the error occurs there to a single
statement, the chances are that it will be a function call. "Open up" that function,
putting in checkpoint statements, and printing any relevant quantities until the problem
can be located in that function, continuing until the problem is localised.

8.6.1 Memory allocation bugs

These bugs occur when the memory allocation heap has been corrupted. This can occur
when an allocated array is written to at an invalid location, or free () is called with
an invalid address (that is, an address that wasn't returned by malloc (), calloc ()
or realloc ()). Either way the memory heap's headers are corrupted. The results
of memory heap corruption can be unpredictable, sometimes resulting in the program
crashing, sometimes resulting in apparently "intermittent" bugs. The rules given above
for localising bugs don't work for these sorts of bugs, since the corruption is not evident
until a call to malloc () or free () etc. Most programmers could use some help
with these sorts of memory heap corruption bugs.

As of version 1.2 of Meschach, there are some built-in routines for keeping a
watch on memory usage which are mem_info_on(), mem_info_file () and
mem_info_type (). These routines respectively turn the ''mem_info_ ••• "system
on or off, printout a summary of the memory used in Meschach data structures to a file
or stream, and return the amount of memory used for a particular Meschach data type.
They can be used as follows to check for memory leaks, here in a function hairy { } :

main()
{

mem_info_on(TRUE);

8.6. DEBUGGING

}

hairy (....) ;
mem_info_f(stdout); /*print out summary*/
printf ("Memory used for vectors by hairy(): %d\n",

(int)mem_info_type(TYPE_VEC));

217

If you get negative amounts of memory in use then something has gone wrong. If
static workspace arrays are used you may need to use the MEM_STAT_REG () and
mem_stat_ ... () routines. The routine mem_stat_dump () can also be useful in
determining the status of workspace variables.

If you suspect that there is a subtle memory over-writing error, then you should
use a package that replaces the standard (fast) memory allocation package malloc ()
and free () etc, with something like the public domain package by Conor P. Cahill
(uunet address: uunet! virtech! cpcahil). This provides a drop-in replacement
for the standard library routines: compile your program as in

cc -o my_prog my_prog.c meschach.a libmalloc.a -lm

and use his malloc_chain_check (0) to check for corruption of the malloc ()
heap. There may be other "debugging" memory allocation/deaHocation packages that
you have access to.

There are also tools that come with the GNU C compiler for tracking bugs that
affect the memory heap.

These are also useful tools to determine if your program has a "memory leak"
that results in memory being allocated and then thrown away, although mem_info ()
should be enough to track down memory leaks.

8.6.2 If an else fails

Beyond these things, there are two ways of dealing with these problems.

1. Look at the source code. No-one's code is perfectly readable but we believe that
it is not too difficult to follow, especially for experienced C programmers.

2. Contact us. This is best done by e-mail; a current e-mail address is

david.stewart@anu.edu.au
zbigniew.leyk@anu.edu.au

We cannot guarantee to even look at your problem as we are not employed as pro
grammers, but as academic mathematicians. Our e-mail addresses are also subject to
change without notice.

218 CHAPTER 8. DESIGNING NUMERICAL LIBRARIES INC

8. 7 Suggestions for enthusiasts

There are a number of areas which seem to be particularly ripe for additions. Porting
to C++ and making use of classes and operator overloading in itself would be a useful
project.

Sets can be implemented a number of ways using permutations and/or integer
vectors.

Some extensions that have been considered (and maybe something will be released
eventually) include linear programming extensions, ODE solvers, and maybe some
nonlinear equation solvers. But there is much more that can be done. One item
conspicuously absent are sparse matrix re-ordering routines. A good minimum degree
algorithm should be implemented for Meschach.

8.8 Pride and Prejudice

This section is about our own personal beliefs and prejudices. These opinions are
nobody's but our own. If you find them obnoxious or frivolous, remember, you have
been warned!

8.8.1 What about Fortran 90?

We might have started thinking about it if it had been around when we started on this
project six years ago. As it is, we still haven't seen a Fortran 90 compiler, although we
have seen a very near miss in the Connection Machine Fortran.

Learning Fortran 90, especially the parts of interest to us, would involve learning
a whole new language. When it comes to pointers, dynamic memory allocation and
de-allocation, structures/records etc, it is a completely new language. We doubt that
many future users of Fortran 90 will use the full power of the language for a good
many years yet. And then, the people who do make full use of it will be people who
have programmed before inC, C++, Ada, Modula-2 (or perhaps Modula-3) and the
like. They will know the benefit of using these advanced features.

Porting it to Fortran 90 might be a possibility someday. We don't want to do that
job. Porting to C++ would be a much more useful task in the near future. (Meschach
has already been used within a C++ program.)

8.8.2 Why should people writing numerical code care about good soft
ware?

Numerical analysts and scientists often write unreadable programs.
One of us remembers trying to translate Bill Gear's DIFSUB program from Fortran 77

to C. And failed. He got lost in the spaghetti. So he looked at his description of what
it was supposed to do, and implemented that. And the result worked.

Quite a few older programmers find this situation normal or even desirable, almost
as a sort of job security, or a sense of machismo: "Real programmers don't document

8.8. PRIDE AND PREJUDICE 219

their code; if it was hard to write, it should be hard to read." It wasn't academic politics
that made this attitude unacceptable in any modern computer science department, but
practical experience combined with the urgency of the "software crisis" of the late
sixties and seventies. This "software crisis" still hasn't gone away; big, complex
systems (such as commercial and military aircraft) rely more than ever on good, bug
proof software.

On a more personal level, not being a masochist, we much prefer being able to
write programs and modify them without having to remember to juggle a dozen flags,
set and reset global variables, and so on. Modifying programs is the nature of research.
You need to be able to modify the code to do things in different, but meaningful, ways.
Trying to do this without helpful software underneath is painful; usually we find that
the same underlying operation needs to be re-implemented for the nth time.

Routines which are general purpose, and are designed with flexibility in mind, make
an enormous difference when it comes to programming and designing new algorithms. ,,
This is why people use numerical libraries. And that is why we wrote this library. The '
state of the art moves on, and instead of waiting for one's favourite numerical library to
be updated with,spmething you would like to see, this library enables you to implement
new algorithms. The code is there for inspection, use and modification. (But, please,
don't modify old routines unless they have bugs in them- real bugs- but modify
the code to create new routines.) In doing so, you can provide a platform for further
development by yourself or others. Thus the computer can be used not just to crunch
numbers, but also to improve your "personal productivity" as the advertisements say.
After all, if computers can't make life easier, or more productive, what good are they?

For Further Reading ...

A full and detailed discussion of the properties and behaviour of the numerical methods
in this library and numerical methods in general is beyond the scope of a book such
as this. Fuller treatments of numerical methods can be found in numerous numerical
analysis texts, which cover a range of different levels from beginning to advanced, and
different aspects of numerical analysis.

The text which has been of greatest use to the authors is

Matrix Computations, by G.H. Golub and C. van Loan, 1st Edition published 1983 by
North Oxford Academic Publ., Oxford, 2nd Edition published 1989 by John Hopkins
University Press, Baltimore and London.

Other general numerical analysis texts that may be useful are

An Introduction to Numerical Analysis, by K.E. Atkinson, 1st Edition published 1978,
2nd Edition published 1989, by John Wiley and Sons, New York, Chichester, Brisbane
and Toronto.

Numerical Analysis, by R.L. Burden and J.D. Faires, 4th Edition published 1989 by
Prindle, Weber & Schmidt, Boston, Massachusetts. (First edition co-authored by A. C.
Reynolds and published in 1978.)

Numerical mathematics and computing, by E.W. Cheney, D. Kincaid, 2nd Edition
published in 1985 by Brooks/Cole, Monterey, California.

Some other books on the implementation of numerical algorithms that may be useful
are:

The Engineering of Numerical Software, by Webb Miller, published 1984 by Prentice
Hall, Englewood Cliffs, New Jersey.

Numerical Recipes in C: The Art of Scientific Computing, by W.H. Press, B.P. Flannery,
S.A. Teulkolsky and W.T. Vetterling, published in 1988 by Cambridge University Press,
Cambridge, England.

220

Index

access, 2
access paths, 155
add(), 113

adjoint, 93
ANSI C, 37, 184
Arnoldi method, 47, 177

back substitution, 135
backward compatibility, 187
band matrix, 27, 120, 121, 124
band2mat (), 120
bandwidth, 27
bd_copy(), 59
bd_get () , 70
bdLDLfactor(), 121

bdLDLsol ve () , 121
bdLUfactor{), 124
bdLUsol ve (), 124
bd_resize (), 77
bd_transp (), 93

bisvd (), 143
BKPfactor (), 116, 169
BKPsolve(), 116,169
BSD Unix, 184
Bunch-Kaufmann-Parlett factorisation,

116
sparse, 169

C, 189
C++, 195, 218
calloc (), 197
catch(), 51
catchall (), 51, 204
catch_FPE (),51
CGS, 47, 173
CHfactor (), 41, 118
Cholesky factorisation, 18, 41, 118

221

band, 121

incomplete, 21
modified, 118

sparse, 165
CHsolveO, 41,118
columns, 31, 72, 101
comment, 3, 63, 202

compact form, 15
companion matrix, 215
compatibility, 187
compilation, 12, 17
complex

conjugate, 38
data type, 25

matrix, 27
number, 111
vector, 25

componentwise operations, 104
condition number, 40, 42, 44, 47, 128

estimator, 40, 122

least squares, 42

conjugate, 38

conjugate gradients, 173
pre-conditioner, 166

contiguous allocation, 27

copy, 196
copy routines, 59
copying, 199

sparse matrices, 151
copyright, 187
core routines, 113
create object, 70

data structures, 1, 23, 65, 195, 206
debugging, 65, 203, 215, 216

deep copy, 199

222

dimension, 2
d_save (), 91
Dsolve (), 135

efficiency, 203
eigenvalues, 20, 44, 139, 142, 177
eigenvectors, 20, 44, 139, 142, 215
entries, 2

band matrix, 27
sparse matrix, 153

ERRABORT () , 57
ERREXIT () , 57
err_is_list_attached(),53
err_list_attach(),53
err_list_free(),53
error(), 51, 53,215
error handling, 13, 51, 53, 57, 204
ev_err (),53, 204
exponential, 145

factorisation, 4
BKP, 116

sparse, 169
Bunch-Kaufman-Parlett, 116
Cholesky, 18, 33, 41, 118, 165

band,27, 121
incomplete, 21, 48

incomplete, 33, 165
indefinite, 116
LDL, 137
LU, 20, 122

band,27, 124
incomplete, 48
sparse, 167

modified, 33
positive definite, 118
QR, 20, 41, 43, 126, 129, 133, 137
Schur, 139
sparse, 33
SVD, 143
symbolic, 33, 165
symmetric, 116, 118, 137

Fast Fourier Transfonn, 147
fft 0, 147

files, 3, 62, 65, 91
fill-in, 27, 29, 33, 46, 165, 167
finput (), 67
floating point

precision, 80
forward substitution, 135
fprompter () , 67

INDEX

functional representation, 21, 47, 171,
211

Gauss-Seidel, 47
Gaussian elimination, 122, 167
get object, 70
get_ col (), 72
get_row () , 72
givens (), 130
Givens' rotations, 43, 130
GMRES, 47, 173
GNU, 183, 215, 217

Hadamard product, 104
hhtrcols () , 43, 133
hhtrrows(),43, 133
hhtrvec (), 43, 133
hhvec 0 , 43, 133
Householder transfonnations, 43, 126,

133

identity matrix, 73
ifft ()' 147
ill conditioning, 37
ill-conditioned problem, 39, 214
incremental testing, 213, 216
indexing, 2
initialisation, 3, 18, 73, 157
inner product, 7 5
in__prod(), 75
input (), 67
input routines, 62
inpuVoutput,3, 12, 13,65,67,198,200

interactive, 200
sparse, 158, 160

integer vectors, 25
inverse

matrix, 122, 215

INDEX

permutation, 98
ip(), 113
i ter_cg (), 21
iter_arnoldi(}, 177
iter_arnoldi_iref(}, 177
iterative methods, 47, 173, 177, 187
iterative routines, 34

data structures, 34
iter_ATx(}, 171
iter_Ax(), 171
iter_Bx(), 171
iter_cg(), 166,173
iter_cgne (}, 173
iter_cgs (), 173
iter_copy(), 171
iter_copy2(}, 171
iter_dump (}, 171
iter_free (}, 171
iter_get (), 171
iter_lanczos(}, 177
iter_lanczos2(}, 177
iter_lsqr(}, 173
i ter_mgcr (}, 173
iter_resize(}, 171
iter_sparnoldi(}, 177
iter_sparnoldi_iref(}, 177
i ter_spcg (), 21, 173
iter_spcgne(}, 173
i ter_spcgs (}, 173
iter_splanczos(}, 177
iter_splanczos2(}, 177
iter_splsqr(), 173
iter_spmgcr(}, 173
iv_add(), 76
iv_copy(), 59
iv_finput (}, 62
IV_FREE (}, 68
iv_free (}, 25
iv_free_vars(},68
iv_get (}, 25,70
iv_get_vars(),70
iv_input (}, 62
iv_resize(), 25,77
iv_resize_vars(},77

iv_sub(), 76

Jordan Normal form, 45

Krylov subspace, 177

Lanczos method, 47, 177
Lanczos routines, 215
LDLfactor (), 118
LDLsolve (}, 118
LDLupdate (}, 137
least squares, 20, 41, 126
linear combinations, 107
linear equations, 20
lint, 215
loop unrolling, 185
Lsolve (), 135
LSQR, 47, 173
LTsol ve (} , 135
LU factorisation, 20, 122, 167

band,27, 124
LUcondest (), 40, 122
zLUcondest(}, 122
LUfactor (} , 20, 122
LUsol ve (}, 20, 122
LUTsol ve (}, 122

M_FREE(}, 6
MACHEPS,37,43,80,167

223

machine dependent routines, 113
machine epsilon, 37, 43, 80, 185, 214
m_add(), 81
makeQ () , 129
makeR(), 129
Markowitz, 167
mat2band(}, 120
MATLAB,91
matrix

adjoint, 38
band,27, 120,121,124
columns, 101
complex, 27
complex adjoint, 93, 96
data structure, 26
dense,46, 120

224

diagonal, 104, 105
exponential, 145
Hessenberg, 178
Hilbert, 40
inverse, 122, 215
multiplication, 93
norm,38,94
operations, 3, 30, 81
orthogonal, 15, 126, 129,130, 133,

139, 143
polynomial, 145
random, 73
row, 101
scalar multiplication, 81
sparse, 29, 46, 121, 124
structure, 29
symmetric, 44, 139
transpose, 93, 96, 120, 154
tridiagonal, 139
unitary, 38, 45, 126, 129, 130, 133,

139
matrix-vector multiplication, 96, 154
maximum, 104
MCHfactor (), 118
m_copy (), 6, 59
m_dump () , 65
mem_attach_list(), 83,208
mem_bytes (), 83
mem_bytes_list(), 83,208
MEM_ COPY() , 114
mem_free_list(),83
mem_info_bytes(),83
mem_info_f(),216
mem_info_file(),83
mem_info_is_on(),83
mem_info_numvar(),83
mem_info_on(),83,216
mem_info_type(),216
mem_is_list_attached (), 83,208
mem_numvar_list{),208
memory management, 5, 25, 27, 29, 46,

59, 68, 70, 77, 83, 88, 149,
196,202,204,206,216

mem_stat_dump(), 88,217

INDEX

mem_stat_free(),88
mem_stat_mark(),88
MEM_STAT_REG (), 78, 85, 88, 209,

217
mem_stat_reg_list(), 88,209
mem_stat_reg_vars(), 88
mem_stat_reg_vars()~ 14
mem_stat_show_mark(), 88
MEM_ZERO (), 186
m_exp(), 145
m_finput (), 62
m_foutput (), 65
M_FREE () , 68
m_free_vars(),68
MGCR,47
m_get () , 2, 70
m_get_vars(), 70
m_ident () , 73, 143
minimum, 104
m_input (), 62
m_inverse (), 122
zm_inverse(), 122
m_load (), 91
__ mltadd __ (), 113
m_mlt(), 81
m_move () , 59
mmtr_mlt (), 93
m_norml (), 39, 94
m_norm_frob(), 39,94
m_norm_inf(),39,94
:m._ones (), 73
m_poly(), 145
m_pow(), 145
m_rand () , 73
mrand(), 73
mrandlist (), 73
m_resize (), 77
m_resize_vars(), 77
m_save (), 91
zm_save (), 91
mem_stat_free(),8
mem_stat_mark(),8
MEM_STAT_REG(), 8
m_sub(), 81

INDEX

m_transp (}, 93
mtrm_mlt (), 41, 93
mv_mlt (), 96
mv_mltadd(), 96
m_zero () , 73

norm,38
Euclidean, 39
Frobenius, 39, 94
matrix, 38, 94
vector, 109

normal equations, 41
NULL, 2, 7, 10, 29, 34, 68, 70, 77, 107,

193,197,199,202,203
numerical integration, 211

ON_ERROR () , 57
ordinary differential equations, 8
orthogonal matrices, 15, 126, 130, 133,

139
overdetermined system, 41

partial pivoting, 33, 122, 167
permutation

data structure, 28
identity, 2
matrices, 99
operations, 3, 98
vectors, 99

perturbation theorem, 40, 44
pointer, 192
pointers, 1, 29, 195, 212
polynomial, 104, 145, 214
power, 145
preconditioning, 21, 105
prompter () , 67
pseudo-inverse, 42
px_cols (), 99
px_copy (), 59
px_dump (), 65
px_finput (), 62
px_foutput (), 65
PX_FREE () , 68
px_free_vars(),68
px_get (.) , 2, 70

px_get_vars(), 70
px_ident(},98
px_input (), 62
px_inv () , 98
pxinv_vec(),99
pxinv _zvec () , 99
px_mlt (), 98
px_resize (}, 77
px_resize_vars(), 77
px_rows () , 99
px_sign (), 98
px_transp (), 98
px_vec (), 99
px_zvec () , 99

225

QR factorisation, 20, 41, 43, 126, 129
QRCPfactor(), 126
QRCPsol ve (), 126
QRfactor(}, 15,20,126
QRsol ve () , 20, 126
QRTsol ve (), 126
QRupdate {), 137

raise an error, 53
rand_mat (), 185
random entries, 73
rand_ vee (), 185
rank deficient, 42, 43
rank estimation, 42, 128, 143
rational function, 214
resizing, 149, 211
resizing data structures, 77
reverse communication, 213
rot_cols (), 130
rot_rows () , 130
rot_ vee (), 130
rot_zvec (), 130
rotations, 130
rot_cols (), 43
rot_ vee (), 43
roundoff error, 214
rows, 31, 72, 101
row_xpd {), 153
Runge-Kutta ODE solver, 8

226

scalar multiplication, 81, 102
schur (), 20, 45, 139, 142
Schur decomposition, 20, 44, 139, 142

real, 44
schur_evals(),20, 142
schur_ vals (), 45
schur_vecs(),20,45, 142
setbuf (), 215
set_col (), 101
set_err_flag(),53
set_row(), 101
shallow copy, 196
Singular Value Decomposition, 143
singular values, 42, 143
singular vectors, 42
size, 2
SmallTalk, 195
smlt(), 113
sm_mlt (), 81
smrand () , 73
solving equations, 135
SOR, 47
sorting, 1 04
sparse

eigenvalues, 177
linear equations, 173
matrix, 21, 46
rows, 162

spBKPfactor(), 169
spBKPsolve(), 169
spCHfactor (), 33, 165
spCHsolve(),33, 165
spCHsymb 0, 33, 151, 165
sp_col_access(),31, 155
sp_compact(), 149
sp_copy (), 151
sp_copy2 (), 151
sp_copy (), 19
sp_diag_access(), 155
sp_dump (), 30
sp_finput (), 158
sp_finput (), 160
sp_foutput(), 158
SP _FREE () , 149

sp_free (), 149
sp_free_vars(), 149

INDEX

sp_get (), 18, 149
sp_get_val(), 153
sp_get_vars(), 149
spiCHfactor(), 19,21, 151,165
sp_input (), 160
spLUfactor(),33, 167
spLUsolve (), 167
spLUTsolve(), 167
sp_mv_mlt 0, 154
sp_output (), 158
sp__pccg (), 19
sp_resize (), 149
sp_resize_vars(), 149
sprow_add (), 162
sprow_foutput(), 162
sprow_get (), 162
sprow_get_idx(), 162
sprow_merge(), 162
sprow_mltadd(), 162
sprow_set_val(), 162
sprow_smlt(), 162
sprow_sub (), 162
sprow_xpd (), 162
sp_set_val(), 18,153
sp_ vm_ml t (), 154
sp_zero (), 157
stability, 37

backward, 37
forward, 37

sub(), 113
SVD, 39, 41, 42, 143
svd(), 143
sv_mlt (), 102
symmeig (), 20, 44, 139

tracecatch (), 51, 204
transpose, 93, 96, 154
triangular matrices, 135 ·
trieig (), 139

unit roundoff, 37, 80, 185
unitary matrices, 45, 126, 130, 133, 139

INDEX 227

Unix, 12, 17, 215 v_resize(), 7, 77
BSD, 184 v_resize_vars(), 77

update routines, 137 v_save (), 91
Usolve (), 135 v_slash(}, 104
UTsol ve () , 135 v _sort () , 104

v_star(), 104
v _add 0, 102 v _sub () , 102
v_conv(), 104 v_sum(), 104
v_copy(), 2, 59 v_zero (), 73
v _dump(), 65
vector warning () , 53

adjoint, 38 workspace, 88, 204
complex, 25 registration, 6, 77, 206
data structure, 24
linear combinations, 107 zabs (), 111
norms, 109 _zadd_ (), 113

operations, 2, 102, 104 zadd(), 111
random, 73 _zconj_ 0, 113
sorting, 104 zconj () , 111

vector processors, 185 zdiv(), 111
v_finput (), 62 _zero_(), 113, 186
v_foutput (), 65 zexp(), 111

V _FREE () , 68 z_foutput(),65
v_free_vars(),68 zget_col (), 72
v_get 0, 2, 70 zget_row () , 72
v _get_ vars () , 70 zgi vens () , 130
v_input (), 62 zhhtrcols (), 133
v_lincomb (), 107 zhhtrrows () , 133
v_linlist (), 14, 107 zhhtrvec (}, 133
v_map (), 104 zhhvec () , 133
v_max(), 104 zin_prod(), 75
v_min(), 104 zinv(), 111
v_mltadd(), 10, 102 _zip_(), 113
vm_mlt (), 96 zLAsol ve () , 135
zvm_mlt (), 96 zlog(), 111
vm_ml tadd () , 96 zLsol ve () , 135
v_move (),59 zLUAsolve (), 122
v_norml (), 39, 109 zLUfactor (), 122
v_norm2(),39, 109 zLUsol ve (), 122
v_norm_inf(), 109 zm_add (), 81
v _norm_inf () , 39 zm_adj oint () , 93
v_ones (), 73 zmake () , 111
v_pconv(), 104 zmakeQ () , 129
v_rand(), 73 zmakeR{), 129

228

zmam_ml t () , 93
zm_copy () , 59
zm_dump () , 65
zm_finput (), 62
zm_foutput () , 65
ZM_FREE () , 68
zm_free_vars(),68
zm_get () , 70
zm_get_vars(), 70
zm_input (), 62
zm_load () , 91
zmlt(), 113
zmlt (), 111
__ zmltadd_(), 113
z:mma_ml t () , 93
zm_mltO, 81
zm_move () , 59
zm_norml () , 94
zm_norm_frob(),94
zm_norm_inf () , 94
zm_ones (), 73
zm_rand () , 73
zm_resize (), 77
zm_resize_vars(), 77
zm_sub (), 81
zmv_mlt (), 96
zmv _ml tadd () , 96
zm_zero () , 73
zneg(), 111
zQRAsolve 0, 126
QRCPfactor (), 126
QRfactor (), 126
zQRsol ve (), 126
zrot_cols (), 130
zrot_rows (), 130
z_save (), 91
zschur (), 45, 139
zset_col (), 101
zset_row(), 101
zsm_mlt (), 81
zsqrt (), 111
zsub(), 113
zsub(),lll
zUAsol ve () , 135

zUsol ve () , 135
zv_add(),102
zv_copy(), 59
zv_dump (), 65
zv_finput (), 62
zv _foutput (), 65
ZV _FREE () , 68
zv_free_vars(),68
zv_get (), 70
zv_get_vars(), 70
zv_input 0, 62
zv_lincomb(), 107
zv_linlist(), 107
zv_map (), 104
zv_mlt (), 102
zv _ml tadd () , 102
zvm_ml tadd () , 96
zv_move (),59
zv_norml (), 109
zv_norm2 (), 109
zv_norm_inf(), 109
zv_ones (), 73
zv _rand () , 73
zv_resize(), 77
zv_resize_vars(),77
zv_save (), 91
zv _slash 0, 104
zv_star(), 104
zv _sub () , 102
zv_sum(), 104
zv_zero (), 73
_zzero __ O, 113

INDEX

Function index

In the descriptions below, matrices are represented by capital letters, vectors by lower
case letters and scalars by greek lower case letters.

Function
band2mat()
bd_free ()
bd_get ()
bd_transp ()
bd_resize()

bdLDLfactor ()
bdLDLsolve()

bdLUfactor ()
bdLUsolve ()
bisvd()

BKPfactor ()
BKPsolve()
catch()
catchall()
catch_FPE ()

CHfactor()
CHsolve()
d_save()

Dsolve ()
ERRABORT()

ERREXIT()

error()
err_list_attach()
err_list_free ()
err_is_list_attached()
ev_err()
fft ()
finput()

Description
Convert band matrix to dense matrix
Deallocate (destroy) band matrix
Allocate and initialise band matrix
Transpose band matrix
Resize band matrix
Band LD LT factorisation
Solve Ax = b using band LDLT
factors
Band LU factorisation
Solve Ax = b using band LU factors
SVD of bi-diagonal matrix
Bunch-Kaufman-Parlett factorisation
Bunch-Kaufman-Parlett solver
Catch a raised error (macro)
Catch any raised error (macro)
Catch floating point error (sets flag)
Dense Cholesky factorisation
Cholesky solver
Save real in MATLAB format
Solve Dx = y, D diagonal
Abort on error (sets flag, macro)
Exit on error (sets flag, macro)
Raise an error (macro, see ev _err ())
Attach new list of errors
Discard list of errors
Checks for an error list
Raise an error (function)
Computes Fast Fourier Transform
Input a simple data item from a stream

229

Page
120
68
70

120
77

121
121

124
124
143
116
116

51
51
51

118
118
91

135
57
57
53
53
53
53
53

147
67

230

Function
fprompter()
get_col ()
get_row()
givens ()
hhtrcols ()

hhtrrows ()

hhtrvec ()

hhvec ()

ifft ()
in_prod()
input()

iter_arnoldi ()
iter _arnoldLiref ()

iter JI..Tx ()

iterJI..x 0
it.er_Bx()
iter_cg()
iter_cgne ()

iter_cgs ()
iter_copy()
iter _copy2 ()
iter_dump()
iter_free ()
iter_get ()
iter _gmres ()
iter_lanczos ()
i ter_lanczos2 ()

iter_lsqrO
iter _mgcr ()
iter_resize ()
iter_sparnoldi()
iter_sparnoldi_iref()

iter _spcg ()
iter_spcgne ()

Description
Print prompt to stderr
Extract a column from a matrix
Extract a ro.w. from a matrix
Compute Givens parameters
Compute APT where P is a House
holder matrix
Compute P A where Pis a Householder
matrix
Compute Pxwhere Pis a Householder
matrix
Compute parameters for a Householder

·matrix
Computes inverse FFT
Inner product of vectors
Input a simple data item from stdin
(macro)
Arnoldi iterative method
Arnoldi iterative method with
refinement
Set AT in ITER structure
Set A in ITER structure
Set preconditioner in ITER structure
Conjugate gradients iterative method
Conjugate gradients for normal
equations
CGS iterative method
Copy ITER data structures
Shallow copy of ITER data structures
Dump ITER data structure to a stream
Free (deallocate) ITER structure
Allocate ITER structure
GMRES iterative method
Lanczos iterative method
Lanczos method with Cullum &
Willoughby extensions
LSQR iterative method
MGCR iterative method
Change sizes in ITER structure
Sparse matrix Arnoldi method
Sparse matrix Arnoldi method with
refinement
Sparse matrix CG method
Sparse matrix CG method for normal
equations

Page
67
72
72

130
133

133

133

133

147
75
67

177
177

171
171
171
173
173

173
171
171
171
171
171
173
177
177

173
173
171
177
177

173
173

Function
iter _spcgs ()
iter_spgmres ()
iter_splanczos()
iter_splanczos2()

iter_splsqr()
iter_spmgcr()
iv_add()
iv_copy()
iv_dump()
iv_finput ()
iv_foutput ()
IV_FREE()

iv_free()

iv_free_vars ()
iv_get ()
iv_get_vars ()
iv_input ()

iv_output ()

iv_resize ()
iv_resize_vars ()
iv_sub()
LDLfactor()
LDLsolve()
LDLupdate ()
Lsolve ()
LTsolve()
LUcondest()

LUfactor()

LUsolve()
LUTsolve()
m_add()
makeQ()
makeR()
mat2band()

Description
Sparse matrix CGS method
Sparse matrix GMRES method
Sparse matrix basic Lanczos method
Sparse matrix Cullum & Willoughby
Lanczos method
Sparse matrix LSQR method
Sparse matrix MGCR method
Add integer vectors
Copy integer vector
Dump integer vector to a stream
Input integer vector from a strean:J.
Output integer vector to a stream
Free (deallocate) an integer vector
(macro)
Free (deallocate) integer vector
(function)
Free a list of integer vectors
Allocate and initialise an integer vector
Allocate list of integer vectors
Input integer vector from stdin
(macro)
Output integer vector to stdout
(macro)
Resize an integer vector
Resize a list of integer vectors
Subtract integer vectors
LDLT factorisation
LDLT solver
Update LDLT factorisation
Solve Lx = y, L lower triangular
Solve LT x = y, L lower triangular
Estimate a condition number using LU
factors
Compute LU factors with implicit
scaled partial pivoting
Solve Ax = b using LU factors
Solve AT x = b usng LU factors
Add matrices
Form Q matrix for QR factorisation
Form Rmatrix for QR factorisation
Extract band matrix from dense matrix

231

Page
173
173
177
177

173
173
76
59
65
62
65
68

68

68
70
70
62

65

77
77
76

118
118
137
135
135
122

122

122
122

81
129
129
120

232

Function
MCHfactor (}

m_copy(}
m_dump(}
mem_attach_list (}
mem...bytes (}

mem...bytes_list (}
mem_free_list (}
mem_info_bytes (}
mem_info_numvar (}
mem_info_file (}
mem_info_is_on (}
mem_info_on (}
mem_is_list_attached (}
mem_numvar (}

mem_numvar_list(}

mem_stat_dump (}

mem_stat_free (}
mem_stat..mark (}
MEM_STAT_REG(}

mem_stat_show..mark (}
m_exp(}
m_finput (}
m_foutput (}
M_FREE(}

m_free (}
m_free_vars (}
m_get (}
m_get_vars (}
m_ident (}
m_input (}
m_inverse (}
m_load(}
m..mlt (}
mmtr..mlt (}
m...norml (}
m...norm_frob (}

Description
ModifiedCholesky factorisation (actu
ally factors A+ D, D diagonal, instead
of A)
Copy dense matrix
Dump matrix data structure to a stream
Adds a new family of types
Notify change in memory usage
(macro)
Notify change in memory usage
Frees a family of types
Number of bytes used by a type
Number of structures of a type
Print memory info to a stream
Is memory data being accumulated?
Turns memory info system on/off
Is list of types attached?
Notify change in number of structures
allocated (macro)
Notify change in number of structures
allocated
Prints information on registered
workspace
Frees (deallocates) static workspace
Sets mark for workspace
Register static workspace (macro)
Current workspace group
Computes matrix exponential
Input matrix from a stream
Output matrix to a stream
Free (deallocate) a matrix (macro)
Free (deallocate) matrix (function)
Free a list of matrices
Allocate and initialise a matrix
Allocate list of matrices
Sets matrix to identity matrix
Input matrix from stdin (macro)
Invert matrix
Load matrix in MATLAB format
Multiplies matrices
Computes ABT
Computes IIAII 1 of a matrix
Computes the Frobenius norm of a
matrix

Page
118

59
65
83
83

83
83
83
83
83
83
83
83
83

83

88

88
88
88
88

145
62
65
68
68
68
70
70
73
62

122
91
81
93
94
94

Function
m_norm_inf ()
m_ones ()
m_output ()
m_poly()
m_pow()
mrand()
m_rand()

mrandlist ()

m_resize()
m_resize_vars ()
m_save()
m_sub()
m_transp()
mtrm__mlt ()
mv_mlt ()
mv __ml tadd ()
m_zero()
ON_ERROR()

prompter()
px_cols ()
px_copy()
px_dump()

px_finput ()
px_foutput ()
PX_FREE()

px_free ()

px_free_vars ()
px_get ()
px_get_vars {)
px_ident {)
px_input ()

px_inv()
pxinv _vee ()

pxinv _zvec ()

px....mlt ()
px_output ()

Description

Computes IJAJioo of a matrix
Set matrix to all1 's
Output matrix to stdout (macro)
Computes a matrix polynomial
Computes integer power of a matrix
Generates pseudo-random real number
Randomise entries of a matrix
Generates array of pseudo-random
numbers
Resize matrix
Resize a list of matrices
Save matrix in MATLAB format
Subtract matrices
Transpose matrix
Computes AT B
Computes Ax
Computes y f-- Ax + y
Zero a matrix
Error handler (macro)
Print prompt message to stdout
Permute the columns of a matrix
Copy permutation
Dump permutation data structure. to a
stream
Input permutation from a stream
Output permutation to a stream
Free (deallocate) a permutation (macro)
Free (deallocate) permutation
(function)
Free a list of permutations
Allocate and initialise a permutation
Allocate a list of permutations
Sets permutation to identity
Input permutation from stdin
(macro)
Invert permutation
Computes pT x where P is a permuta
tion matrix
Computes pT x where P is a permuta
tion matrix (complex)
Multiply permutations
Output permutation to stdout
(macro)

Page
94
73
65

145
145
73
73
73

77
77
91
81
93
93
96
96
73
57
67
99
59
65

62
65
68
68

68
70
70
98
62

98
99

99

98
65

233

234

Function Description Page
px_resize () Resize a permutation 77
px_resize_vars () Resize a list of permutations 77
px_rows () Permute the rows of a matrix 99
px_sign() Returns the sign of the permutation 98
px_transp () Transpose a pair of entries 98
px_vec () Computes Px where Pis a permutation 99

matrix
px_zvec () Computes Px where Pis a permutation 99

matrix (complex)
QRCPfactor() QR factorisation with column pivoting 126
QRfactor() Q R factorisation 126
QRsolve() Solve Ax= busing QR factorisation 126
QRTsolve() Solve AT x =busing QR factorisation 126
QRupdate() Update explicit Q R factors 137
rot_cols () Apply Givens rotation to the columns 130

of a matrix
rot_rows () Apply Givens rotation to the rows of a 130

matrix
rot_ vee () Apply Givens rotation to a vector 130
rot_zvec () Apply complex Givens rotation to a 130

vector
schur() Compute real Schur form 139
schur_evals () Compute eigenvalues from the real 142

Schur form
schur_vecs () Compute eigenvectors from the real 142

Schur form
set_col () Set the column of a matrix to a given 101

vector
set_err_flag () Control behaviour of ev _err () 53
set_row() Set the row of a matrix to a given vector 101
sm...mlt () Scalar-matrix multiplication 81
smrand() Set seed for mrand () 73
spBKPfactor() Sparse symmetric indefinite 169

factorsiation
spBKPsolve() Sparse symmetric indefinite solver 169
spCHfactor() Sparse Cholesky factorisation 165
spCHsolve() Sparse Cholesky solver 165
spCHsymb() Symbolic sparseCholesky factorisation 165

(no floating point operations)
sp_coLaccess () Sets up column access paths for a sparse 155

matrix
sp_compact () Eliminates zero entries in a sparse 149

matrix

235

Function Description Page
sp_copy() Copies a sparse matrix 149
sp_copy2 () Copies a sparse matrix into another 149
sp_diag_access () Sets up diagonal access paths for a 155

sparse matrix
sp_dump () Dump sparse matrix data structure to a 158

stream
sp_finput () Input sparse matrix from a stream 160
sp_foutput () Output a sparse matrix to a stream 158
sp_free () Free (deallocate) a sparse matrix 149
sp_get () Allocate and initialise a sparse matrix 149
sp_get_ val () Get the (i, j) entry of a sparse matrix 153
spiCHfactor () Sparse incomplete Cholesky 165

factorisation
sp_input () Input a sparse matrix form stdin 160
spLUfactor () Sparse LU factorisation using partial 167

pivoting
spLUsolve() Solves Ax = busing sparse LU factors 167
spLUTsolve() Solves ATx = b using sparse LU 167

factors
sp_mv _ml t () Computes Ax for sparse A 154
sp_output () Outputs a sparse matrix to a stream 158

(macro)
sp_resize () Resize a sparse matrix 149
sprow _add () Adds a pair of sparse rows 162
sprow_foutput () Output sparse row to a stream 162
sprow _get () Allocate and initialise a sparse row 162
sprow_get_idx () Get location of an entry in a sparse row 162
sprow_merge () Merge two sparse rows 162
sprow_mltadd() Sparse row vector multiply-and-add 162
sprow_set_val () Set an entry in a sparse row 162
sprow_smlt () Multiplies a sparse row by a scalar 162
sprow_sub () Subtracts a sparse row from another 162
sprow_xpd () Expand a sparse row 162
sp_set_ val () Set the (i, j) entry of a sparse matrix 153
sp_vm_mlt () Compute xT A for sparse A 154
sp_zero() Zero (but do not remove) all entries of 157

a sparse matrix
svd() Compute the SVD of a matrix 143
sv_mlt () Scalar-vector multiply 102
symmeig() Compute eigenvalues/vectors of a sym- 139

metric matrix
tracecatch () Catch andre-raise errors (macro) 51
trieig() Compute eigenvalues/vectors of a sym- 139

metric tridiagonal matrix

236

Function
Usolve ()

UTsolve()

v_add()
v_conv()
v_copy()
v_dump ()
v_finput ()
v_foutput ()
V_FREE()

v_free()
v_free_vars ()
v_get ()
v_get_vars ()
v_input ()
v_lincomb()

v_linlist ()
v_map()

v_max()
v_min()
v_mltadd()
vm_mlt ()
vnL.mltadd()
v_norml ()
v_norm2 ()

v _norm_inf ()
v_ones ()
v_output ()
v_pconv()
v_rand()
v_resize ()
v_resize_vars ()
v_save ()
v_slash()

v_sort ()
v_star()
v_sub()
v_sum()

Description
Solve U x = b where U is upper
triangular
Solve uT X = b where u is upper
triangular
Add vectors
Convolution product of vectors
Copy vector
Dump vector data structure to a stream
Input vector from a stream
Output vector to a stream
Free (deallocate) a vector (macro)
Free (deallocate) vector (function)
Free a list of vectors
Allocate and initialise a vector
Allocate list of vectors
Input vector from stdin (macro)
Compute Li aixi for an array of
vectors
Compute Li aixi for a list of vectors
Apply function componentwise to a
vector
Computes max vector entry & index
Computes min vector entry & index
Computes y *""--ax+ y for vectors x, y
Computes xT A
Computes yT *""-- yT + xT A
Computes llxll 1 for a vector
Computes llxlb (the Euclidean norm)
of a vector
Computes llxlloo for a vector
Set vector to all 1 's
Output vector to stdout (macro)
Periodic convolution of two vectors
Randomise entries of a vector
Resize a vector
Resize a list of vectors
Save a vector in MATLAB format
Computes componentwise ratio of
vectors
Sorts vector components
Componentwise vector product
Subtract two vectors
Sum of components of a vector

Page
135

135

102
104
59
65
62
65
68
68
68
70
70
62

107

107
104

104
104
102
96
96

109
109

109
73
65

104
73
77
77
91

104

104
104
102
104

Function
v_zero(}

zabs {)
zadd()
zconj()

zdivO
zexp ()
z_finput ()

;z_foutput ()

zgivens()

zhhtrcols()

zhhtrrows ()

zhhtrvec(}

zhhvec {)
zin_prod()
z_input ()

zinv()

zLAsolve ()

zlog()
zLsolve (}

zLUAsol ve ()

zLUcondest()
zLUfactor()
zLUsolve ()

zm_add()

zm_adjoint ()
zmake ()

zmakeQ()

zmakeR()

zmanunl t (}

zm_dump()

zm_f input ()
ZM_FREE()

j Description
1 Zero a vector

I Complex absolute value (modulus)
Add complex numbers

i Conjugate complex number
I Divide complex numbers
I Complex exponential
I Read complex number from file or
1 stream
I Prints complex number to file or stream
I C . G. ' .
1 ompute complex 1vens rotatwn
I Apply Householder transformation:

I
I PA (complex)

Apply Householder transformation:
. AP (complex)
I Apply Householder transformation:
I Px (complex)

Compute Householder transformation
Complex inner product

I Read complex number from stdin

/ Computes 1/ z (complex)
Solve L*x = b, L complex lower
triangular
Complex logarithm
Solve Lx = b, L complex lower
triangular
Solve A*x = b using complex LU
factorisation
Complex LU condition estimate
Complex LU factorisation
Solve Ax = b using complex LU
factorisation
Add complex matrices
Computes adjoint of complex matrix
Construct complex number from real
and imaginary parts
Construct Q matrix for complex Q R

I Construct R matrix for complex Q R
Computes A* B (complex)
Dump complex matrix to stream
Input complex matrix from stream
Free (deallocate) complex matrix
(macro)

Pa~

::! I
I

~ ~~ II!

Ul
62 I

I
65 I

130
1

.

133

1331

133 I
133
111
62

111
135

111
135

122

122
122
122

81
93

111

129
129
93
65
62
68

237

238

I

Function
zm_free ()

zm_free_vars ()
zm_get ()
zm_get_vars ()

ZIYLinpu t (}
zm_inverse ()
zm_load()

zmlt ()
zmma_mlt ()
zm_mlt ()
zm_norml ()
zm_norm_frob ()
zm_norm_inf ()
zm_rand()
zm_resize ()
zm_resize_vars ()
zm_save()

zm_sub(}
zmv_mlt ()
zmv _ml tadd ()

zm_zero()
zneg()
z_output ()
zQRCPfactor()

zQRCPsolve()

zQRfactor()
zQRAsolve(}

zQRsolve()

zrot_cols ()
zrot_rows ()
:<Lsave (}

zschur()
zset_col ()
zset_row()

Description
Free (deallocate) complex matrix
(function)
Free a list of complex matrices
Allocate complex matrix
Allocate a list of complex matrices
Input complex matrix from stdin
Compute inverse of complex matrix
Load complex matrix in MATLAB
format
Multiply complex numbers
Computes AB* (complex)
Multiply complex matrices
Complex matrix 1-norm
Complex matrix Frobenius norm
Complex matrix oo-norm
Randomise complex matrix
Resize complex matrix
Resize a list of complex matrices
Save complex matrix in MATLAB
format
Subtract complex matrices
Complex matrix-vector multiply
Complex matrix-vector multiply and
add
Zero complex matrix
Computes - z (complex)
Print complex number to stdout
Complex Q R factorisation with col
umn pivoting
Solve Ax = b using complex QR
factorisation
Complex Q R factorisation
Solve A*x = b using complex QR
factorisation
Solve Ax = b using complex Q R
factorisation
Complex Givens' rotation of columns
Complex Givens' rotation ofrows
Save complex number in MATLAB
format
Complex Schur factorisation
Set column of complex matrix
Set row of complex matrix

Page
68

68
70
70
62

122
91

111
93
81
94
94
94
73
77
77
91

81
96
96

73
111
65

126

126

126
126

126

130
130

91

139
101
101

Function
zsm_mlt ()
zsqrt ()
zsub ()
zUAsolve ()

zusolve()

zv_add()
zv_copy()
zv_dump()
zv_finput ()
ZV_FREE ()

zv_free ()

zv_free_vars ()
zv_get ()
zv_get_vars ()
zv_input ()
zv_lincomb()

zv_linlist ()
zv_map()

zv_mlt ()
zv_mltadd()

zvm_mlt ()

zvm...ml tadd ()
zv_norml ()
zv_norm2 ()
zv _norm_inf ()

zv_rand()
zv_resize ()
zv_resize_vars ()
zv_save ()

zv_slash()

zv_star()

Description
Complex scalar-matrix product
Square root viz (complex)
Subtract complex numbers
Solve U*x = b, U complex upper
triangular

I Solve U x = b, U complex upper

1 triangular
Add complex vectors
Copy complex vector
Dump complex vector to a stream
Input complex vector from a strear.c.
Free (deallocate) complex vector
(macro)
Free (deallocate) complex vector
(function)
Free a list of complex vectors
Allocate complex vector
Allocate a list of complex vectors
Input complex vector from a stdin

Compute Li aixi for an array of
vectors
Compute I;i aixi for a list of vectors
Apply function componentwise to a
complex vector
Complex scalar-vector product
Complex scalar-vector multiply and
add
Computes A*x (complex)
Computes A*x + y (complex)
Complex vector 1-norm
Complex vector 2- (or Euclidean) norm
Complex vector oo- (or supremum)
norm
Randomise complex vector
Resize complex vector
Resize a list of complex vectors
Save complex vector in MATLAB
format
Componentwise ratio of complex
vectors
Componentwise product of complex
vectors

Page
81

111
111
135

135

102
59
65
62
68

68

68
70
70
62

107

107
104

102
102

96
96

109
109
109

73
77
77
91

104

104

239

240

Function Description Page
zv_sub() Subtract complex vectors 102
zv_sum() Sum of components of a complex 104

vector
zv_zero () Zero complex vector 73

Low level routines

Function Description Page
__ add __ () Add arrays 113
__ ip __ () Inner product of arrays 113
MEM_COPY() Copy memory (macro) 113
MEM_ZERO() Zero memory (macro) 113
_ _ml tadd __ () Forms x + ay for arrays 113
__ smlt__() Scalar-vector multiplication for arrays 113
__ sub __ () Subtract an array from another 113
__ zadd __ () Add complex arrays 113
__ zconj __ () Conjugate complex array 113
__ zero __ () Zero an array 113
__ zip __ () Complex inner product of arrays 113
__ zmlt __ () Complex array scalar product 113
__ zml tadd __ () Complex array saxpy 113
__ zsub __ () Subtract complex arrays 113
_..:zzero __ (} Zero a complex array 113

	Preface
	Chapter 1 Tutorial
	Chapter 2 Data structures
	Chapter 3 Numerical Linear Algebra
	Chapter 4 Basic Dense Matrix Operations
	Chapter 5 Dense Matrix Factorisation Operations
	Chapter 6 Sparse Matrix Operations
	Chapter 7 Installation and copyright
	Chapter 8 Designing numerical libraries in C
	For Further Reading ...
	Index
	Function index

