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In this short paper, we discuss two results for the problem 

-6.u = f..J(u) on Dn = n X (-n,n) 

u=O on 8Dn (1) 

for large n. Here n is a bounded domain in Rm-l with smooth boundary. In [2], we 

showed that the unstable solutions (unstable for the natural. corresponding para­

bolic) are largely determined by a problem on the infinite string n X R. Thus there 

seems no reason that they should behave like the solutions of the corresponding 

problem on n. (As seen in [2], this contrasts with the stable solutions.) Here we 

present an example for each m with m ?: 3 where the unstable solutions of (1) for 

all n are quite different to those of the lower dimensional problem and this holds 

uniformly inn. To do this, we consider f's which are asymptotically like yq for large 

y where the nonlinearity is subcritical on Q but supercritical on Dn. Note that for 

many f's general results in nonlinear functional analysis ensure a general resem­

blance between the solution structure on fi and on D,... Secondly, we show that 

on certain symmetric domains, we can bound the branch of symmetric solutions 

uniformly in n where the nonlinearity grows faster than thecritical nonlinearity. 

Here we choo~e q such that (m +2)/(m- 2) < q < (m + 1)/(m- 3) and consider 

f smooth convex such that f(O) > 0, f(y) > 0 for y > 0 and f(y) "" yq as y _, oo. 
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(We do not really need to assume that J IS convex.} We also assume n is star 

shaped. We will prove that the problem 

-~1U = >..f(u) inn, u = 0 on an (2) 

(where !:l' denotes the Laplacian on Rm-l) has a unique small positive solution 

u 1(,\) for all small positive>.. Any other positive solutions for small,\ has large sup 

norm and at least one solution of the latter type for all small positive ,\. On the 

other hand, we will prove that there exists a > 0 independent of n such that for 

large n, (1) has a unique positive solution u~(.X) for 0 5 >..<a and these solutions 

are uniformly bounded in,\ and n in C(Dn)· Thus the two problems behave quite 

differently. See Fig. L Note that we really need to prove the result on Dn uniformly 

in n to ensure that the two solutions branches are not asymptotically alike. 
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Fig. 1 

We first prove the results for fi. By standard arguments, there exist a1, c: > 0 

such that (2) has a unique positive solution u1(.X) with llul(A.)IIoo ~ c: for each,\ in 

[0, ai]. Moreover, if>. is small any other positive solution has large sup norm. Let 

us consider in a little more detail the construction of u1 ( ,\ ). It is a fixed point of 

the mapping A;.: C0(Q)- C0 (Q) defined by A;.(u) = >.( -~1 )- 1 f(u). Here Co(D) 

denotes the .set of continuous functions on the closure of fi vanishing on afi. Let 

K denote the set of non-,negative functions in C0(Q). Since u1(.X) -+ 0 as >.-+ 0, 

i' is easy to prove that iK(AJ.,u1(>.)) = 1, for small A. where iK denotes the fixed 

point index on K. (For example, one could apply Theorem 1 in [4]). 

Next we prove that for each>. > 0, the sum of the indices of the positive solutions 
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is zero (counted relative to the cone K). By the homotopy ln..,ariance of the degree, 

it suffices to prove that (2) has no positive solution for ), latge and to prove that 

on any interval [t-t, v] (where fJ. > 0) there is an apriori bound in Co(fi) for positive 

solutions of (2) which holds uniformly in,\ for A E [f.l1 , v]. To prove the first of these 

claims, we note that our assumptions on f ensure that there. exists !3 > 0 such that 

f(y) 2::: f3y on [0,=). Hence, if,\ is large(>.> 1), >..j(y) > :\1 y on {0,=) where 

3::1 is the first eigenvalue of '-.6.' on n for Dirichlet boundary conditions. It follows 

easily by scalar multiplying (2) by J; (where. J; is the eigenfunction corresponding to 

:\1) that (2) has no positive solution for ), > I· This prqves the first claim of this 

paragraph. To prove the other claim, that is the apriori bound, we use a simple 

blowing up argument very similar to the proof of Lemma 1 in [3]. As in Remark 1 

after L~mma 1 in [3], it is easy to prove the uniformity in A on [JL, v]. This completes 

the proof that the sum of the indices of the positive solutions is zero. 

Since the sum of the indices of the positive solutions is zero for each >. > 0 and 

since u 1(..\) has index 1 for small positive>., it follows that there must be at least 

one other positive solution. By our earlier remarks, this other solution must have 

large sup norn1. (tending to infinity as .X-+ 0): This proves our claim for fl. 

Remarks. 

l. A slightly more careful blowing up argument show·s that any large positive 

solution for small). is of the form >. -l/(q-I){ v+o(1)) where vis a non-trivial 

positive solution of 

w=O on an. (3) 

In particular, if all the positive solutions of (3) are non-degenerate, and if 

y1-q f(y) has a limit as y -+ oo, then it is not difficult to prove that the 

number of large positive solutions of (2) for small >.is equal to the number 

of non..:..trivial positive solutions of (3). In particular if n is a disc (or is C 2 

close to a disc), it follows from [5], [6] and [7] that (2) has a unique large 

solution for small .>... On the other hand by using the results in [6], one 



42 

can construct star-shaped D's where (3) has many positive solutions for all 

small positive .A. 

2. We used that q < (m + 3)/(m- 1) in the blowing up argument. For this 

part of our argument we do not need that n is star shaped. 

We now prove our claims for the positive solutions of (1) on Dn (and uniformly 

in n). The existence and local uniqueness of u~(,\) for 0 :::; ,\ :::; 8 where b is 

independent of n) follows by a simple contraction mapping argument in C0(Dn) if 

we prove that ( -tl)- 1 is uniformly bounded in n as a linear map of C(Dn) into 

itself. It suffices to prove a uniform bound for the solution of 

-tlu = 1 in Dn 

u = 0 on 8Dn 

(by the positivity and since 1 is an order unit for C(D,).) This is obvious since 

Q $ u(x',t) $ uo(x 1) where Uo is the solution of -Ll1Uo = 1 in Q, Uo = 0 on oQ. 

Here X 1 E n, t E (-n, n]. (To see the second inequality, one can use that Uo is 

a supersolution for the equation for u.) This completes the proof of the uniform 

boundedness of (- .6.) -l . 

This result has two other useful consequences. Firstly simple sup estimates 

applied to our equation imply that any positive solution other than u~(,\) must 

have large sup norm for .A small and this holds uniformly inn. Secondly, it follows 

easily from our estimate for (- .6.) -I and a contraction. mapping argument that 

uf(.A) are uniformly bounded for all large n and for 0 $ ,\ :.::; /5. By now applying 

standard W 2 •P estimates on sets Cf3 = Q X ({3,(J + 1), we deduce that ur(_A) are 

uniformly bounded (in n, ;3 and li) in W 2 ,p ( C f3). Thus u r ( ,\) are uniformly bounded 

in the C 1 norm (by the Sobolev embedding theorem). We need this below. 

It remains to prove that there is 8 > 0 independent of n such that (1) has no 

large positive solution for 0 :::; ,\ :::; 6 and large n. For fixed n, this is a nice result 

of Schaaf [12]. See also McGough [11]. We need to check that it can be done 

uniformly in n by examining the proof in [12]. We need to examine carefully the 

proof of Theorem 1 in [12]. It is necessary to have a copy of [12) to read this part. 

The proof proceeds by using a change of variable u = u~(,\)+v. Thus vis a solution 
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of 

-tiv = Xf(u~(.\)(x) + v)- .\f(u~(X)(x)) = .\gn(x·, v, .\) in Dn 

v=O on 8Dn; 

Note that v is non-negative because u~(.\} is the minimal positive solution. By 

our aSsumptions on f and by the uniform boundedness of the u~'s for,\$ 6, it is 

easy to check that the assumptions of (17) in [12] hold uniformly in n. Moreover, 

since we can choose h6(x) = ..!:_(x- xo) (where x0 E fi) by our star shapedness 
m 

assumption and since u~(.\) are uniformly bounded in C 1 , it is easy to check that 

(26) in [12] holds'unifornily inn and that the R(o}there can be defined uniformly 

in n. · It is also easy to check that (21) in [12] holds uniformly in n and that the 

a 2 defined after (27) in (12] can be chosen independent of n. (This uses a number 

of our remarks above on when inequalities hold uniformly in n.) It is also easy 

to check that the r(a) defined after (27) in [12] is bounded uniformly in n. Since 

.\1(0 x [-n, n]) = .\1(0) for large n (by separating variables), we eventually obtain 

by repeating the derivation of (28) in [12)that 

Note that the derivation in (12] ensures that ~- ..!:_- R(a2 )- 26 is positive and 
2 m 

bounded below (uniformly in ,\ and n ). H r( a 2 ) $ 0; it follows that •v = 0; while if 

r( a 2 ) > 0, it follows that v = 0 provided 

Thus . .in all cases we have a S > 0 such that ~he original problem has a unique 

positive solution for ,\ $ 6, as required. 

Remarks. 

1. With a little care, one could replace the' star shapedness assumption by the 

condition that M(O) < ~ for suitable q (with 'the notation of (12]). This 
. . 2 

follows since one can easily establish that M(Dn) $ M(fi) for- all n. 
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2. If m = 2, our methods also cover the case of the Gelfand equation where 

f(y) = exp y. 

3. We could more easily obtain results when f(O) = 0 (where the minimal 

solutions are trivial) by using some of the ideas of Brezis and Nirenberg [1] 

(or as in §4 of Schaaf [12]). This covers some cases where the growth is 

critical on Dn rather than supercritical on Dn. 

4. Our methods could also be used to obtain analogous results for even in t and 

decreasing in t (fort 2: 0) solutions u of -L:l.u = >.j(u) in the infinite strip 

jj = Q X ( -oo, 00) such that u = 0 on ai5. For small>., these solutions decay 

exponentially to the minimal solution which ensures that various integrals 

on the whole strip converge. This sort of result is to be expected because 

of the strong connection between the unstable solutions of (1) for large n 

and the problem on the infinite strip. 

Secondly, we want to give a simple case where part of the branches continues all 

the way back to ..\ = 0 (with estimates independent of n) where we are supercritical. 

We take ?ito be a true annulus in Rm-l with centre at the origin (0 = { x' E Rm-l : 

11- < Jlx1 \l < 1}) and choose any q > 1. On Dn, we prove that there is a uniform 

bound (in n) for the positive solutions u of (1) of the form u = u(r, t) where 

r = l!x'll for ,\ 2:: 6. Standard continuation arguments (applied in the subspace 

of functions which are functions of r and t only) then ensures that the branch 

continues back to ,\ = 0. I stress that I do not claim anything about the behaviour 

of the solutions which are not radial in x' (and which we expect to exist). We 

prove the required bound by blowing up arguments. However, we first need to 

consider where a solution u on Dn achieves its maximum. By standard Gidas­

Ni-Nirenberg results, the maximum of a solution Un on Dn must occur on t = 0. 

(This will eventually mean that the length of the domain in the t direction is 

unimportant.) Suppose by way of contradiction that Un are solutions of (1) on 

Dn for>.= An such that An 2:: a > 0 for all n and {Jiunlloo,D .. } is not bounded 

(with the obvious notation). By choosing a subsequence, we may assume that 

Jlunlloo,Dn- 00 as n- 00. Let Vn(x) = (jJunlloo,D,.)-1 un((jJunJioo,D,Y-qx). By a 

simple and standard calculation Vn satisfies -L:l.vn = v! + o(l) on a tube domain 
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Dn = fln X [-tn, in], !Jvnlloo,.B .. = 1, Vn = 0 on 8Dn and the o(1) term tends 

to zero uniformly as n --+ oo (since l!unl!oo,D, --+ oo as n --+ oo.) Moreover, by 

the construction, tn --+ oo as n --+ oo and On = {x' : l-In :S l!x'JJ :S vn} where 

l-In --+ oo and Vn - l-In --+ oo as n --+ oo. In addition Vn is a. function of r and t 

only and Vn achieves its maximum on Dn at points (r,., 0). Since 0 :S Vn :S 1 on 

Dn standard local W 2 ·P estimates ensure that Vn is bounded in C1 uniformly in n 

away from the corners. Since r is uniformly large on Dn if n is large, it follows that 
1 OVn . -
--0 --+ 0 umformly on D,. as n --+ oo (away from the corners). Hence we find 
r r 

o2 vn o2 vn . -
that - or2 - oz2 - v~ --+ 0 umformly on Dn as n--+ oo (away from the corners). 

By standard limiting arguments ( cp. [8]) and by shifting the origin to (rn, 0), we 

find that a subsequence of { Vn} converges uniformly on compact sets to a bounded 
. ()2 az 

positive solution v of- or~- oz~ = vq on R 2 or {(r,z): r 2:: 7} or {(r,z) :r :S 7} 

and in the last two cases v = 0 when r = 1'. In the last two cases, we can shift 

the r again (and in the last case replacer by -1·), and obtain a bounded positive 
82 v fPv 

solution of - or2 - oz2 = vq on the half space T = {(r, z) : r 2:: 0} such that 

v = 0 on oT. In the first case, we obtain a contradiction by applying Theorem 5.1 

in Gidas and Spruck [~] while in the last two cases, we obtain a contradiction by 

applying Theorem 1.3 in Gidas and Spruck [9], Thus we have the required apriori 

bound and the proof is complete. 

Remarks. 

1. Clearly this idea can be used in some other symmetric situations. Note 

however that our argument uses essentially that r is bounded away from 

zero on the annulus. If that fails, it is unclear what can be said. 

2. If m = 2, we can also obtain analogous results where f(x) = exp y. We 

merely sketch the proof. It suffices to obtain the apriori bound. Firstly, 

the Gidas, Ni-Nirenberg theorem implies that the maximum of Vn can not 

occur for 1· dose to 1. Moreover we use an inversion in the x' variables only 

( cp. the proof on p.223 of [7]) one can show that the maximum of Vn can 

not occur near r = 1-1· (It is here that we use m = 2. We also need it later.) 

Thus the maximum of Vn occurs at a point (r,., 0) not close to the boundary 

of 8Dn· We can easily modify the arguments in Sprock [13] and Kielhofer 
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[10], §2 to bound exp( ~ (1 - a )u) i1. . . wcally near t = 0 for 0 < a < 1, 

'f l . . Th 1 au . . d . h h . um orm y m n. e extra term --a m our equatwn compare w1t t e1rs 
r r 

is easily seen to be rather harmless. By the Sobolev embedding theorem, it 

follows that exp u is bounded in Lroc(Dn) near t = 0 for all p (uniformly 

in n ). The regularity theory for -D. then implies that u E L~c (D.,) near 

t = 0 uniformly in n. The various increasing properties of u (including our 

earlier remarks) now implies a uniform (inn) bound for u in L00 (Dn) (for 

,\ 2:: 5 > 0). Here our daim follows. 
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