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TWO NOTES ON SUPERCRITICAL
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In this short paper, we discuss two results for the problem

—Au = Af(u) on D, = x (-n,n)

u=0 on 0D, (1)

for large n. Here (] is a bounded domain in R™~! with smooth boundary. In (2], we
showed that the unstable solutions (unstable for the natural corresponding para-
bolic) are largely determined by a problem on the infinite string Q x R. Thus there
seems no reason that they should behave like the solutions of the corresponding
problem on (. (As seen in [2], this contrasts with the stable solutions.) Here we
present an example for each m with m > 3 where the unstable solutions of (1) for
all n are quite different to those of the lower dimensional problem-and this holds
uniformly in n. To do this, wé consider f’s which are asymptotically like y? for large
y where the nonlineérity is subcritical on Q but supercritical on D,. Note that for
many f’s géneral results in nonlinear functional analysis ensure a general resem-
blance between the solution structure on { and on D,.. Secondly, we show that
on certain symmetric domains, we can bound the branch of symmetric solutions
uniformly in n where the nonlinearity grows faster than the critical nonlinearity.
Here we choose qA such that (m+2)/(m—-2)<q<(m+1)/(m—3) and consider
f smooth convex such that £(0) >0, f(y) > 0 for y > 0 and f(y) ~ y? as y — oo.
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(We do not really need to assume that 7 is convex.) We also assume () is star

shaped. We will prove that the problem
~Au=Af(u)in{, u=00nd80 (2)

(where A’ denotes the Laplacian on R™™!) has a unique small positive solution
u3(A) for all small positive A. Any other positive solutions for small A has large sup
norm and at least one solution of the lattef t&pe for all small positive A. On the
other hand, we will prove that there exigts a > 0 independent of n such that for
large n, (1) has a unique positive solution u7(A) for 0 < A < a and these solutions
are uniformly bounded in A and n in C(D,). Thus the two problems behave quite
differently. See Fig. 1. Note that we really need to prove the result on D, uniformly

in n to ensure that the two solutions branches are not asymptotically alike.

l[ulleo ; flulleo

on {2 on D,

Fig. 1

We first prove the results for Q. By standard arguments, there exist 51,6 >0
such that (2) has a unique positive solution u;()) with JJu1(A)|lec < € for each X in
[0, @;]. Moreover, if A is small any other positive solution has large sup norm. Let
us consider in a little more detail the construction of u;()). It is a fixed point of
the mapping Ay : Co(§)) — Co({1) defined by Ax(u) = A(—A")"! f(u). Here Co({)
denotes the set of cantinuous functions on the clbsure of O vanishing on 89. Let
K denote the set of non-negative functions in Cp({2). Since u3(A) — 0 as A — 0,
it is easy to prove that ix(Ax,u1(X)) = 1, for small X where ik denotes the fixed
point index on K. (For example, one could apply T‘heorem 1in [4]).

Next we prove that for each A > 0, the sum of the indices of the positive solutions
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is zero (counted relative to the cone K). By the homotopy invariance of the degree,
it suffices to prove that (2) has no positive solution for A large and to prove that
on any interval [u,v] (where p' > 0) there is an apriori bound in Co(ﬁ) for positive
solutions of (2) which holds uniformly in'A for A € [u1,v]. To prove the first of these
claims, we note that our assumptions on f ensure that there exists 8 > 0 such that
f(y) > By on [0,00). Hence, if X is large (A > ), Af(y) > A1y-on (0,00) where
X1 is the first eigenvalue of =A' on € for Dirichlet boundary conditions. It follows
easily by scalar multiplying (2) by ¢ (where ¢ is the eigenfunction corresponding to
Xl) that (2) has no positive solution for A > 7. This proves the first claim of this
paragraph. To prove the other claim, that is the apriori bound, we use a simple
blowing up argument very similar to the proof of Lemma 1 in [3]. As in Remark 1
after Lemma 1 in [3], it is easy to prove the uniformity in A on [g, v]. This completes
the proof that the sum of the indices of the positive solutions is zero.

Since the sum of the indices of the positiire solutions is zero for each A > 0 and
since ui() has index 1 for small positive }, it follows that there must be at least
one other positive solution. By our earlier remarks, this other solution must have

large sup norm (tending to infinity as A — 0): This proves our claim for Q.

Remarks.

1. A slightly more careful blowing up argument shows that any large positive
solution for small ) is of the form A~1/¢~1(v40(1)) where v is a non-trivial

positive solution of

“A'w=aw? inf

w=0 on 89. (3)

In particular, if all the positive solutions of (3) are non-degenerate, and if

y' 77 f'(y) has a limit as y — oo, then it is not difficult to prove that the
number of large positive solutions of (2) for small X is equal to the number
of non-trivial positive solutions of (3). In particular if { is a disc (or is C*
close to a disc), it follows from [5], [6] and [7] that (2) has a unique large
solution for small . On the other hand by using the results in [6], one
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can construct star—shaped Q’s where (3) has many positive solutions for all
small positive A.
2. We used that ¢ < (m + 3)/(m — 1) in the blowing up argument. For this

part of our argument we do not need that & is star shaped.

We now prove our claims for the positive solutions of (1) on D, (and uniformly
in n). The existence and local uniqueness of ul(A) for 0 < X < § where § is
independent of n) follows by a simple contraction mapping argument in Co(D,,) if
we prove that (—A)™! is uniformly bounded in n as a linear map of C(D,) into

itself. It suffices to prove a uniform bound for the solution of

—Au=1 in D,
u=0 ondD,

(by the positivity and since 1 is an order unit for C(D;).) This is obvious since
0 < u(z',t) < uo(z') where u is the solution of —A'ug = 1 in &, ue = 0 on 84
Here 2’ € Q, t € [-n,n]. (To see the second inequality, one can use that ug is
a supersolution for the equation for u.) This completes the proof of the uniform
boundedness of (—A)7!. _

This result has two other useful cohsequences. Firstly simple sup estimates
applied to our equation imply that any positive solution other than u}(A) must
have large sup norm for A small and this holds uniformly in n. Secondly, it follows
easily from our estimate for (—~A)™! and a contraction mapping argument that
ul(A) are uniformly bounded for all large n and for 0 < A < §. By now applying
standard W?? estimates on sets C5 = {2 x (8,8 + 1), we deduce that u?()) are
uniformly bounded (in n, 8 and §) in W*?(Cjg). Thus u}()) are uniformly bounded
in the C' norm (by the Sobolev embedding theorem). We need this below.

It remains to prove that there is §>0 independent of n such that (1) has no
large positive solution for 0 < A < 6 and large n. For fixed n, this is a nice result
of Schaaf [12]. See also McGough [11]. We need to check that it can be done
uniformly in n by examining the proof in [12]. We need to examine carefully the
proof of Theorem 1 in [12]. It is necessary to have a copy of [12] to read this part.

The proof proceeds by using a change of variable u = u}(A)+v. Thus v is a solution
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of

—Av = Af(uf(N)(z) + v) = Af(uT(A)(2)) = Agn(z,v,A) in D,
v=20 . on 0Dy, .

Note that v is non-negative because u}(A) is the minimal positive solution. By
our assumptions on f and by the uniform boundedness of the uf’s for A < §, it is
easy to check that the assumptions of (17) in [12] hold uniformly in n. Moreover,
since we can choose hs(z) = ;L—(:c — z9) (where z¢ € ﬁ) by our star shapedness
assumption and since u}(\) are uniformly bounded in C?, it is easy to check that
(26) in [12] holds uniformly in n and that the R(a) there can be defined uniformly
in n. It .is also easy to check that (21) in [12] holds uniformly in n and that the
a9 defined after (27) in [12] can be chosen independent of n. (This uses a number
of our remarks above on when inequalities hold uniformly in n.) It is also easy
to check that the r(a) defined after (27) in [12] is bounded uniformly in n. Since
A1(Q x [=n,n]) = \(Q) for largé n (by separating variables), we eventually obtain
by repeating the derivation of (28) in [12] that » k

Ar(an) w2 > M () (- - -V—R(a'z;,)»- 25) / o2

0<v<e

Note that the derivation in [12] ensures that -;— - 'r_iz- ~ R(a3y) — 26 is positive and
bounded below (uniformly in A and n). If r(az) <0, it follows that v = 0, while if
r(az) > 0, it follows that v = 0 provided

A< r(az)_l)\l(ﬁ) (-;— - —;— — R(az) - 26) .

Thus in all cases we have a 6§ > 0 such that the original problem has a unique

positive solution for A < g, as required.

Remarks.

1. W1th a httle care, one could replace the star shapedness assumption by the
. condltxon that M(Q) < = for suitable ¢ (with the notation of [12]). This
follows since one can easﬂy establish that M(D,) < M (Q) for all n.
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If m = 2, our methods also cover the case of the Gelfand equation where

fly) =expy.

3. We could more easily obtain results when f(0) = 0 (where the minimal
solutions are trivial) by using some of the ideas of Brezis and Nirenberg [1]
(or as in §4 of Schaaf [12]). This covers some cases where the growth is
critical on D, rather than supercritical on D,,.

4. Our methods could also be used to obtain analogous results for even in t and

decreasing in t (for ¢ > 0) solutions u of —~Au = Af(u) in the infinite strip

D=0x (—00,00) such that u = 0 on 8D. For small ), these solutions decay

exponentially to the minimal solution which ensures that various integrals

on the whole strip converge. This sort of result is to be expected because

of the strong connection between the unstable solutions of (1) for large n

and the problem on the infinite strip.

Secondly, we want to give a simple case where part of the branches continues all
the way back to A = 0 (with estimates independent of n) where we are éupercritical.
We take § to be a true annulus in R'""l with centre at the origin (ﬁ ={z' e R™:
p < |lz']l < 1}) and choose any ¢ > 1. On D, we prove that there is a uniform
bound (in n) for thénbgéitivé solutions u of (1) of the form u = u(r,t) where
r = ||lz'|| for A > §. Standard continuation arguments (applied in the subspace
of functions which are functions of r and ¢ only) then ensures that the branch
continues back to A = 0. I stress that I do not claim anything about the behaviour
of the solutions which are not radial in z' (and which we expect to exist). We
prove the required bound by blowing up arguments. However, we first need to
consider where a solution u on D, achieves its maximum. By standard Gidas—
Ni-Nirenberg results, the maximum of a solution u, on D, must occur on t = 0.
(This will eventually mean that the length of the domain in the t direction is
unimportant.) Suppose by way of contradiction that u, are solutions of (1) on
Dy for A = A, such that A\, > a > 0 for all n and {||un|lco,D, } is not bounded
(with the obvious notation). By choosing a subsequence, we may assume that
[unllse, D, — 00 as n.— co. Let va(z) = (||unlloo,0.) ™ tn((llunllcs,p,)*"*2). By 2

simple and standard calculation v, satisfies —Av, = v + 0o(1) on a tube domain
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D, = Q, x [—tn,tnl, vl 5, = 1, va = 0 on Bﬁn ‘and the o(1) term tends
to zero uniformly as n — oo (since |[4n]|oo,p, — 00 as n — 00.) Moreover, by
the construction, t, — oo as n — 00 and 0y = {z' : pn < ||2'|| € va} where
tn — 00 and v, — g, — 00 as n — o0o. In addition v, is a function of r and ¢
only and v, achieves its maximum on 5,, at points (ry,0). Since 0 < v, <1 on
.5,, standard local W?P estimates ensure that v, is bounded in C! uniformly in n

away from the corners. Since r is uniformly large on Dy ifnis large, it follows that
1 Ov,,

r or
that —

— 0 uniformly on 5,, as n — oo (away from the corners). Hence we find
8%v, 620,,
orz 922
By standard limiting arguments (cp. [8]) and by shifting the origin to (r,,0), we

—v? — 0 uniformly on Dnasn— oo (away from the corners).

find that a subsequence of {v,} converges uniformly on compact sets to a bounded

8%v 9%
57 " 32 =v?on R?or {(r,z): 7 > v} or {(r,2) : 7 < v}

and in the last two cases v = 0 when r = 4. In the last two cases, we can shift

positive solution v of —

the r again (and in the last case replace r by —r), and obtain a bounded positive
2 52

solution of —gr—g - —5-;21 = v? on the half space T = {(r,z) : r > 0} such that

v =0 on 7. In the first case, we obtain a contradiction by applying Theorem 5.1

in Gidas and Spruck [9] while in the last two cases, we obtain a contradiction by

applying Theorem 1.3 in Gldas and Spruck [9] Thus we have the requlred apriori

bound and the proof is complete.

Remarks.

1. Clearly this idea can be used in some other symmetric situations. Note
however that our argument uses essentially that r is bounded away from
zero on the annulus. If that fails, it is unclear what can be said.

2. If m = 2, we can also obtain analogous results where f(z) = exp y. We
merely sketch the proof. It suffices to obtain the apriori bound. Firstly,
the Gidas, Ni-Nirenberg theorem implies that the maximum of v, can not
occur for r close to 1. Moreover we use an inversion in the z' variables only
(cp. the proof on p.223 of [7]) one can show that the maximum of v, can
not occur near r = . (It is here that we use m = 2. We also need it later.)
Thus the maximum of v, occurs at a point (7, 0) not close to the boundary

of 8D,. We can easily modify the arguments in Spruck [13] and Kielhofer
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1
(10], 82 to bound exp(§(1 —a)u)in ..  socallynear t =0 for 0 < a < 1,

. . 10u . . . .
uniformly in n. The extra term - — in our equation compared with theirs

r Or

is easily seen to be rather harmless. By the Sobolev embedding theorem, it

4

follows that exp u is bounded in Lf

(D,) near t = 0 for all p (uniformly
in n). The regularity theory for —A then implies that u € L{¥.(D,) near
t = 0 uniformly in n. The various increasing properties of u (including our
earlier remarks) now implies a uniform (in n) bound for u in L*°(D,,) (for

A > 6> 0). Here our claim follows.
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