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Abstract

The Hopf Bifurcation Theorem is the simplest result which guarantees the bifurcation of a family of
time periodic solutions of an evolution equation from a family of equilibrium solutions. In this paper, we
apply the theorem to a class of partial differential equations (PDEs). The usual assumption of differen-
tiability of nonlinear terms is dropped by the employment of topological considerations. The method of
parameter functionalization plays a very important role.

§1. Introduction

The bifurcation of periodic orbits from certain critical points of a real, n-dimensional (n > 2),
first-order system of autonomous ordinary differential equations was treated by E.Hopf [7] in 1942.
To explain briefly Hopf’s work, let the differential equation be denoted by

dz
r =F(\z), z€R", (1.1)

where ) is a real parameter, and let 2> be a critical point at A. Let it be assumed that F' is analytic
in a neighborhood of (A,z) = (0,2%) and let the matrix F,(0,z°) have exactly two, non-zero,
purely imaginary eigenvalues, say =+iwg, and have no eigenvalues of the form 0, +2iwq, 3w, ....
Hopf proved that a non-constant periodic orbit bifurcates from (A, z) = (0,z°) under the sole
additional assumption that o’(0) # 0 if @()) + 4w ()) denotes that eigenvalue of Fy(A,z”) which
is a continuous extension of +iwg. Some authors, following Hopf, have approached the bifurcation
problem by trying to vary the initial conditions and parameters so as to produce a nontrivial time
periodic solution (see, for example, [1] and [13]). Others have introduced the unknown period
explicitly as a new parameter in the equations and attempted to find solutions having a known
period (see, for example, (2] and [8]). It is difficult to compare those papers since they are set in
different technical frameworks and have related but differing hypotheses. But no matter what they
did, they all required that the nonlinearities be of C* class. In §4], [6] and [11], employment of
topological considerations made it possible to throw aside the usual assumptions of differentiability
of nonlinear terms, but there Hopf bifurcation theorem are still restricted in an n dimensional space.

. In this paper, we discuss Hopf bifurcation of a class of PDEs with nondifferentiable nonlinear-
ities. This needs the Hopf bifurcation theorem in general Banach spaces [5]. Possible applications
of this theorem are also discussed in [9].
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§2. Preliminaries

Let X be a Banach space and C([0, ], X} be a family of all continuous functions from [0, ]
into X, where « is a positive number in R. C([0, x], X) is a Banach space with norm || - llo(jo,<1,x)
defined by

YaN
M2 lleo,x,x)= o =)l

ie[0,x
for each = € C([0, x], X).
Similar to Ascoli’s Theorem ([3] p.122) we have the following result.

Lemma 2.1. Suppose thai a sequence {z,} of C([0,x},X) is bounded and eguiconiinuous on
[0, k). If {zn(t)} s compact for each t € (0, &], then {z,} s also compaci, i.e., it has a convergent
subsequence.

Let
X, =X @iX & {21 + iza|z1, 27 € X, = -1}

Consider a linear operator A from its domain in X, denoted by D(4), into X. Then A will
also denote its extension to a linear operator from its domain in X, denoted by D(4)., into X.

Lemma 2.2. Suppose that A is the infinitesimal generator of o semigroup of the linear operators,
{T(t)}, on X. Then

1). for every = in D(A),

dT(t)z _ .
ol AT(t)z = T(t)Az; (2.1)

2). T(t) is continuous in the uniform operator topology fort > 0 if T'(t) is enalytic ai everyi > 0.

The proof of this lemma is evident.

§3. Elementary Assumptions and Properties

Let us consider the following a class of partial differential equations

du %y 8k-1y

7~ Mggr T e g

o ot NP as(uta(he) (120, b <2< h), (3.1)

where ) is a parameter in R, k is an integer, a;(}) (¢ =0,1,---,%) is a function of A and ay\, z) is
a function of ) and z. Let X be the set of continuous, periodic functions defined on [£y, £5] with
period £ — £1. Then X is a Banach space with the norm

L2
£ llx=1 /, |f(2)Pda?

1

for f € X, and, X is a subspace of L%[¢, #;]. Define the linear operator A(}) by

k ' k-1
A8 =N T +a N L o+ ()L 4 a0

from a subset of X to X. Then (3.1) is equivalent to a differential equation in X

dz

= ANz + a(2, z). (3.2)
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Assumption (HA).

(1). There ezisis a Ao € R such that A(/\o) A is the infinitesimal generator of a semigroup of
linear operators, {T(t)}, on X. T(t) is tmalytzc at every t > 0. Furthermore, for each y € X,
there ezists an © € D(A) such that Az =

Lemma 3.1. D(A) C X is a Banach space with norm || - |4 defined by
Il 2 lla=ll 4=
for each = € D(A).
Assumption (HA).
(it). A has o purely imaginary eigenvalue iwo (wo # 0) which is simple, i.e.,
dimN (A —iwel) =1

where N.(-) denotes the null subspace in D(A). and I is the identity operator from X, onto ~
CJ.

(iii). tnwg, for n=0,42,43,---, are not in o(4), the specirum of A;

(iv). A(A)—A <s e bounded linear operator from D A)L into D(A) for each A and A(X) is continuvous
with respect to A in the sense of the norms of the lmeu.r operators;

(v). two is an isolated eigenvalue of A, i.e., there does not ezzst any other eigenvalue of A in a
neighbourhood of wwg;

(vi). For each A, A()) commutes with A;
(vii). (I — A)~ is compact for p in the resolvent set of A.

By (H J(u) iv) and (v), we have (see, for example, [10] p.213) that there are a continuous
D(A).-valued function () and a continuous complex valued m()) defined in a neighbourhood of
Ao such that

A(N)z(2) = m(A)2(2)

and
z(Ao) =20 # 0, m(Ao) = w

Following Hopf, another assumption is

Assumption (Hm). The real part of m(}), Re(m(})), takes values of opposiie signs in every
neighbourhood of Ag.

Let B(Xo) be a closed neighbourhood of Ag. The requirements on @ in (3.2) are stipulated by
the following assumption.

Assumption (Ha).
(i). @ is a continuous function from R X D(A) into D(4);
(ii).
lim  ||a(A2)]|a
lzllam0 |l=lla
uniformly with respect to A € B(Xo);
(iii). || a(A, z) ||4 is bounded for all = in a bounded set of D(A) and A € B(Xo).

=0 (3.3)

One may prove that
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Lemma 3.2. If Assumption (HA) is true, then

. . 2m
N (A — iwol) ® Ne(A + wol) = NC(T(-‘;;) - 1I),
where N(-) denotes the null space in D(A)..
§4. An Existence Result
Let E be a Banach space with norm || - ||g. Consider an operator U(, z) which is defined on a

neighborhood of a point {1, 0} € R? x F and takes values in E. Let U (g, z) admit a representation

of the form
U(p, ) = V(p)z + v(p, z),

where V(1) is a bounded linear operator from E into E for each p and where the remainder term
v(p, z) satisfies the condition :
o(m2)lls _
lells=o [z |l5
uniformly with respect to p in a neighborhood of po. We also suppose V(p)z and v(u,z) are
completely continuous on g and ‘z. Furthermore, we denote the identity operator from F onto

E by I and the null space of a linear operator L from F into EF by Ng(L). Then Kozjakin and
Krasnosel’skii [11] prove that

Lemma 4.1. Let 1 be an eigenvalue of the linear operator V(uo) with
dimNE(V([Lo) - IE) =2

and let this eigenvalue be of simple structure. Suppose that there ezisis ¢ sequence of Jordan
curves ;Ln} in R? converging to po. Consider 1 —m(p), where m{p) is the continuvous branch of
eigenvalues passing through the eigenvalue 1, be defined and not equal to zero on each curve Ln.
Then there ezist pin, — po and T, — 0 (2, # 0) such that 2 = U(pn, za)-

§5. Hopf Bifurcation
Definition 5.1. We shall say that for A = )¢ generation of small periodic solutions of ihe
system (8.2) with periods close to Ty iakes place, if for every € > 0 there ezists a A, in the interval
(Ao’;— Z, Ao + €) for which the system (3.2) has a nonzero Te-periodic solution z.(t) (|Te — To| < €)
such thai

I 2e(t) llc@orapan= sup [l z(t) la<e,

0<t<T,

where || - ||4 s the norm of D(A).
Theorem 5.1. Suppose Assumptions (HA), (Hm) and (Ha) hold. Then for A = Ao, generation

of small periodic solutions of the sysiem (5.2) with periods close to %% takes place.

Proof. Let E £ C([0, k], D(A)) denote the Banach space of continuous D(A)-valued functions
defined on the interval [0, ], where « = ‘%—E + 1, with the topology of uniform convergence, i.e., for
each z(t) € E,

. .
Il =(t) lle= sup | =(t)]la
te[0,x]

where || - ||4 is the norm of D(A). Consider an operator, from E into E, of the form
t
Ulto, 3 2)(2) = T(t)o(to) + / T(t — )[A()) — AJa(s)ds
0

+/(; T(t — s)a[X, z(s)]ds
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which depends on two parameters tg and A.

Direct verification shows that =z € C([0, k], DS]A)) is a fixed point of the operator Ul(tg, A;-) if
and only if z(t) is a solution of the system (3.2) that satisfies the condition =(0) = =(to) (see, for
example, [14] pp.146-147). Hence we may extend z(t) to a periodic solution of (3.2) with period
to.

Let us verify that the operator U(to, A; ) satisfies the conditions in Lemma 4.1.

Step 1. Represent U(io, A;z) in the form of a sum
Ulto, )i 2) = Vo, Vo + (A 2),

where

V(to, M)z(t) = T(t)z(to) + Lt T(t - s)[A(X) — Alz(s)ds

and
w(Ai2)(t) = '/0 Tt — s)a[A, o(s)]ds.

Now, for any given € > 0, by Assumf)tion (Ha)(i), there exists a § > 0 (independent of A € B(Ao))
such that
lla(A z) |la<e|lz]la whenever | zl|la<é and =z € D(4).

And, since {T'(t)} is a C, semigroup, there exists a constant w > 0 and C > 1 such that
I T(2) ll< ce (5.1)
for all A € B(Xo).

Hence, when A € B(Xo) and || z(t) ||g< 8, there exist £, 5 € [0, x] such that £ > § and

Il o(% ) |ls =] j T(E - s)alA, 2(s))ds ||

i
< / sup || T(Z - s)a[A, z(s)] ||a ds (see[12]p.5)
0 0<a<i

< || T(E - 3)alA, 2(3)] l|la

Skl TE-3) -1l afr 2(3)] lla

< KO Ec | a(3) L4

< kCe"¢ || z(t) ||z - (5.2)

This proves that

lv(=) s _
lelis—o ||z |z

uniformly with respect to ) in the neighbourhood of Ag, B(Ag).
Step 2. we would like to prove that V(ig, A)z and v(A;z) are completely continuous with respect
toio € [0,k], A € B(Ao) and = € E. Let {(tn, An,2n)} be a bounded sequence of [0, k] x B(Ao) x E.

E}ien, we only need to prove that {V(t,, An)zn} and {v(A,;z,)} are compact sets. We prove this
elow.

1). Since {An} is bounded, it has a convergent subsequence. Without loss of the generality, one
may assume that {A,} itself is convergent, i.e. there exists A* € B(Xo) such that

Ap — A*
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as n — oo. So, without loss of the generality, one may assume that A(A,) — A is bounded in
the sense of the norms of operators. Furthermore, since z, is also bounded in E, there exists
an M > 0 such that .

la(X 2a(2)) le< M
for all X € B(Xo) and n = 1,2, 3, -- by Assumption (Ha)(iii).

2). It is evident that {2, (¢, )} is a bounded sequence in D(4). So, {T(t)z~(t.)} C C([0, £], D(A))
is bounded by (5.1). Note that, by Lemma 2.2, {T'(¢)zn(t,)} is equicontinuous on [0, k]. Fur-
thermore, we have that T(tz’ is a compact operator (see {14] p.48) for each ¢ € (0, I? y As-
sumption (HA)(vii). Then, by Lemma 2.1, {T(t)z(t.)} is compact subset of C([0, ], D(4)).

3). Similar to the derivation of (5.2), there exist £ and 5 in [0, x] such that £ > & and

I [ T~ AOw) - Alaale)is s
<RI TE=3) 11 AG) = AV |- | 2a(5) la - (53)
Hence, \
Vi(An;2a)(t) 2 /0 T(t — 8)[A(\n) — Alen(s)ds (5.4)

is bounded. Furthermore, let
B(A)=A(A) -4

for each A. Then, for any 71,72 € [0, k] and 71 < 73, there exist 51,52 € [0, &] such that
I ViAnszn)(72) = Vi(Ani2a)(m1) |la
T2 T1
T / T(r2 — 8)B(An)en(s)ds — / T(r1 — ) B(n)zn(s)ds |4
0 )

<| /0 " T(ry = 8)B(Ow)n(s)ds — /O " rs — $)B(n)en(s)ds ||4
+ /0 " T(ry = 8)B(An)en(s)ds — /0 " Py — $)B(m)on(5)ds ||
S/,TQ | T(ra = s1) | - || B(An)zn(s1) |la ds

+/0n | T(r2 = 52) = (s = s2) || - | B(An)2n(s2) || ds

<(r2 = 1)Ce* %) || B(An) || - | 2 (o) ||
71| T(r2 = s2) = T(ro = s2) || - | BOw) || - || 2a(s2) lla (5.5)

This means that {Vi(A.;2n)} is equicontinuous by Lemma 2.2. Hence, by Lemma 2.1,
{Vi(An;zn)} is compact. :

4). By the derivation of (5.2), we have that {v(X,;2n)} is a bounded sequence of E.
5). Similar to the proof of (5.5), we may claim that {v()y; :z:,,)} ilas a Cauéhy subsequence.
Step 3. By the Lemma 3.2, we have
2 = dim No(A — iwoI) + dim N, (4 + iwol)
= dim N.(T (Mo, i_’;) -1

= dim N(T(-z%) -,
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and hence, 1 is the eigenvalue of the linear operator T'(Tp), where N(-) denotes the null space in
D(A) and Tp = f—%

Step 4. By Lemma 2.2, one can see that z(t) € Ng(V(To, do) — Ig), Le.,
z(t) = V(To, Xo)z(t) = T(t)z(To) (5.6)

for all t € [0, k] if and only if z(t) is the solution of

d
Et? = Az (5.7)
with 2(0) = =(To) # 0.

Let {z1,22} be a base of N(T(Xo,To) — I) and z;(t) (¢ = 1,2) be corresponding solutions of
(5.7). Then, for z(t) € Ng(V(To, Ao) — Ig), we have that

z(0) = z(To) = T(To)z(To)

by (5.6).
Hence z(0) = z(To) € N (T(To).— I). So, there exist complex constants d;-and d such that
z(0) = dyz; + daza.
Thus, by the uniqueness of the solutions of (5.7),
z(t) = dyz1(t) + daza(2). (5.8)

Furthermore, for i = 1, 2, z;(t) = T(t)z; since z;(t) is a solution of (5.7). So, z;(To) = T(To)z; = ;.
Hence z;(t) = T(t)z: = z:(t) = T(t)z:i(To) = V(To, Ao)z:i(t)
for i = 1,2. This means that z;(t) € Ng(V(To, Ao)—Ig). z1(t) and z,(t) are evidently independent.
S0 by (58), dim Ng(V(To, o) — Ig) = 2
and 1 is the eigenvalue of V' (T, Ao).

It is evident that the eigenvalue 1 is of simple structure by the continuity of A(A) — A and
Assumption (Hm).

Step 5. By Assumption (Hm), Re(m())) changes sign in every neighbourhood of Ao, so we can
construct the required Jordan curves.

Hence, we have completed the verification of Lemma 4.1’s conditions. Thus, Theorem 5.1 is
proved. O

§6. An Example

In order to show the applicability of the Hopf bifurcation theorem (Theorem 5.1), let us
consider the following partial differential equation

ou 0*u  Bu
-Ez_ﬁ+-é—;+)\u+a(u)(t20,03252), (6.1)

where ) is a parameter and a(u) will be defined below. Let X be the set of continuous, periodic
functions defined on [0, 2] with period 2. Define the linear operator A(A) by

_ &% dp

AN = o + -+ A4,
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from a subset of X to X. Then the domain of A(}), for each A, is the set of second order
continuously differentiable, periodic solutions defined on [0,2]. By Theorem 8.2 in [12] p.163, we

know that, 4 2 A(7?) is the infinitesimal generator of a semigroup of linear operators, {T'(¢)}, on
X and T'(t) is analytic for every ¢ > 0, and for each ¢ € X,

T(t)¢ = u(4,1),

where u(¢,t) is the solution of

du
i Au u(4,0) = ¢. (6.2)

It is evident that for each ¢ € X there exists a y € D(4) such that Ay = =. Let
ér(z) = ezp(ikrz) (k=0,£1,42,--). (6.3)
Then ¢, € D(A) for each k. Now, for each ¢ € X, ¢(z) can be written in the form of

é(z) = Z[‘lk cos(kwz) + by sin(kwz)].

. k=0

Let us define a function from D(A) into D(A) by

a($) = |a1|? cos(mz).

Then a is a operator, from D(A) into D(A), satisfying Assumption (Ha). Hence, equation (6.1)
can be written as a differential equation

du
% = A(X)u + a(u) (6.4)

in the Banach space D(4).
Now let us check that Assumptions (HA) and (Hm) are satisfied.

Step 1. 1t is easy to see that
B(A) 2 A -4
is bounded for each A and A(}) is continuous with respect to A in the sense of the norms of the
linear operators. Furthermore, it is also obvious that A(A) commutes with 4 for any A € R. So,
Assumption (HA)(iv) and (vi) are satisfied.

Step 2. Note that the spectrum §(A(X)) of A(A) consist; of the simple eigenvalues
my(A) = (A — k2x?) + ik, (6.5)
k =0,£1,42,.--. with corresponding eigenfunctions ¢x(z). That is
ANk = mi(X)dk.
Hence, A has a purely imaginary eigenvalue
ir 2 iwg
which is simple and A has no eigenvalues of the forms 0, 42iwg, +3iwp,---. This means that

Assumptions (HA) (ii) and (iii) are satisfied. Assumption (HA)(v) is satisfied evidently. Refer to

[15] (pp.93-94) Theorem 3.1 and its example, we have that (u — A)~! is compact for each y in
the resolvent set of A. This verifies Assumption (HA)(vii).
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Step 8. Let
m(A) = (A — x%) + . (6.6)

Then the real part of m(A) takes values of opposite signs in every neighbourhood of 72 evidently.
So Assumption (Hm) is satisfied.

Thus, the conditions in Theorem 5.1 are satisfied so that Theorem 5.1 is applicable to this
example. In other words, system (6.1) bifurcates infinitely many times when X is close to the value

w2,
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