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A.ust?alia 

The Hopf Bifurcation Theorem is the; simplest result which guarantee• the bifurcation of a family of 
tim,, periodic solution• of an evolution equa.tion from a famiJ.y of equilibrium solutions. In this paper, we 
apply the theorem to a class of partial diJferential equations (PilEs). The usual assumption of differen-
tiability of nonlinear terms is dropped the employment of topological considerations. The method of 
parameter functionaliza.tion plays a very role. 

§L Introduction 

The bifurcation of periodic orbits from certain critical points of a real, n.-di:mensional (n;:::: 2), 
first-order system of autonomous ordinary differential. equations was treated by E.Hopf [7] in 1942. 
To explain briefly Hopf's work, let the differential equation be denoted by 

d:~: 

dt == alE R", (l.l) 

where A is a real parameter, and let :1::>. be a critical point at .A. I,et it be assumed that F is analytic 
in a neighborhood of (J\, :z:) = (0, :rc0 ) and let the matrix 1i',(O, :~:0 ) have exactly two, non-zero, 
purely imaginary eigenvalues, say ±iwo, and have no eigenvalues of the form 0, ±2it.!lo, ±3iwo, .... 
Hopf proved that a non-constant periodic orbit bifurcates from p,, :1:) = (0, :z:0 ) under the sole 
addit.ional assumption that a'(O) :f: ()if a(>.)+ i"'1(,\) denotes that eigenvalue of F..,(>., ~l<) which 
is a continuous extension of +iw0 • Some authors, folfowing Hop£, have approached the bifurcation 
problem by trying to vary the ini'Gia! conditions and parameters so as to produce a nontrivial time 
periodic solution (see, for example, [1] and [13}). Others have introduced the unknown period 
explicitly as a uew parameter in the equations and a·~tempted to :lind solutions having a known 
period (see, for example, [2] and [8]). It is difficult to compare those papers since they are set in 
different technical frameworks and have related but differing hypotheBes. But no matter what they 
did, they all required that the nonlinearities be of C 1 class. In [4], [6] and [11], employment of 
topological considerations made it possible to throw aside the usual assumptions of differentiability 
of nonlinear terms, but there Hopf bifurcation theorem a.re still restricted in an n dimensional space, 

In this paper, we discuss Hopf bifurcation of a class of PDEs with nondifferentiable nonlinear­
ities. This needs the Hopf bifurcation theorem in general Banach spaces [5]. Possible applications 
ofthis theorem are also discussed in [9]. 
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§2. Preliminaries 

Let X be a Banach space and C([O, x;], X) be a family of all continuous functions from [0, x;] 
into X, where x; is a positive number in R. C([O, ~~;],X) is a Banach space with norm II· llc([o, 10],X) 
defined by 

!;. 
II :z: llc([o,"],x)= sup II :z:(t) II 

tE[O,~~:] 

for each :z: E C([O, x;], X). 

Similar to Ascoli's Theorem ([3] p.122) we have the following result. 

Lemma 2.1. Suppose that a sequence {:z:,.} of C([O,x;],X) is bounded and equicontinuous on 
[0, x;]. If {:z:,..(t)} is compact for each t E (0, x;J, then {:z:,..} is also compact, i.e., it has a convergent 
subsequence. 

Let 

Consider a linear operator A from its domain in X, denoted by D(A), into X. Then A will 
also denote its extension to a linear"operator from its domain in Xc, denoted by D(A)c, into Xc. 

Lemma 2.2. Suppose that A is the infinitesimal generator of a semigroup of the linear operators, 
{T(t)}, on X. Then ·· 

1}. for every :z: in D(A), 
dT(t):z: --= AT(t):z: = T(t)A:z:; 

dt 
(2.1) 

2}. T(t) is continuous in the uniform operator topology fort ;?: 0 ifT(t) is analytic at every t ;?: 0. 

The proof of this lemma is evident. 

§3. Elementary Assumptions and Properties 

Let us consider the following a class of partial differential equations 

where>. is a parameter in R, k is an integer, a..(>.) (i = 0,1, · · ·, k) is a function of>. and a(>., :r:) is 
a function of>. and :z:. Let X be the set of continuous, periodic tunctions defined on [£1 , l 2] with 
period l2- £1. Then X is a Banacll space with the norm 

for f EX, and, X is a subspace of L2 [l1 ,l2]. Define the linear operator A(>.) by 

from a subset of X to X. Then (3.1) is equivalent to a differential equation in X 

d:z: 
dt = A(>.):z: +a(>., :z:). (3.2) 
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Assumption (HA). 

(i). There e~ists a. .Ao E R such that A(.Ao) ~ A is the infinitesimal generator of a semigroup of 
linear operetor·s, {T(t)}, on X. T(t) is rtnrtlytic at every t ~ 0. Furthermore, for each y EX, 
there ezists an z E D(A) such that A:n = y. 

Lemma 3.1. D(A) C X is a Banach space with norm II· IIA defined by 

for each z E D(A). 

Asmmption (HA). 

(ii). A has a purely imaginary eigenval'l!.e iwo (wo f:. 0) which is simple, i.e., 

dimNc(A- iwoi) = 1 

where Nc(-) denotes the null subspace in D(A)c a.nd I is the identity operator from Xc onto -
Xci 

inwo, foT n = 0, ±2, ±3, · · ·, are not in u(A.), the spectrum of A; 

(iv). A(>.)-A i11 a brn.1!11.ded linear operator frmn D(A) into D(A) for each A lllnd A(>.) is continuous 
with re11ped to A in the sense of the norms of the linea;!' operators; 

(v). iw0 is an isolated eigenvalue of A, i.e., there does not ezist any other eigenvalue of A in a 
neighbourhood of iwo; 

(vi). For ea.c:h .>., A( .A) commutes with A; 

(vii). (1-d- A)- 1 is compact for J-1. in the resolvent set of A. 

By (HA)(ii), (iv) and (v), we have (see, for example, (10] p.213) that there are a continuous 
D(A)c-valued function x(A) and a. continuous complex valued m(.A) defined in a neighbourhood of 
Ao such that 

A(>.):n(A) = m(>.)z(A) 

and 
x(.Ao) = zo =P O, m(J.o) = iwo. 

Following Hopf, another assumption is 

Assumption (Hm). The real part of m(.A), Re(m(A)), takes values of opposite signs in every 
neighbo-urhood of Ao. 

Let B(.Ao) be a dosed neighbourhood of ).0 , The requirements on a in (3.2) are stipulated by 
the following assumption. 

Assumption (Ha). 

a is a continuous function from R x D(A) into D(A); 

(ii ). 
lim II a(J.., z) IIA = 0 

llz!IA---+ 0 II z IIA 
(3.3) 

uniformly with respect to A E B(.A0 ); 

(iii). II a( .A, :c) IIA is bounded for all z in a bounded set of D(A) and A E B(.Ao). 

One may prove that 
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Lemma 3.2. If Assumption (HA) is true, then 

• . 211" 
Nc(A -l.Woi) EEl Nc(A + l.Woi) = Nc(T(-)- I), 

wo 

where Nc(·) denotes the null space in D(A)c· 

§4. An Existence Result 

Let E be a Banach space with norm II· liE· Consider an operator U(p., :ll} which is defined on a 
neighborhood of a point {p.0 , 0} E R2 x E and takes values in E. Let U(p., :ll) admit a representation 
of the form 

U(p., :ll) = V(p.):ll + v(J.£, :ll), 
where V(J.£) is a bounded linear operator from E into E for each p. and where the remainder term 
v(J.£, :ll) satisfies the condition · 

lim II v(p., :ll) liE = 0 
ll=lls-+0 II :ll liE 

uniformly with respect to p. in a neighborhood of P.o· We also suppose V(p.):ll and v(p., :ll) are 
completely continuous on p. and ':ll. Furthermore, we denote the identity operator from E onto 
E by IE and the null space of a linear operator L from E into E by NE(L). Then Kozjakin and 
Krasnosel'skii [11] prove that 

Lemma 4.1. Let 1 be an eigenvalue of the linear operator V(p.o) with. 

dimNE(V(J.I.o)- IE)= 2 

and let this eigenvalue be of simple structure. Suppose that there ezists a sequence of Jordan 
curves {.Cn} in R2 converging to P.o· Consider 1- m(p.), where m(p.) is the continuous branch of 
eigenvalues passing through the eigenvalue 1, be defined and not equal to zero on each curve .C,. 
Then there ezist J.l.n -+ P.o and z,. -+ 0 (z., =F 0) suck that Zn = U(J.I.n, z.,). 

§5. Hopf Bifurcation 

Definition 5.1. We shall say that for>. = >.o generation of small periodic solutions of the 
system (3.2} with periods close to To takes place, if for every~ > 0 there ezists a >., in the interval 
(>.o- ~. >.o +~)for which the system (3.2} has a nonzero T,-periodic solution z,(t) (IT,- To I<~) 
suck that 

II z,(t) lio([o,T.],D(A))= sup II z,(t) IIA< ~. 
095T. 

where II ·IIA is the norm of D(A). 

Theorem 5.1. Suppose Assumptions (HA), (Hm) and (Ha) hold. Then for>.= >.o, generation 
of small periodic solutions of the system {3.2} with periods close to !: takes place. 

Proof. Let E ~ C([O, ~J, D(A)) denote the Banach space of continuous D(A)-valued functions 
defined on the interval [0, ~J, where ~ = 2 ... + 1, with the topology of uniform convergence, i.e., for 
each z(t) E E, wo 

II z(t) liE~ sup II z(t) IIA 
tE[O,~~:] 

where II·IIA is the norm of D(A). Consider an operator, from E into E, of the form 

U(to, >.; z)(t) = T(t)z(to) + l T(t- s)[A(>.)- A]z(s)ds 

. + l T(t- s)~[>., z(s)]ds 
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which depends on two parameters to and >.. 

Direct verification shows that ;z: E C([O, ~e), D(A)) is a fixed point of the operator U(to, >.;·)if 
and only if z(t) is a solution of the system (3.2) that satisfies the condition z( 0) = z(to) (see, for 
example, [14) pp.146-147). Hence we may extend z(t) to a periodic solution of (3.2) with period 
to. 

Let us verify that the operator U (to, >.; ;z:) satisfies the conditions in Lemma 4.1. 

Step 1. Represent U(t0 , >.; ;z:) in the form of a sum 

where 

and 

U(to, >.; ;z:) = V(to, >.)z + v(>.; ;z: ), 

V(t0 , >.)z(t) = T(t)z(to) + £ T(t- s)[A(>.)- A]z(s)ds 

v(>.; z)(t) = l T(t- s)a[>., z(s)]ds. 

Now, for any given e > 0, by Assumption (Ha)(ii), there exists a 6 > 0 (independent of>. E B(>.o)) 
such that 

lla(>.,z)IIA<ellziiA whenever llziiA<6 and zED(A). 

And, since {T(t)} is a Co semigroup, there exists a constant w ~ 0 and C ~ 1 such that 

II T(t) 11:5 Ce"'t 

for all>. E B(>.o). 

Hence, when >. E B(>.o) and II z(t) liE< 6, there exist t, 8 E [0, ~e) such that t ~ 8 and 

II v(>.; z) liE =111f T(t- s)a[>., z(s)]dsiiA 

f :51 sup II T(t- s)a[>., z(s)]iiA ds 

This proves that 

o o:s;.:s;r 
:5 1e II T(t- 8)a[>., z(s)]iiA 
:5 /C II T(t- s) II · II a[>., z(i))IIA 

:5 ~eCew(f-l)e Jl z(i) JIA 
:5 ~eCe"'~<e II z(t) liE • 

lim II v( >.; ;z:) liE = 0 
ll:r:lla--+0 II Oil liE 

uniformly with respect to >. in the neighbourhood of >.o, B(>.o). 

( see[12)p.5) 

(5.1) 

(5.2) 

Step 2. we would like to prove that V(to, >.)z and v(>.; z) are completely continuous with respect 
to to E [0, !C),>. E B(>.o) and ;z: E E. Let {(t,., >.n, zn)} be a bounded sequence of [0, ll:) X B(>.o) X E. 
Then, we only need to prove that {V(tn, >.n)zn} and {v(>.n; zn)} are compact sets. We prove this 
below. 

1). Since {>.n} is bounded, it has a convergent subsequence. Without loss of the generality, one 
may assume that {>.n} itself is convergent, i.e. there exists >.• E B(>.o) such that 
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as n--> oo. So, without loss of the generality, one may assume that A( .A,.) -A is bounded in 
the sense of the norms of operators. Furthermore, since :z:,.. is also bounded in E, there exists 
an M > 0 such that 

II a( .A, x,(t)) \IE::; M 

for all,\ E B(.Ao) and n = 1, 2, 3, ···by Assumption (Ha)(iii). 

2). It is evident that { :r.n(tn)} is a bounded sequence in D(A). So, {T(t):e,.(t,)} C C([O, x:J., D(A)) 
is bounded by (5.1). Not!l that, by Lemma 2.2, {T(t):cn(t,..)} is equicontinuous on [0, x;], Fur­
thermore, we h'ave that T(t) is a compact operator (see [14] p.48) for each t E (0, x;l by As­
sumption (HA)(vii). Then, by Lemma 2.1, {T(t)x,(t,)} is compact subset of C([O, xJ, D(A)). 

3). Similar to the derivation of (5.2), there exist t and sin [0, x;] such that t 2: sand 

Ill T(t- s)[A(>.,.)- A]xn(s)ds liE 

::5 x; II T(f- s) II · II [A( .A,.)- A] II · II zn(s) \lA · 

Hence, 
• b. t 

V1(.A,..; x,)(t) = Jo T(t- s)[A(.An)- A]x,(s)ds 

is bounded. Furthermore, let 
B(.A) = A.(.A)- A 

for each,\, Then, for any 71 1 72 E [0, K;] and 71 :::; 72, there exist s 1 , s2 E [0, x:J such that 

II V1(.\,; Zn)(72)- V1(.A,; :Z:n)(71) liA 

= 11lr2 T(r2- s)B(>.,.)z,(s)ds- L'' T(r1- s)B(.A,..)z,.(s)ds \lA 

:::; ul'2 
Th- s)B(>.,)xn(s)ds- Lr, T(72- s)B(>.,.,)z,.(s)ds IIA 

+II L'' T(72- s)B(.An)zn(s)ds -l'' T(71- s)B(.An)zn(s)ds IIA 

::51~' II T(72- sl) 11·11 B(>.,):vn(sl) IIA ds 

+ l'' II Tb- s2)- T(71- s2) II ·II B(.An)x,.(s2) \lAds 

::5(72- 7l)Cew(ra-•.) II B(.An) I\ ·II z,(sl) 1\A 

(5.3) 

(5.4) 

+T1 II T(r2- s2)- T(71- s2) 11·1\ B(>.,..) 11·11 Zn(s2) \\A (5.5) 

This means that {V1(A,.; :z:,..)} is equicontinuous by Lemma 2.2. Hence, by Lemma 2.1, 
{Vl(Ani Zn)} is compact. 

4). By the derivation of (5.2), we have that {v(>.,.; :en)} is a bounded sequence of E. 

5). Similar to the proof of (5.5), we may claim that { v(Ani :z:,.)} has a Cauchy subsequence. 

Step 3. By the Lemma 3.2, we have 

2 = dimNc(A- iwoi) + dimNc(A + iwoi) 

= dimNc(T(.Ao, 27r)- I) 
wo 

= dim N(T( 211") - I), 
wo 
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and hence, 1 is the eigenvalue of the linear operator T(To), where N(·) denotes the null space in 
D(A) and To = ::. 

Step 4. By Lemma 2.2, one can see that z(t) E NE(V(To, >.o)- IE), i.e., 

z(t) = V(To, >.o)z(t) = T(t)z(To) 

for all t E (0, K;] if and only if z(t) is the solution of 

dz =Az 
dt 

with z(O) = z(To) ::f. 0. 

(5.6) 

(5.7) 

Let {z11 z2} be a base of N(T(>.o, To)- I) and z;(t) (i = 1, 2) be corresponding solutions of 
(5.7). Th~n, for z(t) E NE(V(To, >.o)- IE), we have that 

z(O) = z(To) = T(To)z(To) 

by (5.6). 

Hence z(O) = z(To) E N(T(To) -I). So, there exist complex {;onstants d1cand d2 such that 

z(O) = d1z1 + d2z2. 

Thus, by the uniqueness of the solutions of (5. 7), 

(5.8) 

Furthermore, fori= 1,2, z;(t) = T(t)z; since z;(t) isasolutionof(5.7). So, z;(To) = T(To)z; = z;. 
Hence 

z;(t) = T(t)z; = z;(t) = T(t)z;(To) = V(To, >.o)z;(t) 

fori= 1,2. This means that z;(t) E NE(V(T0 , >.o)-IE)· z1(t) and z 2(t) are evidently independent. 
So, by (5.8), 

dimNE(V(To, >.o)- IE)= 2 

and 1 is the eigenvalue of V(To, >.o). 

It is evident that the eigenvalue 1 is of simple structure by the continuity of A(>.) -A and 
Assumption (Hm). 

Step 5. By Assumption (Hm), Re(m(>.)) changes sign in every neighbourhood of >.o, so we can 
construct the required Jordan curves. 

Hence, we have completed the verification of Lemma 4.1's conditions. Thus, Theorem 5.1 is 
proved. D 

§6. An Example 

In order to show the applicability of the Hopf bifurcation theorem ('l\heorem 5.1), let us 
consider the following partial differential equation 

(6.1) 

where >. is a parameter and a( u) will be defined below. Let X be the set of continuous, periodic 
functions defined on (0, 2] with period 2. Define the linear operator A(>.) by 
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from a subset of X to X. Then the domain of A(>.), for each >., is the set of second order 
continuously differentiable, periodic solutions defined on [0, 2]. By Theorem 8.2 in [12] p.163, we 

know that, A~ A(1r2 ) is the infinitesimal generator of a semigroup of linear operators, {T(t)}, on 
X and T(t) is analytic for every t ~ 0, and for each if> EX, 

where u( ¢, t) is the solution of 

T(t)¢> = u(¢>, t), 

du 
-=Au u(¢, 0) = ¢. 
dt 

It is evident that for each a: E X there exists a y E D(A) such that Ay = x. Let 

rPk(a:) = exp(ikn) (k = O, ±1, ±2, · · ·). 

Then rPk E D(A) for each k. Now, for each¢ EX, cfo(x) can be written in the form of 

¢(x) = 2)ak cos(kn) + bk sin(kn)]. 
k=O 

Let us define a function from D(A) into D(A) by 

(6.2) 

(6.3) 

Then a is a operator, from D(A) into D(A), satisfying Assumption (Ha). Hence, equation (6.1) 
can be written as a differential equation 

in the Banach space D(A). 

du - = A(>.)u + a(u) 
dt 

Now let us check that Assumptions (HA) and (Hm) are satisfied. 

Step 1. It is easy to see that 

B(>.) ~ A(>.)- .A 

(6.4) 

is bounded for each A and A(>.) is continuous with respect to A in the sense of the norms of the 
linear operators. Furthermore, it is also obvious that A(>.) commutes with A for any ). E R. So, 
Assumption (HA)(iv) and (vi) are satisfied. 

Step 2. Note that the spectrum 6(A(>.)) of A(>.) consists of the simple eigenvalues 

k = O, ±1, ±2, ···.with corresponding eigenfunctions rPk(x). That is 

Hence, A has a purely imaginary eigenvalue 

. b. . 
t?r = l.Wo 

(6.5) 

which is simple and A has no eigenvalues of the forms 0, ±2iw0 , ±3iw0 , • • •• This means that 
Assumptions (HA) (ii) and (iii) are satisfied. Assumption (HA)(v) is satisfied evidently. Refer to 
[15] (pp.93-94) Theorem 3.1 and its example, we have that (J.LI- A)-1 is compact for each J.l. in 
the resolvent set of A. This verifies Assumption (HA)(vii). 
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Step 3. Let 
(6.6) 

Then the real part of m(>.) takes values of opposite signs,in every neighbourhood of 1r2 evidently. 
So Assumption (Hm) is satisfied. 

Thus, the conditions in Theorem 5.1 are satisfied so that Theorem 5.1 is applicable to this 
example. In other words, system (6.1) bifurcates infinitely many times when .:l, is close to the value 
1r2 0 
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