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The maximum principle 

for degenerate parabolic PDEs 

with singularities 

Hitoshi Ishii 

1. Introduction 
This is a preliminary version of [7]. Here we shall be concerned with the 

degenerate parabolic partial differential equation (PDE in short) 

(1) Ut + F(Du, D 2u) = 0 inn X (0, T). 

Here and in what follows n is a domain of RN' T > 0 is a given constant, u 

represents the real unknown function on n X (0, T) and F is a real function on 

RN X sN, where sN denotes the set of real N X N symmetric matrices. 

Recent developments have revealed that equations (1) with F having singu

larities or discontinuities are important in the study of generalized evolutions of 

hypersurfaces, especially, in the level set approach. 

Chen, Giga and Goto [3] and Evans and Spruck [5] initiated the level set 

approach, on a firm mathematical basis, to evolutions of hypersurfaces driven 

by their mean curvature or by some other geometric quantitives alike. In the 

case of evolution by mean curvature, F turns out to be 

F(p, X) = -tr (1- Pi~t) X. 

Thus in their approach F(p, X) is not defined for p = 0. 

According to Angenent and Gurtin [1, 2], equations (1) with F discontinuous 

in a set of directions of p's arise in a mathematical model for the dynamics of a 

melting solid, where the boundary between the solid and liquid phases gives an 

evolving hypersurface. 



114 

In this model F typically has the form: 

(2) 

where H is a real, positively homogeneous function of degree 1. The convexity 

of H corresponds to the degenerate parabolicity of (1), i.e. 

F(p, X) ::; F(p, Y) if X 2:: Y. 

If H E C 2 (RN \ {0}) and His convex, then F has singularities only for p = 0 

and the situation is in the case which was studied by Chen, Giga and Goto [3]. 
In the above model the function H in (2) describes a quantity which may 

be called as interface tension energy and may be nonconvex in the viewpoint 

of physics. Then (1) is not parabolic and the initial (-boundary) value problem 

for (1) is not well-posed. In this situation an appropriate replacement of H, 

suggested by [1, 2], is to use the convex envelope H of H. The reader may find 

some arguments which give justifications for this replacement of H in [1, 2], [6]. 

Even if His smooth, His not necessarily in C2 (RN \ {0}). 

Motivated by the above model, Ohnuma and Sato [8] and Gurtin, Soner and 

Souganidis [6] recently studied PDEs (1) with F(p, X) which are discontinuous 

in a finite number of directions of p's. This kind of singuralities are typical for 

N = 2. When N > 2, singularities ofF typically form a continuum of directions 

of p's. 

Here we shall establish the maximum principlefor (1) with F(p,X) having 

discontinuities in a continuum of directions of p's and indicate its application to 

motion of a phase interface. 

2. Main results 
We begin with the explanation of our assumptions on F. 

(Al) There is a C2 submanifold (without boundary) M of sN-l = {x ERN I 
Jxl = 1} of dimension d E {0, · · ·, N- 2} such that F is continuous on 

(RN \ R+M) X SN. 
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Here and henceforth R+ denotes the set ( 0, oo) and so, R+ = [0, oo) and 

R+M = {tx 1 t ~ O,x EM}. 

We need a kind of continuity ofF on the set (R+M) x sN. For p E M 

let TpM denote the tangent space of M at p and let 1r denote the orthogonal 

projection of RN onto TpM EB span {p }. For p E M and t > 0 we set 

SN(tp) ={X E SN i1rX1r =X}, 

so that SN(p) = SN(Pflpl) for all p E R+M. Also, we denote by SN(O) the 

subset {0} of sN. Let p E M. Note that X E SN(p) if and only if (I-

1r)X = X(I- 1r) = 0, with 1r denoting the orthogonal projection of RN onto 

TpM EB span{p}. Note also that if X E SN{p), then tX E SN(p) for all t E 

R. Moreover, observe that if X E sN, A E SN(p) and -A :5 X :5 A, then 

X E sN (p ). Indeed, if 1r is the orthogonal projection of R N as above, then the 

inequality -A :5 X sA yields · 

I(X(7r~ +(I- 7r)'IJ),7r~ +(I- 7r)'IJ)I 

= l(1rX1r,,~) + 2(1rX(I -7r)7J,~} +((I- 1r)X(I- 7r)7J,7J)I 

:5 (1rArre,e) for all e,7J ERN. 

From this we deduce that (I -1r)X(I -1r) = 0 and 1rX(I -1r) = 0, and further

more, that 1r X 1r = X. 

(A2) If p E R+M and X E SN(p), then 

F*(p, X) = F.(p, X). 

Here and henceforth we use the notation: 

and F.= -(-F)". 

We remark that if e1, · · · , eN denote the standard basis of RN, if eN E M 

and t > 0 and if e1, · · ·, ed E TeNM, then 

X =(Xijh-;;i,j-;;N E sN(teN) 

~ X E sN and Xij = 0 if d < i < N and j = 1, ... 'N. 



116 

The degenerate ellipticity is statet 

If p E RN \ R+M and X, Y E sN and if X:::; Y, then F(p, X) ~ F(p, Y). 

We are now in a position to state the main theorem formulated for bounded 

domains n. 
Theorem 1. Let {A1}, {A2} and {A3) hold. Assume that n is bounded. Let 

u E USC(D x [0, T)) and v E LSC(D x [O,T)) be a viscosity subsolution and a 

viscosity supersolution of (1 ), respectively. Assume that u :::; v on (an X [0, T)) u 
(n X {0}). Then u:::; v inn X (O,T). 

The case d = 0 is exactly the case treated by Ohnuma and Sato [8] and 

Gurtin, Soner and Souganidis [6]. 

3. Proof of Theorem 1. 
Let us explain two lemmas, which are key ingredients in the proof of the 

above theorem. 

Lemma 1. Letu,v E USC(V), where Vis an open subset Rm, and define 

wE USC(VxV) byw(x,y) = u(x)+v(y). Letx,y E V, p,q E Rm and A E sm 
satisfy 

(p, q, ( _AA ~4)) E f'·+w(x, 

Then there are X, Y E sm such that 

and A~ 0. 

-2+ . -2+ (p,X) E J ' u(x), (q, Y) E J' v(y), 

_3 (A 0) < (X 0) <: 3 ( A 
0 A - 0 Y - -A 

Lemma 2. Under assumption {A1}, there is a 

{0}) such that 

-A) A . 

{i) 1/J is convex and positively homogeneous of degree 1 on RN, 

{ii) 1/J(x) > 0 for x =/= 0, 

{iii) 1/J is twice continuously differentiable in a neighborhood of R + M, 



117 

(iv) x E R+ M if and only if x -:f. 0, and D,P(x) E R+ M and 

(v) for any x E R+ M, D2 ,P(x) E gN (D,P(x)). 

With these lemmas at hand, the proof of Theorem 1 is a rather tedious 
repetition of the standard argument in the theory of viscosity solutions. We 
refer to (7] for the proof of Theorem 1. 

The idea of the proof of Lemma 2 may be explained as follows. Let M C 
sN-1 be a 0 2 submanifold as in Lemma 2~ Fix any point q E sN-1 and a 
smooth strictly convex body K so that K contains the unit ball B(O, 1) C RN 
and so that q E oK and all the principal curvatures of oK at q vanish. Then, 
for each p E M we define Kp as the convex set obtained by rotating K around 
the origin so that the new position of q is at p. The function 'ljJ is defined as the 
Minkowski functional of the c-neighborhood of the set 

U{Kp IP EM}, with c > 0. 

The details of the proof may be found in (7]. 

4. Generalized evolution of a hypersurface 
In addition to (A1)- (A3) we assume that (1) is geometric, i.e. 

(A4) If p E RN \ R+M, X E gN and A > 0, JL E R, then 

F( Ap, AX + JLP ® p) = AF(p, X). 

Now we consider the initial value problem 

(IVP) { 
Ut + F(Du,D2u) = 0 in RN x (O,oo), 

u = g on RN x {0}, 

where g is a given function on RN: Theorem 1 and standard arguments in 
viscosity solutions theory yield the following: 

Theorem 2. Assume that g E BUC(RN) and that (At) - (A4) hold. Then 
there is a unique viscosity solution u of (IVP) satisfying u E BUC(RN x {0, T)) 
for allT > 0. 

Let £ denote the set of triplets (r, n+, n-) of a closed subset r and two 
open subsets n+' n- of R N such that 

run+ u n- = RN and r, n+' n- are mutually disjoint. 

If (r, n+, n-) E £,then there is a function g E BUC(RN) such that 

(3) r = {g = o}, n+ = {g > o} and n- = {g < o}. 
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Conversely, if g E BUC(RN), then 

({g = O},{g > O},{g < 0}) E £. 

The geometricity (A4) of (1) allows us to conclude the following property, 
the proof of which can be found in [7]. 

Theorem 3. Assume that (AJ)- (A4) hold. Let 91,92 E BUC(RN) satisfy 

{91 > 0} = {92 > 0}, {91 < 0} = {92 < 0} and {gl = 92}· 

Let ui, i = 1, 2, be the (unique) viscosity solutions of {IVP}, with 9 = 9i, satis
fying Ui E BUC(R x [O,T)) for allT > 0. Then 

{u1 > 0} = {u2 > 0}, {u1 < 0} = {u2 < 0} and {u1 = u2}. 

Now a generalized evolution of a triplet (I', D+, n-) E £ by (1) can be 
defined as follows. Fix any g E BUC(RN) so that (3) holds, solve (IVP) with 
this initial data g and set 

I't = {u(·, t) = 0}, Dt = {u(·, t) > 0} and D"t = {u(·, t) < 0}. 

for all t ~ 0. Theorem 3 guarantees that the sets I't, and Di do not depend 
on the choice of g. The collection {Et}t;:::o of mappings 

of£ into itself is the generalized evolution of (r,D+,n-) by (1). Theorem 2 
ensures the semigoup property: 
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