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The maximum principle
for degenerate parabolic PDEs
with singularities

Hitoshi Ishii

1. Introduction
This is a preliminary version of [7]. Here we shall be concerned with the

degenerate pé,ra,bolic partial differential equation (PDE in short)
(1) us + F(Du,D?u) =0 in Q x (0,7).

Here and in what follows Q is a domain of R¥, T > 0 is a given constant, u
represents the real unknown function on Q X (0,7) and F is a real function on
RY x SV where S¥ denotes the set of real N x N symmetric matrices.

Recent developments have revealed that equations (1) with F' having singu-
larities or discontinuities are important in the study of generalized evolutions of
hypersurfaces, especially, in the level set approach.

Chen, Giga and Goto [3] and Evans and Spruck [5] initiated the level set
approach, on a firm mathematical basis, to evolutions of hypersurfaces driven
by their mean curvature or by some other geometric quantitives alike. In the

case of evolution by mean curvature, F turns out to be

F(p,X) = —tr (I - plfjf ) X.

Thus in their approach F(p,X) is not defined for p = 0.

According to Angenent and Gurtin [1, 2], equations (1) with F discontinuous
in a set of directions of p’s arise in a mathematical model for the dynamics of a
melting solid, where the boundary between the solid and liquid phases gives an

evolving hypersurface.
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In this model F typically has the form:

o rnmefon(E) (-50)3)

where H is a real, positively homogeneous function of degree 1. The convexity

of H corresponds to the degenerate parabolicity of (1), i.e.
F(p,X) < F(p,Y) #X>7Y.

If H € C?(RY \ {0}) and H is convex, then F has singularities only for p = 0
and the situation is in the case which was studied by Chen, Giga and Goto [3].

In the above model the function H in (2) describes a quantity which may
be called as interface tension energy and may be nonconvex in the viewpoint
of physics. Then (1) is not parabolic and the initial (-boundary) value problem
for (1) is not well-posed. In this situation an appropriate replacement of H,
suggested by [1, 2], is to use the convex envelope H of H. The reader may find
some arguments which give justifications for this replacement of H in [1, 2], [6].
Even if H is smooth, H is not necessarily in C*(R¥ \ {0}).

Motivated by the above model, Ohnuma and Sato [8] and Gurtin, Soner and
Souganidis [6] recently studied PDEs (1) with F(p, X) which are discontinuous
in a finite number of directions of p’s. This kind of singuralities are typical for
N = 2. When N > 2, singularities of F' typically form a continuum of directions
of p’s.

Here we shall establish the maximum principle for (1) with F(p, X) having
discontinuities in a continuum of directions of p’s and indicate its application to

motion of a phase interface.

2. Main results _
‘We begin with the explanation of our assumptions on F.
(A1) There is a C? submanifold (without boundary) M of S¥~! = {z € RY |
|z] = 1} of dimension d € {0,---, N — 2} such that F' is continuous on
(RY \ R, M) x SV, |
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Here and henceforth R, denotes the set (0,00) and so, Ry = [0,00) and
R M= {tz|t >0,z € M}.

We need a kind of continuity of F on the set (R M) x SV. Forp € M
let T,M denote the tangent space of M at p and let w denote the orthogonal
projection of R onto T, M @ span {p}. For p € M and t > 0 we set

SV(tp) = {X e SV | X7 = X},

so that SV (p) = S¥(p/|p|) for all p € Ry M. Also, we denote by S™(0) the
subset {0} of SV. Let p € M. Note that X € SN(p) if and only if (I —
7)X = X(I — 7) = 0, with 7 denoting the orthogonal projection of R¥ onto
T,M @ span {p}. Note also that if X € S¥(p), then tX € SN(p) for all ¢t €
R. Moreover, observe that if X € SV, A € SV(p) and —4 < X < A, then
X € SN (p). Indeed, if 7 is the orthogonal projection of RY as above, then the
inequality —A4 < X < A yields '

(X (7w + (I = m)n),m€ + (I — m)n)|

= |[(mXn¢, &) + 2nX (I —m)n, &) + (I — )X (I — m)n,n)|
< (wAné,€) for all €,n € RV,

From this we deduce that (I —7)X(I —7) =0 and #X(I —7) = 0, and further-
more, that 7 X7 = X.
(A2) If p€ Ry M and X € SN(p), then

F*(p,X) = Fu(p, X).
Here and henceforth we use the notation:
F*(€) = limsup{F(n) | n € (R \ Ry M) x 8", ln - €]| <e},

and F, = —(—F)*.
We remark that if e;,- -+, ey denote the standard basis of RV, if ey € M
and t > 0 and if e;,---,eq € T, M, then

X =(zi)1<i,5<n € SN (ten)

<= X €SV and z;j=0 ifd<i<Nandj=1,---,N.
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The degenerate ellipticity is statec
(A3) Ifpe RN\R+M and X,Y € SV and if X <Y, then F(p,X) > F(p,Y).

We are now in a pos1tion to state the main theorem formulated for bounded

domains Q.

Theorem 1. Let (A1), (A2) and (A8) hold. Assume that Q is bounded. Let
u € USC( x [0,T)) and v € LSC(Q x [0,T)) be a viscosity subsolution and a
viscosity supersolution of (1), respectively. Assume thatu < v on (0Qx[0,T))U
(0 x {0}). Then u < v in Q2 x (0,T). E

The. case d = 0 is exactly the case treated by Ohnuma and Sato [8] and

Gurtin, Soner and Souganidis [6].

3. Proof of Theorem 1.

Let us explain two lemmas, which are key mgredlents in the proof of the

above theorem.

Lemma 1. Let u,i) € USC(V), where V is an open subset of R™, and define
weUSC(VxV) byw(z,y) =u(z)+v(y). Letz,y €V, p,g € R™ and A € S™
satisfy

(P, 9, (_AA —:AA)) € J>tw(z,y) and A >0.

Then there are X, Y € S™ such that

—=2,+ . - —=2,+
(p, X) € J" u(x), (¢,Y) € J " v(y),
A 0 X 0) . A —-A
26 2= 7)== (4 )

Lemma 2. Under assumption (A1), there is a function ¢ € C(RV)NCHH(RN\
{0}) such that ‘

(i) 1 is convez and positively homogeneous of degree 1 on‘RN s

(i) P(z) >0 forxz #0,
(i) % is twice continuously differentiable in a neighborhood of RT M,
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(iv) x € RYM if and only if z # 0, and Di(z) € Rt M and
(v) for any z € R*M, D¥y(z) € SV (Dy(x)).

With these lemmas at hand, the proof of Theorem 1 is a rather tedious
repetition of the standard argument in the theory of viscosity solutions. We
refer to [7] for the proof of Theorem 1.

The idea of the proof of Lemma 2 may be explained as follows. Let M C
SN¥-1 be a C? submanifold as in Lemma 2. Fix any point ¢ € S¥~! and a
smooth strictly convex body K so that K contains the unit ball B(0,1) ¢ RV
and so that ¢ € K and all the principal curvatures of 8K at g vanish. Then,
for each p € M we define K, as the convex set obtained by rotating K around
the origin so that the new position of ¢ is at p. The function 1 is defined as the
Minkowski functional of the e-neighborhood of the set

U{K,|p€ M}, withe> 0.

The details of the proof may be found in [7].

4. Generalized evolution of a hypersurface
In addition to (A1) — (A3) we assume that (1) is geometric, i.e.

(A4) IfpeRN\R M,X €SV and A >0, g € R, then
F(Ap,AX + pp ® p) = AF(p, X).

Now we consider the initial value problem

ug + F(Du,D?*u) =0 in R" x (0, 00),

(IVP) {u =g onRY x {0},

where g is a given function on RY. Theorem 1 and standard arguments in
viscosity solutions theory yield the following:

Theorem 2. Assume that ¢ € BUC(RY) and that (A1) - (A4) hold. Then
there is a unique viscosity solution u of (IVP) satisfying u € BUC(RY x [0,T))
for allT > 0.

Let £ denote the set of triplets (I', D¥,D~) of a closed subset I' and two
open subsets D1, D~ of R" such that

TuDtuD™ =RY and T, DY, D™ are mutually disjoint.
If (T,D%,D™) € £, then there is a function g € BUC(RY) such that

(3) I'={g=0}, Dt ={g >0} and D™ = {g < 0}.
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Conversely, if g € BUC(RY), then
({g=0},{g>0},{g<0})e&.

The geometricity (A4) of (1) allows us to conclude the following property,
the proof of which can be found in [7].

Theorem 3. Assume that (A1) - (A4) hold. Let g1,g2 € BUC(RN) satisfy

{91 >0} ={g2>0}, {g1<0}={g2<0} and {g =g}

Let u;, i = 1,2, be the (unique) viscosity solutions of (IVP), with g = g;, satis-
fying u; € BUC’(R x [0,T)) for all T > 0. Then

{u1 >0} = {ua >0}, {u1.<0}={uz <0} oand {u;=us}

Now a generalized evolution of a triplet (I',D¥,D~) € £ by (1) can be
defined as follows. Fix any g € BUC(RY) so that (3) holds, solve (IVP) with
this initial data ¢ and set

Ty = {u(,,t) = 0}, D?- .= {u(-,t) >0} and Dy ={u(,t) <0}

for all t > 0. Theorem 3 guarantees that the sets I';, D;” and D; do not depend
on the choice of g. The collection {E,}:>¢ of mappings

E,:(T,D*,D~) ~ (Ty, D}, D;)

of £ into itself is the generalized evolution of (', D*¥,D~) by (1). Theorem 2
ensures the semigoup property:

AE() = idg, EH-J = Et o E, for all t,S __>_ 0. .
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