








199 

n :S 8, w is in L 4 . This will be used later.) Thus if uCo) E LP with the above 
restrictions on p, the monotonicity shows that u(k) -t ii. in LP. 

The question to answer next is whether ii. is a solution of the original problem. 
Now 

= c- t-t¢(x1 

Provided and </J., •. (x, ) a:re all in L\ it follows that the right-hand 
and hence u<k+l) converge m , also 

11 is indeed a. solution to the 

con·ve1gence. 
Novr that convergence o:f -·+ ii in has been proven, ··1ve can mves-

the speed with which this convergence occurs. As we are using a Newton 
oY.r"lergence if q_p is a function. and there is 

for smooth ¢ can indeed be shown: usmg 

)+ =0 
�-�-�~�U� --· c + u) =::: o 

+·p + 

Hence 

-- u) + 

+ 

Note that 
�b�o�~�1�n�d�e�d� 
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The left-hand side of this inequality is ~ J0 IV( uCk+l)- ii)i2 dV = llu(k+l)- ullkt· 
0 

If kn, 2 denotes the imbedding constant of HJ(O) in L2 (f2), then 

Substituting this into the inequality for the above integral gives 

liuCk+l)- uiiH.} :::; J.LMkkn,2ii(u- uCk))2IIL2 

after dividing by ilu(k+l) - iiiiHt. 
0 

If n :::; 4, then HHD) C L4(f2). Let kn,4 be the imbedding constant; that is, 
llull£4 :::; kn,411uiiH.} for all u E HJ(O). Then, 

llu(k+l) - uiiH.} :::; J.LMkkn,211u(k) - ulli4 :::; 

:::; J.LMkkn,2k~,4 1iu<k) - ul!k5. 

Thus convergence is quadratic for fixed J.L and smooth ¢. 

4. Following the "central path". 
The "central path" is the set of (J.L,u,.) in R+ X HJ(O) which minimises (2.2). 

The first result of this section is that if 0 < /Ll < J.£2 then u,.1 ~ u,.,. This follows 
easily from the results of the previous section by noting that 

and so by the monotonicity of the Newton iterates, Up.1 ~ u,.2 • 

Log barrier functional. 
For the log barrier functional, taking J.L L 0 gives a monotonic increasing sequence 

of elements in HJ. If we change <I>(x, u) to be the function -ln((b(x) - u )/(b(x) -
w( x)) then the functional J,. is monotonic decreasing in J.L for any u with w :::; 
u < b. This change to the functional makes no difference to the algorithm (since 
cp(x,u) = <I> ... (x,u) = lj(b(x) -u) regardless of the factor 1/(b(:z:) -w(x))). Thus, 
if J,.0 (u,.0 ) < oo, then J(u,.):::; Jp.(u,.):::; J,.(u,.0 ):::; Jp.0 (up.0 ) < oo for J.Lo ~ J.L > 0. 
Thus as J.L 1 0, the functions u,. belong to a bounded subset of HJ(O), and so there 
is a weakly convergent subsequence. Now b ~ Up. ~ up.0 so by the arguments of 
the previous section, u,. converges strongly in L2 to ii. Thus Up. can only have one 
weak limit in HJ, which is ii. 

Now J is a weakly lower semi-continuous functional on HJ, so 

The problem now is to show that ii minimises J over all functions u in HJ where 
u :::; b. As b isLipschitz continuous, given any such u and any € > 0, there is a 
il E HJ which satisfies <I>(x,il) E P and J(il):::; J(u) + €. Then as 

J(u,.):::; J,.(u,.):::; J,.(u):::; J(il) + J.LII<I>(·,il(-))11£1 :::; 

:::; J(u) + € + J.LI!<I>(·,il(·))IILl, 
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taking f.L l 0 gives 
J(u) ::=;limJ(ufL) :::=; J(u)+e. 

J.'.!.O 

Thus u minimises J over the set of feasible functions, and thus solves the variational 
inequality. 

Following the central path using Newton corrections is, however, not easy to 
justify theoretically. The problem is that to ensure monotone convergence requires 
that. the initial "guess" u~ satisfies u~ ::::: ufL. If the function u,..o is known and 
f-Lo > f.L then setting the initial "guess" to be u~ = ufLo will be an underestimate of 
uw This means that the first Newton iterate u~ will be an overestimate, and it is 
not clear by how much it will be an oyerestimate. · 

Taking "sufficiently small steps" would result in a convergent algorithm for finite­
dimensional problems, however, if n::::: 2, bounded functions in the H~ norm are not 
necessarily bounded functions in the supremum norm, and the Newton correction 
may be pointwise unbounded. In this case, any step of positive size in the direction 
of the indicated correction would result in the penalty function becoming pointwise 
unbounded, and even unbounded in L 1 . It may be that in certain cases with n ::::: 2 
that the logarithmic barrier method loses the grid-independence property. The 
computed corrections may, in f~ct, belong to H2 , and because of this additional 
regularity the method may be provably "grid-independent" for n :::=; 2, though the 
same problem would arise with n = 3 with regards to lack of pointwise bounds. 
Numerical evidence for n = 2 seems to indicate that the logarithmic barrier method 
gives good performance[8], which seems to indicate that computed corrections may 
well be bounded in H 2 • · 

Exterior penalty function. 
For the exterior penalty function, we take p, --} +oo. Now u!L decreases with 

increasing f.L. Let u* be the solution of the variational inequality. Since J(u,..) :::=; 

J!L(ufL) :::=; J!L(u*) = J(u*), it follows that J(u!L) is uniformly bounded, and as J 
is coercive, ufL must all lie in a bounded set in H~. Thus there is a subsequence 
of u,.. that is weakly convergent in HJ, and since H~ can be compactly imbedded 
in L 2 , there is a strongly convergent subsequence in L 2 . Since the convergence is 
monotone,, u!L is strongly convergent in L 2 as f.L --} +oo. Let u be the limit. Then 
u,.. --} u weakly in H~. 

Now we show that u solves the variational inequality. If u E HJ satisfies u :::=; b, 
then J{u} = JfL(u) ::::: J!L(up,) 2: J(ufL). Since J is weakly lower semi-continuous, 
J(u) :::=; liminfw-= J(u!L) :::=; J(u). 

It now suffices to show that u :::=;b. To do this, note that .P(-,u!L(·)) is monotone 
decreasing and always finite. As .P(x,u) = (u- b(x))~ is bounded below by zero, 
by the monotone convergence theorem, .P(·,u~'(·)) l.P(·,u(·)) in L 1 . If .P(·,u(·)) is 
not zero almost everywhere, then !I.P(-,u(·))ii£1 > 0 and so 

as f-l ~ +oo. This contradicts Jl-'(u!L) :::=; J(u*). Hence .P(:z:,u(:z:)) = 0 for almost all 
X En, and sou s band u solves the variational inequality. 

Some further results can be obtained using standard properties of penalty meth­
ods. The quantity J(u~'-) is non-decreasingin f.L (see Fletcher[4, p. 281]). As J(u!L) 



202 

is bounded above by J( u), if follows that J( ul') converges as ./L ---+ +oo. Using 
the fact that J is weakly LSC,the limit is 2: J(u). Hence J(u~'-) ---+ J(u). When 
this is combined with J~'-(u~') = J(u~'-) + p.jl~(-,u~'-(·))ULl ::; J(u) it is clear that 
p.jj<I>(·,u~'-(·))JIP ---+ 0 asp.---+ +oo. 

In this case, if we have an increasing sequence of values of p. = /Li, i = 1, 2, ... , we 
can generate a. sequence Ui by performing one step of Newton's method with p. = p.;. 
starting with Ui-l, then u 1 2: u2 2: ... , and Ui 2: ul-',. One way of checking that the 
Ui's do not stray too far from the "central path" is to check that P-•II<I>(·,u•{·))I!Ll 
does indeed go to zero as i -+ oo. 

5. Solving the discretised equations. 
So far, the analysis has all been for the infinite-dimensional problem. Questions 

remain about how this relates to the actual computations done, which must of ne­
cessity be done with discretisa.tions of the true problem. Also, there is the question 
of how p. becoming "large" affects the ability to solve discretisations of the operator 
equation 

-b.(6u) + p.4;u(:c,u)6u = fw 

Let h > 0 be some measure of the coarseness of the discretisa.tion used. Let /.lk 
be the discretised form of the operator b.. It is assumed that -b.h is a symmetric 
M-matrix. This is true both for standard finite-difference approximations, as well 
as for piecewise linear finite element approximations. This is important for the 
monotonicity properties used. Discretising all the unknowns in the above operator 
equation gives 

and if fn 2: 0, then 5uh 2: 0 as N~t-dimensional vectors. Thus, with such approxima­
tions, the monotonicity properties of the iterations are retained by the discretised 
systems. 

The next issue is the matter of the speed with which the system of equations 
can be solved. For systems of this sort, it is usually considered best to use iterative 
rather than direct methods, although there have been significant improvements in 
the speed of sparse Cholesky factorisation using techniques such as nested dissec­
tion. The problem with using iterative methods, such as conjugate gradients is 
that as the condition number of the system to be solved increases, the number of 
iterations needed to solve the system increases. This can be a considerable problem 
as we wish to take p. ---+ oo, and the error in solving the problem is proportional to 

1/ 1-L· 
However, the proble~ of the number of iterations increasing unboundedly as 

p. ---+ oo can be solved by using a suitable preconditioner which includes the effect 
of the large p.. 

Such suitable preconditioners are diagonal preconditioners. If the system (A+ 
p.D)x = b is to be solved for :c, and A is symmetric, positive definite and Dis a non­
negative diagonal matrix, then the preconditioner diag(A + p.D) = diag(A) + p.D 
will result in a bound on the pre-conditioned condition number of A + p.D which 
is independent of p for p. 2: 0. In fact, the condition number is no worse than A 
preconditioned by its diagonal. 
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The preconditioning matrix is M = diag(A) + j.LD, so the preconditioned matrix 
whose condition number is needed is A= M-112 (A+!-LD)M- 112 • To obtain bounds 
for the condition number of A, boul).ds on the extreme eigenvalues can be found: 

Hence 

- vTAv 
Ama.z( A) = max -T-

11'¢0 v v 

wT(A+fLD)w = max~~~~~~~~ 
w'¢0 wT(diag(A) + fLD)w 

zT diag(A)-112 (A + fLD) diag(A)-112 z 
= max------~~--~--~~~~~----

#0 zT(J + j.Ldiag(A)-1D)z 

zT(A + fL diag(A)-1 D)z 
= max~~--~~~~~7-

z'¢0 zT(J + j.Ldiag(A)-1D)z 

where A= diag(A)-112 A diag(A)-112 • 

Since every diagonal entry of A is one, it follows that Ama.z(A) 2: e'{ Aeije'[ ei = 1. 
Hence Ama.z(A) S Ama.z{A). 

Similarly it can be shown that 

for all fL 2: 0. Hence the condition number of the diagonally preconditioned matrix A 
for all fL 2: 0 is no worse than the condition number of the diagonally preconditioned 
matrix A which is independent of fL· This gives a bound on the number of iterations 
of preconditioned conjugate gradients needed to achive.a particular level of accuracy, 
which grows, at worst, logarithmically in p;. The growth may be logarithmic as the 
right-hand side of the equations to be solved grows in magnitude at worst linearly 
in j.L, but the convergence rate is bounded away from zero. 

Diagonal preconditioning is not the only, or indeed the best, form of precondi­
tioning. However, it does provide a slowly growing limit on the number of iter­
ations needed as fL ~ oo. The point is perhaps that whatever preconditioner is 
chosen, it should incorporate the (usually diagonal) part of the discretisation of the 
-6. + fLtfl.,.(a:,u(:c)) operator. 
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6. Numerical results. 
Both exterior penalty and logarithmic barrier algorithms were implemented and 

numerical results obtained. The test problem used was the problem where n is the 
unit square [0, 1] x [0, 1], and c(:v,y) = 10 and b(x,y) =min( a:, 1- x,y, 1- y). The 
initial value of p, was taken to be one. A standard five-point finite difference scheme 
was used for approximating A, and the operator -A+ cPu(x,u(x)) is approximated 
by 

(6.1) 

This was used on an N X N grid (giving n = N 2 unknowns). Varying values of N 
were used to obtain information about the degree of "grid independence" that has 
actually been achieved. Note that this discretisation preserves the monotonicity of 
the infinite-dimensional algorithm as -b.h is an M-matrix, and hence, so is (6.1). 
Thus if the discretised Newton equations are solved accurately enough, the mono­
tonicity of the Newton iterates (and hence of the iterates of the overall algorithm) 
should be evident. 

The iterations were stopped when !16uhii£Z <lo-a. The computations were done 
on an IBM RS/6000 computer in the 'C' programming language at the Australian 
National University's School of Mathematical Sciences. 

Fig. 1 shows an illustrative example of t.he results obtained, which are for N = 20. 

Fig. 1. Solution for N = 20 
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Exterior penalty method. 
The exterior penalty function method has been implemented using a number of 

different preconditioners to solve the linear systems of equations. 
The preconditioners used were: the diagonal of the matrix, its incomplete Chol­

esky factorisation and the SSOR preconditioner (D + wL)D-1 (D + wLf. 
The scheme for updating f-L and u is that p is first increased by a fixed factor of 

103 until this makes f-L exceed 107 , in which case f-L is set to 107 . Then a single step 
of Newton's method is used for the resulting value of f-L· 

Table 1 shows the results using incomplete Cholesky preconditioning for the 
conjugate gradients algorithm. 

N 5 10 20 40 80 

# CG iter'ns 27 45 84 227 602 
# major cycles 5 5 6 9 12 
CPU time (sec) < 0.1 0.1 0.6 5.8 57.6 

Table 1. 

Table 2 shows the results using diagonal preconditioning for the conjugate gra­
dients algorithm. 

N 5 10 20 40 80 

# CG iter'ns 27 64 172 528 1493 
# major cycles 5 5 6 9 13 
CPU time 0.1 0.1 0.8 7.8 87.6 

Table 2. 

The results for using an SSOR preconditioner were disappointing; it failed fbr 
N = 10 by requiring an excessive number of iterations (greater than 10 000) for 
f.l = 101. 

To indicate the speed of convergence, Table 3 lists how some quantities change 
with the number of iterations. The values are for using the incomplete Cholesky fac­
torisation preconditioners. As is standard numbers written in the form :z:.xx(±yy) 
mean x.xx X 10±1111 • Also, ~his the vector representing <r>(x,u(x)). 

The "grid-independence" property of the method is fairly apparent, although it 
appears that the true infinite-dimensional corrections 15u go to zero relatively slowly. 
This may be due to the nonsmoothness of ¢. There appears to be a point at which 
the finite-dimensional approximations sudder1ly converge quite quickly regardless of 
the behaviour of the infinite-dimensional problem. Tins may be due to the method 
effectively :identifying the grid points on the contact surface, which gives rise to an 
apparent growth in the number of iterations needed to obtain convergence. 

This method is competitive with other methods for solving the variational in­
equality in a g;rid independent way. However, it is not competitive with the fastest 
methods for solving this class of problems, which appear to be based on a truncated 
SOR method[3], [5]. 

Logarithmic barrier methods. 
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iteration # 1 2 3 4 5 6 

p, 1 103 106 107 107 107 

N=5 
P-llchjjp 0 2.44 6.70 7.9( -5) 7.9( -7) 
IJ6uhll£2 4.83( -1) 6.32( -2) 3.29( -3) 3.18( -6) 1.08( -9) 

N = 10 
p,JI<l>hll£1 0 2.49 24.4 2.0( -4) 1.9( -6) 
JJ6uhJJp 4.51( -1) 4.93( -2) 2.63( -2) 1.08( -3) 9.15( -11) 

N=20 
p,JJ<,hil£1 0 2.41 25.5 3.6( -4) 2.5( -6) 2.4( -6) 
IJ6uhJIL• 4.32( -1) 4.94( -2) 1.36( -2) 1.07( -2) 1.30( -3) 1.38( -11) 

N=40 
p,Jj<Ph!IL• 0 2.33 27.4 4.4( -4) 3.8(-6) 3.3(-6) 
JJ6uhJIL• 4.23( -1) 4.59( -2) 1.30( -2) 8.21( -3) 6.05( -3) 3.22( -3) 

N=80 
p,JJcl>hJJ£1 0 2.28 27.1 4.8( -4) 4.5( -6) 4.2(-6) 
Jj6uhJI£2 4.18( -1) 4.55( -2). 1.11( -2) 4.51(-3) 4.07( -3) 3.52( -3) 

Table 3. 

A logarithmic barrier method was implemented using a guarded Newton method 
with Armijo step-length rule: if a given step length results in minij(bij- Uij)::; 0 
then the step length is halved. If the step length was reduced in any major step, 
then p, was held fixed until a full step could be taken. 

The value of p, was adjusted after every successful full step; f.L was then reduced 
by a fixed ratio until p, ::; lo-s was reached and thereafter p, was fixed at lo-s. 
The two ratios used were 10 and 2. 

The preconditioner used was the incomplete Cholesky factorisation. 
Table 4 shows the performance results for reducing p, be a factor of 10 at each 

step. 

N 5 10 20 40 80 

# CG iter'ns 98 185 297 654 1605 
#full steps 8 8 8 9 10 
# 1/2 steps 3 6 6 6 5 
# 1/4 steps 4 5 4 6 11 

# ::; 1/8 steps 7 8 9 13 20 
# major cycles 22 27 27 34 46 
CPU time (sec) 0.1 0.4 2.3 16.8 151.5 

Table 4. 

Table 5 shows the performance results for reducing p, by a factor of 2 at each 
step. 

The grid-independence of the logarithmic method appears to be somewhat easier 
to see in the performance results than for the the exterior penalty method. It can 
be a little harder, however, to directly compare the results for different values of 
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N 5 10 20 40 80 

# CG iter'ns 196 290 513 886 1673 
#full steps 22 21 23 23 26 
# 1/2 steps 20 21 23 23 19 
# 1/4 steps 0 0 0 0 5 

# :::; 1/8 steps 0 0 0 0 0 
# major cycles 42 42 46 48 50 
CPU time (sec) 0.2 0.7 3.8 22.8 160.5 

Table 5. 

N as they usually have different sequences of step lengths, which means that they 
correspond to different sequences in the infinite-dimensional setting. 

Overall, the performance of the exterior penalty method seems to be somewhat 
better, both in terms of the number of major iterations and in the overall time 
taken. 
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