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Degenerate Monge-Ampere equation 1n 
algebraic geometry 

Hajime Tsuji 

1 Introduction 

Recently blow up of nonlinear PDE has been studied by many mathemati

cians in various context. In the blow up of the solution, basically we would 

like to know : 

1. location of the blow up set, 

2. description of the singularity. 

But in many cases, it is hard to understand the blow up well. 

In this paper I would like to study the blow up of parabolic complex 

Monge-Ampere equations which appear in algebraic geometry. In this case 

we can describe the blow up very well by algebro-geornetric invariants. 

A special feature of this equation is the fact that the blow up always 

occurs along analytic subsets. The singularity is described by Hormander's 

L 2 theory for [) operator. I hope that there exists a similar theory for other 

nonlinear equations. 

The paper consists of 5 sections. Section 2 and 3 are devoted to the 

explanation of Analytic Zariski decomposition (AZD) which we would like 

to construct in terms of a parabolic complex Monge-Ampere equation. In 

Section 4 we study the equation and the singularity of the solution. In Section 

5, we apply AZD to some problems in algebraic geometry. 
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I recommend the reader who is not familiar with algebraic geometry to 

start reading from Section 4. 

2 Zariski decomposition 

In the following two sections, I would like to explane the motivation of this 

paper. 

Let X be a projective variety and let D be a Cartier divisor on X. The 

following problem is fundamental in algebraic geometry. 

Problem 1 Study the linea?' system lvD I for v 2: 1. 

To this problem, there is a rather well developped theory m the case of 

dirriX = 1. In the case of dirp. X = 2, in early 60-th, 0. Zariski reduced this 

problem to the case that D is nef( = numerically semi positive) by using his 

famous Zariski decomposition ((12]). 

Recently Fujita, Kawamata etc generalized the concept of Zariski de

compositions to the case of dim X 2: 3 ((2, 4]). The definition is as follows. 

Definition 1 Let X be a projective variety and let D be a R-Cartier divisor 

on X. The expression 

D = P + N(P,N E Div(X) 0 R) 

is called a ZaTiski decomposition of D, if the following co1iditions aTe satisfied. 

1. P is nej, 

2. N is effective, 

3. H 0(X, Ox([vPJ)) ~ H 0 (){, Ox([vD])) holds for all v E Z~0 , where 

[ ] 's denote the integral pa·rts of diviso1·s. 

In the case of dim X = 2, for any pseudoeffective divisor D on X, a Zariski 

decomposition of D exists ([12]). But in the case of dim X 2: 3, although 

many useful applications of this decomposition have been known ([2, 4, 7]), 

as for the existence, very little has been known. There is the following (rather 

optimistic) conjecture. 
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Conjecture 1 Let X be a normal projective variety and let D be a pseudoel 

fective R-Ca'l'tier divisor on X. Then there exists a modification f : Y -----+ X 

such that J* D admits a Zariski decomposit£on. 

The purpose of this paper is to construct an analytic counterpart of 

Zariski decomposition. Please see [9, 10] for detail and further applications. 

3 Analytic Zariski decomposition 

To construct Zariski type decomposition, we shall used-closed positive (1, I)

currents instead of divisors. d-closed positive currents is far more general ob

ject than effective algebraic cycles. The advantage of using d-closed positive 

currents is in the flexibility apd completeness of them. 

Definition 2 Let X be a normal projective variety and let D be a R-Cartier 

divisor on X. D is called big if 

K(D) := limsup logdimHo(X,Ox([vD])) = dimX. 
,_, ...... +oo log 11 

holds. D ·is called pseudoeffective , if for any ample divisor H, D + EH is big 

for every E: > 0. 

Definition 3 Let j\!f be a complex manifold of dimension n and let A~·q(M) 

denote the space of C""(p, q) forms of compact support on j\!f with usual 

Frechet space structure. The dual space DP,q(M) := A~-p,n-q(NJ)* is called 

the space of (p, q)-currents on M. The linear operators a : Dp,q(M) --+ 

DP+l,q(M) and[): DP,q(M) --+ Dp,q+l(lv!) is defined by 

and 
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We set d = ()+a. T E DP·lf(Jvf) is called closed if dT = 0. T E D~'· 7'(M) 

is called real ifT(r.p) = T(cp) holds fat· all r.p E A.~-p,n-p(M). A real cur-rent 

(p, p )-cu·rrent T is called positi·ue ·if ( -J=T)p(n-p)T( 7] 1\ i]) 2': 0 holds fm· all 

7] E ;t~·0 (M). 

Since codimension p subvarieties are considered to be closed positive {p, p )

currents, closed positive (p,p)-currents are considered as a completion of the 

space of codimension E subvarieties with respect to the topology of currents. 

For a R divisor Don a smooth projective variety X. Wedenote the class of 

D in H2 (X, R) by c1 (D). 

Definition 4 Let T be a closed PflSitive (p, p )-current on the open unit ball 

B(1) in en with centre 0. The Lelong numberG(T,O) ofT at 0 is defined 

by 

where w = ~ Ei=1 dz; A dz; and x(r) be the charcteristic function of the 

open ball of radius r with centre 0 in en. 

It is well known that the Lelong number is invariant under coordinate 

changes. Hence we can define the Lelong number for a closed positive (p,p)~ 

current on a complex manifold. It is well known that if a closed positive 

current Tis defined by a co dimension p-subvariety the Lelong number G(T, x) 

coincides the multiplicities of the subvariety at x. In this sense the Lelong 

number is considered as the multiplicity of a closed positive current. 

We note that thanks to Hironaka resolution of singularities, to solve the 

conjecture, we can restrict ourselves to the case that X is smo.oth. Our 

theorem is stated as follows. 

Theorem 1 Let X be a smooth p1·ojective va·riety and let L be a line bundle 

on X. Then there exists a closed positive (1,1)-cuTTent T such that 

1. T repTesents c1(L) in I·J2(X, R), 

2. FaT every modification f : Y ---+ X v E Z~o and y E Y, 

multyBs I j*(vL) 12': vG(f*T,y) 
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holds. 

We call Tan Analytic Zariski decomposition(AZD) of L. Let 

be the Lebesgue decomposition ofT , where Tabc, Tsing denote the absolutely 

continuous part and the singular part of T respectively. As you see below, 

this decomposition corresponds to Zariski decomposition. 

The relation between Zariski decomposition and AZD is described by the 

following corollary and proposition. 

Corollary 1 Let X be a smooth projective variety and let D be a nef and 

big R divisor· on X. Then c1 (D) can be r·epresented by a closed positive 

(1, !)-current T with 0(T) :=.0. 

Proposition 1 Let X be a smooth projective variety and let D be a R divisor 

on X such that 27rc1 (D) can be represented by a closed positive (1, 1) current 

T with 0(T) = 0. Then D is nef. 

Let X, L be as in Theorem 1. Suppose that there exists a modification 

f : Y ----J. X such that there exists a Zariski decomposition f* L = P + N of 

f* L on Y. Then by Corm· ally 1 there exists a closed positive (1, 1) current S 

such that c1(P) = [S'] and 0(5') = 0. Then the push-forward T = f~(S+N) is 

a AZD of L. The main advantage of AZD is that we can consider the existence 

without changing the space by modifications. One may ask whether AZD 

substitutes ZD(Zariski decomposition). In some case the answer is "Yes". In 

this paper, I would like to show some applications, too. 

4 Parabolic complex Mange-Ampere equa
tion 

Now I would like to show the outline of the proof of Theorem l. Let X ,L be 

as in Theorem L Let h be a C""-hermitian metric on L and let W 00 be the 

curvature form of h. Let w0 be a coo IGi.hler form on X such that 

Wo- W 00 > 0 
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holds on X. We set 

Let D be a coo volume form on X. Now we consider the following initial 

value problem. 

ou 
at 

'll 

l (wt + RoBu)" 
og ' n - ll on X X [0, to) 

0 on X x {0}, 

(1) 

(2) 

where n = dim X and t0 is the maximal existence time for the ceo solution u. 

By the standard implicit function theorem T is positive. Since w0 - W 00 > 0, 

by direct calculation we have the partial differential inequality 

where fi dnotes the Laplacian with respect to the Kahler form Wt + P-o8u. 
Hence by maximum principle, there exists a positive constant Cft such that 

holds on X X [0, t0 ). But unfortunately, we do not have uniform lower bound 

for the solution u. Actually we cannot expect the uniform lower bound for 

u. 

The above equation corresponds to the following Hamilton type equation: 

ow 
f)t 
w 

-Ricw- w + (Ric.ll + cu1·v h) on X X (0, t0) 

w0 om X x {0}. 

This equation preserves the Kahlerity of w. Hence it is meaningful to take 

the de Rham cohomology class [w]. By a calculation, we see that 

holds. Let A(X) denote the IGhler cone of X. By the above equation, we 

see that [w] E A(X), if t E [O,t0 ). Conversly we have: 

Lemma 1 T = sup{t I [w] E A(X)}. 



215 

is a IGi.hler form on X., for every sufficiently small postive number c. Let us 

change tL by 

Then since 

is uniformly positive on U, we can solve the 0-Dirichlet boundary value prob

lem for v on J{ x (0, oo) for any relatively compact strongly pseudo convex 

subdomain f{ with coo boundary. 

Remark 1 Here we need to worry about the Gibb 's phenomena for the parabolic 

equation. But this is rather t~echnical and not essential. Hence we shall omit 

it. 

Let us take an strongly pseudoconvex exhaustion {I<~'} of U and consider 

a family of Dirichlet problems of parabolic complex Monge-Ampere equation 

(1 ). 
The next difficulty is the convergence of the solutions of this family 

of Dirichlet problems. Here we note that there exists a complete Kahler

Einstein form WD on U thanks to the conditions 3, 4 above and (6]. Then if 

we choose the boundary values properly, we can dominate the volume forms 

associated with the solutions from above by a constant times w]) by maximum 

principle. This ensures the convergence. 

Let u E C00 (U) be the solution of (1) on U. Then by the C0-estimate of 

u, we see that u extends to a V-function on X for every t. 
Now we set 

T = lim(wt + v=Ioou), 
t-+oo 

where atJ is taken in the sense of current. 

Remark 2 On the first look, T seems to depend on the choice of v. But 

actually, T is indpendent of v. This follows from the uniqueness property of 

the equation ( 1). 

Then we can verify that Tis an AZD of D by using the C0-estimate of u. 
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5 Basic properties of AZD 

As a direct consequence of the construction, an AZD has following properties. 

Proposition 2 Let X be a smooth projective vm'iety and let L be a big line 

bundle on X. Let T be an AZD of L, then T has the following properties. 

1. Let T = Tabc + Tsing denote the Lebesg1te decomposition ofT. Then 

there exists a reduced very ample divisor D on X such that Tabc is coo 
on X- D. 

2. T;:bc is of Poincare growth along D. In particular TJ,c is integrable on 

X. 

3. Tis of finite order along D, z.e., only polynomial growth along D. 

Remark 3 D need not be of normal crossings. Hence the woTd "Poincare 

growth" means a little bit generalized sense, i.e. if we take any modification 

such that the total tmnsform of D becomes of 1wrmal crossings, the pull-back 

of T;:bc is of Poincare growth along the total tmnsform. 

Remark 4 I think the third pToperty of AZD should be the key to solve the 

conjecture in the introduction. 

By using Kodaira's lemma and Hormander's L2-estimate for 8-operator, 

we can easily get. 

Proposition 3 Let X,L,T be as in Proposition 1. Then for every modifica

tion .f : Y ___, X and any y E Y, 

G(J*T,y) = liminfv- 1 multyBs I vL I 
v-+oo 

holds. 

Proposition 2 means that although an AZD is not unique, but the singular 

part is in some sense unique a.nd the AZD controlles the asymptotic behavior 

of the base shemes of the multilinear systems. 

Instead of using AZD itself, sometimes it is more useful to use the "po

tential" of AZD. 
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But this means that unless 21rct(L) sits on the closure of A(.\.), we cannot· 

expect T = oo. 

Hence we should consider a current solution 

instead of a ceo solution, where u: X--+ [-oo,oo) To construct a current 

solution we need to find the place where the estimate of the solution u breaks. 

\Ve set 

s = nv>o{x EX I H 0 (X, Ox(vL )) does not separate T Xx} 

and we expect that the solution tt is coo on X - S. 

The natural way to construct such a singular solution is to construct 

the solution by as a limit ofthe solution of Dirichlet problems on relatively 

compact subdomains in X - S' which exhaust X - S. So we would like to 

applythe theory of Dirichlet problem for complex Monge-Ampere equations 

developped recently ([1]). 

But in fact, vve need to subtract a little bit larger set because X- Sis not 

strongly pseudoconvex. Otherwise the theory does not work (this phenomena 

is caused by the lack of good barriers for the estimates, if the domain is not 

pseudoconvex). Let fv : ··-----7 X he a resolution of Bs I vL I and let 

be the decomposition into the free part and the fixed part. The following 

lemma is well known and very useful. 

Lemma 2 (Kodaira 's lemma) Let X be a smooth projective variety and let 

D be a divisor on )C Then there exists an effective Q-divisor E such 

that D - E is an ample Q-divisor. 

Then by Kodaira's lemma, we can find an effective divisor Rv on ,.">C, such 

that for every sufficiently small positive ratio~al number E, Pv - t:Rv is an 

ample Q-divisor. 
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Definition 5 Let L b;; a line bundle on a comple:r manifold X. h is called a 

singula·r hermitian metric on L, if there e:risl a coo -hermitian metr·ic h0 on 

L and locally L 1-fuction cp such that 

holds. 

We note that for a singular hermitian meric it is meaningful to take curvature 

of it in the sense of current. 

One of the most useful property of AZD is the following vanishing theo-

rem. 

Theorem 2 (Vanishing theorem for AZD) Let X ,L be as in Theorem 1 and 

let T be an AZD of D constructed as above. Let h be a singular hermitian 

metric on L such that T = curv h. For a positive integer m we set 

:Fm :=sheaf of germs of local L 2 -holomo1·phic sections of (Ox(mD), h0 m). 

Then :Fm is coherent sheaf on X and 

holds for p 2: l. 

By Corollary 1, we get the following well known vanishing theroem. 

Corollary 2 ([5}) Let X be a smooth pmjective manifold and let L be a nef 

and big line budnle. Then 

HP(X, Kx 0 L) = 0 

holds for p :2: 1. 

6 Some direct applications of AZD 

In this section, we shall see that we can controle the asumptotic behavior of 

the multilinear systems associated with big line bundle in terms of its AZD. 
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Let us take v sufficiently large so that the free divisor Pv is nef and big. 

Let <P : Xv ---+ pN be an embedding of Xv into a projective space and let 

be generic projections and we set 

IVa : the ramification divisor of 1r a 

Ha := 7r:(zo = 0), 

where [z0 : ... : zn] be the homogeneous coodinate of pn. For simplicity 

we shall denote the support of a divisor by the same notation as the one, if 

without fear of confusion. If we take m sufficiently large, we may assume the 

following conditions: 

2. D := (Fv + ~~1 CWa + Ha))red is an ample divisor with normal cross

mgs, 

3. D constains S U Rv, 

4. Kxv + D is ample. 

Then U = Xv- Dv is strongly pseudoconvex and is identified with a Zariski 

open subset of X. Let ]( be a relatively compact strongly pseudoconvex 

subdomain of U with coo boundary. Thanks to the condition 1 above, for 

]{, we can apply the theory in [1] developpecl on strongly pseudoconvex 

domains with coo boundary in a complex Euclidean space, although ]( is 

not inside en. 
Hence we can solve a Dirichlet problem for a complex Monge-Ampere 

equation on K. In our case the equation is parabolic, so we need to modify 

the theory. To get the C0-estimate for the solution, we shall change the 

unknown. Let T be a section of Oxv(Fv) with divisor Fv and let .\ be a 

section of Oxv(Rv) with divisor Rv. Then there exists a hermitian metrics 

hp,hR on Oxv(Fv), Oxv(Rv) respectively such that 

J;w00 - ~curv hp - t: · curv hR 
v 
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Definition 6 Let L be a hne bundle over a projective n-fold X. We set 

and call it the L-volume of X or the volume of X with respect to L. 

vVe can express the volume in terms of AZD. 

Theorem 3 Let L be a big line bundle over a smooth projective n-fold X 

and let T = Tabc + Tsing be an AZD of L const-ructed as in Section 3. Then 

we have 

l(x- L l r T" 
VO 1 ) = (• ) I j abc 211 nn. X 

holds. 

The following therem follows from the existence of AZD and Lebesgue

Fatou 's lemma. 

Theorem 4 Let 1r: : X ----> S be a smooth projective family of projective 

varieties over a connected complex manifold S and let L be a r·elatively 

line bundle on X. ForsE S, we set )C = r.-1 (s) and Ls = L I Xs. Then 

vol(Xs, Ls) is an uppersemicontinuous function on S. 

The following theorem follows from Theorem 2. 

Theorem 5 Let 11 : X ----+ S be a smooth pmjective family of projective 

varieties oveT a connected complex manifold S and let L be a line bundle on 

X. Suppose that aL- Kx is r·elatively big for some a> 0. Then vol(X., Ls) 

is a constant function on S. 

PToof of Theorem 3. Let X, L, T be as in Theorem 3. LetD be as in 

Proposition l. By taking a modification of X, we may assume that D is a 

divisor with simple normal crossings. By Kodaira's lemma there exists an 

effective Q divisor E such that L- E is an ample Q-line bundle. Let w be a 

Kahler form on X which represents c1(L- E). Let O" be a section of Ox(D) 
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such that (a-)= Hand let h be a C'00 -hermitian metric on Ox(D). Then for 

a sufficiently small positive number c, 

w = w + cPao log( -log h( a-, a-) l 

1s a complete Kahler form on X - D. We note that there exist positive 

constants cl' c2 such that 

on X- D by direct computation (actually w has bounded geometry). Then 

by the P-Riemann-Roch inequality ([8]), we have that for every c; > 0 we 

have the inequality 

(2 ~ I r (Tabc+t:w)'::=;vol((l+c:)L-c:E):::;(l+t:)nvol(X,L). 
7r nn. Jx-D 

Letting c; tend to 0, we have the inequality 

(2 ~n I r_ r:bc::;vol(X,L). 
1r n. Jx-D 

(3) 

Let fvi Xv ---t X be a resolution of Bs I 11L I and let I Pv I denote the free 

part of I J; ( 11 L) I· Assume that 11 is sufficiently large so that Pv is nef and 

big. Let Wv denote a semipositive first Chern form of Ox"(f;(vL)). We set 

Then since I Pv I is free, by Bertini's theorem, we get the sequence of in

equalities: 

Tn > rn-Ir, > ... > rn 
abc - abc v - - v 

on X - D. Hence we see that 

holds. We need the following proposition. 

Proposition 4 (Fujita) Let L be a big line bundle on a pmjective manifold 

X. Let fv : Xv ---t X be a resolution a Bs I v L I and let 

I J;(vL) 1=1 Pv I +Fv 
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be the decomposition into the free part and /:he fixed part. Then the eq·uaf.ity 

holds. 

By Proposition 4, we have that 

holds. 

vol(X, L)::::; (? ~n I l_ T;:bc ~T< n. Jx 

Combining {3) and (4), we complete the proof of Theorem 3. 

(4) 

Corollary 3 Let X,L, T be ·as in Theorem 1 and let w be a Kahler foTm on 

X. Then fx T~\c 1\ wn-k is finite on X. 

Proof of Theorem 4. 
We may assume that S ={sEC II s I< 1}. 

Step 1. For the first we shall consider the case that L is relatively big. Let 

Ts = (Ts)abc + (Ts)sing(s E S) be the family of AZD's constructed by the flow 

for the positive current w, 

ow ot -Ricw-w+(Rid1+cuTvh) on X. X [O,oo) 

w = wo on Xs X {0}, 

where 

Ricw := -Aoo log u.J" : the Ricci current of w 

h : a (relative) C00 -hermitian metric on L, 

Wo : a relative C00 -l-Gihler form on X, 

D a relative C'00-volume form on X. 

Since L is relatively big, as in Section 3, there exists a reduced divisor D on 

X such that 

1. D is equidimensional over S, 
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2. (X- D) admits a complete relative Kahler-Einstein metric wv of con

stant Ricci curvature -1, 

3. w is ceo on X -D. 

Then by Lebesgue's bounded convergence theorem, we see that 

is an uppersemicontinuous function with respect to s. This completes the 

proof of Theorem 4. 
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