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1 Introduction 

Elliptic equations model the behaviour of scalar quantities u, such as temper­
ature or gravitational potential, which are in an equilibrium situation subject 
to certain imposed boundary conditions. In his first four lectures, John Urbas 
discussed linear1 elliptic equations. In his lectures on the minimal surface 
equation, Graham Williams discussed the minimal surface equation, a quasi­
linear2 elliptic equation in divergence form. Neil Trudinger and Tim Cranny 
will discuss fully nonlinear3 elliptic equations. 

Elliptic systems model vector-valued quantities in an equilibrium situa­
tion subject to certain imposed boundary conditions. Examples are a vector­
field describing the molecular orientation of a liquid crystal, and the displace­
ment of an elastic body under an external force. 

Solutions of elliptic equations are typically as smooth as the data allows 
(e.g. are coo if the given data is C 00 ). Solutions of elliptic systems typically 
have singularities. 

We use as reference [G] the book Multiple Integrals in the Calculus of 
Variations by M. Giaquinta. 

2 A Model, Harmonic Map, Problem 

Suppose n c mn is an elastic membrane, "stretched" via the function w over 
a part of the n-dimensional sphere sn c mn+l' where w is specified on the 
boundary 8!1. As a simple approximation to the physical situation, we can 
regard w as a minimiser of the Dirichlet energy 

~k1Dwl2 , 4 (1) 

amongst all maps w: n --+ JRn+l such that 

lwl = 1, wlan specified. 

1The unknown function u and its first and second derivatives occur linearly. The 
coefficients of u and its derivatives may be nonlinear, but usually smooth, functions of the 
domain variables x1, ... , Xn. 

2Linear in the second derivatives of u, but not necessarily linear in u or its first 
derivatives. 

3 Not even linear in the second derivatives of u. 
4Where 1Dwl2 = L:i,a ID;w"' 12 • The ~ is merely a convenient normalisation constant. 
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A simpler related problem, without the constraint Jw! = 1, is obtained as 
follows. Let 1/J : sn --+ IRn be stereographic projection from the north pole. 
H w[O) avoids a neighbourhood of the south pole then u = 1/J ow solves the 
problem: 
Minimise 

E(u) = ~ f a(u)JDuJ 2, 
2 Jn 

amongst all maps u: n --+ y"f[ln such that 

ulan specified. 

Here a(u) is a smooth positive function (which is determined5 by 1/J). 

Vve will consider this simpler problem 

Euler Lag:range System We now derive the Euler Lagrange system for 
minimisers of E. Arguing formally, if u is a minimiser of E (subject to fixing 
the boundary values of u), then for all c/J E C~ ( 11; IRn) 6 

0 = :tlt=o~Joa(u+tc/J)JD(u+t¢)1 2 

f a(u)D;uo: D;r + ~Do:a(u)c/J"'JDuJ 2 
}\), 2 

k a(u)DuDc/J + B(u)JDuJ 2 c/J. 

5 a(u) = I'V\bl- 2 , where 'Vl,b is the tangential gradient, defined in a natural manner. 
6 C} (0; JRn) consists of all compactly supported C 1 functions ¢:!] -> JRn. 
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We sum over repeated indices m the second line, and m the last line we 
repress the indices. 

If u satisfies the above integral equation for all ¢ E Cz ( D; JRn), we say 
that u is a weak solution of the system 

for a= 1, ... , n. 7 We abbreviate this to 

D(a(u)Du) = B(u)IDul 2 • (3) 

If u is C 1 then being weak solution is the same as satisfying (3) in the usual 
sense. 

Important features to note are the positivity of a( u ), which makes the 
system elliptic,8 and the quadratic nature of 1Dul 2 on the right.9 

Solutions with Singularities In the theory of elliptic P.D.E's, you con­
sidered the class of W 1 •2 (D) functions largely for technical reasons. 10 It was 
"simple" to show the existence of weak solutions in this class, and then one 
considered the question of regularity of solutions. In the vector-valued set­
ting, solutions need not be smooth, and it becomes even more natural to 
work in the W 1 •2 setting. 

Thus we define 
w1,2(n; IRN) 

to be the class of functions u: n --+ IRN such that each component function 
belongs to W 1 •2 (D). 

Note that the energy E(u) is well defined for arbitrary functions u E 

W 1 •2 ( D; mn). In particular' the function X I lx I has partial derivatives which 
"behave like" lllxl, and so xllxl E W 1 •2 (B1 (0); !Rn) if n ~ 3. But note that 
xI lx I has a singularity at the origin. 

Let D = B1 ( 0). The function 

w(x) = (xllxi,O) 

maps B 1 (0) "radially" onto the equator of sn c mn+1 • The function xllxl, 
and hence w, is a W 1•2 function if n ~ 3. One can show that if n ~ 7 then w 

7The fact that the number of "dependent" variables u1 , ... , Un and the number of 
"independent" variables x1, ... , Xn are the same is just a consequence of this particular 
problem. It is not the case in general. 

8 More generally, if instead of a( u )Diu" Di¢;" we had I:; i=l,. ,n AJ' Diu" Dj ¢;!3, then we 
o:=l, ... ,N 

say the system is elliptic if AJ'~i~f 2: ..\1~1 2 for some constant A> 0 and all~ E mn+N 
In many physical problems it is important to have a weaker form of ellipticity, namely 
Af/~iTJ"~jrl 2: Al~l 2 for some constant A> 0 and all~ E mn, 'I) E IRN. 

9 An exponent less than two is "easier" to handle; an exponent greater than two is more 
difficult. But two is the "natural" exponent for many problems, as is the case here. 

10See also my lectures on measure theory. 
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has least energy amongst all functions mapping B 1 (0) onto the unit sphere 
and having the same boundary values as w. Similarly, if n 2:: 7, u = '1/J ow 
minimises E( u) in (2) amongst all maps having the same boundary values. 
In particular, u satisfies the system of equations (2), i.e. (3). If 3 ::::; n < 7 
then u is no longer a minimiser, but it still satisfies the system (3). If n = 2 
it turns out that solutions of (3), and in particular minimisers of E(u), are 
smooth. 

We have just noted that a solution of (3) may have a singularity. If u( x) is 
a solution, then clearly so is u( X- a) for any a E mn. Since a sum of solutions 
is also solution, we obtain solutions with any finite number of singularities. 

In general, a solution of (3) is said to be or an equilibrium solu-
tion, for the energy E. Thus minimisers are solutions of the Euler Lagrange 
system, but not necessarily converselyY Since the energy is the Dirichlet En­
ergy (for w, and also for u if we choose the appropriate metric), stationary 
functions for this particular problem are called harmonic. 

3 A Simpler Model Problem 

Our intention is to provide a reasonably complete analysis for solutions of 
systems of the form (3), but with zero side. Thus we consider systems 
of the form 

D(a(u)Du) = 0, (4) 

which may or may not be an Euler Lagrange system. 

Systems of the ( 4) were the first type of nonlinear elliptic system 
to be analysed, the next Section we briefly remark on linear elliptic sys-
tems,) If the right side is nonzero, as in (3), then the problem is considerably 
more complicated. In particular, minimisers will have "nicer" properties than 
merely stationary solutions. See [G] for more details. 

We remark (4) may also have singular solutions. For example, xflxl is a 
weak solution of ( 4) if 

where n = N 2:: 3. See [G, p. 57]. Note that the A are ceo, in fact analytic. 
The system of equations in this case is an Euler Lagrange system for a certain 
energy functional. Moreover, for sufficiently large n, x / lx I is the (unique) 
minimiser of this particular energy functional. 

11The analogy is that a function E defined on JRk can have equilibrium points which 
are not minimisers. 
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4 Linear Elliptic Systems 

For completeness, we briefly discuss linear elliptic systems. Suppose n c IRn 
and 

We say u satisfies a linear elliptic system in integral form if 

1 2::: A~f(x)Diu'-' Dj</i = 0 
n i=l, ... ,n 

(5) 

a=l, ... ,N 

for all 1/J E c:(n; JRN). The A~f(x) are required to satisfy the ellipticity 
condition 

A~f(x)C:eJ ~ >-lel 2 

for some constant ). > 0 and all e E mnN. Note that the coefficients A~f (X) 
depend only on x and not on u. The summation sign is usually dropped, and 
we even suppress all indices and write 

in A(x)DuDI/J = 0. (6) 

The ellipticity condition is then written 

Assuming the A~f ( x) are bounded, it is straightforward to show by an 

approximation argument that we may take 1/J E W~·2 (D; JRN) in (5). Recall 
that W~'2 (D; IRN) consists of those W 1•2 (D; IRN) functions which are zero on 
an in a natural way. 

Motivated by integration by parts, we usually write the system as 

(7) 

for f3 = 1, ... , N. This abbreviates to 

D(A(x)Du) = 0. (8) 

If u E W 1 •2 (D; JRN) satisfies (5) (i.e. (6)) we say u is a weak solution of the 
system (7) (i.e. (8)). If A(x) and u are C\ then it follows from integration 
by parts that a weak solution is a solution in the classical pointwise sense. 

The theory of linear elliptic systems is similar to the theory of linear equa­
tions. In particular, one obtains an analogous Schauder theory (for Ck,a 
solutions) and Sobolev theory (for Wk,z solutions).12 The main difference is 
that if the functions A~f ( x) are merely bounded, then there exist solutions 
with singularities. This is not the case for a single equation. See [G, p. 54] 

12 Although the details can be considerably more complicated, at least when one consid­
ers other than second-order elliptic systems. 
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5 Regularity Results, Summary 

We now consider the question of partial regularity (i.e. smoothness) of solu­
tions of ( 4). 

More precisely, suppose u E W 1•2 (0; JRN) and 

D(A(u)Du) = 0, (9) 

where 

1. JA(z)j:::;M ... VzEJRN, 

2. Aa ~ >..J~J 2 .•. \1~ E JRnN, where)..> 0, 

3. A E C0 (IRN) is uniformly continuous. 

More precisely, we are using an abbreviated notation as in the previous sec­
tion. By u satisfying the system (9) we mean that the corresponding integral 
equations (as in (5) or (6) but with Aff(u) instead of Af[(x)), are satisfied 

for all test functions cp E W~'2 (D; JRN) 

We will see that u E Cg(Do) for some open Do c D, where D \Do is a 
set of dimension:::; n- 2 (in a sense to be explained later). If A is smoother 
than C0 , then u is correspondingly smoother in D0 • In particular, if A is coo 
then u E Cg"(D0 ). 

More can be proved. It is only necessary that A be continuous, not 
uniformly continuous. Moreover, D \ Do is in fact a set of dimension p for 
some p < n - 2, and is empty if n = 2. 

The idea of the proof is that if the graph of a solution u is sufficiently "flat" 
in the L 2 sense near x 0 E n, then in fact u is smooth in a neighbourhood of 
x 0 • We will see that the "flatness" condition holds at all except a "small" 
set of points. 

The key technical point in the proof is to consider the quantity 

U(xo, R) = [ Ju- (u)xo,RI 2 , 
JBR(xo) 

for BR(x0 ) CD. This measures the L2 mean oscillation of u in BR(x0 ). Here 
f denotes the average, and is obtained by dividing by the volume wnRn of 
BR(x0 ). The quantity (u)xo,R is the average of u in BR(x0 ) and is given by 

(u)xo,R=l u. 
JBR(xo) 

We will see that if U(x0 ,R) is sufficiently small then in fact U(x0 ,r) ap­
proaches zero like a power of r. From this, one deduces the Holder continuity 
of u in a neighbourhood of x0 . One also shows that except for a set of x0 of 
dimension n- 2, U(x0 , R) is indeed small for some R = R(x0 ). 
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6 Some Important Preliminaries 

We discuss a number of fundamental results that are used in the proof of 
partial regularity. 

6.1 Integral Characterisation of Holder Continuity 

Theorem If n has Lipschitz boundary, then 

for all BR(xo) c n, and some constant c. 

Remark More precisely, if the integral condition holds, then the precise 
representative u* of u, defined by 

u*(x0 ) = lim I u, 
R-+oli:JR(xo) 

satisfies u* E C0•"'(IT). Since u* = u a.e., and changing u on a set of measure 
zero does not change the integral, this is the best one can expect. 

PROOF: If u is Holder continuous, the integral inequality is straightforward. 
For the other direction, one works from the definition of u*, see [G; Ch. III,l]. 

I 

6.2 Energy (or Caccioppoli) Inequality 

Theorem If u is a solution of (9) and BR(xo) c n, then 

[ 1Dul2 :::;-; [ iui 2 -
JBR/2(xo) R }BR(xo) 

Philosophy The important point here is that we are bounding the L2 norm 
of the derivative of u in some ball in terms of the L2 norm of u in a larger 
ball. Such an estimate is not true for arbitrary functions u, hut it is typical 
of solutions of elliptic equations or systems that we can often bound integrals 
of higher derivatives in terms of integrals of lower derivatives, usually over a 
slightly larger set. 

13Suppose 0 < a :<:; 1. Then 

u E C0•"'(IT) ~ iu(x)- u(y)i :<:;Mix- Yi"' 

for some M > 0 and all x, y E Q. Note that if a > 1 then the derivative of u would be 
everywhere zero, and so u is constant! 
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Conversely, bounding integrals of lower derivatives in terms of integrals of 
higher derivatives is something we can do for arbitrary functions, by means of 
Sobolev or Poincare inequalities. In particular, note the Poincare inequality 

PROOF: Since the proof is one of the simplest examples of a test function 
argument, we sketch it here. 

As is usual in P.D.E. 's, in the following, c denotes a constant which 
may change from line to line. But it will only depend on the dimension and 
constants such as M and A which appear at the beginning of Section 5. 

Let </J = ry 2u, where ry is smooth, ry ::=:: 0, ry = 1 on BR;2(x0 ), ry = 0 outside 
BR(x0 ), and I Dry I :::; 3/ R. Substituting this in the integral form of (9), 

0 j ADuD<jJ 

j A Du (ry2 Du + 2ryu Dry) 

Hence 
j ry 2 ADuDu =- j2AryDryuDu. 

Hence 

A j ry 2 1Dul2 < c j ryiDrJIIuiiDul 

< E j "121Dul2 + c(e) j IDrylzlulz, 

by Young's inequality14 . Taking E = A/2, 

as required. 

6.3 A Decay estimate for Solutions of Constant Co­
efficient Systems 

Theorem Suppose u satisfies (9) where the A are constant and 0 = B1 (0) 
for simplicity of notation. Then for 0 < r :::; 1, 

U(O,r):::; cr2 U(O,l) 

for some constant c. 

14See the last Section of my measure theory notes. 
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PROOF: We may assume r:::; 1/4, since if r > 1/4 we can take c 2:: 4n+2 • 

Then 

w;:;-lr-2-n r iu- (u)rl2 
}Br(O) 

< er-n { jDuj2 Poincare's inequality 
jBr(O) 

< c sup jDuj2 

Br(O) 

< c { jDuj2 a standard elliptic estimate 
jB1; 2 (o) 

< c { iu - ( u h j2 by Caccioppoli 's inequality 
}B,(O) 

The "standard elliptic estimate" above is that one can typically bound higher 
norms (here L'x') of solutions and their derivatives in terms of lower norms 
(here L 2 ) over a larger domain. "Caccioppoli's inequality" is applied to the 
solution u- (u)t. 

This gives the result. I 

7 Outline of Proof of Partial Regularity 

Lemma Suppose u is a solution of (9). Then there exist constants E > 0 
and 7 E (0, 1) such that 

U(x0 ,r) < E 

implies 

PROOF: Suppose 7 E (0, 1) and the conclusion of the lemma is false for each 
E > 0 (the intention is to obtain a contradiction if 7 is sufficiently small). 

but 

Then there exist balls Brk (X k) c n such that 

1 2 
U(xk. rrk) 2:: 2.Ak . 

Rescale to the unit ball by setting 

119. 
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Then, using the integral form of (9), 

j A(.Akvk + ak)Dvk D¢ = 0 

for all¢ E W~'2 (B1 (0); JRN). 

Moreover, from (10) and (11), 

From Caccioppoli's inequality, fB, JDvk J2 is bounded independently of k. 
This allows one to pass to a subsequence of the Vk which converges weakly 
in W 1 •2 , strongly in L2 and pointwise a.e., to some function v. Moreover, 
ak ---+ a, say. From this it is not difficult to show that v will satisfy the 
"limit" equation 

jA(a)DvD¢=0 

for all¢ E W~·\B1 (0); JRN). 

From the decay estimate for constant coefficient equations, 

On the other hand, 

kr Jv- (v)TJ 2 ~ ~' 
using continuity of the L 2 norm under L 2 convergence in both lines. 

This is a contradiction for sufficiently small T. 

The Lemma is now used as follows. The inequality U(x 0 ,r) < E must 
hold in an open subset of n. Moreover, it can be iterated to show 

U(x0 , Tjr) < GY U(xo, r). 

This, together with the integral characterisation of Holder continuity and 
elementary arguments, shows u E C0"'(S10 ) for some a. Higher smoothness 
follows by fairly standard iteration techniques (although C0 ·"' to C1 •"' is not 
quite so standard). 

The estimate on the dimension of S1 \ S10 follows from noting 

U(xo, r):::; cr2-n { JDuJ 2 

}Br(xo) 

by Poincare's inequality, and the fact (using a Vitali covering argument) that 
the right side approaches zero except on a set E with 1-in-2 (E) = 0. 
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