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Summary

We present a number of evolution equations which arise in differential geometry starting
with the linear heat equation on a Riemannian manifold and proceeding to the curve
shortening flow, mean curvature flow and Hamilton’s Ricci flow for metrics.

We shall first show that a solution of the heat equation on a compact Riemannian manifold
converges smoothly to its average value as t — oo, using only techniques which carry over
to the nonlinear evolution equations presented in the lectures.

We will then concentrate mainly on curve shortening and mean curvature flow which
exhibit many of the features particular to a variety of nonlinear parabolic equations.
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The Linear Heat Equation

Let (M,g) be a Riemannian manifold and let A = Ay denote the Laplace-Beltrami
operator on M defined by

Af =gViV,f
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where (g%/) denotes the inverse metric, I"Fj

;; are the Christoffel symbols, g = detg;; and
ViV;f is the Hessian operator acting on f. Let f: M x (0,T) - R, T > 0 be a function
solving the heat equation
of

(1) x Af

on M subject to the initial condition f(-,0) = fo.

For M = S? parametrized by spherical coordinates

z cosf cosp
y | = | sind cosy
z sin @

where 0 < § < 27, 0 < ¢ < 7 equation (1) becomes

of _ 9f 2 O°f of
i a—(p2+cos 99892 —tancp-a—"o.

For M = R", an explicit solution of (1) is given by

1 —lz—yt?
f@t) = gy [ folw)e ™ dy.

For a solution of the heat equation any smooth limiting function f(oo) = limy, o0 f(tx) is
harmonic on M, that is it satisfies the equation

Afoo = 0.

Note that the only harmonic functions on a compact Riemannian manifold are the con-
stant functions. Indeed, integration by parts yields (see also R. Bartnik’s notes in these

proceedings)
- Af=— vF|.
0 / fAf / IVl

Hence Vf = 0 on M (since f is smooth) whence f = const. Therefore the following
theorem seems very natural:
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Theorem. On a smooth compact Riemannian manifold M, the heat equation

0
o _,,
ot
for any reasonable initial data fo has a unique smooth solution for all positive time. Its
average value f = W / u [ 1s time independent and f converges smoothly to this

constant as t — oo.

‘We shall later present a complete proof of this theorem using only techniques which carry
over to a large number of nonlinear evolution equations.

Harmonic Map Heat Flow

Consider two Riemannian manifolds (M, g;;, I‘fj) and (N, vqp, K§;) with metrics and con-
nections as indicated. We consider a mapping F': M x (0,T) — N satisfying the evolution

equation
OF

(2) =

with

7(F)

[ B2 Fe oFe oFb §Fe
a __ 1] _ 1Tk a
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where z* denotes coordinates on M and the superscript a is with respect to to coordinates
y* on N. Note that 7(F)® can be interpreted as the tangential projection of Ay F*
onto TN. The first summand is Ay F* while the second summand relates to the second
fundamental form of N in case N is embedded isometrically into some Euclidean space.

For instance, in the case where M = R™ and N = S”, (2) becomes

OF )
57 = AF - |DFI’F.

Mappings F which satisfy 7(F) = 0 are called harmonic mappings. They arise as critical
maps for the energy functional

. OF® OF®
2 _ gy 7
/ |DF| / Yabg" 5 57 dvoly.
Examples:

(i) F: S* — N is harmonic if and only if F(S?) is a geodesic in N parametrized propor-
tional to arclength.

(ii) F : $? = N is harmonic if and only if F(S?) is a minimal surface parametrized
conformally.

The following theorem due to Eells & Sampson ([ES]) established the heat equation method
as a major tool in the geometric calculus of variations.
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Theorem. Let M and N be compact Riemannian manifolds and let N -have non-positive
sectional curvature. Then (2) has a unique smooth solution F for all time. For any
reasonable initial data Fy the solution converges, as t — oo, to a harmonic map which
belongs to the same homotopy class as Fy.

Curve Shortening Flow

Consider a planar curve I' C R? with position vector z and normal v. We consider the
evolution equation

Oz
3 =k
(8) at
where k denotes the curvature of I at the point at which we want to move I'. For a closed
curve we consider more specifically ¢ = z(u,t) with v € [0,27),t € (0,7'). Let

s(u,t) = /Ou %}(u’,t)’ du'
be the arclength function of the curve I'; parametrized by z(¢,:) and 7 = % the unit
tangent vector. Then kv = %f = %%% whence (3) can be written as
g _ 0%
ot 0s?’

This looks like a linear heat equation for z. The nonlinearity of the problem is hidden in
the definition of arclength which depends on 2%(u, ).

If our curve is given as the graph of a function y = f(u,t), equation (3) reduces to the
single equation

” o1 o

ot 1—1—(%5)2 Ou?’

A solution of (3’) is equivalent to a solution of (3) up to tangential diffeomorphisms. The
evolution process described by (3) is called curve shortening flow since it arises as the
steepest descent flow for the length functional

L(T) = /0 -

The following theorems give a description of the global behaviour of solutions of (3).

Oz

50 du.

Theorem. (Gage & Hamilton, [GH]). Any closed convex curve in the plane remains con-
vex and shrinks to a point in finite time. If we rescale the solution I'y such as to keep the
enclosed area constant we obtain a solution which converges smoothly to a round circle in
the plane.
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Theorem. (Grayson, [Grl]) Any closed embedded curve in the plane remains embedded
and becomes convex in finite time (after which the previous theorem takes over).

We can also consider curve shortening flow of curves on two dimensional surfaces. The
main result here is due to Grayson:

Theorem. (Grayson, [Gr2]) Any closed embedded curve on a compact 2-surface has a
unique evolution (I'y) which remains embedded and either shrinks to a point in finite time
or converges to a geodesic for t — co.

This result can be used to give a new proof of an old theorem of Ljusternik - Schnirelman
which states that for any metric on S? there exist at least 3 simple closed geodesic loops.

Mean Curvature Flow

This flow includes the curve shortening flow as a special case for n = 1. We consider the
evolution equation

Oz
4 - _H
“ ot Y
for hypersurfaces M C R"*l. Here H denotes the mean curvature of M; = z(¢,-)(M)
where z(¢,-) is an immersion of M into R™*! at time ¢.
In view of the identity
Apmz=—Hv

t

where

Bnat = =0, (Vo (0052 ()

for k=1,...,n + 1 we obtain the nonlinear system of PDE’s

— = Apm,z.

o~ oMS
In the special case where M; = graphu(t,-) equation (4) is equivalent (up to tangential
diffeomorphisms) to the single parabolic PDE

Ou D;uDju
! — = (§;j — ——=2—) D;D;u.
(4) at ( J 1+|Du|2) U
The first result about global behaviour of solutions of (4) was proved by G. Huisken in
1984.

Theorem. (Huisken, [Hul]) Let My C R™*! be compact and convex. Then the surfaces
M, are convex and contract smoothly to a point in finite time. If we rescale My such as to
preserve the area, then they converge to an n-sphere (with the prescribed area) in infinite
time.
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Without the convexity assumption, M; may develop singularities in finite time as for
example if My is a dumbbell shaped surface obtained by attaching two large spheres to
the ends of a sufficiently long and thin cylinder.

However, there are some initial situations which guarantee the existence of a smooth
longterrn solution. For instance, in the case where My = graphug with up : R® — R,
the following result holds.

Theorem. (E. - Huisken, [EHI1,2]). The equation (4) (or equivalently (4’)) admits a
smooth solution M; = graphu(t,-) for all t > 0 if we merely require that ug is locally
Lipschitz continuous.

Note, that in contrast to the linear heat equation %‘tﬁ = Au on R™, no assumption about

growth behaviour of ug at infinity has to be made. In the linear case,

1 —lz—yi?
u(z,t) = (_4—7r+_)%_/nu0(y)e T dy

which blows up in finite time unless ug has controlled (e.g. polynomial) growth for |y| — co.

Stationary solutions of (4) are minimal surfaces (Hy = 0). In fact, one hopes to employ
mean curvature flow in Riemannian manifolds to find minimal surfaces (analogously to
Grayson’s result about geodesic loops in 2 - surfaces).

In R™*!) closed compact minimal surfaces do not exist which can be seen by integrating
the equation Apsz = 0 by parts on M.

However, in R"*! equation (4) can be used to solve the Dirichlet problem for the minimal
surface equation.

Theorem. (Huisken, [Hu4]) Let @ C R"™ have smooth boundary with nonnegative mean
curvature. Let ¢ : 00 — R and ug : 8 = R be smooth. Then (4’) admits a smooth
solution u(t,-) for all t > 0 which converges to a minimal graph (solution of the minimal
surface equation) as t — oco.

5. Ricciflow of Metrics

We would like to evolve a metric on a given manifold to a "better” metric, such as for
example a metric of constant sectional curvature. The main interest in considering such an
evolution process stems from the fact that the topology of manifolds which admit metrics
of constant sectional curvature is well-understood.

More specifically, we would like to find a family of metrics (g;j(t)) on a manifold M
satisfying the equation

0
(5) 59 =

with initial metric g;;(0). This flow was proposed and studied by R. Hamilton in 1982
[H2], see in particular the theorem below.

-2 Ric,j
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If for example the initial metric is invariant under SO(3) with spheres S? as orbits then
this is preserved under (5). In this case, the metric g;;(t) looks like

ds® = b(r,t)%dr® + a(r,t)*dw’

where w denotes coordinates on S? and r is the radius function. The equation (5) reduces
to the parabolic system of equations

0u_ 10 10a0, 1 00 1

ot b2or2 b2 Oror + W(—ér_’) T a
ab 2 9% 2 Oa Ob

8t abor?  ab? or or

in this situation.

The recent interest in geometric evolution equations was initiated mainly by the following
theorem due to R. Hamilton:

Theorem. (Hamilton, [H2]) For any initial metric (g;;(0)) on a compact 3-manifold M
with Ric;;(0) > 0, there exists a unique solution (9ij(t))te(o,) of (5) such that Ric;;(t) > 0
for all t > 0 and Vol(t fM \/det g;j(t) — 0 ast — T. If we rescale the metrics as to
keep the volume ﬁxed they converge to a metric of constant positive sectional curvature.

The rescaled flow mentioned in the theorem is given by the following:

0 2

77911 = 37 9ij — 2Ricy;

where R denotes the scalar curvature of j and 7 = I(M) S/ M R. One readily checks that
for such metrics y
Zl_tVOI (M) =0.

Combining the above theorem with a classification result for constant curvature manifolds
(see Wolf [W]) we obtain an important classification result for compact 3-manifolds with
positive Ricci curvature.

Corollary. Any compact 3-manifold which admits a metric with positive Ricci curvature
is diffeomorphic to the sphere S or a quotient of S* by a finite linear group.

Gradient flows

All of the above flows except for the Ricci flow arise as so-called gradient flows for some
geometric energy functional. Here, we will only sketch the underlying idea. For more
detailed information especially about suitable function spaces for particular geometric
problems we refer to the book by Struwe [S].
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We would like to minimize energy functions E : X — R on some space X, typically a
Sobolev space of functions, mappings or tensorfields endowed with some inner product
(,-) x- Let z = z(t) be a differentiable path in X, along which E decreases fastest. Such
a path will have its tangent direction at every point determined by some generalization of
the gradient of E at that point.

More specifically, we have the following: In many applications we are dealing with spaces
X where the directional derivative (Fréchet derivative) of E along «(t) can be represented
in terms of a vectorfield (gradient) on X by

d dz
SB() = (VE@E©), T0)
We then consider the so-called gradient flow for E defined by
dz
In particular,
dE
— (@) =~IVE@)%x
where || - || x denotes the norm on X induced by (:,-) .

Examples:

1) Euclidean space: X =R", E(z) = i|z?, VE(z) =z, & = —=z.
2 di

Steepest descent paths are rays into the origin.
(i) Heat equation on a compact Riemannian manifold M: Let X = H'?(M) and the

energy be given by .
B(f) =3 [ IVIF.

Let t — (f(t)) be a path in H?(M). Assume for simplicity that all functions f(¢) along
this path are smooth. We then calculate

d

1 0
EE(f(t)) =3/, —a;|vf|2

0
- [ 1.5

of
J 5550
of
== [, 505
If we define an inner product on X by (f,g)x = [,, fg the above reads as
d of
2 B(f) = -85, D)
whence VE(f) = —Af. This leads to the heat equation %% = Af.
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(iii) Mean curvature flow: Consider immersions z : M — R™*! of an n-dimensional
hypersurface. As energy we choose the area of the image

E(z) = area (z(M))

If = z(t) denotes a path of immersions we calculate using the first variation formula (see
lectures by Marty Ross in these proceedings)

d dz
GEG) = [ Hw 5

Regarding the integral on the right hand side as an inner product on an appropriate space
of immersions we arrive at

dz
i —VE(z)=—Hv.

Remarks on Short Time Existence of Solutions

The equations (1) - (5) above are all of parabolic type and, except for (1), are nonlinear.
Short time existence of a solution is usually proved by first considering the so called
linearized equation. (For the existence theory for linear parabolic equations we refer to
[F], [LSUJ.) If we consider a nonlinear evolution equation (this could also be a system of
equations) of the form

ou 2
i F(u,Vu,V*u)
then the linearized equation is given by
d
38_1,;1 = a—e’E:OF(u + ew, V(u + ew), V?(u + ew))

= a;;V;Vjw + lower order terms

where (a;;) is a positive definite matrix with entries depending on u. The linear existence
and regularity theory (Schauder theory) in combination with an implicit function theorem
(or a fixed point theorem) argument in an appropriate Banach space can then be employed
to solve the nonlinear equation for a short time interval . One difficulty with the above
equations (3)-(5) is that they are invariant under diffeomorphisms so the standard short
time existence arguments do not apply immediately. One can however formulate and solve
a modified but equivalent equation in each case (see for example [H1]. For instance, in the
case of the curve-shortening flow (3), one can write I'; as a normal graph over I'g which
leads to an equation of the type given by (3’).

Longterm Behaviour for Solutions of the Linear Heat Equation

Here we give an outline of the proof of the theorem about longterm behaviour of the
solution of the linear heat equation discussed earlier. The techniques used are most easily
presented for linear equations but are also applicable to a variety of nonlinear evolution
equations.
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We would like to show that a solution f of

of

o = A

with smooth initial function f(0) = fo on a smooth compact Riemannian manifold M
converges smoothly to its average value. We first observe that the average

- 1
f(t) = W./Mf(t)

is time independent. Indeed,

- 1
E(“zmmﬁfat
1
= Yol(M) / Af=0.

The last identity is a consequence of the divergence theorem. In order to prove that f
converges to its average in L?(M) we use the

Theorem. (Poincaré inequality). There exists a constant ¢o > 0 depending only on the

geometry of M s.t.
T
M M

The constant ¢y is an isoperimetric constant which is related to the quantity

for all f € CY(M).

su min{Vol (), Vol (M ~ Q)}
QCM, (}?:)open Area (89)

For instance, on manifolds with thin necks (think of a dumbbell) ¢y can be very large.

Lemma. If f satisfies 3% f = Af on a compact manifold M then

/M = PR < e /M \f - FR(0)

for every t > 0. This implies in particular that as t — oo
If=f1—=0

in the L?— sense.
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Proof. Using g—{ = 0 we calculate

whence

d _ _ _
G- st g g
M M
Integrating this differential inequality yields the result.

Next we would like to show that |f — f| — 0 uniformly as t — co and that all derivatives
of f converge to 0 uniformly as well. The main tool we are going to employ is the weak
maximum principle which holds for more general classes of parabolic operators. We state
it here for the heat operator.

Proposition. Let u : M x [0,T] —+ R be a sufficiently regular function satisfying the
inequality

Ou

— <A

ot ="

on a compact manifold M for t € (0,T], then

max u(t) < max u(0)

for all t € [0, T).
Remark. More generally we may consider inequalities of the form

Ou
5 < Au+ (a, Vu).

Then maxys u(t) < maxpy u(0) as long as supyy (o, 12| < 0.
Proof. Heuristically we proceed as follows. We have

Pu_ i Ou,
Ozt 0x) T Ok

At a point where u attains a maximum at time ¢ the first partials of u vanish and the

matrix (532%57) is negative semidefinite. Hence Au < 0 and therefore 2% < 0 at such a

5t =
point. Hence u cannot increase here. This argument is almost rigorous.

Au = g'(
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In more detail, one checks that the function ¢ — M(t) = maxzenm u(z,t) is Lipschitz
continuous and hence differentiable a.e.. Furthermore, for a.e. ¢t € (0,7
, Ou
M'(t) < max{a(:t,t), x € Ms.t.u(z,t) = M(t)}

< max{Au(z,t), z € Ms.t.u(z,t) = M(t)}
<o.

Hence M(t) < M(0) for all ¢t € [0, 7).

An immediate consequence of the maximum principle is the following

Proposition. A solution f of the heat equation satisfies the inequality
< .
max | (1)] < max| /(0)

Next we would like to use the maximum principle to obtain a time independent bound on
|V £|. In fact, we would even like to show that |V f| — 0 uniformly as.t — co.

('gi - A> IV F2.

In the process of finding a simple expression for this we will have to interchange 3rd
derivatives of f at some stage. This will introduce the Riemann curvature tensor of the
metric on M into the calculations. '

Let us first calculate

Proposition. (Bochner formula) For any smooth function f on M there holds the formula
1 .
§A|Vfl2 = |V2f? + (Vf,V(Af)) + Ric(Vf, V)

where (-, ) denotes the metric on M and Ric(.,.) its Ricci curvature.

Proof. Recall (see R. Bartnik’s notes) that the Riemann tensor on M was defined in
terms of interchanging second covariant derivatives of vector fields on M (careful; my sign
convention for the Riemann tensor may be the opposite of the one used elsewhere). Let
X Dbe a vectorfield on M. We use the shorthand notation

X,‘jk = VijXi.

We also work in a local orthonormal frame on M such that we can conveniently write all
tensor identities using only lower indices. Then

Xijk — Xir; = XiRiijk
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where we sum over repeated indices. The Ricci curvature is given by
Rij = Rikjk.
For a function f on M we have in particular (with f; denoting V,f)

frit = frri + fiRikix
= (Af)i + fiRu.
We now calculate
Afi = firk = friv = (Af)i + fiRni
and therefore 1
§A|V.f|2 = (fifij); = fij fis + fifiss
= fijfij + Fi((AF)i + Rij f5)
= [V2fIP +(VF,V(Af)) +Ric(Vf, V).

Lemma. If f satisfies the heat equation %g = Af then

(9~ D)V = -2V f]? - 2Ric(V, V).

Proof. Calculate 9 5
— 2 — —_
SIVIE =2V, 29)

3]
2915 2p)
=2Vf,V(Af))
and apply the Bochner formula.

There are a variety of estimates we can obtain by applying the weak maximum principle:

Proposition. Let f satisfy g—{ = Af on a compact Riemannian manifold M. Then there
exists a constant ¢ = ¢(Ric) > 0 s.t. for allt >0

max |V f[(t) < %mAz/aI,xfz(O).

Proof. Since M is compact there exists K > 0 such that
Ric;; > —Kgi;

holds on M. Using this in the above lemma we estimate

(% - A) VIE < 2KV S
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We also calculate 5
— —A) fP==2|VfJ>
(5-2) 7 =21
Hence P )
= —A)(E|IVP+(K+2)ff) < 0.
(5-2)elvse+E+H s
The maximum principle yields
max(t |V f|* + (K + —1—)f2) < (K + l)max 2(0)
M 20 7~ 2" M
Remark. By applying the maximum principle to the functions e*5¢|V f|? and e~2K|V f|2,
respectively, one obtains the following gradient estimates:
If R;; > Kg;; for K > 0 then
2(4) < o—2Kt 2(0).
max |V (1) < e max [V f*(0)
If R,‘]‘ > —I{gij for K > 0 then
' 204y < 2Kt . 2
max [V f|*() < e max |V f[7(0).
The above proposition establishes that |V f| — 0 uniformly on M as ¢ — co. We now

proceed to bound higher derivatives of f. We will only discuss estimates for V2 f in detail.
The methods carry over readily to higher derivatives.

In order to estimate s
o 2
(-0) v
0

0
OS2 _29 r_ 2
atVf v Btf VEASf

we calculate

and
AIV2f12 = (fijfis)ur = (2fifisn )
= 2fijk fijk + 2fij fijrr
= 2|V3f|? + 2fij fijkr-

Using Riijkk to denote Vi Rjijr we compute

fijkr = firjx + (fiR1ijk)k
= frijk + ficRiijk + fi Riijrk
= frikj + friRikkj + femBmirj + fikRiije + fiRujkk
= frkij + (foRukik); + fiRikk; + femBmikj + ficRiijr + fiRiijrk
= (Af)ij + fnjRukik + fliRikkj + fxmBRmikj + fikRiijk + faRukik; + fiRiijkk-

92



Let S * T denote a tensor obtained by contractions of tensor products of S and T. Then
the above formula can be written as

AV2f =V Af+Vif« R+ Vf*VR.

We therefore obtain

(g - A) IV2fI* = =2|V3fP + V2 f « V2 fx R+ V?f* Vf+ VR

=2|VAf? + c(n, |R)) [V2fI* + ¢(n, [VR]) [V* f]|V f]
=2[V2fI* + ¢(n, |R)) [V*f* + e(n, [VR]) [V f?

IAINA

where we used the inequality ab < a2 + 1 b2 and denoted all constants depending only on
n, |R| and |VR| by ¢(n, |R|) and c(n IVRI) respectively. Let now

9=V +LIVS]

where L > 0 is a large constant. Then

(5’— - A) <AV P + VP — 2LV P

ot
<=V + |V FI?
=—g+ (c+L)|VfP
<—-g+C.

Here we have chosen L large depending on n, |R| and |V R| and denoted by C' any constant
depending on n, |R|, |[VR| and max(0,c0) [V f|>. We want to show that g satisfies the
inequality
<
Mril[%xoo) g<C+ max g(0).

To this end let € > 0. Suppose there exists a first time tg > 0 such that at zg € M

g(2o,t0) =C + n}é}xg(O) +e
Then at (2o, to) we have % >0 and Ag < 0. Hence
~ (¢ +maxg(0) +¢) +C

at (xo,to) which yields a contradiction. This argument establishes the following

Proposition. We have the estimate

2
<
W3, VAP < €

where C depends on n, |R|,|VR|, maxy;[0,c0) |V f| and maxys [V2 f[*(0).
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Remark. One can even establish a bound for t?|V2 f|? and therefore prove decay of |V2f|
in time. In fact, for all m > 1

v
can be bounded in terms of n, m, derivatives of Riem up to order m — 1 and maxps | f(0)].
To prove such an estimate for |[V™ f|? one shows that

ot

where ¢ depends on n,m, |R|,|VR|,...,|V™1R| and |[V™~!f| and then proceeds by in-
duction on m.

(5 -a) 9757 < 217" 7 4 o1+ [974P)

We are now able to prove that f — f converges to 0 as t — oo uniformly. This is achieved
by combining the above higher order estimates with the L2- decay estimate

(/M |f - f|2(t)>% <ce™®

Lemma. There exist positive constants C' and ¢ such that

/ VFP() < Cem?t
M

proved earlier.

for allt > 0.

Proof. Using Af = 0, the inequality (35, a,-j)2 < nyo7 -y af; and the above decay
estimate we calculate at time ¢

]M VP =— /M (f - F)nf
< /M F = FlIAf)

<n /M 1F — 7192

[0,00)

< Vi ([ 17 -77) Volan} mex 191
< ey/nVol(M)* WX |V2fle%.

In view of the bound on |V2f| the results follows. To complete the proof of convergence
we need the following Sobolev inequality on M:

There exists a constant C = C(n, M, p) such that for all C'- functions f on M and for

every p>n .
mexlf =l ([ vrr)”.
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Combining this with the previous lemma and the global bound on |V f| we estimate

(/M v (t)> S, VAT (/M lvﬂz(t))%

< max |Vfl1_%0%e_5%t
M x[0,00)

<C et

SN

Applying the Sobolev inequality to (f — f)(¢) we therefore conclude for all ¢ > 0
m]\;}[xlf — fl(t) < Ce™

with constants C,~v > 0. This establishes uniform convergence.

Selected Topics from Mean Curvature Flow
1. Evolution equations of geometric quantities

We would like to calculate how geometric quantities of a given hypersurface M C R"*!
change as this surface is deformed locally in the direction of an arbitrary normal vector
field. The evolution equations for mean curvature flow are then obtained by substituting
mean curvature as the normal speed.

More specifically, we consider vectorfields X defined in a neighbourhood of M which gen-
erate a 1-parameter family of diffeomorphisms of R™*!. We may assume without loss of
generality that our vectorfields are of the form X = nv where v is a choice of normal of M
suitably extended and n is a smooth function defined in a neighbourhood of M. In case of
mean curvature flow we have n = —H.

We shall introduce a convenient set of coordinates in a normal neighbourhood about M:

Let p € M and Q C R™! be an open neighbourhood of p. Let X € C (Q;R"t!) be a
vectorfield which generates a 1-parameter family of diffeomorphisms

P QX (—ee) >
such that ¢:(z) = p(z,t) =z forall z € R" ~ Q and t € (—¢,€), po(z) =z for all z € Q
and 22 (z) = X(z). Let M; = @i(M).

Ot |¢=0

We introduce a local orthonormal frame 7 ... 7, v near p € M with the property

(Verj,mr) (p) =0, (ri,73) (p) = 6ij
for 1 < 4,5,k < n where V denotes the standard connection on R™*!. The vectorfields

7i(t) = ¢, (i) then yield a local (not necessarily orthonormal) frame for M;. By definition
of 7;(t) we have in particular

VX -Vxri=[X,1]=0

in a neighbourhood of My. Assuming for simplicity that X = nv where n € C(Q) and
denoting X = B(Ltlt—o we have the following
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Proposition. The metric satisfies

d

et = Inhs
dﬂt:og” nhij

where h;j = (V,,v,7;) is the second fundamental form of M.

Proof. We calculate

X(gi;) = X{(ri, ;)
=2(Vxri, 1) =2V X,1j)
= 2<Vn(771/)’71')
=27 (77)('/7 Tj) + 277<st”> Tj)
= 277h,'j

where we have used [X, ;] = 0 in the second line.

Corollary. The inverse metric ¢ and the volume element V9 = +/det g;; satisfy the
equations

d y y
(3 — U= _oph'
(2) dtg,=09 n
and
5 d
(12) —  Vg=nH\/g.
dt |4—o

Proof. (i) is easy. To establish (ii) we compute

d 1 o d
- =5v99” = gij =nHg.
dtlt:o\/g 2\/_ dt|t=0 J n \/_

Proposition. The second fundamental form satisfies the equation

d

—  hij = =V + nhichs;.
dt |4=0

Proof. We calculate
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X(hij) = =X(Vrj,v)
= -(VXVTirj, I/) - (VTiT]‘, Vxl/)
=—(V.Vx7j,v) —(Vy1;,Vxv)
= —(V,VxT1j,v) (since VZ:,T]'(p =0and Vxv € T, M)
=(V,V,X,v) (since [X, ;] = 0)

_<v7'iv7'j (nv), V)

=(Vr(ri(m)v +nVyv),v)

= —TiTj(n) - Tf(n)<v7i V,V) = Ti (n)(VTj v, V) - 77<V1'iv7'j v,v)

= —7iTi(n) + n(Vv,Vyv) (using Vv € T,M)

= —7imj(n) + nhichi;

= —v,Mv;”n + nhichi; (normal coordinates).

I

Corollary. The mean curvature satisfies

d

= H=—Ayn—nl|AP
7 |co n—nlA|

where |Al2 = hi]‘hi]‘.
Proof.
X(H) = X(g"hij)
= X(g")hij + 9" X (hij)
= —2nhi;hij + X (hii)
= —2n|AP” — Ay +n]A%.

Corollary. (First variation formula) The surface area (n-dimensional Hausdorff measure)
satisfies p

T H”(Mt):/ nH./g.
[e=o M

Corollary. (Second variation formula) The second derivative of area is given by

d2
- H”(Mt)=/ (Vn,V>nH\/§~/ nAMN/g
dt it=0 M M

_/ 772|A|2\/§+/ 772H2\/§.
M M

Remark. If M is minimal, i.e. H =0 and n € C°(M) then the second variation formula
reduces to

a2
2 Hn(Mt):/ |VM77|2\/§“/ 772IA|2\/£7.
dt? |—o M M
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A minimal surface is called stable if

d‘Z

&) M) 20

This yields the inequality

/ AI*n*V/g < / IV¥a* Vg
M M
for all n € C(M).

To derive evolution equations for mean curvature flow we consider variations of M = M,
for each t.

Theorem. (Evolution equations for mean curvature flow)

(4) %g,,- = —2Hh;;

(i) LIpp——"

(i27) -C%\/g =-H*/g

(iv) (% — Ap,)H = H|AP

(v) (;ld; — A, )hi; = —2H — highyj + | APy
(vi) (& — Aw)IAP = 2l4]* ~ 21V AP

(vid) %y =vM g

Proof. (i) - (iii) follow by replacing n by —H in the rate of change formulas for general
deformations. To derive (iv) and (v) we need to express V¢ V;VI'H in terms of Ay, hy;.

Proposition. (Simons’ identity)
(+) VfVIV?/IH = AMh,'j — Hh,'khkj + IAI2h,']'
(++) Ay |AP? = =2|A]* + 2]VMAP + 2Hhichyjhij + 20 VIVY H

Proof. (++) follows easily from (+) by multiplication with h;;. To prove (+) we employ
the Gauss equations
R%Ikl = h,‘khjl - hz’lhjk

and the Codazzi equations
hijk = hikj
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the latter being shorthand for VMh,; = V;VI hik. We then calculate
Anrhi; = hijrx
= Rikjk (Codazzi)
= hrijk (since hik = hi;)
= ik + hmiR%};J‘k + hka%ijk (from definition of RM)
= hikij + Pmi(hmjihkk — Bmihij) + Rem(Rmjhic — hmihij) (Codazzi and Gauss)
= H;; + Hhiphgj — |APPh; (relabelling indices)

Equations (iv) - (vi) of the theorem now follow immediately. To prove (vii) we proceed as
follows:

We assume w.l.o.g. that n # 0 in a neighbourhood of p for the purpose of our calculations.

Otherwise we interpret ;id—ty as -j—tzx(got(a:)) using the chain rule (the result of the calculation
will still be the same). ‘If X = nv is transverse to M then %u = V xv and we calculate

Vxv = (Vxv,1i)mi (since Vxv € T, M)
o= —(V,V)(T,'>Ti
= —(,V, X); (since [X,7:] = 0)
= ——<V, V,-'.(—HI/))TZ'
=7 (H){v,v)y1i = 7:(H)m
=VvMH.

2. Formation and structure of singularities for mean curvature flow

Without any special assumptions on My such as convexity or graph property, the solution
(M) will in general develop singularities in finite time. Here we discuss some techniques
which are relevant for dealing with isolated singularities. We would first like to give a short
proof of the fact that singularities for ”dumb-bell” like hypersurfaces do indeed form. The
argument is entirely based on the weak maximum principle. This was stated earlier for
the ordinary heat operator. The proof, however, carries over unchanged if we consider
A, instead. We begin by comparing the flowing hypersurfaces with spheres moving by
contraction.

Proposition. (Sphere comparison) Let (M) be a family of hypersurfaces moving by mean
curvature. If

My C Br(0)
then
M C B\/m(ﬂ).
If
Mo C R™! ~ Bg(0)
then

M; € R™! ~ B /gr=7(0).
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Proof. The position vector of My satisfies

%]ﬂz = —-2H(v,z)

and
A, lz)? =2n — 2H (v, z).
Hence d
(a — Ap,)(|z]* + 2nt) = 0.

We can therefore employ the weak maximum principle with f = |z|? + 2nt to obtain the
result.

Proposition. Let (M;) be a family of hypersurfaces moving by mean curvature. If for
B<n—1
4. +a2Z —¢

n—1-0

Mo C {(z1,...,Tny1) € Rn+17~”5721+1 2

}

then ) )
otz — 20t
MtC{(zla'-->xn+1)GR‘n+17x31+1Z$1+ +:Ln+6 IB }
: n—1-p4
fort < 5% In particular, M & is contained inside a cone.
Proof. Using (% — A, )z = 0 we check that (& — Apg )22, = —2|VMa,41|? and hence
that p
(E - AMc)(IfCIQ —(n— ﬁ)~”531+1 +2pt) < 0.

Applying the weak maximum principle yields the result.

We now consider a ”dumbbell” - shaped initial hypersurface My. More specifically, we
assume that My consists of a long thin cylinder of radius /€ with a large sphere of radius R
attached at either end of the cylinder. Such a surface will be contained inside a hyperboloid
with minimum diameter /¢ and will contain two spheres of radius R inside the volume it
encloses. By the proposition, M. will be contained inside a cone with vertex at 0 while if
R is large enough compared to e will still contain two spheres and can therefore not have
vanished completely. Therefore a singularity must have formed at 0 (possibly also at other
points).

One can show that if a singularity forms at time T we have

lim sup max |A|* = co.
t—»T M

In fact, if for compact M; we had a bound on |A|?> up to time T, we could also obtain
bounds on all derivatives of A (we will return to this later) and would therefore be able to
extend the solution (M;) a little beyond time T
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There is a certain minimum ”blow-up” rate for |A|? at the first singular time T":

Lemma. If M, is singular att =T, i.e.

lim sup max |A]? = oo
t—-T M

then
1

AP > ——
max Al 2 57—
for all t € (0,T).

Proof. The quantity |A|* satisfies the evolution equation

d
(5 — Am)IAP =2/ A[* — 2|V AP

and hence p
G AR < TAI2)2.
7 e |A]* < 2(11}\2}( |A]%)

Integrating this differential inequality and using that lim sup,_,p maxyy, |A|> = co yields
the estimate.

If we also had an upper blow-up rate for |A|? of this kind we would be able to give a
complete description of the structure of isolated singularities. This is done by means of a
monotonicity formula first proved by G. Huisken ([Hu2]):

Proposition. (Monotonicity formula) For t < T the hypersurfaces M, satisfy

i ( t)——/ ( t)H <(C—£E0,y>2
dt » Pzo, T\T51) = o, Pzo,T\T, 2(T _ t)
where
(z,1) ! ('w_“P)
2o T(T, ) = ——— s exp| —————+ ] .
il n(T —1)% “P\TyT 1)

Remark. The proof uses the fact that (—szoj satisfies the backward heat equation
am(T'—t

1
on Rt

) 1
<6t+ R"*)(4ﬂT-¢n%p T

In fact, a monotonicity formula like the one above holds for any such backward heat kernel

([Hu3], [H3]):

Let k solve the equation

Sk = —Agntik.
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Then

g (er-03 [ 1) =—ew-ni [ 5Tl

1 V.,kV .,k k
—(2(T_t))2/M, k +2(T—t))'

<V,,V,,k —

for all ¢ < T. It turns out that the second integral on the right hand side is nonnegative
for any backward solution of the heat equation and therefore

% ((2(T —t))% / t k) <—(2AT-1)? /Mt |H - iv%ﬁl%

To prove this more general version of the monotonicity formula we first calculate

d 7] dz 0
as well as
Ak = diva, VM E = divyy, (VE — (VE, v)v)
= divga+:1Vk — (V,Vk,v) — (Vk,v)divy, v

= Apnirk — V,V,k — H(VE,v).

Hence using %, /gt = —Hz\/g_t we compute

%((Q(T—t))%/tk) :(T—t)‘%/Mtk + AT -1)} Mt%—(Q(T—t))%/ kH?

M,
=(T-t)"2 | k=2T-1t)%| Apwnk
M, M,
— (2T —1))3 /Mt kH? — (2(T — )% /Mt kH(v,Vk)

=(T-t)7% | k=@2T-1t) | Amk
M: Mt

(AT = 1))} /M 2H (1, VK) = (AT - ) [ V.9,

Completing the square

Vk-vl|?

k

-

yields the monotonicity formula.

Let us now assume that (M) satisfies the so-called type I blow-up rate

, c
‘< -
(+) max Al < 73
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for some C' > 0. Note that there exist solutions (M;) which do not satisfy (*). Assumption
(*) guarantees that we can rescale the surface about the isolated singularity and pass to a
smooth limit which moves by homothety:

Suppose 0 € R™*! is a singular point of the flow at the time 7. We define rescaled
immersions

#(p,s) = (AT = 1)~ %a(p,?)
for p € M™ and s = s(t) = —3 log(T — t). The hypersurfaces
M, = 3(-,5)(M")
are defined for —1logT < s < oo and satisfy

d .

In view of (*) the rescaled curvature satisfies

max |A]? < C

K

for all s with constant independent of s. This implies also an estimate for the position of
M, by estimating

T T
o )< [ Hp <0 [ ———ir <o -}
1 ¢ (T—1t)2
whence
lz(p,s)| <C

for all p € M™ and all s. One can now establish global bounds on |V™ A| for any m > 0
and then use standard convergence results to infer that for a subsequence (s;) — oo we
have B 5

M;s; — My

in C° where Mo, is a smooth hypersurface. Rescaling the monotonicity formula (with

k = po ) yields
d . I R
o A
2

[ ona-@nrs [ 5<o
0 M, Mo

which implies (after selecting another subsequence) that

where §(z) = e~ 317l

lim/ plH — (&,0)]* =0.
k—oco ]\}1%
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Therefore M, satisfies the equation
(#) H = (z,v).

The geometric significance of this equation is given by the fact that an initial surface My
satisfying (#) moves homothetically under mean curvature flow. Indeed, let

z(p,t) = (2(T —t))Z2(p, 0)

where My = x(-,0) (M™) satisfies (#). Then for p € M™,

d + 1
(3;@1%0) = m(ﬂ(n 0),v) = —H(p,t)v(p,1).

It turns out that the only embedded solutions of (#) with positive mean curvature are
the round sphere (of radius /1) in the compact case and the cylinder in the non-compact
case. This is a result due to G. Huisken ([Hu3]). There are many more interesting facts
known about the structure of singularities but presenting these would exceed the scope of
these lectures.

3. Mean curvature flow of graphs.
I would like to conclude with a few results about the flow of graphs and show that in this

case mean curvature flow does not develop singularities:

We consider hypersurface My = graphu(t,-) which move by mean curvature.The functions
u(t,-) = R™ — R then satisfy the single PDE

Ju Du
— =/14 |Dufldiv| ———= | .
ot + 1Dyl W( 1—|—|Du|2)

The mail goal is to establish an estimate on /1 + |Dul|? such that the equation becomes
uniformly parabolic which would then allow us to apply methods for linear equations.
However, rather than working with the quantity y/1 + |Du|? directly we consider with the
geometrically more natural quantity

v = (v, en.H)_l.
which agrees with up to tangential diffeomorphisms. Here, graphs are characterized by the
condition (v, en41) > 0 for some choice of normal field.

From the evolution equation for v we obtain

d
Eyn+1 = (VM: H, en+1>-
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Using a local orthonormal frame as before we can also calculate Ajpg, vp41 by

AN Vnt1 = TiTiVnt1 = Ti{ ViV, €nt1)
= Ti(hir (T, €nt1)) = Tihit(Tks €nt1) + hik(Vr; Thy €ng1)
= 15hii (T, ent1) — hikhix (V, €nyr) (using the Codazzi equations)
= (VM H, enp1) — [APvnta

Therefore,

d
(a - AMt) Vnt1 = |APVnsa

whence

d
(a - AMt> v =—|APPv — 207 | VMey)2,

We now would like to employ the weak maximum principle. However, since we are on a
non-compact hypersurface M; we cannot argue as before in a pointwise fashion to prove
it.

Proposition. Suppose f = f(z,t) satisfies the inequality

d
(G-am) <@y

where a is a vectorfield satisfying sup o 7)supyy, |a] < co. Then
sup f < sup f
M, Mo

for all t € (0,T).

Proof. Similarly to the proof of the monotonicity formula for p;, 7 one can show ([EH1])
that the function f# = (max(f — k,0))%,k > 0 satisfies the inequality

d 1
% fipzo,r < 5 Sup sup lal* | fipaor
tJm, 2 (0,1) M, M,

Hence, if k > sup,,, f we have fMo f2pso,r = 0 which implies
f;‘jpzo,T =0
M,

for all t € (0,T) and therefore sup,, f < kfor all ¢t € (0,T).
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From the evolution equation for v (since all the terms on the RHS are nonpositive) we
immediately obtain a gradient estimate:

Proposition. The gradient function satisfies the estimate

supv < supv
Ml Mo

for all t € (0, 00).

This establishes that if My grows linearly then this is preserved for all ¢ > 0. In particular,
this proves that the above equation for u is uniformly parabolic (since we now also have
a bound on /1 + |Du|?). Standard theory for parabolic equations (see [F], [LSU]) then
yields estimates on all higher derivatives of u. Let me indicate how (at least in the case of
the curvatures) such estimates can be obtained in a more geometric fashion:

Combining the equations for |A|? and v one calculates using also the inequality ab <
g g q

ea? + Zlgbz that

and furthermore
d
(E - AM¢> (t|A]%0? + v?) < =207 H(VMey, VM (] A20? + t0?)).

Since v~1|VMiy| < |Alv we can then apply the weak maximum principle to obtain
Theorem. For allt > 0 we have

sup(t|A|*v? 4 v?) < supov?.
M,

Mo

This yields in particular that

sup |[A]* = 0

M,
as t — 00, i.e. the hypersurfaces M; become flat as ¢ — co. There are also local versions
of all these estimates which can be used in conjunction with a spherical barrier argument
to prove that mean curvature flow admits a smooth solution M; = graphu(t,-) even if the
initial data Mo is merely locally Lipschitz continuous (see [EH2]).
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