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We present a number of evolution equations which arise in differential geometry starting 
with the linear heat equation on a Riemannian manifold and proceeding to the curve 
shortening flow, mean curvature flow and Hamilton's Ricci flow for metrics. 
We shall first show that a solution of the heat equation on a compact Riemannian manifold 
converges smoothly to its average value as t -t oo, using only techniques which carry over 
to the nonlinear evolution equations presented in the lectures. 
We will then concentrate mainly on curve shortening and mean curvature flow which 
exhibit many of the features particular to a variety of nonlinear parabolic equations. 
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The Linear Heat Equation 

Let ( M, g) be a Riemannian manifold and let 6. 
operator on M defined by 

6.M denote the Laplace-Beltrami 

6.f = gij\1;\ljf 

_ 9ij( <PJ -rk.aJ) 
- axiaxi '3 axk 

1 a ;· aJ 
= ..(§ axJ..;'g g J axi) 

where (gii) denotes the inverse metric, r~i are the Christoffel symbols, g = detg;i and 
\1; \1 if is the Hessian operator acting on f. Let f : M x ( 0, T) --+ R, T > 0 be a function 
solving the heat equation 

(1) aj = 6.f 
at 

on M subject to the initial condition f(·, 0) = fo. 

For M = S 2 parametrized by spherical coordinates 

(x) (cosO cosc.p) 
y = sin~ cosc.p 
z smc.p 

where 0 < 0 < 2rr, 0 < c.p < 11" equation (1) becomes 

M ~~ 2 ~~ M 
&t = ac.p2 + cos c.p a02 - tan c.p ac.p . 

ForM= Rn, an explicit solution of (1) is given by 

1 1 -lx-yl2 

f(x, t) = -( ).!!. fo(y)e-4•-dy. 
4rrt 2 Rn 

For a solution of the heat equation any smooth limiting function f(oo) = limt,~oo f(tk) is 
harmonic on M, that is it satisfies the equation 

6.foo = 0. 

Note that the only harmonic functions on a compact Riemannian manifold are the con­
stant functions. Indeed, integration by parts yields (see also R. Bartnik's notes in these 
proceedings) 

0 = JM f6.f =- JM l\1 fl 2 • 

Hence \1 f = 0 on M (since f is smooth) whence f = const. Therefore the following 
theorem seems very natural: 
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Theorem. On a smooth compact Riemannian manifold M, the beat equation 

at =~f at 
for any reasonable initial data fo bas a unique smooth solution for all positive time. Its 
average value J = votCM) JM f is time independent and f converges smoothly to this 
constant as t-+ oo. 

We shall later present a complete proof of this theorem using only techniques which carry 
over to a large number of nonlinear evolution equations. 

Harmonic Map Heat Flow 

Consider two Riemannian manifolds (M,g;j,rfj) and (N,/ab,K~b) with metrics and con­
nections as indicated. We consider a mapping F: M X (0, T)-+ N satisfying the evolution 
equation 

(2) 

with 

aF = r(F) at 

.. ( a2 pa apa apb ape) 
r(Ft = g'3 axiaxi - r~i axk + Kbc axi axi 

where xi denotes coordinates on M and the superscript a is with respect to to coordinates 
ya on N. Note that r(F)a can be interpreted as the tangential projection of ~Mpa 
onto TN. The first summand is ~Mpa while the second summand relates to the second 
fundamental form of N in case N is embedded isometrically into some Euclidean space. 

For instance, in the case where M = Rn and N = sn, (2) becomes 

aF = ~F- IDFI2 F. 
at 

Mappings F which satisfy r(F) = 0 are called harmonic mappings. They arise as critical 
maps for the energy functional 

1 2 1 .. apa apb 
IDFI = /ab9'3 -a . -a . dvolM. 

M M x• xJ 

Examples: 
(i) F : S1 -t N is harmonic if and only if F(S1 ) is a geodesic in N parametrized propor­
tional to arclength. 
(ii) F : S2 -t N is harmonic if and only if F(S2 ) is a minimal surface parametrized 
conformally. 

The following theorem due to Eells & Sampson ([ES]) established the heat equation method 
as a major tool in the geometric calculus of variations. 
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Theorem. Let lv! and N be compact Riemannian manifolds and let N have non-positive 
sectional curvature. Then (2) has a unique smooth solution F for all time. For any 
reasonable initial data Fa the solution converges, as t -r oo, to a harmonic map which 
belongs to the same homotopy class as F0 . 

Curve Shortening Flow 

Consider a planar curve r C R 2 with position vector x and normal v. We consider the 
evolution equation 

(3) 
ox 
- =kv at 

where k denotes the curvature of rat the point at which we want to mover. For a closed 
curve we consider more specifically x = x(u, t) with u E [0, 21r), t E (0, T). Let 

be the arclength function of the curve r t parametrized by X ( t, ·) and T 

tangent vector. Then kv = ~: = ~:; whence (3) can be written as 

ox 82 x 

ot 8s2 . 

ax the unit as 

This looks like a linear heat equation for x. The nonlinearity of the problem is hidden in 
the definition of arclength which depends on ~~ ( u, t). 

If our curve is given as the graph of a function y = f(u, t), equation (3) reduces to the 
single equation 

(3') 
of 
at 

1 82 f 
1 + ( ~~ )2 8u 2 · 

A solution of (3') is equivalent to a solution of (3) up to tangential diffeomorphisms. The 
evolution process described by (3) is called curve shortening flow since it arises as the 
steepest descent flow for the length functional 

L(r) = 12~ I~: I du. 

The following theorems give a description of the global behaviour of solutions of (3). 

Theorem. (Gage & Hamilton, [GH}). Any closed convex curve in the plane remains con­
vex and shrinks to a point in finite time. If we rescale the solution r t such as to keep the 
enclosed area constant we obtain a solution which converges smoothly to a round circle in 
the plane. 
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Theorem. (Grayson, {Grl}) Any closed embedded curve in the plane remains embedded 
and becomes convex in finite time (after which the previous theorem takes over). 

We can also consider curve shortening flow of curves on two dimensional surfaces. The 
main result here is due to Grayson: 

Theorem. (Grayson, {Gr2}) Any closed embedded curve on a compact 2-surface has a 
unique evolution (rt) which remains embedded and either shrinks to a point in finite time 
or converges to a geodesic fort-+ oo. 

This result can be used to give a new proof of an old theorem of Ljusternik - Schnirelman 
which states that for any metric on S 2 there exist at least 3 simple closed geodesic loops. 

Mean Curvature Flow 

This flow includes the curve shortening flow as a special case for n = 1. We consider the 
evolution equation 

(4) 
ox 
- = -Hv at 

for hypersurfaces M C Rn+l. Here H denotes the mean curvature of Mt = x(t, ·)(M) 
where x(t, ·) is an immersion of Minto Rn+l at timet. 
In view of the identity 

t:..M,X = -Hv 

where 

for k = 1, ... , n + 1 we obtain the nonlinear system of PDE's 

In the special case where Mt = graphu(t,·) equation (4) is equivalent (up to tangential 
diffeomorphisms) to the single parabolic PDE 

(4') 
ou D;uDju 
at = (o;j- 1 + 1Dul2) D;Dju. 

The first result about global behaviour of solutions of ( 4) was proved by G. Huisken in 
1984. 

Theorem. (Huisken, {Hul}) Let M0 C Rn+l be compact and convex. Then the surfaces 
Mt are convex and contract smoothly to a point in finite time. If we rescale Mt such as to 
preserve the area, then they converge to ann-sphere (with the prescribed area) in infinite 
time. 
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Without the convexity assumption, Mt may develop singularities in finite time as for 
example if Mo is a dumbbell shaped surface obtained by attaching two large spheres to 
the ends of a sufficiently long and thin cylinder. 

However, there are some initial situations which guarantee the existence of a smooth 
longterm solution. For instance, in the case where M 0 = graph u0 with u 0 : R n --+ R, 
the following result holds. 

Theorem. (E. - Huisken, {EH1,2}). The equation (4) (or equivalently (4')) admits a 
smooth solution Mt = graph u(t, ·) for all t > 0 if we merely require that u0 is locally 
Lipschitz continuous. 

Note, that in contrast to the linear heat equation ~~ =flu on Rn, no assumption about 
growth behaviour of u0 at infinity has to be made. In the linear case, 

1 1 -lx-y! 2 

u(x, t) = -( )!!. u0 (y)e-4•-dy 
47ri 2 Rn 

which blows up in finite time unless uo has controlled (e.g. polynomial) growth for IYI --+ CXJ. 

Stationary solutions of (4) are minimal surfaces (HM = 0). In fact, one hopes to employ 
mean curvature flow in Riemannian manifolds to find minimal surfaces (analogously to 
Grayson's result about geodesic loops in 2- surfaces). 

In Rn+I, closed compact minimal surfaces do not exist which can be seen by integrating 
the equation flMX = 0 by parts on M. 
However, in Rn+l equation (4) can be used to solve the Dirichlet problem for the minimal 
surface equation. 

Theorem. (Huisken, {Hu4}) Let Q c Rn have smooth boundary with nonnegative mean 
curvature. Let c.p : an --+ R and Uo : n --+ R be smooth. Then ( 4') admits a smooth 
solution u(t, ·) for all t > 0 which converges to a minimal graph (solution of the minimal 
surface equation) as t --+ CXJ. 

5. Ricciflow of Metrics 

We would like to evolve a metric on a given manifold to a "better" metric, such as for 
example a metric of constant sectional curvature. The main interest in considering such an 
evolution process stems from the fact that the topology of manifolds which admit metrics 
of constant sectional curvature is well-understood. 

More specifically, we would like to find a family of metrics (9ij ( t)) on a manifold M 
satisfying the equation 

(5) !9ij = -2 Ric;j 

with initial metric 9ij(O). This flow was proposed and studied by R. Hamilton in 1982 
[H2], see in particular the theorem below. 
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If for example the initial metric is invariant under 50(3) with spheres 5 2 as orbits t~en 
this is preserved under (5). In this case, the metric 9ij(t) looks like 

ds2 = b(r, t) 2 dr2 + a(r, t) 2 dw 2 

where w denotes coordinates on 5 2 and r is the radius function. The equation (5) reduces 
to the parabolic system of equations 

in this situation. 

aa 1 fJ2a 1 aa f)b 1 aa 2 1 
--------+-(-) --
f)t - b2 ar2 b2 fJr fJr ab2 ar a 
f)b 2 fJ2 b 2 a a f)b 

at ab fJr 2 ab2 fJr fJr 

The recent interest in geometric evolution equations was initiated mainly by the following 
theorem due to R. Hamilton: 

Theorem. (Hamilton, {H2}) For any initial metric (9ij(O)) on a compact 3-manifold M 
with Ric;j(O) > 0, there exists a unique solution (9ij(t))tE(O,T) of (5) such that Ric;j(t) > 0 
for all t > 0 and Vol(t) = JM Jdet 9ij(t) -+ 0 as t -+ T. If we rescale the metrics as to 
keep the volume fixed, they converge to a metric of constant positive sectional curvature. 

The rescaled flow mentioned in the theorem is given by the following: 

where R denotes the scalar curvature of g and f = ~ J M R. One readily checks that 
vol(M) 

for such metrics 
d-
dt vol (M) = 0. 

Combining the above theorem with a classification result for constant curvature manifolds 
(see Wolf [W]) we obtain an important classification result for compact 3-manifolds with 
positive Ricci curvature. 

Corollary. Any compact 3-manifold which admits a metric with positive Ricci curvature 
is diffeomorphic to the sphere 5 3 or a quotient of 5 3 by a finite linear group. 

Gradient flows 

All of the above flows except for the Ricci flow arise as so-called gradient flows for some 
geometric energy functional. Here, we will only sketch the underlying idea. For more 
detailed information especially about suitable function spaces for particular geometric 
problems we refer to the book by Struwe [S]. 
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We would like to minimize energy functions E : X -t R on some space X, typically a 
Sobolev space of functions, mappings or tensorfields endowed with some inner product 
(·,·)x· Let x = x(t) be a differentiable path in X, along which E decreases fastest. Such 
a path will have its tangent direction at every point determined by some generalization of 
the gradient of E at that point. 
More specifically, we have the following: In many applications we are dealing with spaces 
X where the directional derivative (Fnkhet derivative) of E along x(t) can be represented 
in terms of a vectorfield (gradient) on X by 

d dx 
dtE(x(t)) = (V'E(x(t)), dt (t)) x 

We then consider the so-called gradient flow for E defined by 

dx 
dt = -V'E(x). 

In particular, 
dE 2 
dt(x) = -IIV' E(x)Jix 

where Jl· llx denotes the norm on X induced by(·, ·)x. 
Examples: 

(i) Euclidean space: X= Rn, E(x) = !lxl2 , V'E(x) = x, 
Steepest descent paths are rays into the origin. 

dx Tt = -x. 

(ii) Heat equation on a compact Riemannian manifold M: Let X = H 1 •2 (M) and the 
energy be given by 

E(f) = ~ JM IV' !12 • 

Let t -t (f(t)) be a path in H 1 •2 (M). Assume for simplicity that all functions f(t) along 
this path are smooth. We then calculate 

!E(f(t)) = ~ JM !IV'fl2 

= JM (\7 j, :t \7 f) 

= r (V'J, V'a,) 
}M 8t 

=- r t::..jaj. 
JM at 

If we define an inner product on X by (f, g )x = J M f g the above reads as 

!:_E(f)- (-t::..j 8j) 
dt - '8tx 

whence \7 E(f) = -t::..j. This leads to the heat equation ~{ = t::..j. 
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(iii) Mean curvature flow: Consider immersions x : M ~ Rn+l of an n-dimensional 
hypersurface. As energy we choose the area of the image 

E(x) =area (x(M)) 

If x = x(t) denotes a path of immersions we calculate using the first variation formula (see 
lectures by Marty Ross in these proceedings) 

Regarding the integral on the right hand side as an inner product on an appropriate space 
of immersions we arrive at 

dx 
dt = -VE(x) = -Hv. 

Remarks on Short Time Existence of Solutions 

The equations ( 1) - ( 5) above are all of parabolic type and, except for ( 1), are nonlinear. 
Short time existence of a solution is usually proved by first considering the so called 
linearized equation. (For the existence theory for linear parabolic equations we refer to 
[FJ, [LSU].) If we consider a nonlinear evolution equation (this could also be a system of 
equations) of the form 

au 2 at = F(u, \lu, V u) 

then the linearized equation is given by 

ow d 
at dEI<=O F(u + EW, V(u + Ew), V 2(u + Ew)) 

= aij\li\ljw + lowerorderterms 

where ( a;j) is a positive definite matrix with entries depending on u. The linear existence 
and regularity theory (Schauder theory) in combination with an implicit function theorem 
(or a fixed point theorem) argument in an appropriate Banach space can then be employed 
to solve the nonlinear equation for a short time interval . One difficulty with the above 
equations (3)-(5) is that they are invariant under diffeomorphisms so the standard short 
time existence arguments do not apply immediately. One can however formulate and solve 
a modified but equivalent equation in each case (see for example [H1]. For instance, in the 
case of the curve-shortening flow (3), one can write ft as a normal graph over f 0 which 
leads to an equation of the type given by (3'). 

Longterm Behaviour for Solutions of the Linear Heat Equation 

Here we give an outline of the proof of the theorem about longterm behaviour of the 
solution of the linear heat equation discussed earlier. The techniques used are most easily 
presented for linear equations but are also applicable to a variety of nonlinear evolution 
equations. 
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We would like to show that a solution f of 

8f = D.f 
at 

with smooth initial function f(O) = fo on a smooth compact Riemannian manifold M 
converges smoothly to its average value. We first observe that the average 

f(t) = vol~M) !M f(t) 
is time independent. Indeed, 

d - 1 r a 
d/(t) = vol(M)} M a/(t) 

= voltM) !M D.f = O. 

The last identity is a consequence of the divergence theorem. In order to prove that f 
converges to its average in L2 ( M) we use the 

Theorem. (Poincare inequality). There exists a constant co > 0 depending only on the 
geometry of M s.t. 

for all f E C 1 (M). 

The constant c0 is an isoperimetric constant which is related to the quantity 

sup 
f!CM, f! open 

min{Vol (!1), Vol (M"' n)} 
Area (8!1) 

For instance, on manifolds with thin necks (think of a dumbbell) c0 can be very large. 

Lemma. Iff satisfies gt f = D.f on a compact manifold M then 

for every t ~ 0. This implies in particular that as t --7 oo 

If -11---+ o 

in the L 2 - sense. 
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Proof. Using ~{ = 0 we calculate 

whence 

= r u-n~u-n JM at 
= r (f-f)af 

JM at 
= r u- /)6.J JM 
=- JM 1Vfl2 

::::; -c;;-1 JM If- .f!Z 

.!!__ f If- !1 2 ::; -2c;;- 1 f If- !1 2 . 
dt }M jM 

Integrating this differential inequality yields the result. 

Next we would like to show that If- fl --+ 0 uniformly as t --+ oo and that all derivatives 
of f converge to 0 uniformly as well. The main tool we are going to employ is the weak 
maximum principle which holds for more general classes of parabolic operators. We state 
it here for the heat operator. 

Proposition. Let u : lvf x [0, T] --+ R be a sufficiently regular function satisfying the 
inequality 

au 
- < 6.u at -

on a compact manifold M fort E (0, T], then 

for all t E [0, T]. 

maxu(t) ::; maxu(O) 
M . M 

Remark. More generally we may consider inequalities of the form 

au at ::::: 6.u +(a, \7u). 

Then maxM u(t) ::::; maxM u(O) as long as supMx(O,T]Ial < oo. 

Proof. Heuristically we proceed as follows. We have 

. . a2u k au 
6.u = g'l(axiaxi - rij axk ). 

At a point where u attains a maximum at time t the first partials of u vanish and the 

matrix ( a:,2auxJ) is negative semidefinite. Hence 6.u ::::; 0 and therefore ~~ ::::; 0 at such a 
point. Hence u cannot increase here. This argument is almost rigorous. 
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In more detail, one checks that the function t ~ M(t) = maxxEM u(x, t) is Lipschitz 
continuous and hence differentiable a.e .. Furthermore, for a.e. t E (0, T] 

M'(t) ~ max{:(x,t), x E_Ms.t.u(x,t) = M(t)} 

~ max{~u(x,t), x E Ms.t.u(x,t) = M(t)} 

~ 0. 

Hence M(t) ~ M(O) for all t E [0, T]. 

An immediate consequence of the maximum principle is the following 

Proposition. A solution f of the beat equation satisfies the inequality 

mff' Jf(t)J ~ mff' Jf(O)J. 

Next we would like to use the maximum principle to obtain a time independent bound on 
IV fl. In fact, we would even like to show that JV fl ~ 0 uniformly as t ~ oo. 

Let us first calculate 

In the process of finding a simple expression for this we will have to interchange 3rd 
derivatives of f at some stage. This will introduce the Riemann curvature tensor of the 
metric on M into the calculations. 

Proposition. (Bochner formula) For any smooth function f on M there holds the formula 

where(·,·) denotes the metric on M and Ric(.,.) its Ricci curvature. 

Proof. Recall (see R. Bartnik's notes) that the Riemann tensor on M was defined in 
terms of interchanging second covariant derivatives of vector fields on M (careful; my sign 
convention for the Riemann tensor may be the opposite of the one used elsewhere). Let 
X be a vectorfield on M. We use the shorthand notation 

We also work in a local orthonormal frame on M such that we can conveniently write all 
tensor identities using only lower indices. Then 
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where we sum over repeated indices. The Ricci curvature is given by 

For a function f on lv! we have in particular (with f; denoting \1 d) 

We now calculate 

and therefore 

!kik = !kki + ftRtkik 

=(b.!);+ fzRz;. 

b.f; = fikk = fkik = (b.!);+ fzRz; 

1 2 
26.1\lfl = (fdij)j = f;jfij + fdijj 

= f;ifii + J;((b.f); + R;i!J) 

= l\12 !1 2 + (\1 f, \1(6.!)) +Ric (\1 f, \1 f). 

Lemma. Iff satisfies the heat equation ~{ = b.f then 

Proof. Calculate a 2 a 
at IV !I = 2(V f, at v f) 

a 
= 2(\1 J, v a/) 
= 2(\1 f, \1(6.!)) 

and apply the Bochner formula. 

There are a variety of estimates we can obtain by applying the weak maximum principle: 

Proposition. Let f satisfy ~{ = b.f on a compact Riemannian manifold M. Then there 
exists a constant c = c(Ric) > 0 s. t. for all t > 0 

Proof. Since M is compact there exists J{ > 0 such that 

holds on M. Using this in the above lemma we estimate 
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We also calculate 

Hence 

( :t -.6.) (t l\7 !1 2 +(I<+~ )!2 ) :::; 0. 

The maximum principle yields 

Remark. By applying the maximum principle to the functions e2 Kt l\7 fl 2 and e-zKt l\7 fl 2 , 

respectively, one obtains the following gradient estimates: 

If R;j 2 ]( 9ij for K > 0 then 

If R;j 2 -Kg;j for J( > 0 then 

The above proposition establishes that l\7 fl -t 0 uniformly on M as t -t oo. We now 
proceed to bound higher derivatives of f. We will only discuss estimates for \72 fin detail. 
The methods carry over readily to higher derivatives. 
In order to estimate 

we calculate 

and 
.6.1\72 !1 2 = (f;jfij)kk = (2j;j.fijk)k 

= 2fijkfijk + 2f;jfijkk 

= 21\73 !12 + 2j;jf;jkk· 

Using Rzijkk to denote \7 kRiijk we compute 

hikk = .fikjk + (fzRzijk)k 

= !kiik + fzkRlijk + fz Rzijkk 

= fkikj + JI;Rtkkj + fkmRmikj + ftkRtijk + ftRtijkk 

= .fkkij + (fnRnkik)j + ft;Rikkj + .fkmRmikj + ftkRlijk + ftRlijkk 

= (.6.J)ij + fnjRnkik + ft;Rtkkj + fkmRmikj + ftkRlijk + fnRnkikj + fzRiijkk· 
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Let S * T denote a tensor obtained by contractions of tensor products of SandT. Then 
the above formula can be written as 

We therefore obtain 

(! -~) IV2 !12 = -2IV3 !12 + V2 f * V2 f * R + V2 f * V f * V R 

::::; -2IV3 !12 + c(n, IRI) IV2 fl 2 + c(n, IV Rl) IV2 !I IV fl 

::::; -2IV3 !12 + c(n, IRI) IV2 !12 + c(n, IV Rl) IV !12 

where we used the inequality ab::::; ta2 + tb2 and denoted all constants depending only on 
n, IRI and IV Rl by c(n, IRI) and c(n, IV Rl) respectively. Let now 

g = IV2 !12 + LIV !12 

where L > 0 is a large constant. Then 

(! -~) g ::::; ciV2 fl 2 + ciV !12 - 2LIV2 !12 

::::; -IV2 !12 + ciV !12 

= -g + (c + L)IV !12 

::::; -g+C. 

Here we have chosen L large depending on n, IRI and IV Rl and denoted by C any constant 
depending on n, IRI, IV Rl and maxMx(o,oo) IV fl 2. We want to show that g satisfies the 
inequality 

max g::::; C + maxg(O). 
Mx[o,oo) M 

To this end let E > 0. Suppose there exists a first time to > 0 such that at x0 E M 

g(xa,to) = C +maxg(O) +E. 
M 

Then at ( x0 , t0 ) we have * ~ 0 and ~g ::::; 0. Hence 

at ( x0 , t 0 ) which yields a contradiction. This argument establishes the following 

Proposition. We have the estimate 

max IV2 !12 ::::; C 
Mx[O,oo) 

where C depends on n, IRI, IV Rl,maxMx[O,oo) IV fl and maxM IV2 !12(0). 
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Remark. One can even establish a bound for t 2 I'V2 fl 2 and therefore prove decay of l\72 fl 
in time. In fact, for all m, 2::: 1 

can be bounded in terms of n, m, derivatives of Riem up to order m- 1 and maxM lf(O)I. 
To prove such an estimate for I'Vm fl 2 one shows that 

(!- Ll) I'Vm fl 2 :S -2I'Vm+l fl 2 + c(l + I'Vmfl 2 ) 

where c depends on n, m, IRI, IV Rl, ... , IVm-l Rl and IVm-l fl and then proceeds by in­
duction on m. 

We are now able to prove that f - f converges to 0 as t ---+ oo uniformly. This is achieved 
by combining the above higher order estimates with the L 2 - decay estimate 

proved earlier. 

Lemma. There exist positive constants C and o such that 

for all t 2::: 0. 

Proof. Using ilf = 0, the inequality CZ:.::~= 1 a;_i )2 < n Z:.::7,j=l afi and the above decay 
estimate we calculate at time t 

JM IV !1 2 = - JM (! - /)6! 

:::; JM If- fllilfl 

:::; Vii JM If- fiiV 2 !I 
1 

:::; Vn ( r If- !12 ) 
2 Vol(M) ~ max l\72 !I JM Mx[O,oo) 

:S cfoVol(M)~ max IV2fle-Jt. 
Mx[O,oo) 

In view of the bound on l\72 fl the results follows. To complete the proof of convergence 
we need the following Sobolev inequality on M: 

There exists a constant C = C(n, M,p) such that for all C 1- functions f on M and for 
every p > n 

1 

m'*x If - fl :S C (JM IV fiP) P 
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Combining this with the previous lemma and the global bound on IV fl we estimate 
1 1 2 

( { IVJIP (t));.;::; max 1Vfl 1 -~ ( { 1Vfl2 (t)) 2 ·;.; 
}M Mx[O,oo) }M 

< lnfll-;J.c£ -o£t max v P P e P 

- Mx[O,oo) 

::; C e-ot. 

Applying the Sobolev inequality to (f- f)(t) we therefore conclude for all t ~ 0 

max If- !l(t) < ce-"(t 
M -

with constants C, "( > 0. This establishes uniform convergence. 

Selected Topics from Mean Curvature Flow 

1. Evolution equations of geometric quantities 

We would like to calculate how geometric quantities of a given hypersurface M C Rn+l 
change as this surface is deformed locally in the direction of an arbitrary normal vector 
field. The evolution equations for mean curvature flow are then obtained by substituting 
mean curvature as the normal speed. 

More specifically, we consider vectorfields X defined in a neighbourhood of M which gen­
erate a 1-parameter family of diffeomorphisms of R n+l. We may assume without loss of 
generality that our vectorfields are of the form X = ryv where v is a choice of normal of M 
suitably extended and 17 is a smooth function defined in a neighbourhood of M. In case of 
mean curvature flow we have 17 = -H. 

We shall introduce a convenient set of coordinates in a normal neighbourhood about M: 

Let p E M and n c Rn+l be an open neighbourhood of p. Let X E C~ (n; Rn+l) be a 
vectorfield which generates a 1-parameter family of diffeomorphisms 

S0: n X (-E,E)--+ D 

such that SOt(x) = so(x,t) =X for all X ERn"' nand t E (-E,E), soo(x) =X for all.T En 

and ~~lt=o(x) = X(x). Let Mt = SOt(M). 

We introduce a local orthonormal frame T1 ... T n, v near p E M with the property 

for 1 ::; i, j, k ::; n where \7 denotes the standard connection on R n+ 1 . The vectorfields 
Ti(t) =SOh( Ti) then yield a local (not necessarily orthonormal) frame for Mt. By definition 
of Ti ( t) we have in particular 

'Vr;X- 'VxTi = [X,Ti] = 0 

in a neighbourhood of M 0 . Assuming for simplicity that X = ryv where 17 E C~(n) and 
denoting X = .Jt 1,=o we have the following 
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Proposition. The metric satisfies 

d 
dt lt=O 9ij = 2ryh;j 

where h;j = (\7 r; v, Tj) is the second fundamental form of M. 

Proof. We calculate 

X(g;j) =X (r;, Tj) 

= 2(\i'xr;,Tj) = 2(Y'r;X,Tj) 

= 2(V'r;(ryv),Tj) 

= 2T; (ry)(v, Tj} + 2ry(\7 r;V, Tj) 

= 2ryh;j 

where we have used (X, r;] = 0 in the second line. 

Corollary. The inverse metric gii and the volume element y7j = Jdet 9ij satisfy the 
equations 

(i) 
d .. .. 
- g'1 = -2ryh'1 
dt lt=O 

and 

( ii) 
d 
dt it=O Vg = ryH -J9. 

Proof. (i) is easy. To establish (ii) we compute 

d 1 .. d 
dt it=O y7j = 2yg g'1 dt it=O 9ij = ryH -J9. 

Proposition. The second fundamental form satisfies the equation 

Proof. We calculate 
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X(h;J) = -X(VrJJ,v) 

= -(\7 x\7 rJj, v)- (\7 rJj, \lxv) 

= -(\7 r; \7 XTj, v)- (V r,Tj, \7 xv) 

= -(\lr;\lxTj,v) 

= (V Ti \7 Tjx, v) 

= -(\7 r; \7 Tj (17 v), v) 

(since \7~ Tj(P) = 0 and \7 xv E TpM) 

(since [X, Tj] = 0) 

= -(Vr;(Tj(17)v+77\lrjv),v) 

= -TiTj( 7]) - Tj( 7] )(\J r; V 1 V) - Ti (7] )(\J Tj V, v) - 77(\J r; \J Tj V, v) 

= -T;Tj(17) + 77(\1 Tjv, \7 r;v) (using \7 Tj v E TpM) 

= -T;Tj(7]) + 7]hikhkj 
nJ\!InM h 1 = - vi v j 1] + 7] ik lkj (normal coordinates), 

Corollary. The mean curvature satisfies 

where IAI 2 - h F - ZJ 6ZJ· 

Proof. 

X(H) = X(giih;1) 

= X(gii)h;i + gii X(h;i) 

= -27]h;jhii + X(h;;) 

= -277IAI2 - 6.M77 + 77IAI2· 

Corollary. (First variation formula) The surface area ( n-dimensional Hausdorff measure) 
satisfies 

dd 1-ln(Mt) = { 7]H yg. 
t it=O J M 

Corollary. (Second variation formula) The second derivative of area is given by 

ddt22i 1-ln(Mt) = { (\77], v)7]H yg- { 7]6.M7]yg 
t=O jM jM 

- { 772IAI2 yg + f 1]2 H2 yg. JM JM 
Remark. If M is minimal, i.e. H :::::: 0 and 17 E C;:"(M) then the second variation formula 
reduces to 
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A minimal surface is called stable if 

d2 
-d 2 l 1C(Mt) ~ 0. 
t t=O 

This yields the inequality 

for all 17 E Cgo(M). 

To derive evolution equations for mean curvature flow we consider variations of M = M 1 

for each t. 

Theorem. (Evolution equations for mean curvature flow) 

(i) 

( ii) 

(iii) 

(iv) 

(v) 

(vi) 

(vii) 

Proof. (i) - (iii) follow by replacing 17 by -H in the rate of change formulas for general 
deformations. To derive (iv) and (v) we need to express V'fA'Y'f' H in terms of t:J.M,hij· 

Proposition. (Simons' identity) 

( +) V'~ Y'f H = D.Mhii - Hh;khki + jAj2 h;i 

( ++) D.MJAJ 2 = -2jAj4 + 2jV'M Aj 2 + 2Hh;khkihii + 2h;jY'~V'f H 

Proof. ( ++) follows easily from ( +) by multiplication with h;j. To prove ( +) we employ 
the Gauss equations 

and the Codazzi equations 
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the latter being shorthand for Vt/h;j = \lj'hik· We then calculate 

D,.M h;j = hijkk 

= hikjk 

= hkijk 

(Codazzi) 

(sinceh;k = hk;) 

(from definition of RM) 

= hkkij-+ hm;(hmjhkk- hmkhkj)-+ h~cm(hmjhik- hmkhij) (Codazzi and Gauss) 

= H;j-+ Hh;khkj- IAI 2 h;j (relabellingindices) 

Equations (iv) - (vi) of the theorem now follow immediately. To prove (vii) we proceed as 
follows: 

We assume w.l.o.g. that TJ #- 0 in a neighbourhood of p for the purpose of our calculations. 
Otherwise we interpret -fh v as -fh v( 'Pt ( x)) using the chain rule (the result of the calculation 
will still be the same). If X = 171/ is transverse to M then -fh v = V x v and we calculate 

\7 xv = (Vxv, r;)r; 

= -(v, V xr;)r; 

= -(v, V r,X)T; (since [X, r;] = 0) 

= -(v, \7 r; ( -H v))T; 

= r;(H)(v, v)r; = r;(H)r; 

= \lMH. 

2. Formation and structure of singularities for mean curvature flow 

Without any special assumptions on M 0 such as convexity or graph property, the solution 
(Mt) will in general develop singularities in finite time. Here we discuss some techniques 
which are relevant for dealing with isolated singularities. We would first like to give a short 
proof of the fact that singularities for "dumb-bell" like hypersurfaces do indeed form. The 
argument is entirely based on the weak maximum principle. This was stated earlier for 
the ordinary heat operator. The proof, however, carries over unchanged if we consider 
D.M, instead. We begin by comparing the flowing hypersurfaces with spheres moving by 
contraction. 

Proposition. (Sphere comparison) Let ( Mt) be a family of hypersurfaces moving by mean 
curvature. If 

then 

If 

then 
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Proof. The position vector of Mt satisfies 

and 
~M, lxl 2 = 2n- 2H(v, x). 

Hence 
d 

(dt- ~M,)(Ixl 2 + 2nt) = 0. 

We can therefore employ the weak maximum principle with f = lxl 2 + 2nt to obtain the 
result. 

Proposition. Let (lvft) be a family of hypersurfaces moving by mean curvature. If for 
(J<n-1 

then 

2 + + 2 
{( ) n+l 2 Xl ··· Xn-E} lvfo C XI, ... , Xn+l E R , Xn+l ~ --"-----=-­

n-l-(3 

{( n+l 2 xi + ... + x;, + E - 2(3t} 
Mt C X}, ... ,Xn+Il E R ,xn+l ~ (3 n-1-

for t :::; 2'13 . In particular, M __§__ is contained inside a cone. 
2(3 

Proof. Using ( fh- ~M, )x = 0 we check that ( fh- ~M, )x;,+l = -2IVM Xn+ll 2 and hence 
that 

d . 2 2 
(dt- 6.M,)(Ixl - (n- (J)xn+l + 2(3t):::; 0. 

Applying the weak maximum principle yields the result. 

We now consider a "dumbbell" - shaped initial hypersurface M 0 . More specifically, we 
assume that M0 consists of a long thin cylinder of radius .jE with a large sphere of radius R 
attached at either end of the cylinder. Such a surface will be contained inside a hyperboloid 
with minimum diameter yf_ and will contain two spheres of radius R inside the volume it 
encloses. By the proposition, ]\1[ __§__ will be contained inside a cone with vertex at 0 while if 

2(3 

R is large enough compared to E will still contain two spheres and can therefore not have 
vanished completely. Therefore a singularity must have formed at 0 (possibly also at other 
points). 

One can show that if a singularity forms at timeT we have 

lim sup max IAI 2 = oo. 
t---+T M, 

In fact, if for compact ]lift we had a bound on IAI 2 up to time T, we could also obtain 
bounds on all derivatives of A (we will return to this later) and would therefore be able to 
extend the solution (Mt) a little beyond timeT. 
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There is a certain minimum "blow-up" rate for IAI2 at the first singular timeT: 

Lenuna. If Mt is singular at t = T, i.e. 

then 

for all t E (0, T). 

lim sup max IAI 2 = oo 
t-+T M, 

? 1 
max I AI- :2: ( ) 
M, 2 T- t 

Proof. The quantity IAI2 satisfies the evolution equation 

and hence 

Integrating this differential inequality and using that lim supt-+T maxM, IAI 2 = oo yields 
the estimate. 

If we also had an upper blow-up rate for IAI 2 of this kind we would be able to give a 
complete description of the structure of isolated singularities. This is done by means of a 
monotonicity formula first proved by G. Huisken ([Hu2]): 

Proposition. (Monotonicity formula) Fort < T the hypersurfaces Mt satisfy 

d r r I (x - Xo, v) 12 
dt } M, Px 0 ,r(x, t) =-} M, Px 0 ,T(x, t) H- 2(T _ t) 

where 
1 ( lx-xol2 ) 

Pxo,r(x,t) = (47r(T-t))~ exp - 4(T-t) . 

Remark. The proof uses the fact that 1 ~ Pxo T satisfies the backward heat equation 
(47r(T-t))2 ' 

(aa + 6.Rn+l) 1 1 Pxo T = 0 
t (47r(T- t))2 ' 

In fact, a monotonicity formula like the one above holds for any such backward heat kernel 
([Hu3], [H3]): 

Let k solve the equation 
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Then 

:!__ ((2(T-t))~ r k) =-(2(T-t))~ r IH- ('V~,v)l 2 k 
dt }M, }M, k 

1 r ( \7 vk \7 vk k ) 
-(2(T-t))2 }M, 'Yv'Yvk- k + 2(T-t) . 

for all t < T. It turns out that the second integral on the right hand side is nonnegative 
for any backward solution of the heat equation and therefore 

d ( 1 - (2(T- t))2 
dt 

To prove this more general version of the monotonicity formula we first calculate 

as well as 

d a dx a 
-k = -k + (vk -) = -k- H(v 'Vk) 
dt at ' dt at ' 

k = diV 11J,VM'k = divM,('Vk- (\i'k,v)v) 

= divRn+1 \i'k- (\7 v \i'k, v)- ('Vk, v)divM, v 

= ll.Rn+lk- \7 v \7 vk- H(\lk, v). 

Hence using ftV9t = -H2 ,J9t we compute 

d ( 1 1 ) 1 j" . 1 1 dk 1 1 ry dt (2(T--t))2 k =(T-t)-2 k+(2(T-t))2 dt (2(T-t))2 ki:l·-
M, M, M, l\!1, 

= (T- t)-~ { k - (2(T- t))~ { ll.Rn+1k 
JM, JM, 

- (2(T- t))~ { kH2 - (2(T- t))~ { kH(v, Vk) 
JM, JM, 

=(T-t)-~ { k-(2(T-t))~ { ll.M,k 
JM, JM, 

-(2(T-t))~ { 2H(v,'Vk)-(2(T-t))~ { Vv'Yvk 
JM, JM, 

Completing the square 

yields the monotonicity formula. 

Let us now assume that (Nit) satisfies the so-called type I blow-up rate 

ry c maxiAI- < --
M, - T- t 
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for some C > 0. Note that there exist solutions (Mt) which do not satisfy(*). Assumption 
(*) guarantees that we can rescale the surface about the isolated singularity and pass to a 
smooth limit which moves by homothety: 

Suppose 0 E Rn+l is a singular point of the flow at the time T. We define rescaled 
. . 
ImmersiOns 

x(p,s) = (2(T-t))-~x(p,t) 

for p E Mn and s = s(t) = -~ log(T- t). The hypersurfaces 

are defined for - ~ log T ::::; s < = and satisfy 

In view of(*) the rescaled curvature satisfies 

m_ax IAI 2 ::::; C 
M, 

for all s with constant independent of s. This implies also an estimate for the position of 
Ms by estimating 

iT iT 1 1 
ix(p,t)i:s; IH(p,r)idr:s;C 1 dr:s;C(T-t)2 

t t (T-t)2 

whence 
lx(p,s)i::::; C 

for all p E Mn and all s. One can now establish global bounds on IVm AI for any m 2: 0 
and then use standard convergence results to infer that for a subsequence ( s j) -+ = we 
have 

Msj-+ M= 
in coo where M00 is a smooth hypersurface. Rescaling the monotonicity formula (with 
k = Po,T) yields 

where p(.i) = c~lx1 2 • 
Hence 

r= f_ Piil- (x,v)lz::::; f_ P < = 
Jo JM, }Mo 

which implies (after selecting another subsequence) that 
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Therefore Moo satisfies the equation 

(#) H = (x, v). 

The geometric significance of this equation is given by the fact that an initial surface Nfo 
satisfying ( #) moves homothetically under mean curvature flow. Indeed, let 

1 
x(p, t) = (2(T- t))2x(p, 0) 

where M0 = x(·,O) (Mn) satisfies(#). Then for p E Mn, 

1 
----,--1 (H(p, 0), v) = -H(p, t)v(p, t). 
(2(T-t))2 

It turns out that the only embedded solutions of ( #) with positive mean curvature are 
the round sphere (of radius yfii) in the compact case and the cylinder in the non-compact 
case. This is a result due to G. Huisken ([Hu3]). There are many more interesting facts 
known about the structure of singularities but presenting these would exceed the scope of 
these lectures. 

3. Mean curvature flow of graphs. 

I would like to conclude with a few results about the flow of graphs and show that in this 
case mean curvature flow does not develop singularities: 

We consider hypersurface Mt = graph u( t, ·) which move by mean curvature. The functions 
u(t, ·) = Rn-+ R then satisfy the single PDE 

~ . ( Du ) -0 = yl + 1Dul2 d1v . 
t Jl + 1Dul2 

The mail goal is to establish an estimate on Jl + 1Dul2 such that the equation becomes 
uniformly parabolic which would then allow us to apply methods for linear equations. 
However, rather than working with the quantity Jl + 1Dul2 directly we consider with the 
geometrically more natural quantity 

which agrees with up to tangential diffeomorphisms. Here, graphs are characterized by the 
condition (v, en+l) > 0 for some choice of normal field. 

From the evolution equation for v we obtain 
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Using a local orthonormal frame as before we can also calculate !:::.M, Vn+I by 

f:::.M,Vn+l = TjTiVn+I = T;(\7,-;V,en+I) 

= T;(hik(Tk, En+ I)) = T;hik(Tk, En+ I)+ h;k(\7 r;Tk, En+ I) 

= Tkh;;(Tk, en+I)- h;khik(v, En+l) (using the Codazziequations) 0 

= ('VM' H, en+ I) - IAI2 Vn+l 

Therefore, 

whence 

We now would like to employ the weak maximum principle. However, since we are on a 
non-compact hypersurface Mt we cannot argue as before in a pointwise fashion to prove 
it. 

Proposition. Suppose f = f(x, t) satisfies the inequa.lity 

(! - t::.M,) J ::; (a, vM, f) 

where a is a vectorfield satisfying sup(o,T) supM, ial < oo. Then 

sup f ::; sup f 
j\1, Mo 

for all t E (0, T). 

Proof. Similarly to the proof of the monotonicity formula for Pxo,T one can show ([EHl]) 
that the function R =(max(!- k,0)) 2 ,k > 0 satisfies the inequality 

d1 2 1 21 2 dt fk Pxo,T ::; ;_)" sup sup Ia I fk Pxo,T· 
M, ~ (O,T) M, M, 

Hence, if k;::: supM0 f we have JMo JlPxo,T = 0 which implies 

{ RPxo,T = 0 JM, 

for all t E (0, T) and therefore supM, f::; k for all t E (0, T). 
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From the evolution equation for v (since all the terms on the RHS are nonpositi:Ve) we 
immediately obtain a gradient estimate: 

Proposition. The gradient function satisfies the estimate 

supv :S: supv 
M, Mo 

for all t E (0, oo ). 

This establishes that if M0 grows linearly then this is preserved for all t > 0. In particular, 
this proves that the above equation for u is uniformly parabolic (since we now also have 
a bound on y'1 + 1Dul2 ). Standard theory for parabolic equations (see [F], [LSU]) then 
yields estimates on all higher derivatives of u. Let me indicate how (at least in the case of 
the curvatures) such estimates can be obtained in a more geometric fashion: 

Combining the equations for IAI 2 and v one calculates using also the inequality ab :S: 
w 2 + lb2 that 

4< 

and furthermore 

Since v-1 I'VM'vl :S: IAiv we can then apply the weak maximum principle to obtain 

Theorem. For all t > 0 we have 

sup(tiAI 2 v2 + v2 ) :S: supv2 . 
M, Mo 

This yields in particular that 
sup IAI 2 -+ 0 
M, 

as t -+ oo, i.e. the hypersurfaces Mt become flat as t -+ oo. There are also local versions 
of all these estimates which can be used in conjunCtion with a spherical barrier argument 
to prove that mean curvature flow admits a smooth solution Mt = graphu(t, ·)even if the 
initial data M 0 is merely locally Lipschitz continuous (see [EH2]). 
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